1 /*
2 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include <stdlib.h>
26 #include <stdint.h>
27 #include "immediate_aarch64.hpp"
28
29 // there are at most 2^13 possible logical immediate encodings
30 // however, some combinations of immr and imms are invalid
31 static const unsigned LI_TABLE_SIZE = (1 << 13);
32
33 static int li_table_entry_count;
34
35 // for forward lookup we just use a direct array lookup
36 // and assume that the cient has supplied a valid encoding
37 // table[encoding] = immediate
38 static uint64_t LITable[LI_TABLE_SIZE];
39
40 // for reverse lookup we need a sparse map so we store a table of
41 // immediate and encoding pairs sorted by immediate value
42
43 struct li_pair {
44 uint64_t immediate;
45 uint32_t encoding;
46 };
47
48 static struct li_pair InverseLITable[LI_TABLE_SIZE];
49
50 // comparator to sort entries in the inverse table
compare_immediate_pair(const void * i1,const void * i2)51 int compare_immediate_pair(const void *i1, const void *i2)
52 {
53 struct li_pair *li1 = (struct li_pair *)i1;
54 struct li_pair *li2 = (struct li_pair *)i2;
55 if (li1->immediate < li2->immediate) {
56 return -1;
57 }
58 if (li1->immediate > li2->immediate) {
59 return 1;
60 }
61 return 0;
62 }
63
64 // helper functions used by expandLogicalImmediate
65
66 // for i = 1, ... N result<i-1> = 1 other bits are zero
ones(int N)67 static inline uint64_t ones(int N)
68 {
69 return (N == 64 ? -1ULL : (1ULL << N) - 1);
70 }
71
72 /*
73 * bit twiddling helpers for instruction decode
74 */
75
76 // 32 bit mask with bits [hi,...,lo] set
mask32(int hi=31,int lo=0)77 static inline uint32_t mask32(int hi = 31, int lo = 0)
78 {
79 int nbits = (hi + 1) - lo;
80 return ((1 << nbits) - 1) << lo;
81 }
82
mask64(int hi=63,int lo=0)83 static inline uint64_t mask64(int hi = 63, int lo = 0)
84 {
85 int nbits = (hi + 1) - lo;
86 return ((1L << nbits) - 1) << lo;
87 }
88
89 // pick bits [hi,...,lo] from val
pick32(uint32_t val,int hi=31,int lo=0)90 static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0)
91 {
92 return (val & mask32(hi, lo));
93 }
94
95 // pick bits [hi,...,lo] from val
pick64(uint64_t val,int hi=31,int lo=0)96 static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0)
97 {
98 return (val & mask64(hi, lo));
99 }
100
101 // mask [hi,lo] and shift down to start at bit 0
pickbits32(uint32_t val,int hi=31,int lo=0)102 static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0)
103 {
104 return (pick32(val, hi, lo) >> lo);
105 }
106
107 // mask [hi,lo] and shift down to start at bit 0
pickbits64(uint64_t val,int hi=63,int lo=0)108 static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0)
109 {
110 return (pick64(val, hi, lo) >> lo);
111 }
112
113 // result<0> to val<N>
pickbit(uint64_t val,int N)114 static inline uint64_t pickbit(uint64_t val, int N)
115 {
116 return pickbits64(val, N, N);
117 }
118
uimm(uint32_t val,int hi,int lo)119 static inline uint32_t uimm(uint32_t val, int hi, int lo)
120 {
121 return pickbits32(val, hi, lo);
122 }
123
124 // SPEC bits(M*N) Replicate(bits(M) x, integer N);
125 // this is just an educated guess
126
replicate(uint64_t bits,int nbits,int count)127 uint64_t replicate(uint64_t bits, int nbits, int count)
128 {
129 uint64_t result = 0;
130 // nbits may be 64 in which case we want mask to be -1
131 uint64_t mask = ones(nbits);
132 for (int i = 0; i < count ; i++) {
133 result <<= nbits;
134 result |= (bits & mask);
135 }
136 return result;
137 }
138
139 // this function writes the supplied bimm reference and returns a
140 // boolean to indicate success (1) or fail (0) because an illegal
141 // encoding must be treated as an UNALLOC instruction
142
143 // construct a 32 bit immediate value for a logical immediate operation
expandLogicalImmediate(uint32_t immN,uint32_t immr,uint32_t imms,uint64_t & bimm)144 int expandLogicalImmediate(uint32_t immN, uint32_t immr,
145 uint32_t imms, uint64_t &bimm)
146 {
147 int len; // ought to be <= 6
148 uint32_t levels; // 6 bits
149 uint32_t tmask_and; // 6 bits
150 uint32_t wmask_and; // 6 bits
151 uint32_t tmask_or; // 6 bits
152 uint32_t wmask_or; // 6 bits
153 uint64_t imm64; // 64 bits
154 uint64_t tmask, wmask; // 64 bits
155 uint32_t S, R, diff; // 6 bits?
156
157 if (immN == 1) {
158 len = 6; // looks like 7 given the spec above but this cannot be!
159 } else {
160 len = 0;
161 uint32_t val = (~imms & 0x3f);
162 for (int i = 5; i > 0; i--) {
163 if (val & (1 << i)) {
164 len = i;
165 break;
166 }
167 }
168 if (len < 1) {
169 return 0;
170 }
171 // for valid inputs leading 1s in immr must be less than leading
172 // zeros in imms
173 int len2 = 0; // ought to be < len
174 uint32_t val2 = (~immr & 0x3f);
175 for (int i = 5; i > 0; i--) {
176 if (!(val2 & (1 << i))) {
177 len2 = i;
178 break;
179 }
180 }
181 if (len2 >= len) {
182 return 0;
183 }
184 }
185
186 levels = (1 << len) - 1;
187
188 if ((imms & levels) == levels) {
189 return 0;
190 }
191
192 S = imms & levels;
193 R = immr & levels;
194
195 // 6 bit arithmetic!
