1 /*
2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import jdk.internal.vm.annotation.Stable;
29 import sun.invoke.util.Wrapper;
30 import java.lang.ref.WeakReference;
31 import java.lang.ref.Reference;
32 import java.lang.ref.ReferenceQueue;
33 import java.util.Arrays;
34 import java.util.Collections;
35 import java.util.List;
36 import java.util.Objects;
37 import java.util.StringJoiner;
38 import java.util.concurrent.ConcurrentMap;
39 import java.util.concurrent.ConcurrentHashMap;
40 import sun.invoke.util.BytecodeDescriptor;
41 import static java.lang.invoke.MethodHandleStatics.*;
42 import sun.invoke.util.VerifyType;
43 
44 /**
45  * A method type represents the arguments and return type accepted and
46  * returned by a method handle, or the arguments and return type passed
47  * and expected  by a method handle caller.  Method types must be properly
48  * matched between a method handle and all its callers,
49  * and the JVM's operations enforce this matching at, specifically
50  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
51  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
52  * of {@code invokedynamic} instructions.
53  * <p>
54  * The structure is a return type accompanied by any number of parameter types.
55  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
56  * (For ease of exposition, we treat {@code void} as if it were a type.
57  * In fact, it denotes the absence of a return type.)
58  * <p>
59  * All instances of {@code MethodType} are immutable.
60  * Two instances are completely interchangeable if they compare equal.
61  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
62  * <p>
63  * This type can be created only by factory methods.
64  * All factory methods may cache values, though caching is not guaranteed.
65  * Some factory methods are static, while others are virtual methods which
66  * modify precursor method types, e.g., by changing a selected parameter.
67  * <p>
68  * Factory methods which operate on groups of parameter types
69  * are systematically presented in two versions, so that both Java arrays and
70  * Java lists can be used to work with groups of parameter types.
71  * The query methods {@code parameterArray} and {@code parameterList}
72  * also provide a choice between arrays and lists.
73  * <p>
74  * {@code MethodType} objects are sometimes derived from bytecode instructions
75  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
76  * with the instructions in a class file's constant pool.
77  * <p>
78  * Like classes and strings, method types can also be represented directly
79  * in a class file's constant pool as constants.
80  * A method type may be loaded by an {@code ldc} instruction which refers
81  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
82  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
83  * (For full details on method type constants,
84  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
85  * <p>
86  * When the JVM materializes a {@code MethodType} from a descriptor string,
87  * all classes named in the descriptor must be accessible, and will be loaded.
88  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
89  * This loading may occur at any time before the {@code MethodType} object is first derived.
90  * @author John Rose, JSR 292 EG
91  * @since 1.7
92  */
93 public final
94 class MethodType implements java.io.Serializable {
95     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
96 
97     // The rtype and ptypes fields define the structural identity of the method type:
98     private final @Stable Class<?>   rtype;
99     private final @Stable Class<?>[] ptypes;
100 
101     // The remaining fields are caches of various sorts:
102     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
103     private @Stable Object wrapAlt;  // alternative wrapped/unwrapped version and
104                                      // private communication for readObject and readResolve
105     private @Stable Invokers invokers;   // cache of handy higher-order adapters
106     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
107 
108     /**
109      * Constructor that performs no copying or validation.
110      * Should only be called from the factory method makeImpl
111      */
MethodType(Class<?> rtype, Class<?>[] ptypes)112     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
113         this.rtype = rtype;
114         this.ptypes = ptypes;
115     }
116 
form()117     /*trusted*/ MethodTypeForm form() { return form; }
rtype()118     /*trusted*/ Class<?> rtype() { return rtype; }
ptypes()119     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
120 
setForm(MethodTypeForm f)121     void setForm(MethodTypeForm f) { form = f; }
122 
123     /** This number, mandated by the JVM spec as 255,
124      *  is the maximum number of <em>slots</em>
125      *  that any Java method can receive in its argument list.
126      *  It limits both JVM signatures and method type objects.
127      *  The longest possible invocation will look like
128      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
129      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
130      */
131     /*non-public*/ static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
132 
133     /** This number is the maximum arity of a method handle, 254.
134      *  It is derived from the absolute JVM-imposed arity by subtracting one,
135      *  which is the slot occupied by the method handle itself at the
136      *  beginning of the argument list used to invoke the method handle.
137      *  The longest possible invocation will look like
138      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
139      */
140     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
141     /*non-public*/ static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
142 
143     /** This number is the maximum arity of a method handle invoker, 253.
144      *  It is derived from the absolute JVM-imposed arity by subtracting two,
145      *  which are the slots occupied by invoke method handle, and the
146      *  target method handle, which are both at the beginning of the argument
147      *  list used to invoke the target method handle.
148      *  The longest possible invocation will look like
149      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
150      */
151     /*non-public*/ static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
152 
checkRtype(Class<?> rtype)153     private static void checkRtype(Class<?> rtype) {
154         Objects.requireNonNull(rtype);
155     }
checkPtype(Class<?> ptype)156     private static void checkPtype(Class<?> ptype) {
157         Objects.requireNonNull(ptype);
158         if (ptype == void.class)
159             throw newIllegalArgumentException("parameter type cannot be void");
160     }
161     /** Return number of extra slots (count of long/double args). */
checkPtypes(Class<?>[] ptypes)162     private static int checkPtypes(Class<?>[] ptypes) {
163         int slots = 0;
164         for (Class<?> ptype : ptypes) {
165             checkPtype(ptype);
166             if (ptype == double.class || ptype == long.class) {
167                 slots++;
168             }
169         }
170         checkSlotCount(ptypes.length + slots);
171         return slots;
172     }
173 
174     static {
175         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
assert(MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0176         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
177     }
checkSlotCount(int count)178     static void checkSlotCount(int count) {
179         if ((count & MAX_JVM_ARITY) != count)
180             throw newIllegalArgumentException("bad parameter count "+count);
181     }
newIndexOutOfBoundsException(Object num)182     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
183         if (num instanceof Integer)  num = "bad index: "+num;
184         return new IndexOutOfBoundsException(num.toString());
185     }
186 
187     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
188 
189     static final Class<?>[] NO_PTYPES = {};
190 
191     /**
192      * Finds or creates an instance of the given method type.
