1 /*
2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2018, SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/codeBuffer.hpp"
28 #include "asm/macroAssembler.inline.hpp"
29 #include "compiler/disassembler.hpp"
30 #include "gc/shared/barrierSet.hpp"
31 #include "gc/shared/barrierSetAssembler.hpp"
32 #include "gc/shared/collectedHeap.inline.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "gc/shared/cardTableBarrierSet.hpp"
35 #include "memory/resourceArea.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/accessDecorators.hpp"
38 #include "oops/compressedOops.inline.hpp"
39 #include "oops/klass.inline.hpp"
40 #ifdef COMPILER2
41 #include "opto/compile.hpp"
42 #include "opto/intrinsicnode.hpp"
43 #include "opto/matcher.hpp"
44 #endif
45 #include "prims/methodHandles.hpp"
46 #include "registerSaver_s390.hpp"
47 #include "runtime/biasedLocking.hpp"
48 #include "runtime/icache.hpp"
49 #include "runtime/interfaceSupport.inline.hpp"
50 #include "runtime/objectMonitor.hpp"
51 #include "runtime/os.hpp"
52 #include "runtime/safepoint.hpp"
53 #include "runtime/safepointMechanism.hpp"
54 #include "runtime/sharedRuntime.hpp"
55 #include "runtime/stubRoutines.hpp"
56 #include "utilities/events.hpp"
57 #include "utilities/macros.hpp"
58 
59 #include <ucontext.h>
60 
61 #define BLOCK_COMMENT(str) block_comment(str)
62 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
63 
64 // Move 32-bit register if destination and source are different.
lr_if_needed(Register rd,Register rs)65 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
66   if (rs != rd) { z_lr(rd, rs); }
67 }
68 
69 // Move register if destination and source are different.
lgr_if_needed(Register rd,Register rs)70 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
71   if (rs != rd) { z_lgr(rd, rs); }
72 }
73 
74 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
llgfr_if_needed(Register rd,Register rs)75 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
76   if (rs != rd) { z_llgfr(rd, rs); }
77 }
78 
79 // Move float register if destination and source are different.
ldr_if_needed(FloatRegister rd,FloatRegister rs)80 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
81   if (rs != rd) { z_ldr(rd, rs); }
82 }
83 
84 // Move integer register if destination and source are different.
85 // It is assumed that shorter-than-int types are already
86 // appropriately sign-extended.
move_reg_if_needed(Register dst,BasicType dst_type,Register src,BasicType src_type)87 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
88                                         BasicType src_type) {
89   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
90   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
91 
92   if (dst_type == src_type) {
93     lgr_if_needed(dst, src); // Just move all 64 bits.
94     return;
95   }
96 
97   switch (dst_type) {
98     // Do not support these types for now.
99     //  case T_BOOLEAN:
100     case T_BYTE:  // signed byte
101       switch (src_type) {
102         case T_INT:
103           z_lgbr(dst, src);
104           break;
105         default:
106           ShouldNotReachHere();
107       }
108       return;
109 
110     case T_CHAR:
111     case T_SHORT:
112       switch (src_type) {
113         case T_INT:
114           if (dst_type == T_CHAR) {
115             z_llghr(dst, src);
116           } else {
117             z_lghr(dst, src);
118           }
119           break;
120         default:
121           ShouldNotReachHere();
122       }
123       return;
124 
125     case T_INT:
126       switch (src_type) {
127         case T_BOOLEAN:
128         case T_BYTE:
129         case T_CHAR:
130         case T_SHORT:
131         case T_INT:
132         case T_LONG:
133         case T_OBJECT:
134         case T_ARRAY:
135         case T_VOID:
136         case T_ADDRESS:
137           lr_if_needed(dst, src);
138           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
139           return;
140 
141         default:
142           assert(false, "non-integer src type");
143           return;
144       }
145     case T_LONG:
146       switch (src_type) {
147         case T_BOOLEAN:
148         case T_BYTE:
149         case T_CHAR:
150         case T_SHORT:
151         case T_INT:
152           z_lgfr(dst, src); // sign extension
153           return;
154 
155         case T_LONG:
156         case T_OBJECT:
157         case T_ARRAY:
158         case T_VOID:
159         case T_ADDRESS:
160           lgr_if_needed(dst, src);
161           return;
162 
163         default:
164           assert(false, "non-integer src type");
165           return;
166       }
167       return;
168     case T_OBJECT:
169     case T_ARRAY:
170     case T_VOID:
171     case T_ADDRESS:
172       switch (src_type) {
173         // These types don't make sense to be converted to pointers:
174         //      case T_BOOLEAN:
175         //      case T_BYTE:
176         //      case T_CHAR:
177         //      case T_SHORT:
178 
179         case T_INT:
180           z_llgfr(dst, src); // zero extension
181           return;
182 
183         case T_LONG:
184         case T_OBJECT:
185         case T_ARRAY:
186         case T_VOID:
187         case T_ADDRESS:
188           lgr_if_needed(dst, src);
189           return;
190 
191         default:
192           assert(false, "non-integer src type");
193           return;
194       }
195       return;
196     default:
197       assert(false, "non-integer dst type");
198       return;
199   }
200 }
201 
202 // Move float register if destination and source are different.
move_freg_if_needed(FloatRegister dst,BasicType dst_type,FloatRegister src,BasicType src_type)203 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
204                                          FloatRegister src, BasicType src_type) {
205   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
206   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
207   if (dst_type == src_type) {
208     ldr_if_needed(dst, src); // Just move all 64 bits.
209   } else {
210     switch (dst_type) {
211       case T_FLOAT:
212         assert(src_type == T_DOUBLE, "invalid float type combination");
213         z_ledbr(dst, src);
214         return;
215       case T_DOUBLE:
216         assert(src_type == T_FLOAT, "invalid float type combination");
217         z_ldebr(dst, src);
218         return;
219       default:
220         assert(false, "non-float dst type");
221         return;
222     }
223   }
224 }
225 
226 // Optimized emitter for reg to mem operations.
227 // Uses modern instructions if running on modern hardware, classic instructions
228 // otherwise. Prefers (usually shorter) classic instructions if applicable.
229 // Data register (reg) cannot be used as work register.
230 //
231 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
232 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
freg2mem_opt(FloatRegister reg,int64_t disp,Register index,Register base,void (MacroAssembler::* modern)(FloatRegister,int64_t,Register,Register),void (MacroAssembler::* classic)(FloatRegister,int64_t,Register,Register),Register scratch)233 void MacroAssembler::freg2mem_opt(FloatRegister reg,
234                                   int64_t       disp,
235                                   Register      index,
236                                   Register      base,
237                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
238                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
239                                   Register      scratch) {
240   index = (index == noreg) ? Z_R0 : index;
241   if (Displacement::is_shortDisp(disp)) {
242     (this->*classic)(reg, disp, index, base);
243   } else {
244     if (Displacement::is_validDisp(disp)) {
245       (this->*modern)(reg, disp, index, base);
246     } else {
247       if (scratch != Z_R0 && scratch != Z_R1) {
248         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
249       } else {
250         if (scratch != Z_R0) {   // scratch == Z_R1
251           if ((scratch == index) || (index == base)) {
252             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
253           } else {
254             add2reg(scratch, disp, base);
255             (this->*classic)(reg, 0, index, scratch);
256             if (base == scratch) {
257               add2reg(base, -disp);  // Restore base.
258             }
259           }
260         } else {   // scratch == Z_R0
261           z_lgr(scratch, base);
262           add2reg(base, disp);
263           (this->*classic)(reg, 0, index, base);
264           z_lgr(base, scratch);      // Restore base.
265         }
266       }
267     }
268   }
269 }
270 
freg2mem_opt(FloatRegister reg,const Address & a,bool is_double)271 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
272   if (is_double) {
273     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
274   } else {
275     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
276   }
277 }
278 
279 // Optimized emitter for mem to reg operations.
280 // Uses modern instructions if running on modern hardware, classic instructions
281 // otherwise. Prefers (usually shorter) classic instructions if applicable.
282 // data register (reg) cannot be used as work register.
283 //
284 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
285 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
mem2freg_opt(FloatRegister reg,int64_t disp,Register index,Register base,void (MacroAssembler::* modern)(FloatRegister,int64_t,Register,Register),void (MacroAssembler::* classic)(FloatRegister,int64_t,Register,Register),Register scratch)286 void MacroAssembler::mem2freg_opt(FloatRegister reg,
287                                   int64_t       disp,
288                                   Register      index,
289                                   Register      base,
290                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
291                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
292                                   Register      scratch) {
293   index = (index == noreg) ? Z_R0 : index;
294   if (Displacement::is_shortDisp(disp)) {
295     (this->*classic)(reg, disp, index, base);
296   } else {
297     if (Displacement::is_validDisp(disp)) {
298       (this->*modern)(reg, disp, index, base);
299     } else {
300       if (scratch != Z_R0 && scratch != Z_R1) {
301         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
302       } else {
303         if (scratch != Z_R0) {   // scratch == Z_R1
304           if ((scratch == index) || (index == base)) {
305             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
306           } else {
307             add2reg(scratch, disp, base);
308             (this->*classic)(reg, 0, index, scratch);
309             if (base == scratch) {
310               add2reg(base, -disp);  // Restore base.
311             }
312           }
313         } else {   // scratch == Z_R0
314           z_lgr(scratch, base);
315           add2reg(base, disp);
316           (this->*classic)(reg, 0, index, base);
317           z_lgr(base, scratch);      // Restore base.
318         }
319       }
320     }
321   }
322 }
323 
mem2freg_opt(FloatRegister reg,const Address & a,bool is_double)324 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
325   if (is_double) {
326     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
327   } else {
328     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
329   }
330 }
331 
332 // Optimized emitter for reg to mem operations.
333 // Uses modern instructions if running on modern hardware, classic instructions
334 // otherwise. Prefers (usually shorter) classic instructions if applicable.
335 // Data register (reg) cannot be used as work register.
