1 /*
2  * Copyright (c) 2010, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileBroker.hpp"
27 #include "compiler/compilerOracle.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "runtime/arguments.hpp"
30 #include "runtime/handles.inline.hpp"
31 #include "runtime/safepointVerifiers.hpp"
32 #include "runtime/tieredThresholdPolicy.hpp"
33 #include "code/scopeDesc.hpp"
34 #include "oops/method.inline.hpp"
35 #if INCLUDE_JVMCI
36 #include "jvmci/jvmciRuntime.hpp"
37 #endif
38 
39 #ifdef TIERED
40 
41 #include "c1/c1_Compiler.hpp"
42 #include "opto/c2compiler.hpp"
43 
44 template<CompLevel level>
call_predicate_helper(int i,int b,double scale,Method * method)45 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
46   double threshold_scaling;
47   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
48     scale *= threshold_scaling;
49   }
50   switch(level) {
51   case CompLevel_aot:
52     return (i >= Tier3AOTInvocationThreshold * scale) ||
53            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
54   case CompLevel_none:
55   case CompLevel_limited_profile:
56     return (i >= Tier3InvocationThreshold * scale) ||
57            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
58   case CompLevel_full_profile:
59    return (i >= Tier4InvocationThreshold * scale) ||
60           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
61   }
62   return true;
63 }
64 
65 template<CompLevel level>
loop_predicate_helper(int i,int b,double scale,Method * method)66 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
67   double threshold_scaling;
68   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
69     scale *= threshold_scaling;
70   }
71   switch(level) {
72   case CompLevel_aot:
73     return b >= Tier3AOTBackEdgeThreshold * scale;
74   case CompLevel_none:
75   case CompLevel_limited_profile:
76     return b >= Tier3BackEdgeThreshold * scale;
77   case CompLevel_full_profile:
78     return b >= Tier4BackEdgeThreshold * scale;
79   }
80   return true;
81 }
82 
83 // Simple methods are as good being compiled with C1 as C2.
84 // Determine if a given method is such a case.
is_trivial(Method * method)85 bool TieredThresholdPolicy::is_trivial(Method* method) {
86   if (method->is_accessor() ||
87       method->is_constant_getter()) {
88     return true;
89   }
90   return false;
91 }
92 
comp_level(Method * method)93 inline CompLevel TieredThresholdPolicy::comp_level(Method* method) {
94   CompiledMethod *nm = method->code();
95   if (nm != NULL && nm->is_in_use()) {
96     return (CompLevel)nm->comp_level();
97   }
98   return CompLevel_none;
99 }
100 
print_counters(const char * prefix,const methodHandle & mh)101 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
102   int invocation_count = mh->invocation_count();
103   int backedge_count = mh->backedge_count();
104   MethodData* mdh = mh->method_data();
105   int mdo_invocations = 0, mdo_backedges = 0;
106   int mdo_invocations_start = 0, mdo_backedges_start = 0;
107   if (mdh != NULL) {
108     mdo_invocations = mdh->invocation_count();
109     mdo_backedges = mdh->backedge_count();
110     mdo_invocations_start = mdh->invocation_count_start();
111     mdo_backedges_start = mdh->backedge_count_start();
112   }
113   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
114       invocation_count, backedge_count, prefix,
115       mdo_invocations, mdo_invocations_start,
116       mdo_backedges, mdo_backedges_start);
117   tty->print(" %smax levels=%d,%d", prefix,
118       mh->highest_comp_level(), mh->highest_osr_comp_level());
119 }
120 
121 // Print an event.
