1 /*
2  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include <stdlib.h>
26 #include <stdint.h>
27 #include "immediate_aarch64.hpp"
28 
29 // there are at most 2^13 possible logical immediate encodings
30 // however, some combinations of immr and imms are invalid
31 static const unsigned  LI_TABLE_SIZE = (1 << 13);
32 
33 static int li_table_entry_count;
34 
35 // for forward lookup we just use a direct array lookup
36 // and assume that the cient has supplied a valid encoding
37 // table[encoding] = immediate
38 static uint64_t LITable[LI_TABLE_SIZE];
39 
40 // for reverse lookup we need a sparse map so we store a table of
41 // immediate and encoding pairs sorted by immediate value
42 
43 struct li_pair {
44   uint64_t immediate;
45   uint32_t encoding;
46 };
47 
48 static struct li_pair InverseLITable[LI_TABLE_SIZE];
49 
50 // comparator to sort entries in the inverse table
compare_immediate_pair(const void * i1,const void * i2)51 int compare_immediate_pair(const void *i1, const void *i2)
52 {
53   struct li_pair *li1 = (struct li_pair *)i1;
54   struct li_pair *li2 = (struct li_pair *)i2;
55   if (li1->immediate < li2->immediate) {
56     return -1;
57   }
58   if (li1->immediate > li2->immediate) {
59     return 1;
60   }
61   return 0;
62 }
63 
64 // helper functions used by expandLogicalImmediate
65 
66 // for i = 1, ... N result<i-1> = 1 other bits are zero
ones(int N)67 static inline uint64_t ones(int N)
68 {
69   return (N == 64 ? -1ULL : (1ULL << N) - 1);
70 }
71 
72 /*
73  * bit twiddling helpers for instruction decode
74  */
75 
76 // 32 bit mask with bits [hi,...,lo] set
mask32(int hi=31,int lo=0)77 static inline uint32_t mask32(int hi = 31, int lo = 0)
78 {
79   int nbits = (hi + 1) - lo;
80   return ((1 << nbits) - 1) << lo;
81 }
82 
mask64(int hi=63,int lo=0)83 static inline uint64_t mask64(int hi = 63, int lo = 0)
84 {
85   int nbits = (hi + 1) - lo;
86   return ((1L << nbits) - 1) << lo;
87 }
88 
89 // pick bits [hi,...,lo] from val
pick32(uint32_t val,int hi=31,int lo=0)90 static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0)
91 {
92   return (val & mask32(hi, lo));
93 }
94 
95 // pick bits [hi,...,lo] from val
pick64(uint64_t val,int hi=31,int lo=0)96 static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0)
97 {
98   return (val & mask64(hi, lo));
99 }
100 
101 // mask [hi,lo] and shift down to start at bit 0
pickbits32(uint32_t val,int hi=31,int lo=0)102 static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0)
103 {
104   return (pick32(val, hi, lo) >> lo);
105 }
106 
107 // mask [hi,lo] and shift down to start at bit 0
pickbits64(uint64_t val,int hi=63,int lo=0)108 static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0)
109 {
110   return (pick64(val, hi, lo) >> lo);
111 }
112 
113 // result<0> to val<N>
pickbit(uint64_t val,int N)114 static inline uint64_t pickbit(uint64_t val, int N)
115 {
116   return pickbits64(val, N, N);
117 }
118 
uimm(uint32_t val,int hi,int lo)119 static inline uint32_t uimm(uint32_t val, int hi, int lo)
120 {
121   return pickbits32(val, hi, lo);
122 }
123 
124 // SPEC bits(M*N) Replicate(bits(M) x, integer N);
125 // this is just an educated guess
126 
replicate(uint64_t bits,int nbits,int count)127 uint64_t replicate(uint64_t bits, int nbits, int count)
128 {
129   uint64_t result = 0;
130   // nbits may be 64 in which case we want mask to be -1
131   uint64_t mask = ones(nbits);
132   for (int i = 0; i < count ; i++) {
133     result <<= nbits;
134     result |= (bits & mask);
135   }
136   return result;
137 }
138 
139 // this function writes the supplied bimm reference and returns a
140 // boolean to indicate success (1) or fail (0) because an illegal
141 // encoding must be treated as an UNALLOC instruction
142 
143 // construct a 32 bit immediate value for a logical immediate operation
expandLogicalImmediate(uint32_t immN,uint32_t immr,uint32_t imms,uint64_t & bimm)144 int expandLogicalImmediate(uint32_t immN, uint32_t immr,
145                             uint32_t imms, uint64_t &bimm)
146 {
147   int len;                 // ought to be <= 6
148   uint32_t levels;         // 6 bits
149   uint32_t tmask_and;      // 6 bits
150   uint32_t wmask_and;      // 6 bits
151   uint32_t tmask_or;       // 6 bits
152   uint32_t wmask_or;       // 6 bits
153   uint64_t imm64;          // 64 bits
154   uint64_t tmask, wmask;   // 64 bits
155   uint32_t S, R, diff;     // 6 bits?
156 
157   if (immN == 1) {
158     len = 6; // looks like 7 given the spec above but this cannot be!
159   } else {
160     len = 0;
161     uint32_t val = (~imms & 0x3f);
162     for (int i = 5; i > 0; i--) {
163       if (val & (1 << i)) {
164         len = i;
165         break;
166       }
167     }
168     if (len < 1) {
169       return 0;
170     }
171     // for valid inputs leading 1s in immr must be less than leading
172     // zeros in imms
173     int len2 = 0;                   // ought to be < len
174     uint32_t val2 = (~immr & 0x3f);
175     for (int i = 5; i > 0; i--) {
176       if (!(val2 & (1 << i))) {
177         len2 = i;
178         break;
179       }
180     }
181     if (len2 >= len) {
182       return 0;
183     }
184   }
185 
186   levels = (1 << len) - 1;
187 
188   if ((imms & levels) == levels) {
189     return 0;
190   }
191 
192   S = imms & levels;
193   R = immr & levels;
194 
195  // 6 bit arithmetic!