336 //
337 // Don't rely on register locking, instead pass a scratch register
338 // (Z_R0 by default)
339 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
reg2mem_opt(Register reg,int64_t disp,Register index,Register base,void (MacroAssembler::* modern)(Register,int64_t,Register,Register),void (MacroAssembler::* classic)(Register,int64_t,Register,Register),Register scratch)340 void MacroAssembler::reg2mem_opt(Register reg,
341                                  int64_t  disp,
342                                  Register index,
343                                  Register base,
344                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
345                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
346                                  Register scratch) {
347   index = (index == noreg) ? Z_R0 : index;
348   if (Displacement::is_shortDisp(disp)) {
349     (this->*classic)(reg, disp, index, base);
350   } else {
351     if (Displacement::is_validDisp(disp)) {
352       (this->*modern)(reg, disp, index, base);
353     } else {
354       if (scratch != Z_R0 && scratch != Z_R1) {
355         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
356       } else {
357         if (scratch != Z_R0) {   // scratch == Z_R1
358           if ((scratch == index) || (index == base)) {
359             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
360           } else {
361             add2reg(scratch, disp, base);
362             (this->*classic)(reg, 0, index, scratch);
363             if (base == scratch) {
364               add2reg(base, -disp);  // Restore base.
365             }
366           }
367         } else {   // scratch == Z_R0
368           if ((scratch == reg) || (scratch == base) || (reg == base)) {
369             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
370           } else {
371             z_lgr(scratch, base);
372             add2reg(base, disp);
373             (this->*classic)(reg, 0, index, base);
374             z_lgr(base, scratch);    // Restore base.
375           }
376         }
377       }
378     }
379   }
380 }
381 
reg2mem_opt(Register reg,const Address & a,bool is_double)382 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
383   int store_offset = offset();
384   if (is_double) {
385     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
386   } else {
387     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
388   }
389   return store_offset;
390 }
391 
392 // Optimized emitter for mem to reg operations.
393 // Uses modern instructions if running on modern hardware, classic instructions
394 // otherwise. Prefers (usually shorter) classic instructions if applicable.
395 // Data register (reg) will be used as work register where possible.
mem2reg_opt(Register reg,int64_t disp,Register index,Register base,void (MacroAssembler::* modern)(Register,int64_t,Register,Register),void (MacroAssembler::* classic)(Register,int64_t,Register,Register))396 void MacroAssembler::mem2reg_opt(Register reg,
397                                  int64_t  disp,
398                                  Register index,
399                                  Register base,
400                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
401                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
402   index = (index == noreg) ? Z_R0 : index;
403   if (Displacement::is_shortDisp(disp)) {
404     (this->*classic)(reg, disp, index, base);
405   } else {
406     if (Displacement::is_validDisp(disp)) {
407       (this->*modern)(reg, disp, index, base);
408     } else {
409       if ((reg == index) && (reg == base)) {
410         z_sllg(reg, reg, 1);
411         add2reg(reg, disp);
412         (this->*classic)(reg, 0, noreg, reg);
413       } else if ((reg == index) && (reg != Z_R0)) {
414         add2reg(reg, disp);
415         (this->*classic)(reg, 0, reg, base);
416       } else if (reg == base) {
417         add2reg(reg, disp);
418         (this->*classic)(reg, 0, index, reg);
419       } else if (reg != Z_R0) {
420         add2reg(reg, disp, base);
421         (this->*classic)(reg, 0, index, reg);
422       } else { // reg == Z_R0 && reg != base here
423         add2reg(base, disp);
424         (this->*classic)(reg, 0, index, base);
425         add2reg(base, -disp);
426       }
427     }
428   }
429 }
430 
mem2reg_opt(Register reg,const Address & a,bool is_double)431 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
432   if (is_double) {
433     z_lg(reg, a);
434   } else {
435     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
436   }
437 }
438 
mem2reg_signed_opt(Register reg,const Address & a)439 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
440   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
441 }
442 
and_imm(Register r,long mask,Register tmp,bool wide)443 void MacroAssembler::and_imm(Register r, long mask,
444                              Register tmp /* = Z_R0 */,
445                              bool wide    /* = false */) {
446   assert(wide || Immediate::is_simm32(mask), "mask value too large");
447 
448   if (!wide) {
449     z_nilf(r, mask);
450     return;
451   }
452 
453   assert(r != tmp, " need a different temporary register !");
454   load_const_optimized(tmp, mask);
455   z_ngr(r, tmp);
456 }
457 
458 // Calculate the 1's complement.
459 // Note: The condition code is neither preserved nor correctly set by this code!!!
460 // Note: (wide == false) does not protect the high order half of the target register
461 //       from alteration. It only serves as optimization hint for 32-bit results.
not_(Register r1,Register r2,bool wide)462 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
463 
464   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
465     z_xilf(r1, -1);
466     if (wide) {
467       z_xihf(r1, -1);
468     }
469   } else { // Distinct src and dst registers.
470     load_const_optimized(r1, -1);
471     z_xgr(r1, r2);
472   }
473 }
474 
create_mask(int lBitPos,int rBitPos)475 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
476   assert(lBitPos >=  0,      "zero is  leftmost bit position");
477   assert(rBitPos <= 63,      "63   is rightmost bit position");
478   assert(lBitPos <= rBitPos, "inverted selection interval");
479   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
480 }
481 
482 // Helper function for the "Rotate_then_<logicalOP>" emitters.
483 // Rotate src, then mask register contents such that only bits in range survive.
484 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
485 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
486 // The caller must ensure that the selected range only contains bits with defined value.
rotate_then_mask(Register dst,Register src,int lBitPos,int rBitPos,int nRotate,bool src32bit,bool dst32bit,bool oneBits)487 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
488                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
489   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
490   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
491   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
492   //  Pre-determine which parts of dst will be zero after shift/rotate.
493   bool llZero  =  sll4rll && (nRotate >= 16);
494   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
495   bool lfZero  = llZero && lhZero;
496   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
497   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
498   bool hfZero  = hlZero && hhZero;
499 
500   // rotate then mask src operand.
501   // if oneBits == true,  all bits outside selected range are 1s.
502   // if oneBits == false, all bits outside selected range are 0s.
503   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
504     if (dst32bit) {
505       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
506     } else {
507       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
508       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
509       else              { z_rllg(dst, src,  nRotate); }
510     }
511   } else {
512     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
513     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
514     else              { z_rllg(dst, src,  nRotate); }
515   }
516 
517   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
518   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
519   unsigned int   range_mask_l  = (unsigned int)range_mask;
520   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
521   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
522   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
523   unsigned short range_mask_ll = (unsigned short)range_mask;
524   // Works for z9 and newer H/W.
525   if (oneBits) {
526     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
527     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
528   } else {
529     // All bits outside range become 0s
530     if (((~range_mask_l) != 0) &&              !lfZero) {
531       z_nilf(dst, range_mask_l);
532     }
533     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
534       z_nihf(dst, range_mask_h);
535     }
536   }
537 }
538 
539 // Rotate src, then insert selected range from rotated src into dst.
540 // Clear dst before, if requested.
rotate_then_insert(Register dst,Register src,int lBitPos,int rBitPos,int nRotate,bool clear_dst)541 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
542                                         int nRotate, bool clear_dst) {
543   // This version does not depend on src being zero-extended int2long.
544   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
545   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
546 }
547 
548 // Rotate src, then and selected range from rotated src into dst.
549 // Set condition code only if so requested. Otherwise it is unpredictable.
550 // See performance note in macroAssembler_s390.hpp for important information.
rotate_then_and(Register dst,Register src,int lBitPos,int rBitPos,int nRotate,bool test_only)551 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
552                                      int nRotate, bool test_only) {
553   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
554   // This version does not depend on src being zero-extended int2long.
555   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
556   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
557 }
558 
559 // Rotate src, then or selected range from rotated src into dst.
560 // Set condition code only if so requested. Otherwise it is unpredictable.
561 // See performance note in macroAssembler_s390.hpp for important information.
rotate_then_or(Register dst,Register src,int lBitPos,int rBitPos,int nRotate,bool test_only)562 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
563                                     int nRotate, bool test_only) {
564   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
565   // This version does not depend on src being zero-extended int2long.
566   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
567   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
568 }
569 
570 // Rotate src, then xor selected range from rotated src into dst.
571 // Set condition code only if so requested. Otherwise it is unpredictable.
572 // See performance note in macroAssembler_s390.hpp for important information.
rotate_then_xor(Register dst,Register src,int lBitPos,int rBitPos,int nRotate,bool test_only)573 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
574                                      int nRotate, bool test_only) {
575   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
576     // This version does not depend on src being zero-extended int2long.
577   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
578   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
579 }
580 
add64(Register r1,RegisterOrConstant inc)581 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
582   if (inc.is_register()) {
583     z_agr(r1, inc.as_register());
584   } else { // constant
585     intptr_t imm = inc.as_constant();
586     add2reg(r1, imm);
587   }
588 }
589 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
590 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
591 // calculation and is thus rather slow.
592 //
593 // There is no handling for special cases, e.g. cval==0 or cval==1.
594 //
595 // Returns len of generated code block.
mul_reg64_const16(Register rval,Register work,int cval)596 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
597   int block_start = offset();
598 
599   bool sign_flip = cval < 0;
600   cval = sign_flip ? -cval : cval;
601 
602   BLOCK_COMMENT("Reg64*Con16 {");
603 
604   int bit1 = cval & -cval;
605   if (bit1 == cval) {
606     z_sllg(rval, rval, exact_log2(bit1));
607     if (sign_flip) { z_lcgr(rval, rval); }
608   } else {
609     int bit2 = (cval-bit1) & -(cval-bit1);
610     if ((bit1+bit2) == cval) {
611       z_sllg(work, rval, exact_log2(bit1));
612       z_sllg(rval, rval, exact_log2(bit2));
613       z_agr(rval, work);
614       if (sign_flip) { z_lcgr(rval, rval); }
615     } else {
616       if (sign_flip) { z_mghi(rval, -cval); }
617       else           { z_mghi(rval,  cval); }
618     }
619   }
620   BLOCK_COMMENT("} Reg64*Con16");
621 
622   int block_end = offset();
623   return block_end - block_start;
624 }
625 
626 // Generic operation r1 := r2 + imm.