print_event(EventType type,const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level)122 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
123                                         int bci, CompLevel level) {
124   bool inlinee_event = mh() != imh();
125 
126   ttyLocker tty_lock;
127   tty->print("%lf: [", os::elapsedTime());
128 
129   switch(type) {
130   case CALL:
131     tty->print("call");
132     break;
133   case LOOP:
134     tty->print("loop");
135     break;
136   case COMPILE:
137     tty->print("compile");
138     break;
139   case REMOVE_FROM_QUEUE:
140     tty->print("remove-from-queue");
141     break;
142   case UPDATE_IN_QUEUE:
143     tty->print("update-in-queue");
144     break;
145   case REPROFILE:
146     tty->print("reprofile");
147     break;
148   case MAKE_NOT_ENTRANT:
149     tty->print("make-not-entrant");
150     break;
151   default:
152     tty->print("unknown");
153   }
154 
155   tty->print(" level=%d ", level);
156 
157   ResourceMark rm;
158   char *method_name = mh->name_and_sig_as_C_string();
159   tty->print("[%s", method_name);
160   if (inlinee_event) {
161     char *inlinee_name = imh->name_and_sig_as_C_string();
162     tty->print(" [%s]] ", inlinee_name);
163   }
164   else tty->print("] ");
165   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
166                                       CompileBroker::queue_size(CompLevel_full_optimization));
167 
168   print_specific(type, mh, imh, bci, level);
169 
170   if (type != COMPILE) {
171     print_counters("", mh);
172     if (inlinee_event) {
173       print_counters("inlinee ", imh);
174     }
175     tty->print(" compilable=");
176     bool need_comma = false;
177     if (!mh->is_not_compilable(CompLevel_full_profile)) {
178       tty->print("c1");
179       need_comma = true;
180     }
181     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
182       if (need_comma) tty->print(",");
183       tty->print("c1-osr");
184       need_comma = true;
185     }
186     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
187       if (need_comma) tty->print(",");
188       tty->print("c2");
189       need_comma = true;
190     }
191     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
192       if (need_comma) tty->print(",");
193       tty->print("c2-osr");
194     }
195     tty->print(" status=");
196     if (mh->queued_for_compilation()) {
197       tty->print("in-queue");
198     } else tty->print("idle");
199   }
200   tty->print_cr("]");
201 }
202 
initialize()203 void TieredThresholdPolicy::initialize() {
204   int count = CICompilerCount;
205   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
206 #ifdef _LP64
207   // Turn on ergonomic compiler count selection
208   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
209     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
210   }
211   if (CICompilerCountPerCPU) {
212     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
213     int log_cpu = log2_int(os::active_processor_count());
214     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
215     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
216     // Make sure there is enough space in the code cache to hold all the compiler buffers
217     size_t c1_size = Compiler::code_buffer_size();
218     size_t c2_size = C2Compiler::initial_code_buffer_size();
219     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
220     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
221     if (count > max_count) {
222       // Lower the compiler count such that all buffers fit into the code cache
223       count = MAX2(max_count, c1_only ? 1 : 2);
224     }
225     FLAG_SET_ERGO(intx, CICompilerCount, count);
226   }
227 #else
228   // On 32-bit systems, the number of compiler threads is limited to 3.
229   // On these systems, the virtual address space available to the JVM
230   // is usually limited to 2-4 GB (the exact value depends on the platform).
231   // As the compilers (especially C2) can consume a large amount of
232   // memory, scaling the number of compiler threads with the number of
233   // available cores can result in the exhaustion of the address space
234   /// available to the VM and thus cause the VM to crash.
235   if (FLAG_IS_DEFAULT(CICompilerCount)) {
236     count = 3;
237     FLAG_SET_ERGO(intx, CICompilerCount, count);
238   }
239 #endif
240 
241   if (c1_only) {
242     // No C2 compiler thread required
243     set_c1_count(count);
244   } else {
245     set_c1_count(MAX2(count / 3, 1));
246     set_c2_count(MAX2(count - c1_count(), 1));
247   }
248   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
249 
250   // Some inlining tuning
251 #ifdef X86
252   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
253     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
254   }
255 #endif
256 
257 #if defined SPARC || defined AARCH64
258   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
259     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
260   }
261 #endif
262 
263   set_increase_threshold_at_ratio();
264   set_start_time(os::javaTimeMillis());
265 }
266 
set_carry_if_necessary(InvocationCounter * counter)267 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
268   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
269     counter->set_carry_flag();
270   }
271 }
272 
273 // Set carry flags on the counters if necessary
handle_counter_overflow(Method * method)274 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
275   MethodCounters *mcs = method->method_counters();
276   if (mcs != NULL) {
277     set_carry_if_necessary(mcs->invocation_counter());
278     set_carry_if_necessary(mcs->backedge_counter());
279   }
280   MethodData* mdo = method->method_data();
281   if (mdo != NULL) {
282     set_carry_if_necessary(mdo->invocation_counter());
283     set_carry_if_necessary(mdo->backedge_counter());
284   }
285 }
286 
287 // Called with the queue locked and with at least one element
select_task(CompileQueue * compile_queue)288 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
289   CompileTask *max_blocking_task = NULL;
290   CompileTask *max_task = NULL;
291   Method* max_method = NULL;
292   jlong t = os::javaTimeMillis();
293   // Iterate through the queue and find a method with a maximum rate.