193      * @param rtype  the return type
194      * @param ptypes the parameter types
195      * @return a method type with the given components
196      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
197      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
198      */
199     public static
methodType(Class<?> rtype, Class<?>[] ptypes)200     MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
201         return makeImpl(rtype, ptypes, false);
202     }
203 
204     /**
205      * Finds or creates a method type with the given components.
206      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
207      * @param rtype  the return type
208      * @param ptypes the parameter types
209      * @return a method type with the given components
210      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
211      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
212      */
213     public static
methodType(Class<?> rtype, List<Class<?>> ptypes)214     MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
215         boolean notrust = false;  // random List impl. could return evil ptypes array
216         return makeImpl(rtype, listToArray(ptypes), notrust);
217     }
218 
listToArray(List<Class<?>> ptypes)219     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
220         // sanity check the size before the toArray call, since size might be huge
221         checkSlotCount(ptypes.size());
222         return ptypes.toArray(NO_PTYPES);
223     }
224 
225     /**
226      * Finds or creates a method type with the given components.
227      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
228      * The leading parameter type is prepended to the remaining array.
229      * @param rtype  the return type
230      * @param ptype0 the first parameter type
231      * @param ptypes the remaining parameter types
232      * @return a method type with the given components
233      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
234      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
235      */
236     public static
methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes)237     MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
238         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
239         ptypes1[0] = ptype0;
240         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
241         return makeImpl(rtype, ptypes1, true);
242     }
243 
244     /**
245      * Finds or creates a method type with the given components.
246      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
247      * The resulting method has no parameter types.
248      * @param rtype  the return type
249      * @return a method type with the given return value
250      * @throws NullPointerException if {@code rtype} is null
251      */
252     public static
methodType(Class<?> rtype)253     MethodType methodType(Class<?> rtype) {
254         return makeImpl(rtype, NO_PTYPES, true);
255     }
256 
257     /**
258      * Finds or creates a method type with the given components.
259      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
260      * The resulting method has the single given parameter type.
261      * @param rtype  the return type
262      * @param ptype0 the parameter type
263      * @return a method type with the given return value and parameter type
264      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
265      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
266      */
267     public static
methodType(Class<?> rtype, Class<?> ptype0)268     MethodType methodType(Class<?> rtype, Class<?> ptype0) {
269         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
270     }
271 
272     /**
273      * Finds or creates a method type with the given components.
274      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
275      * The resulting method has the same parameter types as {@code ptypes},
276      * and the specified return type.
277      * @param rtype  the return type
278      * @param ptypes the method type which supplies the parameter types
279      * @return a method type with the given components
280      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
281      */
282     public static
methodType(Class<?> rtype, MethodType ptypes)283     MethodType methodType(Class<?> rtype, MethodType ptypes) {
284         return makeImpl(rtype, ptypes.ptypes, true);
285     }
286 
287     /**
288      * Sole factory method to find or create an interned method type.
289      * @param rtype desired return type
290      * @param ptypes desired parameter types
291      * @param trusted whether the ptypes can be used without cloning
292      * @return the unique method type of the desired structure
293      */
294     /*trusted*/ static
makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted)295     MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
296         if (ptypes.length == 0) {
297             ptypes = NO_PTYPES; trusted = true;
298         }
299         MethodType primordialMT = new MethodType(rtype, ptypes);
300         MethodType mt = internTable.get(primordialMT);
301         if (mt != null)
302             return mt;
303 
304         // promote the object to the Real Thing, and reprobe
305         MethodType.checkRtype(rtype);
306         if (trusted) {
307             MethodType.checkPtypes(ptypes);
308             mt = primordialMT;
309         } else {
310             // Make defensive copy then validate
311             ptypes = Arrays.copyOf(ptypes, ptypes.length);
312             MethodType.checkPtypes(ptypes);
313             mt = new MethodType(rtype, ptypes);
314         }
315         mt.form = MethodTypeForm.findForm(mt);
316         return internTable.add(mt);
317     }
318     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
319 
320     /**
321      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
322      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
323      * All parameters and the return type will be {@code Object},
324      * except the final array parameter if any, which will be {@code Object[]}.
325      * @param objectArgCount number of parameters (excluding the final array parameter if any)
326      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
327      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
328      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
329      * @see #genericMethodType(int)
330      */
331     public static
genericMethodType(int objectArgCount, boolean finalArray)332     MethodType genericMethodType(int objectArgCount, boolean finalArray) {
333         MethodType mt;
334         checkSlotCount(objectArgCount);
335         int ivarargs = (!finalArray ? 0 : 1);
336         int ootIndex = objectArgCount*2 + ivarargs;
337         if (ootIndex < objectOnlyTypes.length) {
338             mt = objectOnlyTypes[ootIndex];
339             if (mt != null)  return mt;
340         }
341         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
342         Arrays.fill(ptypes, Object.class);
343         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
344         mt = makeImpl(Object.class, ptypes, true);
345         if (ootIndex < objectOnlyTypes.length) {
346             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
347         }
348         return mt;
349     }
350 
351     /**
352      * Finds or creates a method type whose components are all {@code Object}.