627 //
628 // Should produce the best code for each supported CPU version.
629 // r2 == noreg yields r1 := r1 + imm
630 // imm == 0 emits either no instruction or r1 := r2 !
631 // NOTES: 1) Don't use this function where fixed sized
632 //           instruction sequences are required!!!
633 //        2) Don't use this function if condition code
634 //           setting is required!
635 //        3) Despite being declared as int64_t, the parameter imm
636 //           must be a simm_32 value (= signed 32-bit integer).
add2reg(Register r1,int64_t imm,Register r2)637 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
638   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
639 
640   if (r2 == noreg) { r2 = r1; }
641 
642   // Handle special case imm == 0.
643   if (imm == 0) {
644     lgr_if_needed(r1, r2);
645     // Nothing else to do.
646     return;
647   }
648 
649   if (!PreferLAoverADD || (r2 == Z_R0)) {
650     bool distinctOpnds = VM_Version::has_DistinctOpnds();
651 
652     // Can we encode imm in 16 bits signed?
653     if (Immediate::is_simm16(imm)) {
654       if (r1 == r2) {
655         z_aghi(r1, imm);
656         return;
657       }
658       if (distinctOpnds) {
659         z_aghik(r1, r2, imm);
660         return;
661       }
662       z_lgr(r1, r2);
663       z_aghi(r1, imm);
664       return;
665     }
666   } else {
667     // Can we encode imm in 12 bits unsigned?
668     if (Displacement::is_shortDisp(imm)) {
669       z_la(r1, imm, r2);
670       return;
671     }
672     // Can we encode imm in 20 bits signed?
673     if (Displacement::is_validDisp(imm)) {
674       // Always use LAY instruction, so we don't need the tmp register.
675       z_lay(r1, imm, r2);
676       return;
677     }
678 
679   }
680 
681   // Can handle it (all possible values) with long immediates.
682   lgr_if_needed(r1, r2);
683   z_agfi(r1, imm);
684 }
685 
686 // Generic operation r := b + x + d
687 //
688 // Addition of several operands with address generation semantics - sort of:
689 //  - no restriction on the registers. Any register will do for any operand.
690 //  - x == noreg: operand will be disregarded.
691 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
692 //  - x == Z_R0:  just disregard
693 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
694 //
695 // The same restrictions as on add2reg() are valid!!!
add2reg_with_index(Register r,int64_t d,Register x,Register b)696 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
697   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
698 
699   if (x == noreg) { x = Z_R0; }
700   if (b == noreg) { b = r; }
701 
702   // Handle special case x == R0.
703   if (x == Z_R0) {
704     // Can simply add the immediate value to the base register.
705     add2reg(r, d, b);
706     return;
707   }
708 
709   if (!PreferLAoverADD || (b == Z_R0)) {
710     bool distinctOpnds = VM_Version::has_DistinctOpnds();
711     // Handle special case d == 0.
712     if (d == 0) {
713       if (b == x)        { z_sllg(r, b, 1); return; }
714       if (r == x)        { z_agr(r, b);     return; }
715       if (r == b)        { z_agr(r, x);     return; }
716       if (distinctOpnds) { z_agrk(r, x, b); return; }
717       z_lgr(r, b);
718       z_agr(r, x);
719     } else {
720       if (x == b)             { z_sllg(r, x, 1); }
721       else if (r == x)        { z_agr(r, b); }
722       else if (r == b)        { z_agr(r, x); }
723       else if (distinctOpnds) { z_agrk(r, x, b); }
724       else {
725         z_lgr(r, b);
726         z_agr(r, x);
727       }
728       add2reg(r, d);
729     }
730   } else {
731     // Can we encode imm in 12 bits unsigned?
732     if (Displacement::is_shortDisp(d)) {
733       z_la(r, d, x, b);
734       return;
735     }
736     // Can we encode imm in 20 bits signed?
737     if (Displacement::is_validDisp(d)) {
738       z_lay(r, d, x, b);
739       return;
740     }
741     z_la(r, 0, x, b);
742     add2reg(r, d);
743   }
744 }
745 
746 // Generic emitter (32bit) for direct memory increment.
747 // For optimal code, do not specify Z_R0 as temp register.
add2mem_32(const Address & a,int64_t imm,Register tmp)748 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
749   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
750     z_asi(a, imm);
751   } else {
752     z_lgf(tmp, a);
753     add2reg(tmp, imm);
754     z_st(tmp, a);
755   }
756 }
757 
add2mem_64(const Address & a,int64_t imm,Register tmp)758 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
759   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
760     z_agsi(a, imm);
761   } else {
762     z_lg(tmp, a);
763     add2reg(tmp, imm);
764     z_stg(tmp, a);
765   }
766 }
767 
load_sized_value(Register dst,Address src,size_t size_in_bytes,bool is_signed)768 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
769   switch (size_in_bytes) {
770     case  8: z_lg(dst, src); break;
771     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
772     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
773     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
774     default: ShouldNotReachHere();
775   }
776 }
777 
store_sized_value(Register src,Address dst,size_t size_in_bytes)778 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
779   switch (size_in_bytes) {
780     case  8: z_stg(src, dst); break;
781     case  4: z_st(src, dst); break;
782     case  2: z_sth(src, dst); break;
783     case  1: z_stc(src, dst); break;
784     default: ShouldNotReachHere();
785   }
786 }
787 
788 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
789 // a high-order summand in register tmp.
790 //
791 // return value: <  0: No split required, si20 actually has property uimm12.
792 //               >= 0: Split performed. Use return value as uimm12 displacement and
793 //                     tmp as index register.
split_largeoffset(int64_t si20_offset,Register tmp,bool fixed_codelen,bool accumulate)794 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
795   assert(Immediate::is_simm20(si20_offset), "sanity");
796   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
797   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
798   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
799          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
800   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
801 
802   Register work = accumulate? Z_R0 : tmp;
803 
804   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
805     z_lghi(work, ll_off>>12);   // Implicit sign extension.
806     z_slag(work, work, 12);
807   } else {                      // Len of code = 0..10.
808     if (ll_off == 0) { return -1; }
809     // ll_off has 8 significant bits (at most) plus sign.
810     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
811       z_llilh(work, ll_off >> 16);
812       if (ll_off < 0) {                  // Sign-extension required.
813         z_lgfr(work, work);
814       }
815     } else {
816       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
817         z_llill(work, ll_off);
818       } else {                           // Non-zero bits in both halfbytes.
819         z_lghi(work, ll_off>>12);        // Implicit sign extension.
820         z_slag(work, work, 12);
821       }
822     }
823   }
824   if (accumulate) { z_algr(tmp, work); } // len of code += 4
825   return lg_off;
826 }
827 
load_float_largeoffset(FloatRegister t,int64_t si20,Register a,Register tmp)828 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
829   if (Displacement::is_validDisp(si20)) {
830     z_ley(t, si20, a);
831   } else {
832     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
833     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
834     // pool loads).
835     bool accumulate    = true;
836     bool fixed_codelen = true;
837     Register work;
838 
839     if (fixed_codelen) {
840       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
841     } else {
842       accumulate = (a == tmp);
843     }
844     work = tmp;
845 
846     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
847     if (disp12 < 0) {
848       z_le(t, si20, work);
849     } else {
850       if (accumulate) {
851         z_le(t, disp12, work);
852       } else {
853         z_le(t, disp12, work, a);
854       }
855     }
856   }
857 }
858 
load_double_largeoffset(FloatRegister t,int64_t si20,Register a,Register tmp)859 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
860   if (Displacement::is_validDisp(si20)) {
861     z_ldy(t, si20, a);
862   } else {
863     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
864     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
865     // pool loads).
866     bool accumulate    = true;
867     bool fixed_codelen = true;
868     Register work;
869 
870     if (fixed_codelen) {
871       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
872     } else {
873       accumulate = (a == tmp);
874     }
875     work = tmp;
876 
877     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
878     if (disp12 < 0) {
879       z_ld(t, si20, work);
880     } else {
881       if (accumulate) {
882         z_ld(t, disp12, work);
883       } else {
884         z_ld(t, disp12, work, a);
885       }
886     }
887   }
888 }
889 
890 // PCrelative TOC access.
891 // Returns distance (in bytes) from current position to start of consts section.
892 // Returns 0 (zero) if no consts section exists or if it has size zero.
toc_distance()893 long MacroAssembler::toc_distance() {
894   CodeSection* cs = code()->consts();
895   return (long)((cs != NULL) ? cs->start()-pc() : 0);
896 }
897 
898 // Implementation on x86/sparc assumes that constant and instruction section are
899 // adjacent, but this doesn't hold. Two special situations may occur, that we must
900 // be able to handle:
901 //   1. const section may be located apart from the inst section.
902 //   2. const section may be empty
903 // In both cases, we use the const section's start address to compute the "TOC",
904 // this seems to occur only temporarily; in the final step we always seem to end up
905 // with the pc-relatice variant.
906 //
907 // PC-relative offset could be +/-2**32 -> use long for disp
908 // Furthermore: makes no sense to have special code for
909 // adjacent const and inst sections.
load_toc(Register Rtoc)910 void MacroAssembler::load_toc(Register Rtoc) {
911   // Simply use distance from start of const section (should be patched in the end).
912   long disp = toc_distance();
913 
914   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
915   relocate(rspec);
916   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
917 }
918 
919 // PCrelative TOC access.
920 // Load from anywhere pcrelative (with relocation of load instr)
load_long_pcrelative(Register Rdst,address dataLocation)921 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
922   address          pc             = this->pc();
923   ptrdiff_t        total_distance = dataLocation - pc;
924   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
925 
926   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
927   assert(total_distance != 0, "sanity");
928 
929   // Some extra safety net.