294   for (CompileTask* task = compile_queue->first(); task != NULL;) {
295     CompileTask* next_task = task->next();
296     Method* method = task->method();
297     // If a method was unloaded or has been stale for some time, remove it from the queue.
298     // Blocking tasks and tasks submitted from whitebox API don't become stale
299     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
300       if (!task->is_unloaded()) {
301         if (PrintTieredEvents) {
302           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
303         }
304         method->clear_queued_for_compilation();
305       }
306       compile_queue->remove_and_mark_stale(task);
307       task = next_task;
308       continue;
309     }
310     update_rate(t, method);
311     if (max_task == NULL || compare_methods(method, max_method)) {
312       // Select a method with the highest rate
313       max_task = task;
314       max_method = method;
315     }
316 
317     if (task->is_blocking()) {
318       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
319         max_blocking_task = task;
320       }
321     }
322 
323     task = next_task;
324   }
325 
326   if (max_blocking_task != NULL) {
327     // In blocking compilation mode, the CompileBroker will make
328     // compilations submitted by a JVMCI compiler thread non-blocking. These
329     // compilations should be scheduled after all blocking compilations
330     // to service non-compiler related compilations sooner and reduce the
331     // chance of such compilations timing out.
332     max_task = max_blocking_task;
333     max_method = max_task->method();
334   }
335 
336   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
337       TieredStopAtLevel > CompLevel_full_profile &&
338       max_method != NULL && is_method_profiled(max_method)) {
339     max_task->set_comp_level(CompLevel_limited_profile);
340 
341     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
342       if (PrintTieredEvents) {
343         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
344       }
345       compile_queue->remove_and_mark_stale(max_task);
346       max_method->clear_queued_for_compilation();
347       return NULL;
348     }
349 
350     if (PrintTieredEvents) {
351       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
352     }
353   }
354 
355   return max_task;
356 }
357 
reprofile(ScopeDesc * trap_scope,bool is_osr)358 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
359   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
360     if (PrintTieredEvents) {
361       methodHandle mh(sd->method());
362       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
363     }
364     MethodData* mdo = sd->method()->method_data();
365     if (mdo != NULL) {
366       mdo->reset_start_counters();
367     }
368     if (sd->is_top()) break;
369   }
370 }
371 
event(const methodHandle & method,const methodHandle & inlinee,int branch_bci,int bci,CompLevel comp_level,CompiledMethod * nm,JavaThread * thread)372 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
373                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
374   if (comp_level == CompLevel_none &&
375       JvmtiExport::can_post_interpreter_events() &&
376       thread->is_interp_only_mode()) {
377     return NULL;
378   }
379   if (CompileTheWorld || ReplayCompiles) {
380     // Don't trigger other compiles in testing mode
381     return NULL;
382   }
383 
384   handle_counter_overflow(method());
385   if (method() != inlinee()) {
386     handle_counter_overflow(inlinee());
387   }
388 
389   if (PrintTieredEvents) {
390     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
391   }
392 
393   if (bci == InvocationEntryBci) {
394     method_invocation_event(method, inlinee, comp_level, nm, thread);
395   } else {
396     // method == inlinee if the event originated in the main method
397     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
398     // Check if event led to a higher level OSR compilation
399     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, comp_level, false);
400     if (osr_nm != NULL && osr_nm->comp_level() > comp_level) {
401       // Perform OSR with new nmethod
402       return osr_nm;
403     }
404   }
405   return NULL;
406 }
407 
408 // Check if the method can be compiled, change level if necessary
compile(const methodHandle & mh,int bci,CompLevel level,JavaThread * thread)409 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
410   assert(level <= TieredStopAtLevel, "Invalid compilation level");
411   if (level == CompLevel_none) {
412     return;
413   }
414   if (level == CompLevel_aot) {
415     if (mh->has_aot_code()) {
416       if (PrintTieredEvents) {
417         print_event(COMPILE, mh, mh, bci, level);
418       }
419       MutexLocker ml(Compile_lock);
420       NoSafepointVerifier nsv;
421       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
422         mh->aot_code()->make_entrant();
423         if (mh->has_compiled_code()) {
424           mh->code()->make_not_entrant();
425         }
426         Method::set_code(mh, mh->aot_code());
427       }
428     }
429     return;
430   }
431 
432   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
433   // in the interpreter and then compile with C2 (the transition function will request that,
434   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
435   // pure C1.