353      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
354      * All parameters and the return type will be Object.
355      * @param objectArgCount number of parameters
356      * @return a generally applicable method type, for all calls of the given argument count
357      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
358      * @see #genericMethodType(int, boolean)
359      */
360     public static
genericMethodType(int objectArgCount)361     MethodType genericMethodType(int objectArgCount) {
362         return genericMethodType(objectArgCount, false);
363     }
364 
365     /**
366      * Finds or creates a method type with a single different parameter type.
367      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
368      * @param num    the index (zero-based) of the parameter type to change
369      * @param nptype a new parameter type to replace the old one with
370      * @return the same type, except with the selected parameter changed
371      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
372      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
373      * @throws NullPointerException if {@code nptype} is null
374      */
changeParameterType(int num, Class<?> nptype)375     public MethodType changeParameterType(int num, Class<?> nptype) {
376         if (parameterType(num) == nptype)  return this;
377         checkPtype(nptype);
378         Class<?>[] nptypes = ptypes.clone();
379         nptypes[num] = nptype;
380         return makeImpl(rtype, nptypes, true);
381     }
382 
383     /**
384      * Finds or creates a method type with additional parameter types.
385      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
386      * @param num    the position (zero-based) of the inserted parameter type(s)
387      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
388      * @return the same type, except with the selected parameter(s) inserted
389      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
390      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
391      *                                  or if the resulting method type would have more than 255 parameter slots
392      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
393      */
insertParameterTypes(int num, Class<?>... ptypesToInsert)394     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
395         int len = ptypes.length;
396         if (num < 0 || num > len)
397             throw newIndexOutOfBoundsException(num);
398         int ins = checkPtypes(ptypesToInsert);
399         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
400         int ilen = ptypesToInsert.length;
401         if (ilen == 0)  return this;
402         Class<?>[] nptypes = new Class<?>[len + ilen];
403         if (num > 0) {
404             System.arraycopy(ptypes, 0, nptypes, 0, num);
405         }
406         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
407         if (num < len) {
408             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
409         }
410         return makeImpl(rtype, nptypes, true);
411     }
412 
413     /**
414      * Finds or creates a method type with additional parameter types.
415      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
416      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
417      * @return the same type, except with the selected parameter(s) appended
418      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
419      *                                  or if the resulting method type would have more than 255 parameter slots
420      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
421      */
appendParameterTypes(Class<?>.... ptypesToInsert)422     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
423         return insertParameterTypes(parameterCount(), ptypesToInsert);
424     }
425 
426     /**
427      * Finds or creates a method type with additional parameter types.
428      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
429      * @param num    the position (zero-based) of the inserted parameter type(s)
430      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
431      * @return the same type, except with the selected parameter(s) inserted
432      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
433      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
434      *                                  or if the resulting method type would have more than 255 parameter slots
435      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
436      */
insertParameterTypes(int num, List<Class<?>> ptypesToInsert)437     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
438         return insertParameterTypes(num, listToArray(ptypesToInsert));
439     }
440 
441     /**
442      * Finds or creates a method type with additional parameter types.
443      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
444      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
445      * @return the same type, except with the selected parameter(s) appended
446      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
447      *                                  or if the resulting method type would have more than 255 parameter slots
448      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
449      */
appendParameterTypes(List<Class<?>> ptypesToInsert)450     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
451         return insertParameterTypes(parameterCount(), ptypesToInsert);
452     }
453 
454      /**
455      * Finds or creates a method type with modified parameter types.
456      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
457      * @param start  the position (zero-based) of the first replaced parameter type(s)
458      * @param end    the position (zero-based) after the last replaced parameter type(s)
459      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
460      * @return the same type, except with the selected parameter(s) replaced
461      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
462      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
463      *                                  or if {@code start} is greater than {@code end}
464      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
465      *                                  or if the resulting method type would have more than 255 parameter slots
466      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
467      */
replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert)468     /*non-public*/ MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
469         if (start == end)
470             return insertParameterTypes(start, ptypesToInsert);
471         int len = ptypes.length;
472         if (!(0 <= start && start <= end && end <= len))
473             throw newIndexOutOfBoundsException("start="+start+" end="+end);
474         int ilen = ptypesToInsert.length;
475         if (ilen == 0)
476             return dropParameterTypes(start, end);
477         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
478     }
479 
480     /** Replace the last arrayLength parameter types with the component type of arrayType.
481      * @param arrayType any array type
482      * @param pos position at which to spread
483      * @param arrayLength the number of parameter types to change
484      * @return the resulting type
485      */
asSpreaderType(Class<?> arrayType, int pos, int arrayLength)486     /*non-public*/ MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
487         assert(parameterCount() >= arrayLength);
488         int spreadPos = pos;
489         if (arrayLength == 0)  return this;  // nothing to change
490         if (arrayType == Object[].class) {
491             if (isGeneric())  return this;  // nothing to change
492             if (spreadPos == 0) {
493                 // no leading arguments to preserve; go generic
494                 MethodType res = genericMethodType(arrayLength);
495                 if (rtype != Object.class) {
496                     res = res.changeReturnType(rtype);
497                 }
498                 return res;
499             }
500         }
501         Class<?> elemType = arrayType.getComponentType();
502         assert(elemType != null);
503         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
504             if (ptypes[i] != elemType) {
505                 Class<?>[] fixedPtypes = ptypes.clone();
506                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
507                 return methodType(rtype, fixedPtypes);
508             }
509         }
510         return this;  // arguments check out; no change
511     }
512 
513     /** Return the leading parameter type, which must exist and be a reference.