930   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
931     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
932   }
933 
934   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
935   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
936 }
937 
938 
939 // PCrelative TOC access.
940 // Load from anywhere pcrelative (with relocation of load instr)
941 // loaded addr has to be relocated when added to constant pool.
load_addr_pcrelative(Register Rdst,address addrLocation)942 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
943   address          pc             = this->pc();
944   ptrdiff_t        total_distance = addrLocation - pc;
945   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
946 
947   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
948 
949   // Some extra safety net.
950   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
951     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
952   }
953 
954   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
955   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
956 }
957 
958 // Generic operation: load a value from memory and test.
959 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
load_and_test_byte(Register dst,const Address & a)960 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
961   z_lb(dst, a);
962   z_ltr(dst, dst);
963 }
964 
load_and_test_short(Register dst,const Address & a)965 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
966   int64_t disp = a.disp20();
967   if (Displacement::is_shortDisp(disp)) {
968     z_lh(dst, a);
969   } else if (Displacement::is_longDisp(disp)) {
970     z_lhy(dst, a);
971   } else {
972     guarantee(false, "displacement out of range");
973   }
974   z_ltr(dst, dst);
975 }
976 
load_and_test_int(Register dst,const Address & a)977 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
978   z_lt(dst, a);
979 }
980 
load_and_test_int2long(Register dst,const Address & a)981 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
982   z_ltgf(dst, a);
983 }
984 
load_and_test_long(Register dst,const Address & a)985 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
986   z_ltg(dst, a);
987 }
988 
989 // Test a bit in memory.
testbit(const Address & a,unsigned int bit)990 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
991   assert(a.index() == noreg, "no index reg allowed in testbit");
992   if (bit <= 7) {
993     z_tm(a.disp() + 3, a.base(), 1 << bit);
994   } else if (bit <= 15) {
995     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
996   } else if (bit <= 23) {
997     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
998   } else if (bit <= 31) {
999     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
1000   } else {
1001     ShouldNotReachHere();
1002   }
1003 }
1004 
1005 // Test a bit in a register. Result is reflected in CC.
testbit(Register r,unsigned int bitPos)1006 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1007   if (bitPos < 16) {
1008     z_tmll(r, 1U<<bitPos);
1009   } else if (bitPos < 32) {
1010     z_tmlh(r, 1U<<(bitPos-16));
1011   } else if (bitPos < 48) {
1012     z_tmhl(r, 1U<<(bitPos-32));
1013   } else if (bitPos < 64) {
1014     z_tmhh(r, 1U<<(bitPos-48));
1015   } else {
1016     ShouldNotReachHere();
1017   }
1018 }
1019 
prefetch_read(Address a)1020 void MacroAssembler::prefetch_read(Address a) {
1021   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1022 }
prefetch_update(Address a)1023 void MacroAssembler::prefetch_update(Address a) {
1024   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1025 }
1026 
1027 // Clear a register, i.e. load const zero into reg.
1028 // Return len (in bytes) of generated instruction(s).
1029 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1030 // set_cc:    Use instruction that sets the condition code, if true.
clear_reg(Register r,bool whole_reg,bool set_cc)1031 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1032   unsigned int start_off = offset();
1033   if (whole_reg) {
1034     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1035   } else {  // Only 32bit register.
1036     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1037   }
1038   return offset() - start_off;
1039 }
1040 
1041 #ifdef ASSERT
preset_reg(Register r,unsigned long pattern,int pattern_len)1042 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1043   switch (pattern_len) {
1044     case 1:
1045       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1046     case 2:
1047       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1048     case 4:
1049       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1050     case 8:
1051       return load_const_optimized_rtn_len(r, pattern, true);
1052       break;
1053     default:
1054       guarantee(false, "preset_reg: bad len");
1055   }
1056   return 0;
1057 }
1058 #endif
1059 
1060 // addr: Address descriptor of memory to clear index register will not be used !
1061 // size: Number of bytes to clear.
1062 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1063 //    !!! Use store_const() instead                  !!!
clear_mem(const Address & addr,unsigned size)1064 void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
1065   guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
1066 
1067   if (size == 1) {
1068     z_mvi(addr, 0);
1069     return;
1070   }
1071 
1072   switch (size) {
1073     case 2: z_mvhhi(addr, 0);
1074       return;
1075     case 4: z_mvhi(addr, 0);
1076       return;
1077     case 8: z_mvghi(addr, 0);
1078       return;
1079     default: ; // Fallthru to xc.
1080   }
1081 
1082   z_xc(addr, size, addr);
1083 }
1084 
align(int modulus)1085 void MacroAssembler::align(int modulus) {
1086   while (offset() % modulus != 0) z_nop();
1087 }
1088 
1089 // Special version for non-relocateable code if required alignment
1090 // is larger than CodeEntryAlignment.
align_address(int modulus)1091 void MacroAssembler::align_address(int modulus) {
1092   while ((uintptr_t)pc() % modulus != 0) z_nop();
1093 }
1094 
argument_address(RegisterOrConstant arg_slot,Register temp_reg,int64_t extra_slot_offset)1095 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1096                                          Register temp_reg,
1097                                          int64_t extra_slot_offset) {
1098   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1099   // which issues an unnecessary add instruction.
1100   int stackElementSize = Interpreter::stackElementSize;
1101   int64_t offset = extra_slot_offset * stackElementSize;
1102   const Register argbase = Z_esp;
1103   if (arg_slot.is_constant()) {
1104     offset += arg_slot.as_constant() * stackElementSize;
1105     return Address(argbase, offset);
1106   }
1107   // else
1108   assert(temp_reg != noreg, "must specify");
1109   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1110   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1111   return Address(argbase, temp_reg, offset);
1112 }
1113 
1114 
1115 //===================================================================
1116 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1117 //===================================================================
1118 //===            P A T CH A B L E   C O N S T A N T S             ===
1119 //===================================================================
1120 
1121 
1122 //---------------------------------------------------
1123 //  Load (patchable) constant into register
1124 //---------------------------------------------------
1125 
1126 
1127 // Load absolute address (and try to optimize).
1128 //   Note: This method is usable only for position-fixed code,
1129 //         referring to a position-fixed target location.
1130 //         If not so, relocations and patching must be used.
load_absolute_address(Register d,address addr)1131 void MacroAssembler::load_absolute_address(Register d, address addr) {
1132   assert(addr != NULL, "should not happen");
1133   BLOCK_COMMENT("load_absolute_address:");
1134   if (addr == NULL) {
1135     z_larl(d, pc()); // Dummy emit for size calc.
1136     return;
1137   }
1138 
1139   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1140     z_larl(d, addr);
1141     return;
1142   }
1143 
1144   load_const_optimized(d, (long)addr);
1145 }
1146 
1147 // Load a 64bit constant.
1148 // Patchable code sequence, but not atomically patchable.
1149 // Make sure to keep code size constant -> no value-dependent optimizations.
1150 // Do not kill condition code.
load_const(Register t,long x)1151 void MacroAssembler::load_const(Register t, long x) {
1152   // Note: Right shift is only cleanly defined for unsigned types
1153   //       or for signed types with nonnegative values.
1154   Assembler::z_iihf(t, (long)((unsigned long)x >> 32));
1155   Assembler::z_iilf(t, (long)((unsigned long)x & 0xffffffffUL));
1156 }
1157 
1158 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1159 // Patchable code sequence, but not atomically patchable.
1160 // Make sure to keep code size constant -> no value-dependent optimizations.
1161 // Do not kill condition code.
load_const_32to64(Register t,int64_t x,bool sign_extend)1162 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1163   if (sign_extend) { Assembler::z_lgfi(t, x); }
1164   else             { Assembler::z_llilf(t, x); }
1165 }
1166 
1167 // Load narrow oop constant, no decompression.
load_narrow_oop(Register t,narrowOop a)1168 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1169   assert(UseCompressedOops, "must be on to call this method");
1170   load_const_32to64(t, a, false /*sign_extend*/);
1171 }
1172 
1173 // Load narrow klass constant, compression required.
load_narrow_klass(Register t,Klass * k)1174 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1175   assert(UseCompressedClassPointers, "must be on to call this method");
1176   narrowKlass encoded_k = Klass::encode_klass(k);
1177   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1178 }
1179 
1180 //------------------------------------------------------
1181 //  Compare (patchable) constant with register.
1182 //------------------------------------------------------
1183 
1184 // Compare narrow oop in reg with narrow oop constant, no decompression.
compare_immediate_narrow_oop(Register oop1,narrowOop oop2)1185 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1186   assert(UseCompressedOops, "must be on to call this method");
1187 
1188   Assembler::z_clfi(oop1, oop2);
1189 }
1190 
1191 // Compare narrow oop in reg with narrow oop constant, no decompression.
compare_immediate_narrow_klass(Register klass1,Klass * klass2)1192 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1193   assert(UseCompressedClassPointers, "must be on to call this method");
1194   narrowKlass encoded_k = Klass::encode_klass(klass2);
1195 
1196   Assembler::z_clfi(klass1, encoded_k);
1197 }
1198 
1199 //----------------------------------------------------------
1200 //  Check which kind of load_constant we have here.
1201 //----------------------------------------------------------
1202 
1203 // Detection of CPU version dependent load_const sequence.
1204 // The detection is valid only for code sequences generated by load_const,
1205 // not load_const_optimized.
is_load_const(address a)1206 bool MacroAssembler::is_load_const(address a) {
1207   unsigned long inst1, inst2;
1208   unsigned int  len1,  len2;
1209 
1210   len1 = get_instruction(a, &inst1);
1211   len2 = get_instruction(a + len1, &inst2);
1212 
1213   return is_z_iihf(inst1) && is_z_iilf(inst2);
1214 }
1215 
1216 // Detection of CPU version dependent load_const_32to64 sequence.
1217 // Mostly used for narrow oops and narrow Klass pointers.