196   diff = S - R;
197   tmask_and = (diff | ~levels) & 0x3f;
198   tmask_or = (diff & levels) & 0x3f;
199   tmask = 0xffffffffffffffffULL;
200 
201   for (int i = 0; i < 6; i++) {
202     int nbits = 1 << i;
203     uint64_t and_bit = pickbit(tmask_and, i);
204     uint64_t or_bit = pickbit(tmask_or, i);
205     uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
206     uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
207     uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
208     uint64_t or_bits_top = (0 << nbits) | or_bits_sub;
209 
210     tmask = ((tmask
211               & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
212              | replicate(or_bits_top, 2 * nbits, 32 / nbits));
213   }
214 
215   wmask_and = (immr | ~levels) & 0x3f;
216   wmask_or = (immr & levels) & 0x3f;
217 
218   wmask = 0;
219 
220   for (int i = 0; i < 6; i++) {
221     int nbits = 1 << i;
222     uint64_t and_bit = pickbit(wmask_and, i);
223     uint64_t or_bit = pickbit(wmask_or, i);
224     uint64_t and_bits_sub = replicate(and_bit, 1, nbits);
225     uint64_t or_bits_sub = replicate(or_bit, 1, nbits);
226     uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
227     uint64_t or_bits_top = (or_bits_sub << nbits) | 0;
228 
229     wmask = ((wmask
230               & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
231              | replicate(or_bits_top, 2 * nbits, 32 / nbits));
232   }
233 
234   if (diff & (1U << 6)) {
235     imm64 = tmask & wmask;
236   } else {
237     imm64 = tmask | wmask;
238   }
239 
240 
241   bimm = imm64;
242   return 1;
243 }
244 
245 // constructor to initialise the lookup tables
246 
247 static void initLITables() __attribute__ ((constructor));
initLITables()248 static void initLITables()
249 {
250   li_table_entry_count = 0;
251   for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
252     uint32_t N = uimm(index, 12, 12);
253     uint32_t immr = uimm(index, 11, 6);
254     uint32_t imms = uimm(index, 5, 0);
255     if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
256       InverseLITable[li_table_entry_count].immediate = LITable[index];
257       InverseLITable[li_table_entry_count].encoding = index;
258       li_table_entry_count++;
259     }
260   }
261   // now sort the inverse table
262   qsort(InverseLITable, li_table_entry_count,
263         sizeof(InverseLITable[0]), compare_immediate_pair);
264 }
265 
266 // public APIs provided for logical immediate lookup and reverse lookup
267 
logical_immediate_for_encoding(uint32_t encoding)268 uint64_t logical_immediate_for_encoding(uint32_t encoding)
269 {
270   return LITable[encoding];
271 }
272 
encoding_for_logical_immediate(uint64_t immediate)273 uint32_t encoding_for_logical_immediate(uint64_t immediate)
274 {
275   struct li_pair pair;
276   struct li_pair *result;
277 
278   pair.immediate = immediate;
279 
280   result = (struct li_pair *)
281     bsearch(&pair, InverseLITable, li_table_entry_count,
282             sizeof(InverseLITable[0]), compare_immediate_pair);
283 
284   if (result) {
285     return result->encoding;
286   }
287 
288   return 0xffffffff;
289 }
290 
291 // floating point immediates are encoded in 8 bits
292 // fpimm[7] = sign bit
293 // fpimm[6:4] = signed exponent
294 // fpimm[3:0] = fraction (assuming leading 1)
295 // i.e. F = s * 1.f * 2^(e - b)
296 
fp_immediate_for_encoding(uint32_t imm8,int is_dp)297 uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp)
298 {
299   union {
300     float fpval;
301     double dpval;
302     uint64_t val;
303   };
304 
305   uint32_t s, e, f;
306   s = (imm8 >> 7 ) & 0x1;
307   e = (imm8 >> 4) & 0x7;
308   f = imm8 & 0xf;
309   // the fp value is s * n/16 * 2r where n is 16+e
310   fpval = (16.0 + f) / 16.0;
311   // n.b. exponent is signed
312   if (e < 4) {
313     int epos = e;
314     for (int i = 0; i <= epos; i++) {
315       fpval *= 2.0;
316     }
317   } else {
318     int eneg = 7 - e;
319     for (int i = 0; i < eneg; i++) {
320       fpval /= 2.0;
321     }
322   }
323 
324   if (s) {
325     fpval = -fpval;
326   }
327   if (is_dp) {
328     dpval = (double)fpval;
329   }
330   return val;
331 }
332 
encoding_for_fp_immediate(float immediate)333 uint32_t encoding_for_fp_immediate(float immediate)
334 {
335   // given a float which is of the form
336   //
337   //     s * n/16 * 2r
338   //
339   // where n is 16+f and imm1:s, imm4:f, simm3:r
340   // return the imm8 result [s:r:f]
341   //
342 
343   union {
344     float fpval;
345     uint32_t val;
346   };
347   fpval = immediate;
348   uint32_t s, r, f, res;
349   // sign bit is 31
350   s = (val >> 31) & 0x1;
351   // exponent is bits 30-23 but we only want the bottom 3 bits
352   // strictly we ought to check that the bits bits 30-25 are
353   // either all 1s or all 0s
354   r = (val >> 23) & 0x7;
355   // fraction is bits 22-0
356   f = (val >> 19) & 0xf;
357   res = (s << 7) | (r << 4) | f;
358   return res;
359 }
360 
361