514      *  @return the leading parameter type, after error checks
515      */
leadingReferenceParameter()516     /*non-public*/ Class<?> leadingReferenceParameter() {
517         Class<?> ptype;
518         if (ptypes.length == 0 ||
519             (ptype = ptypes[0]).isPrimitive())
520             throw newIllegalArgumentException("no leading reference parameter");
521         return ptype;
522     }
523 
524     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
525      * @param arrayType any array type
526      * @param pos position at which to insert parameters
527      * @param arrayLength the number of parameter types to insert
528      * @return the resulting type
529      */
asCollectorType(Class<?> arrayType, int pos, int arrayLength)530     /*non-public*/ MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
531         assert(parameterCount() >= 1);
532         assert(pos < ptypes.length);
533         assert(ptypes[pos].isAssignableFrom(arrayType));
534         MethodType res;
535         if (arrayType == Object[].class) {
536             res = genericMethodType(arrayLength);
537             if (rtype != Object.class) {
538                 res = res.changeReturnType(rtype);
539             }
540         } else {
541             Class<?> elemType = arrayType.getComponentType();
542             assert(elemType != null);
543             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
544         }
545         if (ptypes.length == 1) {
546             return res;
547         } else {
548             // insert after (if need be), then before
549             if (pos < ptypes.length - 1) {
550                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
551             }
552             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
553         }
554     }
555 
556     /**
557      * Finds or creates a method type with some parameter types omitted.
558      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
559      * @param start  the index (zero-based) of the first parameter type to remove
560      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
561      * @return the same type, except with the selected parameter(s) removed
562      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
563      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
564      *                                  or if {@code start} is greater than {@code end}
565      */
566     public MethodType dropParameterTypes(int start, int end) {
567         int len = ptypes.length;
568         if (!(0 <= start && start <= end && end <= len))
569             throw newIndexOutOfBoundsException("start="+start+" end="+end);
570         if (start == end)  return this;
571         Class<?>[] nptypes;
572         if (start == 0) {
573             if (end == len) {
574                 // drop all parameters
575                 nptypes = NO_PTYPES;
576             } else {
577                 // drop initial parameter(s)
578                 nptypes = Arrays.copyOfRange(ptypes, end, len);
579             }
580         } else {
581             if (end == len) {
582                 // drop trailing parameter(s)
583                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
584             } else {
585                 int tail = len - end;
586                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
587                 System.arraycopy(ptypes, end, nptypes, start, tail);
588             }
589         }
590         return makeImpl(rtype, nptypes, true);
591     }
592 
593     /**
594      * Finds or creates a method type with a different return type.
595      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
596      * @param nrtype a return parameter type to replace the old one with
597      * @return the same type, except with the return type change
598      * @throws NullPointerException if {@code nrtype} is null
599      */
600     public MethodType changeReturnType(Class<?> nrtype) {
601         if (returnType() == nrtype)  return this;
602         return makeImpl(nrtype, ptypes, true);
603     }
604 
605     /**
606      * Reports if this type contains a primitive argument or return value.
607      * The return type {@code void} counts as a primitive.
608      * @return true if any of the types are primitives
609      */
610     public boolean hasPrimitives() {
611         return form.hasPrimitives();
612     }
613 
614     /**
615      * Reports if this type contains a wrapper argument or return value.
616      * Wrappers are types which box primitive values, such as {@link Integer}.
617      * The reference type {@code java.lang.Void} counts as a wrapper,
618      * if it occurs as a return type.
619      * @return true if any of the types are wrappers
620      */
621     public boolean hasWrappers() {
622         return unwrap() != this;
623     }
624 
625     /**
626      * Erases all reference types to {@code Object}.
627      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
628      * All primitive types (including {@code void}) will remain unchanged.
629      * @return a version of the original type with all reference types replaced
630      */
631     public MethodType erase() {
632         return form.erasedType();
633     }
634 
635     /**
636      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
637      * This is the reduced type polymorphism used by private methods
638      * such as {@link MethodHandle#invokeBasic invokeBasic}.
639      * @return a version of the original type with all reference and subword types replaced
640      */
641     /*non-public*/ MethodType basicType() {
642         return form.basicType();
643     }
644 
645     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
646             = new Class<?>[] { MethodHandle.class };
647 
648     /**
649      * @return a version of the original type with MethodHandle prepended as the first argument
650      */
651     /*non-public*/ MethodType invokerType() {
652         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
653     }
654 
655     /**
656      * Converts all types, both reference and primitive, to {@code Object}.
657      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
658      * The expression {@code type.wrap().erase()} produces the same value
659      * as {@code type.generic()}.
660      * @return a version of the original type with all types replaced
661      */
662     public MethodType generic() {
663         return genericMethodType(parameterCount());
664     }
665 
666     /*non-public*/ boolean isGeneric() {
667         return this == erase() && !hasPrimitives();
668     }
669 
670     /**
671      * Converts all primitive types to their corresponding wrapper types.
672      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
673      * All reference types (including wrapper types) will remain unchanged.
674      * A {@code void} return type is changed to the type {@code java.lang.Void}.
675      * The expression {@code type.wrap().erase()} produces the same value
676      * as {@code type.generic()}.
677      * @return a version of the original type with all primitive types replaced
678      */
679     public MethodType wrap() {
680         return hasPrimitives() ? wrapWithPrims(this) : this;
681     }
682 
683     /**
684      * Converts all wrapper types to their corresponding primitive types.
685      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
686      * All primitive types (including {@code void}) will remain unchanged.
687      * A return type of {@code java.lang.Void} is changed to {@code void}.