1218 // The detection is valid only for code sequences generated by load_const_32to64.
is_load_const_32to64(address pos)1219 bool MacroAssembler::is_load_const_32to64(address pos) {
1220   unsigned long inst1, inst2;
1221   unsigned int len1;
1222 
1223   len1 = get_instruction(pos, &inst1);
1224   return is_z_llilf(inst1);
1225 }
1226 
1227 // Detection of compare_immediate_narrow sequence.
1228 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
is_compare_immediate32(address pos)1229 bool MacroAssembler::is_compare_immediate32(address pos) {
1230   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1231 }
1232 
1233 // Detection of compare_immediate_narrow sequence.
1234 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
is_compare_immediate_narrow_oop(address pos)1235 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1236   return is_compare_immediate32(pos);
1237   }
1238 
1239 // Detection of compare_immediate_narrow sequence.
1240 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
is_compare_immediate_narrow_klass(address pos)1241 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1242   return is_compare_immediate32(pos);
1243 }
1244 
1245 //-----------------------------------
1246 //  patch the load_constant
1247 //-----------------------------------
1248 
1249 // CPU-version dependend patching of load_const.
patch_const(address a,long x)1250 void MacroAssembler::patch_const(address a, long x) {
1251   assert(is_load_const(a), "not a load of a constant");
1252   // Note: Right shift is only cleanly defined for unsigned types
1253   //       or for signed types with nonnegative values.
1254   set_imm32((address)a, (long)((unsigned long)x >> 32));
1255   set_imm32((address)(a + 6), (long)((unsigned long)x & 0xffffffffUL));
1256 }
1257 
1258 // Patching the value of CPU version dependent load_const_32to64 sequence.
1259 // The passed ptr MUST be in compressed format!
patch_load_const_32to64(address pos,int64_t np)1260 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1261   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1262 
1263   set_imm32(pos, np);
1264   return 6;
1265 }
1266 
1267 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1268 // The passed ptr MUST be in compressed format!
patch_compare_immediate_32(address pos,int64_t np)1269 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1270   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1271 
1272   set_imm32(pos, np);
1273   return 6;
1274 }
1275 
1276 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1277 // The passed ptr must NOT be in compressed format!
patch_load_narrow_oop(address pos,oop o)1278 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1279   assert(UseCompressedOops, "Can only patch compressed oops");
1280 
1281   narrowOop no = CompressedOops::encode(o);
1282   return patch_load_const_32to64(pos, no);
1283 }
1284 
1285 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1286 // The passed ptr must NOT be in compressed format!
patch_load_narrow_klass(address pos,Klass * k)1287 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1288   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1289 
1290   narrowKlass nk = Klass::encode_klass(k);
1291   return patch_load_const_32to64(pos, nk);
1292 }
1293 
1294 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1295 // The passed ptr must NOT be in compressed format!
patch_compare_immediate_narrow_oop(address pos,oop o)1296 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1297   assert(UseCompressedOops, "Can only patch compressed oops");
1298 
1299   narrowOop no = CompressedOops::encode(o);
1300   return patch_compare_immediate_32(pos, no);
1301 }
1302 
1303 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1304 // The passed ptr must NOT be in compressed format!
patch_compare_immediate_narrow_klass(address pos,Klass * k)1305 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1306   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1307 
1308   narrowKlass nk = Klass::encode_klass(k);
1309   return patch_compare_immediate_32(pos, nk);
1310 }
1311 
1312 //------------------------------------------------------------------------
1313 //  Extract the constant from a load_constant instruction stream.
1314 //------------------------------------------------------------------------
1315 
1316 // Get constant from a load_const sequence.
get_const(address a)1317 long MacroAssembler::get_const(address a) {
1318   assert(is_load_const(a), "not a load of a constant");
1319   unsigned long x;
1320   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1321   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1322   return (long) x;
1323 }
1324 
1325 //--------------------------------------
1326 //  Store a constant in memory.
1327 //--------------------------------------
1328 
1329 // General emitter to move a constant to memory.
1330 // The store is atomic.
1331 //  o Address must be given in RS format (no index register)
1332 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1333 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1334 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1335 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1336 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
store_const(const Address & dest,long imm,unsigned int lm,unsigned int lc,Register scratch)1337 int MacroAssembler::store_const(const Address &dest, long imm,
1338                                 unsigned int lm, unsigned int lc,
1339                                 Register scratch) {
1340   int64_t  disp = dest.disp();
1341   Register base = dest.base();
1342   assert(!dest.has_index(), "not supported");
1343   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1344   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1345   assert(lm>=lc, "memory slot too small");
1346   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1347   assert(Displacement::is_validDisp(disp), "displacement out of range");
1348 
1349   bool is_shortDisp = Displacement::is_shortDisp(disp);
1350   int store_offset = -1;
1351 
1352   // For target len == 1 it's easy.
1353   if (lm == 1) {
1354     store_offset = offset();
1355     if (is_shortDisp) {
1356       z_mvi(disp, base, imm);
1357       return store_offset;
1358     } else {
1359       z_mviy(disp, base, imm);
1360       return store_offset;
1361     }
1362   }
1363 
1364   // All the "good stuff" takes an unsigned displacement.
1365   if (is_shortDisp) {
1366     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1367 
1368     store_offset = offset();
1369     switch (lm) {
1370       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1371         z_mvhhi(disp, base, imm);
1372         return store_offset;
1373       case 4:
1374         if (Immediate::is_simm16(imm)) {
1375           z_mvhi(disp, base, imm);
1376           return store_offset;
1377         }
1378         break;
1379       case 8:
1380         if (Immediate::is_simm16(imm)) {
1381           z_mvghi(disp, base, imm);
1382           return store_offset;
1383         }
1384         break;
1385       default:
1386         ShouldNotReachHere();
1387         break;
1388     }
1389   }
1390 
1391   //  Can't optimize, so load value and store it.
1392   guarantee(scratch != noreg, " need a scratch register here !");
1393   if (imm != 0) {
1394     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1395   } else {
1396     // Leave CC alone!!
1397     (void) clear_reg(scratch, true, false); // Indicate unused result.
1398   }
1399 
1400   store_offset = offset();
1401   if (is_shortDisp) {
1402     switch (lm) {
1403       case 2:
1404         z_sth(scratch, disp, Z_R0, base);
1405         return store_offset;
1406       case 4:
1407         z_st(scratch, disp, Z_R0, base);
1408         return store_offset;
1409       case 8:
1410         z_stg(scratch, disp, Z_R0, base);
1411         return store_offset;
1412       default:
1413         ShouldNotReachHere();
1414         break;
1415     }
1416   } else {
1417     switch (lm) {
1418       case 2:
1419         z_sthy(scratch, disp, Z_R0, base);
1420         return store_offset;
1421       case 4:
1422         z_sty(scratch, disp, Z_R0, base);
1423         return store_offset;
1424       case 8:
1425         z_stg(scratch, disp, Z_R0, base);
1426         return store_offset;
1427       default:
1428         ShouldNotReachHere();
1429         break;
1430     }
1431   }
1432   return -1; // should not reach here
1433 }
1434 
1435 //===================================================================
1436 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1437 //===================================================================
1438 
1439 // Load constant x into register t with a fast instrcution sequence
1440 // depending on the bits in x. Preserves CC under all circumstances.
load_const_optimized_rtn_len(Register t,long x,bool emit)1441 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1442   if (x == 0) {
1443     int len;
1444     if (emit) {
1445       len = clear_reg(t, true, false);
1446     } else {
1447       len = 4;
1448     }
1449     return len;
1450   }
1451 
1452   if (Immediate::is_simm16(x)) {
1453     if (emit) { z_lghi(t, x); }
1454     return 4;
1455   }
1456 
1457   // 64 bit value: | part1 | part2 | part3 | part4 |
1458   // At least one part is not zero!
1459   // Note: Right shift is only cleanly defined for unsigned types
1460   //       or for signed types with nonnegative values.
1461   int part1 = (int)((unsigned long)x >> 48) & 0x0000ffff;
1462   int part2 = (int)((unsigned long)x >> 32) & 0x0000ffff;
1463   int part3 = (int)((unsigned long)x >> 16) & 0x0000ffff;
1464   int part4 = (int)x & 0x0000ffff;
1465   int part12 = (int)((unsigned long)x >> 32);
1466   int part34 = (int)x;
1467 
1468   // Lower word only (unsigned).
1469   if (part12 == 0) {
1470     if (part3 == 0) {
1471       if (emit) z_llill(t, part4);
1472       return 4;
1473     }
1474     if (part4 == 0) {
1475       if (emit) z_llilh(t, part3);
1476       return 4;
1477     }
1478     if (emit) z_llilf(t, part34);
1479     return 6;
1480   }
1481 
1482   // Upper word only.
1483   if (part34 == 0) {
1484     if (part1 == 0) {
1485       if (emit) z_llihl(t, part2);
1486       return 4;
1487     }
1488     if (part2 == 0) {
1489       if (emit) z_llihh(t, part1);
1490       return 4;
1491     }
1492     if (emit) z_llihf(t, part12);
1493     return 6;
1494   }
1495 
1496   // Lower word only (signed).
1497   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1498     if (emit) z_lgfi(t, part34);
1499     return 6;
1500   }
1501 
1502   int len = 0;
1503 
1504   if ((part1 == 0) || (part2 == 0)) {
1505     if (part1 == 0) {
1506       if (emit) z_llihl(t, part2);
1507       len += 4;
1508     } else {
1509       if (emit) z_llihh(t, part1);
1510       len += 4;
1511     }
1512   } else {
1513     if (emit) z_llihf(t, part12);
1514     len += 6;
1515   }
1516 
1517   if ((part3 == 0) || (part4 == 0)) {
1518     if (part3 == 0) {
1519       if (emit) z_iill(t, part4);
1520       len += 4;
1521     } else {
1522       if (emit) z_iilh(t, part3);
1523       len += 4;
1524     }
1525   } else {
1526     if (emit) z_iilf(t, part34);
1527     len += 6;
1528   }
1529   return len;
1530 }
1531 
1532 //=====================================================================
1533 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1534 //=====================================================================
1535 
1536 // Note: In the worst case, one of the scratch registers is destroyed!!!
compare32_and_branch(Register r1,RegisterOrConstant x2,branch_condition cond,Label & lbl)1537 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1538   // Right operand is constant.