436   if (!can_be_compiled(mh, level)) {
437     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
438         compile(mh, bci, CompLevel_simple, thread);
439     }
440     return;
441   }
442   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
443     return;
444   }
445   if (!CompileBroker::compilation_is_in_queue(mh)) {
446     if (PrintTieredEvents) {
447       print_event(COMPILE, mh, mh, bci, level);
448     }
449     submit_compile(mh, bci, level, thread);
450   }
451 }
452 
453 // Update the rate and submit compile
submit_compile(const methodHandle & mh,int bci,CompLevel level,JavaThread * thread)454 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
455   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
456   update_rate(os::javaTimeMillis(), mh());
457   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
458 }
459 
460 // Print an event.
print_specific(EventType type,const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level)461 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
462                                              int bci, CompLevel level) {
463   tty->print(" rate=");
464   if (mh->prev_time() == 0) tty->print("n/a");
465   else tty->print("%f", mh->rate());
466 
467   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
468                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
469 
470 }
471 
472 // update_rate() is called from select_task() while holding a compile queue lock.
update_rate(jlong t,Method * m)473 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
474   // Skip update if counters are absent.
475   // Can't allocate them since we are holding compile queue lock.
476   if (m->method_counters() == NULL)  return;
477 
478   if (is_old(m)) {
479     // We don't remove old methods from the queue,
480     // so we can just zero the rate.
481     m->set_rate(0);
482     return;
483   }
484 
485   // We don't update the rate if we've just came out of a safepoint.
486   // delta_s is the time since last safepoint in milliseconds.
487   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
488   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
489   // How many events were there since the last time?
490   int event_count = m->invocation_count() + m->backedge_count();
491   int delta_e = event_count - m->prev_event_count();
492 
493   // We should be running for at least 1ms.
494   if (delta_s >= TieredRateUpdateMinTime) {
495     // And we must've taken the previous point at least 1ms before.
496     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
497       m->set_prev_time(t);
498       m->set_prev_event_count(event_count);
499       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
500     } else {
501       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
502         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
503         m->set_rate(0);
504       }
505     }
506   }
507 }
508 
509 // Check if this method has been stale for a given number of milliseconds.
510 // See select_task().
is_stale(jlong t,jlong timeout,Method * m)511 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
512   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
513   jlong delta_t = t - m->prev_time();
514   if (delta_t > timeout && delta_s > timeout) {
515     int event_count = m->invocation_count() + m->backedge_count();
516     int delta_e = event_count - m->prev_event_count();
517     // Return true if there were no events.
518     return delta_e == 0;
519   }
520   return false;
521 }
522 
523 // We don't remove old methods from the compile queue even if they have
524 // very low activity. See select_task().
is_old(Method * method)525 bool TieredThresholdPolicy::is_old(Method* method) {
526   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
527 }
528 
weight(Method * method)529 double TieredThresholdPolicy::weight(Method* method) {
530   return (double)(method->rate() + 1) *
531     (method->invocation_count() + 1) * (method->backedge_count() + 1);
532 }
533 
534 // Apply heuristics and return true if x should be compiled before y
compare_methods(Method * x,Method * y)535 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
536   if (x->highest_comp_level() > y->highest_comp_level()) {
537     // recompilation after deopt
538     return true;
539   } else
540     if (x->highest_comp_level() == y->highest_comp_level()) {
541       if (weight(x) > weight(y)) {
542         return true;
543       }
544     }
545   return false;
546 }
547 
548 // Is method profiled enough?
is_method_profiled(Method * method)549 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
550   MethodData* mdo = method->method_data();
551   if (mdo != NULL) {
552     int i = mdo->invocation_count_delta();
553     int b = mdo->backedge_count_delta();
554     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
555   }
556   return false;
557 }
558 
threshold_scale(CompLevel level,int feedback_k)559 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
560   double queue_size = CompileBroker::queue_size(level);
561   int comp_count = compiler_count(level);
562   double k = queue_size / (feedback_k * comp_count) + 1;
563 
564   // Increase C1 compile threshold when the code cache is filled more
565   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
566   // The main intention is to keep enough free space for C2 compiled code
567   // to achieve peak performance if the code cache is under stress.