688      * @return a version of the original type with all wrapper types replaced
689      */
690     public MethodType unwrap() {
691         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
692         return unwrapWithNoPrims(noprims);
693     }
694 
695     private static MethodType wrapWithPrims(MethodType pt) {
696         assert(pt.hasPrimitives());
697         MethodType wt = (MethodType)pt.wrapAlt;
698         if (wt == null) {
699             // fill in lazily
700             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
701             assert(wt != null);
702             pt.wrapAlt = wt;
703         }
704         return wt;
705     }
706 
707     private static MethodType unwrapWithNoPrims(MethodType wt) {
708         assert(!wt.hasPrimitives());
709         MethodType uwt = (MethodType)wt.wrapAlt;
710         if (uwt == null) {
711             // fill in lazily
712             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
713             if (uwt == null)
714                 uwt = wt;    // type has no wrappers or prims at all
715             wt.wrapAlt = uwt;
716         }
717         return uwt;
718     }
719 
720     /**
721      * Returns the parameter type at the specified index, within this method type.
722      * @param num the index (zero-based) of the desired parameter type
723      * @return the selected parameter type
724      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
725      */
726     public Class<?> parameterType(int num) {
727         return ptypes[num];
728     }
729     /**
730      * Returns the number of parameter types in this method type.
731      * @return the number of parameter types
732      */
733     public int parameterCount() {
734         return ptypes.length;
735     }
736     /**
737      * Returns the return type of this method type.
738      * @return the return type
739      */
740     public Class<?> returnType() {
741         return rtype;
742     }
743 
744     /**
745      * Presents the parameter types as a list (a convenience method).
746      * The list will be immutable.
747      * @return the parameter types (as an immutable list)
748      */
749     public List<Class<?>> parameterList() {
750         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
751     }
752 
753     /**
754      * Returns the last parameter type of this method type.
755      * If this type has no parameters, the sentinel value
756      * {@code void.class} is returned instead.
757      * @apiNote
758      * <p>
759      * The sentinel value is chosen so that reflective queries can be
760      * made directly against the result value.
761      * The sentinel value cannot be confused with a real parameter,
762      * since {@code void} is never acceptable as a parameter type.
763      * For variable arity invocation modes, the expression
764      * {@link Class#getComponentType lastParameterType().getComponentType()}
765      * is useful to query the type of the "varargs" parameter.
766      * @return the last parameter type if any, else {@code void.class}
767      * @since 10
768      */
769     public Class<?> lastParameterType() {
770         int len = ptypes.length;
771         return len == 0 ? void.class : ptypes[len-1];
772     }
773 
774     /**
775      * Presents the parameter types as an array (a convenience method).
776      * Changes to the array will not result in changes to the type.
777      * @return the parameter types (as a fresh copy if necessary)
778      */
779     public Class<?>[] parameterArray() {
780         return ptypes.clone();
781     }
782 
783     /**
784      * Compares the specified object with this type for equality.
785      * That is, it returns {@code true} if and only if the specified object
786      * is also a method type with exactly the same parameters and return type.
787      * @param x object to compare
788      * @see Object#equals(Object)
789      */
790     @Override
791     public boolean equals(Object x) {
792         return this == x || x instanceof MethodType && equals((MethodType)x);
793     }
794 
795     private boolean equals(MethodType that) {
796         return this.rtype == that.rtype
797             && Arrays.equals(this.ptypes, that.ptypes);
798     }
799 
800     /**
801      * Returns the hash code value for this method type.
802      * It is defined to be the same as the hashcode of a List
803      * whose elements are the return type followed by the
804      * parameter types.
805      * @return the hash code value for this method type
806      * @see Object#hashCode()
807      * @see #equals(Object)
808      * @see List#hashCode()
809      */
810     @Override
811     public int hashCode() {
812       int hashCode = 31 + rtype.hashCode();
813       for (Class<?> ptype : ptypes)
814           hashCode = 31*hashCode + ptype.hashCode();
815       return hashCode;
816     }
817 
818     /**
819      * Returns a string representation of the method type,
820      * of the form {@code "(PT0,PT1...)RT"}.
821      * The string representation of a method type is a
822      * parenthesis enclosed, comma separated list of type names,
823      * followed immediately by the return type.
824      * <p>
825      * Each type is represented by its
826      * {@link java.lang.Class#getSimpleName simple name}.
827      */
828     @Override
829     public String toString() {
830         StringJoiner sj = new StringJoiner(",", "(",
831                 ")" + rtype.getSimpleName());
832         for (int i = 0; i < ptypes.length; i++) {
833             sj.add(ptypes[i].getSimpleName());
834         }
835         return sj.toString();
836     }
837 
838     /** True if my parameter list is effectively identical to the given full list,
839      *  after skipping the given number of my own initial parameters.
840      *  In other words, after disregarding {@code skipPos} parameters,
841      *  my remaining parameter list is no longer than the {@code fullList}, and
842      *  is equal to the same-length initial sublist of {@code fullList}.