1539   if (x2.is_constant()) {
1540     jlong value = x2.as_constant();
1541     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1542     return;
1543   }
1544 
1545   // Right operand is in register.
1546   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1547 }
1548 
1549 // Note: In the worst case, one of the scratch registers is destroyed!!!
compareU32_and_branch(Register r1,RegisterOrConstant x2,branch_condition cond,Label & lbl)1550 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1551   // Right operand is constant.
1552   if (x2.is_constant()) {
1553     jlong value = x2.as_constant();
1554     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1555     return;
1556   }
1557 
1558   // Right operand is in register.
1559   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1560 }
1561 
1562 // Note: In the worst case, one of the scratch registers is destroyed!!!
compare64_and_branch(Register r1,RegisterOrConstant x2,branch_condition cond,Label & lbl)1563 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1564   // Right operand is constant.
1565   if (x2.is_constant()) {
1566     jlong value = x2.as_constant();
1567     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1568     return;
1569   }
1570 
1571   // Right operand is in register.
1572   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1573 }
1574 
compareU64_and_branch(Register r1,RegisterOrConstant x2,branch_condition cond,Label & lbl)1575 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1576   // Right operand is constant.
1577   if (x2.is_constant()) {
1578     jlong value = x2.as_constant();
1579     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1580     return;
1581   }
1582 
1583   // Right operand is in register.
1584   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1585 }
1586 
1587 // Generate an optimal branch to the branch target.
1588 // Optimal means that a relative branch (brc or brcl) is used if the
1589 // branch distance is short enough. Loading the target address into a
1590 // register and branching via reg is used as fallback only.
1591 //
1592 // Used registers:
1593 //   Z_R1 - work reg. Holds branch target address.
1594 //          Used in fallback case only.
1595 //
1596 // This version of branch_optimized is good for cases where the target address is known
1597 // and constant, i.e. is never changed (no relocation, no patching).
branch_optimized(Assembler::branch_condition cond,address branch_addr)1598 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1599   address branch_origin = pc();
1600 
1601   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1602     z_brc(cond, branch_addr);
1603   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1604     z_brcl(cond, branch_addr);
1605   } else {
1606     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1607     z_bcr(cond, Z_R1);
1608   }
1609 }
1610 
1611 // This version of branch_optimized is good for cases where the target address
1612 // is potentially not yet known at the time the code is emitted.
1613 //
1614 // One very common case is a branch to an unbound label which is handled here.
1615 // The caller might know (or hope) that the branch distance is short enough
1616 // to be encoded in a 16bit relative address. In this case he will pass a
1617 // NearLabel branch_target.
1618 // Care must be taken with unbound labels. Each call to target(label) creates
1619 // an entry in the patch queue for that label to patch all references of the label
1620 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1621 // an assertion fires at patch time.
branch_optimized(Assembler::branch_condition cond,Label & branch_target)1622 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1623   if (branch_target.is_bound()) {
1624     address branch_addr = target(branch_target);
1625     branch_optimized(cond, branch_addr);
1626   } else if (branch_target.is_near()) {
1627     z_brc(cond, branch_target);  // Caller assures that the target will be in range for z_brc.
1628   } else {
1629     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1630   }
1631 }
1632 
1633 // Generate an optimal compare and branch to the branch target.
1634 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1635 // branch distance is short enough. Loading the target address into a
1636 // register and branching via reg is used as fallback only.
1637 //
1638 // Input:
1639 //   r1 - left compare operand
1640 //   r2 - right compare operand
compare_and_branch_optimized(Register r1,Register r2,Assembler::branch_condition cond,address branch_addr,bool len64,bool has_sign)1641 void MacroAssembler::compare_and_branch_optimized(Register r1,
1642                                                   Register r2,
1643                                                   Assembler::branch_condition cond,
1644                                                   address  branch_addr,
1645                                                   bool     len64,
1646                                                   bool     has_sign) {
1647   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1648 
1649   address branch_origin = pc();
1650   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1651     switch (casenum) {
1652       case 0: z_crj( r1, r2, cond, branch_addr); break;
1653       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1654       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1655       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1656       default: ShouldNotReachHere(); break;
1657     }
1658   } else {
1659     switch (casenum) {
1660       case 0: z_cr( r1, r2); break;
1661       case 1: z_clr(r1, r2); break;
1662       case 2: z_cgr(r1, r2); break;
1663       case 3: z_clgr(r1, r2); break;
1664       default: ShouldNotReachHere(); break;
1665     }
1666     branch_optimized(cond, branch_addr);
1667   }
1668 }
1669 
1670 // Generate an optimal compare and branch to the branch target.
1671 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1672 // branch distance is short enough. Loading the target address into a
1673 // register and branching via reg is used as fallback only.
1674 //
1675 // Input:
1676 //   r1 - left compare operand (in register)
1677 //   x2 - right compare operand (immediate)
compare_and_branch_optimized(Register r1,jlong x2,Assembler::branch_condition cond,Label & branch_target,bool len64,bool has_sign)1678 void MacroAssembler::compare_and_branch_optimized(Register r1,
1679                                                   jlong    x2,
1680                                                   Assembler::branch_condition cond,
1681                                                   Label&   branch_target,
1682                                                   bool     len64,
1683                                                   bool     has_sign) {
1684   address      branch_origin = pc();
1685   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1686   bool         is_RelAddr16  = branch_target.is_near() ||
1687                                (branch_target.is_bound() &&
1688                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1689   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1690 
1691   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1692     switch (casenum) {
1693       case 0: z_cij( r1, x2, cond, branch_target); break;
1694       case 1: z_clij(r1, x2, cond, branch_target); break;
1695       case 2: z_cgij(r1, x2, cond, branch_target); break;
1696       case 3: z_clgij(r1, x2, cond, branch_target); break;
1697       default: ShouldNotReachHere(); break;
1698     }
1699     return;
1700   }
1701 
1702   if (x2 == 0) {
1703     switch (casenum) {
1704       case 0: z_ltr(r1, r1); break;
1705       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1706       case 2: z_ltgr(r1, r1); break;
1707       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1708       default: ShouldNotReachHere(); break;
1709     }
1710   } else {
1711     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1712       switch (casenum) {
1713         case 0: z_chi(r1, x2); break;
1714         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1715         case 2: z_cghi(r1, x2); break;
1716         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1717         default: break;
1718       }
1719     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1720       switch (casenum) {
1721         case 0: z_cfi( r1, x2); break;
1722         case 1: z_clfi(r1, x2); break;
1723         case 2: z_cgfi(r1, x2); break;
1724         case 3: z_clgfi(r1, x2); break;
1725         default: ShouldNotReachHere(); break;
1726       }
1727     } else {
1728       // No instruction with immediate operand possible, so load into register.
1729       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1730       load_const_optimized(scratch, x2);
1731       switch (casenum) {
1732         case 0: z_cr( r1, scratch); break;
1733         case 1: z_clr(r1, scratch); break;
1734         case 2: z_cgr(r1, scratch); break;
1735         case 3: z_clgr(r1, scratch); break;
1736         default: ShouldNotReachHere(); break;
1737       }
1738     }
1739   }
1740   branch_optimized(cond, branch_target);
1741 }
1742 
1743 // Generate an optimal compare and branch to the branch target.
1744 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1745 // branch distance is short enough. Loading the target address into a
1746 // register and branching via reg is used as fallback only.
1747 //
1748 // Input:
1749 //   r1 - left compare operand
1750 //   r2 - right compare operand
compare_and_branch_optimized(Register r1,Register r2,Assembler::branch_condition cond,Label & branch_target,bool len64,bool has_sign)1751 void MacroAssembler::compare_and_branch_optimized(Register r1,
1752                                                   Register r2,
1753                                                   Assembler::branch_condition cond,
1754                                                   Label&   branch_target,
1755                                                   bool     len64,
1756                                                   bool     has_sign) {
1757   unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
1758 
1759   if (branch_target.is_bound()) {
1760     address branch_addr = target(branch_target);
1761     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1762   } else {
1763     if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
1764       switch (casenum) {
1765         case 0: z_crj(  r1, r2, cond, branch_target); break;
1766         case 1: z_clrj( r1, r2, cond, branch_target); break;
1767         case 2: z_cgrj( r1, r2, cond, branch_target); break;
1768         case 3: z_clgrj(r1, r2, cond, branch_target); break;
1769         default: ShouldNotReachHere(); break;
1770       }
1771     } else {
1772       switch (casenum) {
1773         case 0: z_cr( r1, r2); break;
1774         case 1: z_clr(r1, r2); break;
1775         case 2: z_cgr(r1, r2); break;
1776         case 3: z_clgr(r1, r2); break;
1777         default: ShouldNotReachHere(); break;
1778       }
1779       branch_optimized(cond, branch_target);
1780     }
1781   }
1782 }
1783 
1784 //===========================================================================
1785 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1786 //===========================================================================
1787 
allocate_metadata_address(Metadata * obj)1788 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1789   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1790   int index = oop_recorder()->allocate_metadata_index(obj);
1791   RelocationHolder rspec = metadata_Relocation::spec(index);
1792   return AddressLiteral((address)obj, rspec);
1793 }
1794 
constant_metadata_address(Metadata * obj)1795 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1796   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1797   int index = oop_recorder()->find_index(obj);
1798   RelocationHolder rspec = metadata_Relocation::spec(index);
1799   return AddressLiteral((address)obj, rspec);
1800 }
1801 
allocate_oop_address(jobject obj)1802 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1803   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1804   int oop_index = oop_recorder()->allocate_oop_index(obj);
1805   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1806 }
1807 
constant_oop_address(jobject obj)1808 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1809   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1810   int oop_index = oop_recorder()->find_index(obj);
1811   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1812 }
1813 
1814 // NOTE: destroys r
c2bool(Register r,Register t)1815 void MacroAssembler::c2bool(Register r, Register t) {
1816   z_lcr(t, r);   // t = -r
1817   z_or(r, t);    // r = -r OR r
1818   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1819 }
1820 
delayed_value_impl(intptr_t * delayed_value_addr,Register tmp,int offset)1821 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1822                                                       Register tmp,
1823                                                       int offset) {
1824   intptr_t value = *delayed_value_addr;
1825   if (value != 0) {
1826     return RegisterOrConstant(value + offset);
1827   }
1828 
1829   BLOCK_COMMENT("delayed_value {");
1830   // Load indirectly to solve generation ordering problem.