568   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
569     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
570     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
571       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
572     }
573   }
574   return k;
575 }
576 
577 // Call and loop predicates determine whether a transition to a higher
578 // compilation level should be performed (pointers to predicate functions
579 // are passed to common()).
580 // Tier?LoadFeedback is basically a coefficient that determines of
581 // how many methods per compiler thread can be in the queue before
582 // the threshold values double.
loop_predicate(int i,int b,CompLevel cur_level,Method * method)583 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
584   switch(cur_level) {
585   case CompLevel_aot: {
586     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
587     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
588   }
589   case CompLevel_none:
590   case CompLevel_limited_profile: {
591     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
592     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
593   }
594   case CompLevel_full_profile: {
595     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
596     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
597   }
598   default:
599     return true;
600   }
601 }
602 
call_predicate(int i,int b,CompLevel cur_level,Method * method)603 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
604   switch(cur_level) {
605   case CompLevel_aot: {
606     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
607     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
608   }
609   case CompLevel_none:
610   case CompLevel_limited_profile: {
611     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
612     return call_predicate_helper<CompLevel_none>(i, b, k, method);
613   }
614   case CompLevel_full_profile: {
615     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
616     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
617   }
618   default:
619     return true;
620   }
621 }
622 
623 // Determine is a method is mature.
is_mature(Method * method)624 bool TieredThresholdPolicy::is_mature(Method* method) {
625   if (is_trivial(method)) return true;
626   MethodData* mdo = method->method_data();
627   if (mdo != NULL) {
628     int i = mdo->invocation_count();
629     int b = mdo->backedge_count();
630     double k = ProfileMaturityPercentage / 100.0;
631     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
632            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
633   }
634   return false;
635 }
636 
637 // If a method is old enough and is still in the interpreter we would want to
638 // start profiling without waiting for the compiled method to arrive.
639 // We also take the load on compilers into the account.
should_create_mdo(Method * method,CompLevel cur_level)640 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
641   if (cur_level == CompLevel_none &&
642       CompileBroker::queue_size(CompLevel_full_optimization) <=
643       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
644     int i = method->invocation_count();
645     int b = method->backedge_count();
646     double k = Tier0ProfilingStartPercentage / 100.0;
647     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
648   }
649   return false;
650 }
651 
652 // Inlining control: if we're compiling a profiled method with C1 and the callee
653 // is known to have OSRed in a C2 version, don't inline it.
should_not_inline(ciEnv * env,ciMethod * callee)654 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
655   CompLevel comp_level = (CompLevel)env->comp_level();
656   if (comp_level == CompLevel_full_profile ||
657       comp_level == CompLevel_limited_profile) {
658     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
659   }
660   return false;
661 }
662 
663 // Create MDO if necessary.
create_mdo(const methodHandle & mh,JavaThread * THREAD)664 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
665   if (mh->is_native() ||
666       mh->is_abstract() ||
667       mh->is_accessor() ||
668       mh->is_constant_getter()) {
669     return;
670   }
671   if (mh->method_data() == NULL) {
672     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
673   }
674 }
675 
676 
677 /*
678  * Method states:
679  *   0 - interpreter (CompLevel_none)
680  *   1 - pure C1 (CompLevel_simple)
681  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
682  *   3 - C1 with full profiling (CompLevel_full_profile)
683  *   4 - C2 (CompLevel_full_optimization)
684  *
685  * Common state transition patterns:
686  * a. 0 -> 3 -> 4.
687  *    The most common path. But note that even in this straightforward case
688  *    profiling can start at level 0 and finish at level 3.
689  *
690  * b. 0 -> 2 -> 3 -> 4.
691  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
692  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
693  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
694  *
695  * c. 0 -> (3->2) -> 4.
696  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
697  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
698  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
699  *    without full profiling while c2 is compiling.
700  *
701  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
702  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
703  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
704  *
705  * e. 0 -> 4.