843      */
844     /*non-public*/
845     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
846         int myLen = ptypes.length, fullLen = fullList.size();
847         if (skipPos > myLen || myLen - skipPos > fullLen)
848             return false;
849         List<Class<?>> myList = Arrays.asList(ptypes);
850         if (skipPos != 0) {
851             myList = myList.subList(skipPos, myLen);
852             myLen -= skipPos;
853         }
854         if (fullLen == myLen)
855             return myList.equals(fullList);
856         else
857             return myList.equals(fullList.subList(0, myLen));
858     }
859 
860     /** True if the old return type can always be viewed (w/o casting) under new return type,
861      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
862      */
863     /*non-public*/
864     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
865         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
866             return false;
867         if (form == newType.form && form.erasedType == this)
868             return true;  // my reference parameters are all Object
869         if (ptypes == newType.ptypes)
870             return true;
871         int argc = parameterCount();
872         if (argc != newType.parameterCount())
873             return false;
874         for (int i = 0; i < argc; i++) {
875             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
876                 return false;
877         }
878         return true;
879     }
880     /*non-public*/
881     boolean isConvertibleTo(MethodType newType) {
882         MethodTypeForm oldForm = this.form();
883         MethodTypeForm newForm = newType.form();
884         if (oldForm == newForm)
885             // same parameter count, same primitive/object mix
886             return true;
887         if (!canConvert(returnType(), newType.returnType()))
888             return false;
889         Class<?>[] srcTypes = newType.ptypes;
890         Class<?>[] dstTypes = ptypes;
891         if (srcTypes == dstTypes)
892             return true;
893         int argc;
894         if ((argc = srcTypes.length) != dstTypes.length)
895             return false;
896         if (argc <= 1) {
897             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
898                 return false;
899             return true;
900         }
901         if ((oldForm.primitiveParameterCount() == 0 && oldForm.erasedType == this) ||
902             (newForm.primitiveParameterCount() == 0 && newForm.erasedType == newType)) {
903             // Somewhat complicated test to avoid a loop of 2 or more trips.
904             // If either type has only Object parameters, we know we can convert.
905             assert(canConvertParameters(srcTypes, dstTypes));
906             return true;
907         }
908         return canConvertParameters(srcTypes, dstTypes);
909     }
910 
911     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
912      *  If the type conversion is impossible for either, the result should be false.
913      */
914     /*non-public*/
915     boolean explicitCastEquivalentToAsType(MethodType newType) {
916         if (this == newType)  return true;
917         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
918             return false;
919         }
920         Class<?>[] srcTypes = newType.ptypes;
921         Class<?>[] dstTypes = ptypes;
922         if (dstTypes == srcTypes) {
923             return true;
924         }
925         assert(dstTypes.length == srcTypes.length);
926         for (int i = 0; i < dstTypes.length; i++) {
927             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
928                 return false;
929             }
930         }
931         return true;
932     }
933 
934     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
935      *  and with the same effect.
936      *  MHs.eCA has the following "upgrades" to MH.asType:
937      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
938      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
939      *  2. the full matrix of primitive-to-primitive conversions is supported
940      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
941      *     are not supported by asType, but anything supported by asType is equivalent
942      *     with MHs.eCE.
943      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
944      *  3b. unboxing of null is permitted (creates a zero primitive value)
945      * Other than interfaces, reference-to-reference conversions are the same.
946      * Boxing primitives to references is the same for both operators.
947      */
948     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
949         if (src == dst || dst == Object.class || dst == void.class)  return true;
950         if (src.isPrimitive()) {
951             // Could be a prim/prim conversion, where casting is a strict superset.
952             // Or a boxing conversion, which is always to an exact wrapper class.
953             return canConvert(src, dst);
954         } else if (dst.isPrimitive()) {
955             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
956             return false;
957         } else {
958             // R->R always works, but we have to avoid a check-cast to an interface.
959             return !dst.isInterface() || dst.isAssignableFrom(src);
960         }
961     }
962 
963     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
964         for (int i = 0; i < srcTypes.length; i++) {
965             if (!canConvert(srcTypes[i], dstTypes[i])) {
966                 return false;
967             }
968         }
969         return true;
970     }
971 
972     /*non-public*/
973     static boolean canConvert(Class<?> src, Class<?> dst) {
974         // short-circuit a few cases:
975         if (src == dst || src == Object.class || dst == Object.class)  return true;
976         // the remainder of this logic is documented in MethodHandle.asType
977         if (src.isPrimitive()) {
978             // can force void to an explicit null, a la reflect.Method.invoke
979             // can also force void to a primitive zero, by analogy
980             if (src == void.class)  return true;  //or !dst.isPrimitive()?
981             Wrapper sw = Wrapper.forPrimitiveType(src);
982             if (dst.isPrimitive()) {
983                 // P->P must widen
984                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
985             } else {
986                 // P->R must box and widen
987                 return dst.isAssignableFrom(sw.wrapperType());
988             }
989         } else if (dst.isPrimitive()) {
990             // any value can be dropped
991             if (dst == void.class)  return true;
992             Wrapper dw = Wrapper.forPrimitiveType(dst);
993             // R->P must be able to unbox (from a dynamically chosen type) and widen
994             // For example:
995             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
996             //   Character/Comparable/Object -> dw:Character -> char
997             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
998             // This means that dw must be cast-compatible with src.
999             if (src.isAssignableFrom(dw.wrapperType())) {
1000                 return true;
1001             }
1002             // The above does not work if the source reference is strongly typed
1003             // to a wrapper whose primitive must be widened.  For example:
1004             //   Byte -> unbox:byte -> short/int/long/float/double
1005             //   Character -> unbox:char -> int/long/float/double
1006             if (Wrapper.isWrapperType(src) &&
1007                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1008                 // can unbox from src and then widen to dst
1009                 return true;
1010             }
1011             // We have already covered cases which arise due to runtime unboxing
1012             // of a reference type which covers several wrapper types:
1013             //   Object -> cast:Integer -> unbox:int -> long/float/double
1014             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1015             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1016             // subclass of Number which wraps a value that can convert to char.
1017             // Since there is none, we don't need an extra check here to cover char or boolean.
1018             return false;
1019         } else {
1020             // R->R always works, since null is always valid dynamically
1021             return true;
1022         }
1023     }
1024 
1025     /// Queries which have to do with the bytecode architecture
1026 
1027     /** Reports the number of JVM stack slots required to invoke a method
1028      * of this type.  Note that (for historical reasons) the JVM requires
1029      * a second stack slot to pass long and double arguments.