1831   load_absolute_address(tmp, (address) delayed_value_addr); // tmp = a;
1832   z_lg(tmp, 0, tmp);                   // tmp = *tmp;
1833 
1834 #ifdef ASSERT
1835   NearLabel L;
1836   compare64_and_branch(tmp, (intptr_t)0L, Assembler::bcondNotEqual, L);
1837   z_illtrap();
1838   bind(L);
1839 #endif
1840 
1841   if (offset != 0) {
1842     z_agfi(tmp, offset);               // tmp = tmp + offset;
1843   }
1844 
1845   BLOCK_COMMENT("} delayed_value");
1846   return RegisterOrConstant(tmp);
1847 }
1848 
1849 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1850 // and return the resulting instruction.
1851 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1852 // relative positions.
1853 // Use correct argument types. Do not pre-calculate distance.
patched_branch(address dest_pos,unsigned long inst,address inst_pos)1854 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1855   int c = 0;
1856   unsigned long patched_inst = 0;
1857   if (is_call_pcrelative_short(inst) ||
1858       is_branch_pcrelative_short(inst) ||
1859       is_branchoncount_pcrelative_short(inst) ||
1860       is_branchonindex32_pcrelative_short(inst)) {
1861     c = 1;
1862     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1863     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1864     patched_inst = (inst & ~m) | v;
1865   } else if (is_compareandbranch_pcrelative_short(inst)) {
1866     c = 2;
1867     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1868     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1869     patched_inst = (inst & ~m) | v;
1870   } else if (is_branchonindex64_pcrelative_short(inst)) {
1871     c = 3;
1872     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1873     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1874     patched_inst = (inst & ~m) | v;
1875   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1876     c = 4;
1877     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1878     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1879     patched_inst = (inst & ~m) | v;
1880   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1881     c = 5;
1882     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1883     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1884     patched_inst = (inst & ~m) | v;
1885   } else {
1886     print_dbg_msg(tty, inst, "not a relative branch", 0);
1887     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1888     ShouldNotReachHere();
1889   }
1890 
1891   long new_off = get_pcrel_offset(patched_inst);
1892   if (new_off != (dest_pos-inst_pos)) {
1893     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1894     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1895     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1896 #ifdef LUCY_DBG
1897     VM_Version::z_SIGSEGV();
1898 #endif
1899     ShouldNotReachHere();
1900   }
1901   return patched_inst;
1902 }
1903 
1904 // Only called when binding labels (share/vm/asm/assembler.cpp)
1905 // Pass arguments as intended. Do not pre-calculate distance.
pd_patch_instruction(address branch,address target)1906 void MacroAssembler::pd_patch_instruction(address branch, address target) {
1907   unsigned long stub_inst;
1908   int           inst_len = get_instruction(branch, &stub_inst);
1909 
1910   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1911 }
1912 
1913 
1914 // Extract relative address (aka offset).
1915 // inv_simm16 works for 4-byte instructions only.
1916 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
get_pcrel_offset(unsigned long inst)1917 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1918 
1919   if (MacroAssembler::is_pcrelative_short(inst)) {
1920     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1921       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1922     } else {
1923       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1924     }
1925   }
1926 
1927   if (MacroAssembler::is_pcrelative_long(inst)) {
1928     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1929   }
1930 
1931   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1932 #ifdef LUCY_DBG
1933   VM_Version::z_SIGSEGV();
1934 #else
1935   ShouldNotReachHere();
1936 #endif
1937   return -1;
1938 }
1939 
get_pcrel_offset(address pc)1940 long MacroAssembler::get_pcrel_offset(address pc) {
1941   unsigned long inst;
1942   unsigned int  len = get_instruction(pc, &inst);
1943 
1944 #ifdef ASSERT
1945   long offset;
1946   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1947     offset = get_pcrel_offset(inst);
1948   } else {
1949     offset = -1;
1950   }
1951 
1952   if (offset == -1) {
1953     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1954 #ifdef LUCY_DBG
1955     VM_Version::z_SIGSEGV();
1956 #else
1957     ShouldNotReachHere();
1958 #endif
1959   }
1960   return offset;
1961 #else
1962   return get_pcrel_offset(inst);
1963 #endif // ASSERT
1964 }
1965 
1966 // Get target address from pc-relative instructions.
get_target_addr_pcrel(address pc)1967 address MacroAssembler::get_target_addr_pcrel(address pc) {
1968   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1969   return pc + get_pcrel_offset(pc);
1970 }
1971 
1972 // Patch pc relative load address.
patch_target_addr_pcrel(address pc,address con)1973 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1974   unsigned long inst;
1975   // Offset is +/- 2**32 -> use long.
1976   ptrdiff_t distance = con - pc;
1977 
1978   get_instruction(pc, &inst);
1979 
1980   if (is_pcrelative_short(inst)) {
1981     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1982 
1983     // Some extra safety net.
1984     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1985       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1986       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1987       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1988     }
1989     return;
1990   }
1991 
1992   if (is_pcrelative_long(inst)) {
1993     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1994 
1995     // Some Extra safety net.
1996     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1997       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1998       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1999       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
2000     }
2001     return;
2002   }
2003 
2004   guarantee(false, "not a pcrelative instruction to patch!");
2005 }
2006 
2007 // "Current PC" here means the address just behind the basr instruction.
get_PC(Register result)2008 address MacroAssembler::get_PC(Register result) {
2009   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
2010   return pc();
2011 }
2012 
2013 // Get current PC + offset.
2014 // Offset given in bytes, must be even!
2015 // "Current PC" here means the address of the larl instruction plus the given offset.
get_PC(Register result,int64_t offset)2016 address MacroAssembler::get_PC(Register result, int64_t offset) {
2017   address here = pc();
2018   z_larl(result, offset/2); // Save target instruction address in result.
2019   return here + offset;
2020 }
2021 
instr_size(Register size,Register pc)2022 void MacroAssembler::instr_size(Register size, Register pc) {
2023   // Extract 2 most significant bits of current instruction.
2024   z_llgc(size, Address(pc));
2025   z_srl(size, 6);
2026   // Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
2027   z_ahi(size, 3);
2028   z_nill(size, 6);
2029 }
2030 
2031 // Resize_frame with SP(new) = SP(old) - [offset].
resize_frame_sub(Register offset,Register fp,bool load_fp)2032 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
2033 {
2034   assert_different_registers(offset, fp, Z_SP);
2035   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2036 
2037   z_sgr(Z_SP, offset);
2038   z_stg(fp, _z_abi(callers_sp), Z_SP);
2039 }
2040 
2041 // Resize_frame with SP(new) = [newSP] + offset.
2042 //   This emitter is useful if we already have calculated a pointer
2043 //   into the to-be-allocated stack space, e.g. with special alignment properties,
2044 //   but need some additional space, e.g. for spilling.
2045 //   newSP    is the pre-calculated pointer. It must not be modified.
2046 //   fp       holds, or is filled with, the frame pointer.
2047 //   offset   is the additional increment which is added to addr to form the new SP.
2048 //            Note: specify a negative value to reserve more space!
2049 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2050 //                    It does not guarantee that fp contains the frame pointer at the end.
resize_frame_abs_with_offset(Register newSP,Register fp,int offset,bool load_fp)2051 void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
2052   assert_different_registers(newSP, fp, Z_SP);
2053 
2054   if (load_fp) {
2055     z_lg(fp, _z_abi(callers_sp), Z_SP);
2056   }
2057 
2058   add2reg(Z_SP, offset, newSP);
2059   z_stg(fp, _z_abi(callers_sp), Z_SP);
2060 }
2061 
2062 // Resize_frame with SP(new) = [newSP].
2063 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2064 //                    It does not guarantee that fp contains the frame pointer at the end.
resize_frame_absolute(Register newSP,Register fp,bool load_fp)2065 void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
2066   assert_different_registers(newSP, fp, Z_SP);
2067 
2068   if (load_fp) {
2069     z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
2070   }
2071 
2072   z_lgr(Z_SP, newSP);
2073   if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
2074     z_stg(fp, _z_abi(callers_sp), newSP);
2075   } else {
2076     z_stg(fp, _z_abi(callers_sp), Z_SP);
2077   }
2078 }
2079 
2080 // Resize_frame with SP(new) = SP(old) + offset.
resize_frame(RegisterOrConstant offset,Register fp,bool load_fp)2081 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2082   assert_different_registers(fp, Z_SP);
2083 
2084   if (load_fp) {
2085     z_lg(fp, _z_abi(callers_sp), Z_SP);
2086   }
2087   add64(Z_SP, offset);
2088   z_stg(fp, _z_abi(callers_sp), Z_SP);
2089 }
2090 
push_frame(Register bytes,Register old_sp,bool copy_sp,bool bytes_with_inverted_sign)2091 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2092 #ifdef ASSERT
2093   assert_different_registers(bytes, old_sp, Z_SP);
2094   if (!copy_sp) {
2095     z_cgr(old_sp, Z_SP);
2096     asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
2097   }
2098 #endif
2099   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2100   if (bytes_with_inverted_sign) {
2101     z_agr(Z_SP, bytes);
2102   } else {
2103     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2104   }
2105   z_stg(old_sp, _z_abi(callers_sp), Z_SP);
2106 }
2107 
push_frame(unsigned int bytes,Register scratch)2108 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2109   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2110   assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
2111   assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
2112 
2113   // We must not write outside the current stack bounds (given by Z_SP).