706  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
707  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
708  *    the compiled version already exists).
709  *
710  * Note that since state 0 can be reached from any other state via deoptimization different loops
711  * are possible.
712  *
713  */
714 
715 // Common transition function. Given a predicate determines if a method should transition to another level.
common(Predicate p,Method * method,CompLevel cur_level,bool disable_feedback)716 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
717   CompLevel next_level = cur_level;
718   int i = method->invocation_count();
719   int b = method->backedge_count();
720 
721   if (is_trivial(method)) {
722     next_level = CompLevel_simple;
723   } else {
724     switch(cur_level) {
725       default: break;
726       case CompLevel_aot: {
727       // If we were at full profile level, would we switch to full opt?
728       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
729         next_level = CompLevel_full_optimization;
730       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
731                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
732                                (this->*p)(i, b, cur_level, method))) {
733         next_level = CompLevel_full_profile;
734       }
735     }
736     break;
737     case CompLevel_none:
738       // If we were at full profile level, would we switch to full opt?
739       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
740         next_level = CompLevel_full_optimization;
741       } else if ((this->*p)(i, b, cur_level, method)) {
742 #if INCLUDE_JVMCI
743         if (EnableJVMCI && UseJVMCICompiler) {
744           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
745           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
746           // compilation method and all potential inlinees have mature profiles (which
747           // includes type profiling). If it sees immature profiles, JVMCI's inliner
748           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
749           // exploring/inlining too many graphs). Since a rewrite of the inliner is
750           // in progress, we simply disable the dialing back heuristic for now and will
751           // revisit this decision once the new inliner is completed.
752           next_level = CompLevel_full_profile;
753         } else
754 #endif
755         {
756           // C1-generated fully profiled code is about 30% slower than the limited profile
757           // code that has only invocation and backedge counters. The observation is that
758           // if C2 queue is large enough we can spend too much time in the fully profiled code
759           // while waiting for C2 to pick the method from the queue. To alleviate this problem
760           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
761           // we choose to compile a limited profiled version and then recompile with full profiling
762           // when the load on C2 goes down.
763           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
764               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
765             next_level = CompLevel_limited_profile;
766           } else {
767             next_level = CompLevel_full_profile;
768           }
769         }
770       }
771       break;
772     case CompLevel_limited_profile:
773       if (is_method_profiled(method)) {
774         // Special case: we got here because this method was fully profiled in the interpreter.
775         next_level = CompLevel_full_optimization;
776       } else {
777         MethodData* mdo = method->method_data();
778         if (mdo != NULL) {
779           if (mdo->would_profile()) {
780             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
781                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
782                                      (this->*p)(i, b, cur_level, method))) {
783               next_level = CompLevel_full_profile;
784             }
785           } else {
786             next_level = CompLevel_full_optimization;
787           }
788         } else {
789           // If there is no MDO we need to profile
790           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
791                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
792                                    (this->*p)(i, b, cur_level, method))) {
793             next_level = CompLevel_full_profile;
794           }
795         }
796       }
797       break;
798     case CompLevel_full_profile:
799       {
800         MethodData* mdo = method->method_data();
801         if (mdo != NULL) {
802           if (mdo->would_profile()) {
803             int mdo_i = mdo->invocation_count_delta();
804             int mdo_b = mdo->backedge_count_delta();
805             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
806               next_level = CompLevel_full_optimization;
807             }
808           } else {
809             next_level = CompLevel_full_optimization;
810           }
811         }
812       }
813       break;
814     }
815   }
816   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
817 }
818 
819 // Determine if a method should be compiled with a normal entry point at a different level.
call_event(Method * method,CompLevel cur_level,JavaThread * thread)820 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
821   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
822                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
823   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
824 
825   // If OSR method level is greater than the regular method level, the levels should be
826   // equalized by raising the regular method level in order to avoid OSRs during each
827   // invocation of the method.