1030      * So this method returns {@link #parameterCount() parameterCount} plus the
1031      * number of long and double parameters (if any).
1032      * <p>
1033      * This method is included for the benefit of applications that must
1034      * generate bytecodes that process method handles and invokedynamic.
1035      * @return the number of JVM stack slots for this type's parameters
1036      */
1037     /*non-public*/ int parameterSlotCount() {
1038         return form.parameterSlotCount();
1039     }
1040 
1041     /*non-public*/ Invokers invokers() {
1042         Invokers inv = invokers;
1043         if (inv != null)  return inv;
1044         invokers = inv = new Invokers(this);
1045         return inv;
1046     }
1047 
1048     /** Reports the number of JVM stack slots which carry all parameters including and after
1049      * the given position, which must be in the range of 0 to
1050      * {@code parameterCount} inclusive.  Successive parameters are
1051      * more shallowly stacked, and parameters are indexed in the bytecodes
1052      * according to their trailing edge.  Thus, to obtain the depth
1053      * in the outgoing call stack of parameter {@code N}, obtain
1054      * the {@code parameterSlotDepth} of its trailing edge
1055      * at position {@code N+1}.
1056      * <p>
1057      * Parameters of type {@code long} and {@code double} occupy
1058      * two stack slots (for historical reasons) and all others occupy one.
1059      * Therefore, the number returned is the number of arguments
1060      * <em>including</em> and <em>after</em> the given parameter,
1061      * <em>plus</em> the number of long or double arguments
1062      * at or after the argument for the given parameter.
1063      * <p>
1064      * This method is included for the benefit of applications that must
1065      * generate bytecodes that process method handles and invokedynamic.
1066      * @param num an index (zero-based, inclusive) within the parameter types
1067      * @return the index of the (shallowest) JVM stack slot transmitting the
1068      *         given parameter
1069      * @throws IllegalArgumentException if {@code num} is negative or greater than {@code parameterCount()}
1070      */
1071     /*non-public*/ int parameterSlotDepth(int num) {
1072         if (num < 0 || num > ptypes.length)
1073             parameterType(num);  // force a range check
1074         return form.parameterToArgSlot(num-1);
1075     }
1076 
1077     /** Reports the number of JVM stack slots required to receive a return value
1078      * from a method of this type.
1079      * If the {@link #returnType() return type} is void, it will be zero,
1080      * else if the return type is long or double, it will be two, else one.
1081      * <p>
1082      * This method is included for the benefit of applications that must
1083      * generate bytecodes that process method handles and invokedynamic.
1084      * @return the number of JVM stack slots (0, 1, or 2) for this type's return value
1085      * Will be removed for PFD.
1086      */
1087     /*non-public*/ int returnSlotCount() {
1088         return form.returnSlotCount();
1089     }
1090 
1091     /**
1092      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1093      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1094      * Any class or interface name embedded in the descriptor string
1095      * will be resolved by calling {@link ClassLoader#loadClass(java.lang.String)}
1096      * on the given loader (or if it is null, on the system class loader).
1097      * <p>
1098      * Note that it is possible to encounter method types which cannot be
1099      * constructed by this method, because their component types are
1100      * not all reachable from a common class loader.
1101      * <p>
1102      * This method is included for the benefit of applications that must
1103      * generate bytecodes that process method handles and {@code invokedynamic}.
1104      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1105      * @param loader the class loader in which to look up the types
1106      * @return a method type matching the bytecode-level type descriptor
1107      * @throws NullPointerException if the string is null
1108      * @throws IllegalArgumentException if the string is not well-formed
1109      * @throws TypeNotPresentException if a named type cannot be found
1110      */
1111     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1112         throws IllegalArgumentException, TypeNotPresentException
1113     {
1114         return fromDescriptor(descriptor,
1115                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1116     }
1117 
1118     /**
1119      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1120      * {@code null} ClassLoader means the bootstrap loader is used here.
1121      * <p>
1122      * IMPORTANT: This method is preferable for JDK internal use as it more
1123      * correctly interprets {@code null} ClassLoader than
1124      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1125      * Use of this method also avoids early initialization issues when system
1126      * ClassLoader is not initialized yet.
1127      */
1128     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1129         throws IllegalArgumentException, TypeNotPresentException
1130     {
1131         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1132             descriptor.indexOf(')') < 0 ||
1133             descriptor.indexOf('.') >= 0)
1134             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1135         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1136         Class<?> rtype = types.remove(types.size() - 1);
1137         Class<?>[] ptypes = listToArray(types);
1138         return makeImpl(rtype, ptypes, true);
1139     }
1140 
1141     /**
1142      * Produces a bytecode descriptor representation of the method type.
1143      * <p>
1144      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1145      * Two distinct classes which share a common name but have different class loaders
1146      * will appear identical when viewed within descriptor strings.
1147      * <p>
1148      * This method is included for the benefit of applications that must
1149      * generate bytecodes that process method handles and {@code invokedynamic}.
1150      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1151      * because the latter requires a suitable class loader argument.
1152      * @return the bytecode type descriptor representation
1153      */
1154     public String toMethodDescriptorString() {
1155         String desc = methodDescriptor;
1156         if (desc == null) {
1157             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1158             methodDescriptor = desc;
1159         }
1160         return desc;
1161     }
1162 
1163     /*non-public*/ static String toFieldDescriptorString(Class<?> cls) {
1164         return BytecodeDescriptor.unparse(cls);
1165     }
1166 
1167     /// Serialization.
1168 
1169     /**
1170      * There are no serializable fields for {@code MethodType}.
1171      */
1172     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1173 
1174     /**
1175      * Save the {@code MethodType} instance to a stream.