196 diff = S - R;
197 tmask_and = (diff | ~levels) & 0x3f;
198 tmask_or = (diff & levels) & 0x3f;
199 tmask = 0xffffffffffffffffULL;
200
201 for (int i = 0; i < 6; i++) {
202 int nbits = 1 << i;
203 uint64_t and_bit = pickbit(tmask_and, i);
204 uint64_t or_bit = pickbit(tmask_or, i);
205 uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
206 uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
207 uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
208 uint64_t or_bits_top = (0 << nbits) | or_bits_sub;
209
210 tmask = ((tmask
211 & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
212 | replicate(or_bits_top, 2 * nbits, 32 / nbits));
213 }
214
215 wmask_and = (immr | ~levels) & 0x3f;
216 wmask_or = (immr & levels) & 0x3f;
217
218 wmask = 0;
219
220 for (int i = 0; i < 6; i++) {
221 int nbits = 1 << i;
222 uint64_t and_bit = pickbit(wmask_and, i);
223 uint64_t or_bit = pickbit(wmask_or, i);
224 uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
225 uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
226 uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
227 uint64_t or_bits_top = (or_bits_sub << nbits) | 0;
228
229 wmask = ((wmask
230 & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
231 | replicate(or_bits_top, 2 * nbits, 32 / nbits));
232 }
233
234 if (diff & (1U << 6)) {
235 imm64 = tmask & wmask;
236 } else {
237 imm64 = tmask | wmask;
238 }
239
240
241 bimm = imm64;
242 return 1;
243 }
244
245 // constructor to initialise the lookup tables
246
247 static void initLITables() __attribute__ ((constructor));
initLITables()248 static void initLITables()
249 {
250 li_table_entry_count = 0;
251 for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
252 uint32_t N = uimm(index, 12, 12);
253 uint32_t immr = uimm(index, 11, 6);
254 uint32_t imms = uimm(index, 5, 0);
255 if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
256 InverseLITable[li_table_entry_count].immediate = LITable[index];
257 InverseLITable[li_table_entry_count].encoding = index;
258 li_table_entry_count++;
259 }
260 }
261 // now sort the inverse table
262 qsort(InverseLITable, li_table_entry_count,
263 sizeof(InverseLITable[0]), compare_immediate_pair);
264 }
265
266 // public APIs provided for logical immediate lookup and reverse lookup
267
logical_immediate_for_encoding(uint32_t encoding)268 uint64_t logical_immediate_for_encoding(uint32_t encoding)
269 {
270 return LITable[encoding];
271 }
272
encoding_for_logical_immediate(uint64_t immediate)273 uint32_t encoding_for_logical_immediate(uint64_t immediate)
274 {
275 struct li_pair pair;
276 struct li_pair *result;
277
278 pair.immediate = immediate;
279
280 result = (struct li_pair *)
281 bsearch(&pair, InverseLITable, li_table_entry_count,
282 sizeof(InverseLITable[0]), compare_immediate_pair);
283
284 if (result) {
285 return result->encoding;
286 }
287
288 return 0xffffffff;
289 }
290
291 // floating point immediates are encoded in 8 bits
292 // fpimm[7] = sign bit
293 // fpimm[6:4] = signed exponent
294 // fpimm[3:0] = fraction (assuming leading 1)
295 // i.e. F = s * 1.f * 2^(e - b)
296
fp_immediate_for_encoding(uint32_t imm8,int is_dp)297 uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp)
298 {
299 union {
300 float fpval;
301 double dpval;
302 uint64_t val;
303 };
304
305 uint32_t s, e, f;
306 s = (imm8 >> 7 ) & 0x1;
307 e = (imm8 >> 4) & 0x7;
308 f = imm8 & 0xf;
309 // the fp value is s * n/16 * 2r where n is 16+e
310 fpval = (16.0 + f) / 16.0;
311 // n.b. exponent is signed
312 if (e < 4) {
313 int epos = e;
314 for (int i = 0; i <= epos; i++) {
315 fpval *= 2.0;
316 }
317 } else {
318 int eneg = 7 - e;
319 for (int i = 0; i < eneg; i++) {
320 fpval /= 2.0;
321 }
322 }
323
324 if (s) {
325 fpval = -fpval;
326 }
327 if (is_dp) {
328 dpval = (double)fpval;
329 }
330 return val;
331 }
332
encoding_for_fp_immediate(float immediate)333 uint32_t encoding_for_fp_immediate(float immediate)
334 {
335 // given a float which is of the form
336 //
337 // s * n/16 * 2r
338 //
339 // where n is 16+f and imm1:s, imm4:f, simm3:r
340 // return the imm8 result [s:r:f]
341 //
342
343 union {
344 float fpval;
345 uint32_t val;
346 };
347 fpval = immediate;
348 uint32_t s, r, f, res;
349 // sign bit is 31
350 s = (val >> 31) & 0x1;
351 // exponent is bits 30-23 but we only want the bottom 3 bits
352 // strictly we ought to check that the bits bits 30-25 are
353 // either all 1s or all 0s
354 r = (val >> 23) & 0x7;
355 // fraction is bits 22-0
356 f = (val >> 19) & 0xf;
357 res = (s << 7) | (r << 4) | f;
358 return res;
359 }
360
361