828   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
829     MethodData* mdo = method->method_data();
830     guarantee(mdo != NULL, "MDO should not be NULL");
831     if (mdo->invocation_count() >= 1) {
832       next_level = CompLevel_full_optimization;
833     }
834   } else {
835     next_level = MAX2(osr_level, next_level);
836   }
837 #if INCLUDE_JVMCI
838   if (UseJVMCICompiler) {
839     next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
840   }
841 #endif
842   return next_level;
843 }
844 
845 // Determine if we should do an OSR compilation of a given method.
loop_event(Method * method,CompLevel cur_level,JavaThread * thread)846 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
847   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
848   if (cur_level == CompLevel_none) {
849     // If there is a live OSR method that means that we deopted to the interpreter
850     // for the transition.
851     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
852     if (osr_level > CompLevel_none) {
853       return osr_level;
854     }
855   }
856 #if INCLUDE_JVMCI
857   if (UseJVMCICompiler) {
858     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
859   }
860 #endif
861   return next_level;
862 }
863 
maybe_switch_to_aot(const methodHandle & mh,CompLevel cur_level,CompLevel next_level,JavaThread * thread)864 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
865   if (UseAOT && !delay_compilation_during_startup()) {
866     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
867       // If the current level is full profile or interpreter and we're switching to any other level,
868       // activate the AOT code back first so that we won't waste time overprofiling.
869       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
870       // Fall through for JIT compilation.
871     }
872     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
873       // If the next level is limited profile, use the aot code (if there is any),
874       // since it's essentially the same thing.
875       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
876       // Not need to JIT, we're done.
877       return true;
878     }
879   }
880   return false;
881 }
882 
883 
884 // Handle the invocation event.
method_invocation_event(const methodHandle & mh,const methodHandle & imh,CompLevel level,CompiledMethod * nm,JavaThread * thread)885 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
886                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
887   if (should_create_mdo(mh(), level)) {
888     create_mdo(mh, thread);
889   }
890   CompLevel next_level = call_event(mh(), level, thread);
891   if (next_level != level) {
892     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
893       // No JITting necessary
894       return;
895     }
896     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
897       compile(mh, InvocationEntryBci, next_level, thread);
898     }
899   }
900 }
901 
902 // Handle the back branch event. Notice that we can compile the method
903 // with a regular entry from here.
method_back_branch_event(const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level,CompiledMethod * nm,JavaThread * thread)904 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
905                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
906   if (should_create_mdo(mh(), level)) {
907     create_mdo(mh, thread);
908   }
909   // Check if MDO should be created for the inlined method
910   if (should_create_mdo(imh(), level)) {
911     create_mdo(imh, thread);
912   }
913 
914   if (is_compilation_enabled()) {
915     CompLevel next_osr_level = loop_event(imh(), level, thread);
916     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
917     // At the very least compile the OSR version
918     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
919       compile(imh, bci, next_osr_level, thread);
920     }
921 
922     // Use loop event as an opportunity to also check if there's been
923     // enough calls.
924     CompLevel cur_level, next_level;
925     if (mh() != imh()) { // If there is an enclosing method
926       if (level == CompLevel_aot) {
927         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
928         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
929           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
930         }
931       } else {
932         // Current loop event level is not AOT
933         guarantee(nm != NULL, "Should have nmethod here");
934         cur_level = comp_level(mh());
935         next_level = call_event(mh(), cur_level, thread);
936 
937         if (max_osr_level == CompLevel_full_optimization) {
938           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
939           bool make_not_entrant = false;
940           if (nm->is_osr_method()) {
941             // This is an osr method, just make it not entrant and recompile later if needed
942             make_not_entrant = true;
943           } else {
944             if (next_level != CompLevel_full_optimization) {
945               // next_level is not full opt, so we need to recompile the
946               // enclosing method without the inlinee
947               cur_level = CompLevel_none;
948               make_not_entrant = true;
949             }
950           }
951           if (make_not_entrant) {
952             if (PrintTieredEvents) {
953               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
954               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
955             }
956             nm->make_not_entrant();
957           }
958         }
959         // Fix up next_level if necessary to avoid deopts
960         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
961           next_level = CompLevel_full_profile;
962         }
963         if (cur_level != next_level) {
964           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
965             compile(mh, InvocationEntryBci, next_level, thread);
966           }
967         }
968       }
969     } else {
970       cur_level = comp_level(mh());
971       next_level = call_event(mh(), cur_level, thread);
972       if (next_level != cur_level) {
973         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
974           compile(mh, InvocationEntryBci, next_level, thread);
975         }
976       }
977     }
978   }
979 }
980 
981 #endif
982