1176      *
1177      * @serialData
1178      * For portability, the serialized format does not refer to named fields.
1179      * Instead, the return type and parameter type arrays are written directly
1180      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1181      * as follows:
1182      * <blockquote><pre>{@code
1183 s.writeObject(this.returnType());
1184 s.writeObject(this.parameterArray());
1185      * }</pre></blockquote>
1186      * <p>
1187      * The deserialized field values are checked as if they were
1188      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1189      * For example, null values, or {@code void} parameter types,
1190      * will lead to exceptions during deserialization.
1191      * @param s the stream to write the object to
1192      * @throws java.io.IOException if there is a problem writing the object
1193      */
1194     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1195         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1196         s.writeObject(returnType());
1197         s.writeObject(parameterArray());
1198     }
1199 
1200     /**
1201      * Reconstitute the {@code MethodType} instance from a stream (that is,
1202      * deserialize it).
1203      * This instance is a scratch object with bogus final fields.
1204      * It provides the parameters to the factory method called by
1205      * {@link #readResolve readResolve}.
1206      * After that call it is discarded.
1207      * @param s the stream to read the object from
1208      * @throws java.io.IOException if there is a problem reading the object
1209      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1210      * @see #readResolve
1211      * @see #writeObject
1212      */
1213     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1214         // Assign defaults in case this object escapes
1215         UNSAFE.putObject(this, OffsetHolder.rtypeOffset, void.class);
1216         UNSAFE.putObject(this, OffsetHolder.ptypesOffset, NO_PTYPES);
1217 
1218         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1219 
1220         Class<?>   returnType     = (Class<?>)   s.readObject();
1221         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1222 
1223         // Verify all operands, and make sure ptypes is unshared
1224         // Cache the new MethodType for readResolve
1225         wrapAlt = new MethodType[]{MethodType.methodType(returnType, parameterArray)};
1226     }
1227 
1228     // Support for resetting final fields while deserializing. Implement Holder
1229     // pattern to make the rarely needed offset calculation lazy.
1230     private static class OffsetHolder {
1231         static final long rtypeOffset
1232                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1233 
1234         static final long ptypesOffset
1235                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1236     }
1237 
1238     /**
1239      * Resolves and initializes a {@code MethodType} object
1240      * after serialization.
1241      * @return the fully initialized {@code MethodType} object
1242      */
1243     private Object readResolve() {
1244         // Do not use a trusted path for deserialization:
1245         //    return makeImpl(rtype, ptypes, true);
1246         // Verify all operands, and make sure ptypes is unshared:
1247         // Return a new validated MethodType for the rtype and ptypes passed from readObject.
1248         MethodType mt = ((MethodType[])wrapAlt)[0];
1249         wrapAlt = null;
1250         return mt;
1251     }
1252 
1253     /**
1254      * Simple implementation of weak concurrent intern set.
1255      *
1256      * @param <T> interned type
1257      */
1258     private static class ConcurrentWeakInternSet<T> {
1259 
1260         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1261         private final ReferenceQueue<T> stale;
1262 
1263         public ConcurrentWeakInternSet() {
1264             this.map = new ConcurrentHashMap<>(512);
1265             this.stale = new ReferenceQueue<>();
1266         }
1267 
1268         /**
1269          * Get the existing interned element.
1270          * This method returns null if no element is interned.
1271          *
1272          * @param elem element to look up
1273          * @return the interned element
1274          */
1275         public T get(T elem) {
1276             if (elem == null) throw new NullPointerException();
1277             expungeStaleElements();
1278 
1279             WeakEntry<T> value = map.get(new WeakEntry<>(elem));
1280             if (value != null) {
1281                 T res = value.get();
1282                 if (res != null) {
1283                     return res;
1284                 }
1285             }
1286             return null;
1287         }
1288 
1289         /**
1290          * Interns the element.
1291          * Always returns non-null element, matching the one in the intern set.
1292          * Under the race against another add(), it can return <i>different</i>
1293          * element, if another thread beats us to interning it.
1294          *
1295          * @param elem element to add
1296          * @return element that was actually added
1297          */
1298         public T add(T elem) {
1299             if (elem == null) throw new NullPointerException();
1300 
1301             // Playing double race here, and so spinloop is required.
1302             // First race is with two concurrent updaters.
1303             // Second race is with GC purging weak ref under our feet.
1304             // Hopefully, we almost always end up with a single pass.
1305             T interned;
1306             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1307             do {
1308                 expungeStaleElements();
1309                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1310                 interned = (exist == null) ? elem : exist.get();
1311             } while (interned == null);
1312             return interned;
1313         }
1314 
1315         private void expungeStaleElements() {
1316             Reference<? extends T> reference;
1317             while ((reference = stale.poll()) != null) {
1318                 map.remove(reference);
1319             }
1320         }
1321 
1322         private static class WeakEntry<T> extends WeakReference<T> {
1323 
1324             public final int hashcode;
1325 
1326             public WeakEntry(T key, ReferenceQueue<T> queue) {
1327                 super(key, queue);
1328                 hashcode = key.hashCode();
1329             }
1330 
1331             public WeakEntry(T key) {
1332                 super(key);
1333                 hashcode = key.hashCode();
1334             }
1335 
1336             @Override
1337             public boolean equals(Object obj) {
1338                 if (obj instanceof WeakEntry) {
1339                     Object that = ((WeakEntry) obj).get();
1340                     Object mine = get();
1341                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1342                 }
1343                 return false;
1344             }
1345 
1346             @Override
1347             public int hashCode() {
1348                 return hashcode;
1349             }
1350 
1351         }
1352     }
1353 
1354 }
1355