2114   // Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
2115   // We rely on Z_R0 by default to be available as scratch.
2116   z_lgr(scratch, Z_SP);
2117   add2reg(Z_SP, -offset);
2118   z_stg(scratch, _z_abi(callers_sp), Z_SP);
2119 #ifdef ASSERT
2120   // Just make sure nobody uses the value in the default scratch register.
2121   // When another register is used, the caller might rely on it containing the frame pointer.
2122   if (scratch == Z_R0) {
2123     z_iihf(scratch, 0xbaadbabe);
2124     z_iilf(scratch, 0xdeadbeef);
2125   }
2126 #endif
2127   return offset;
2128 }
2129 
2130 // Push a frame of size `bytes' plus abi160 on top.
push_frame_abi160(unsigned int bytes)2131 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2132   BLOCK_COMMENT("push_frame_abi160 {");
2133   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2134   BLOCK_COMMENT("} push_frame_abi160");
2135   return res;
2136 }
2137 
2138 // Pop current C frame.
pop_frame()2139 void MacroAssembler::pop_frame() {
2140   BLOCK_COMMENT("pop_frame:");
2141   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2142 }
2143 
2144 // Pop current C frame and restore return PC register (Z_R14).
pop_frame_restore_retPC(int frame_size_in_bytes)2145 void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
2146   BLOCK_COMMENT("pop_frame_restore_retPC:");
2147   int retPC_offset = _z_abi16(return_pc) + frame_size_in_bytes;
2148   // If possible, pop frame by add instead of load (a penny saved is a penny got :-).
2149   if (Displacement::is_validDisp(retPC_offset)) {
2150     z_lg(Z_R14, retPC_offset, Z_SP);
2151     add2reg(Z_SP, frame_size_in_bytes);
2152   } else {
2153     add2reg(Z_SP, frame_size_in_bytes);
2154     restore_return_pc();
2155   }
2156 }
2157 
call_VM_leaf_base(address entry_point,bool allow_relocation)2158 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2159   if (allow_relocation) {
2160     call_c(entry_point);
2161   } else {
2162     call_c_static(entry_point);
2163   }
2164 }
2165 
call_VM_leaf_base(address entry_point)2166 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2167   bool allow_relocation = true;
2168   call_VM_leaf_base(entry_point, allow_relocation);
2169 }
2170 
call_VM_base(Register oop_result,Register last_java_sp,address entry_point,bool allow_relocation,bool check_exceptions)2171 void MacroAssembler::call_VM_base(Register oop_result,
2172                                   Register last_java_sp,
2173                                   address  entry_point,
2174                                   bool     allow_relocation,
2175                                   bool     check_exceptions) { // Defaults to true.
2176   // Allow_relocation indicates, if true, that the generated code shall
2177   // be fit for code relocation or referenced data relocation. In other
2178   // words: all addresses must be considered variable. PC-relative addressing
2179   // is not possible then.
2180   // On the other hand, if (allow_relocation == false), addresses and offsets
2181   // may be considered stable, enabling us to take advantage of some PC-relative
2182   // addressing tweaks. These might improve performance and reduce code size.
2183 
2184   // Determine last_java_sp register.
2185   if (!last_java_sp->is_valid()) {
2186     last_java_sp = Z_SP;  // Load Z_SP as SP.
2187   }
2188 
2189   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2190 
2191   // ARG1 must hold thread address.
2192   z_lgr(Z_ARG1, Z_thread);
2193 
2194   address return_pc = NULL;
2195   if (allow_relocation) {
2196     return_pc = call_c(entry_point);
2197   } else {
2198     return_pc = call_c_static(entry_point);
2199   }
2200 
2201   reset_last_Java_frame(allow_relocation);
2202 
2203   // C++ interp handles this in the interpreter.
2204   check_and_handle_popframe(Z_thread);
2205   check_and_handle_earlyret(Z_thread);
2206 
2207   // Check for pending exceptions.
2208   if (check_exceptions) {
2209     // Check for pending exceptions (java_thread is set upon return).
2210     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2211 
2212     // This used to conditionally jump to forward_exception however it is
2213     // possible if we relocate that the branch will not reach. So we must jump
2214     // around so we can always reach.
2215 
2216     Label ok;
2217     z_bre(ok); // Bcondequal is the same as bcondZero.
2218     call_stub(StubRoutines::forward_exception_entry());
2219     bind(ok);
2220   }
2221 
2222   // Get oop result if there is one and reset the value in the thread.
2223   if (oop_result->is_valid()) {
2224     get_vm_result(oop_result);
2225   }
2226 
2227   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2228 }
2229 
call_VM_base(Register oop_result,Register last_java_sp,address entry_point,bool check_exceptions)2230 void MacroAssembler::call_VM_base(Register oop_result,
2231                                   Register last_java_sp,
2232                                   address  entry_point,
2233                                   bool     check_exceptions) { // Defaults to true.
2234   bool allow_relocation = true;
2235   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2236 }
2237 
2238 // VM calls without explicit last_java_sp.
2239 
call_VM(Register oop_result,address entry_point,bool check_exceptions)2240 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2241   // Call takes possible detour via InterpreterMacroAssembler.
2242   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2243 }
2244 
call_VM(Register oop_result,address entry_point,Register arg_1,bool check_exceptions)2245 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2246   // Z_ARG1 is reserved for the thread.
2247   lgr_if_needed(Z_ARG2, arg_1);
2248   call_VM(oop_result, entry_point, check_exceptions);
2249 }
2250 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)2251 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2252   // Z_ARG1 is reserved for the thread.
2253   lgr_if_needed(Z_ARG2, arg_1);
2254   assert(arg_2 != Z_ARG2, "smashed argument");
2255   lgr_if_needed(Z_ARG3, arg_2);
2256   call_VM(oop_result, entry_point, check_exceptions);
2257 }
2258 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2259 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2260                              Register arg_3, bool check_exceptions) {
2261   // Z_ARG1 is reserved for the thread.
2262   lgr_if_needed(Z_ARG2, arg_1);
2263   assert(arg_2 != Z_ARG2, "smashed argument");
2264   lgr_if_needed(Z_ARG3, arg_2);
2265   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2266   lgr_if_needed(Z_ARG4, arg_3);
2267   call_VM(oop_result, entry_point, check_exceptions);
2268 }
2269 
2270 // VM static calls without explicit last_java_sp.
2271 
call_VM_static(Register oop_result,address entry_point,bool check_exceptions)2272 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2273   // Call takes possible detour via InterpreterMacroAssembler.
2274   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2275 }
2276 
call_VM_static(Register oop_result,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2277 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2278                                     Register arg_3, bool check_exceptions) {
2279   // Z_ARG1 is reserved for the thread.
2280   lgr_if_needed(Z_ARG2, arg_1);
2281   assert(arg_2 != Z_ARG2, "smashed argument");
2282   lgr_if_needed(Z_ARG3, arg_2);
2283   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2284   lgr_if_needed(Z_ARG4, arg_3);
2285   call_VM_static(oop_result, entry_point, check_exceptions);
2286 }
2287 
2288 // VM calls with explicit last_java_sp.
2289 
call_VM(Register oop_result,Register last_java_sp,address entry_point,bool check_exceptions)2290 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2291   // Call takes possible detour via InterpreterMacroAssembler.
2292   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2293 }
2294 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,bool check_exceptions)2295 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2296    // Z_ARG1 is reserved for the thread.
2297    lgr_if_needed(Z_ARG2, arg_1);
2298    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2299 }
2300 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)2301 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2302                              Register arg_2, bool check_exceptions) {
2303    // Z_ARG1 is reserved for the thread.
2304    lgr_if_needed(Z_ARG2, arg_1);
2305    assert(arg_2 != Z_ARG2, "smashed argument");
2306    lgr_if_needed(Z_ARG3, arg_2);
2307    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2308 }
2309 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2310 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2311                              Register arg_2, Register arg_3, bool check_exceptions) {
2312   // Z_ARG1 is reserved for the thread.
2313   lgr_if_needed(Z_ARG2, arg_1);
2314   assert(arg_2 != Z_ARG2, "smashed argument");
2315   lgr_if_needed(Z_ARG3, arg_2);
2316   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2317   lgr_if_needed(Z_ARG4, arg_3);
2318   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2319 }
2320 
2321 // VM leaf calls.
2322 
call_VM_leaf(address entry_point)2323 void MacroAssembler::call_VM_leaf(address entry_point) {
2324   // Call takes possible detour via InterpreterMacroAssembler.
2325   call_VM_leaf_base(entry_point, true);
2326 }
2327 
call_VM_leaf(address entry_point,Register arg_1)2328 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2329   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2330   call_VM_leaf(entry_point);
2331 }
2332 
call_VM_leaf(address entry_point,Register arg_1,Register arg_2)2333 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2334   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2335   assert(arg_2 != Z_ARG1, "smashed argument");
2336   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2337   call_VM_leaf(entry_point);
2338 }
2339 
call_VM_leaf(address entry_point,Register arg_1,Register arg_2,Register arg_3)2340 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2341   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2342   assert(arg_2 != Z_ARG1, "smashed argument");
2343   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2344   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2345   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2346   call_VM_leaf(entry_point);
2347 }
2348 
2349 // Static VM leaf calls.
2350 // Really static VM leaf calls are never patched.
2351 
call_VM_leaf_static(address entry_point)2352 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2353   // Call takes possible detour via InterpreterMacroAssembler.
2354   call_VM_leaf_base(entry_point, false);
2355 }
2356 
call_VM_leaf_static(address entry_point,Register arg_1)2357 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2358   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2359   call_VM_leaf_static(entry_point);
2360 }
2361 
call_VM_leaf_static(address entry_point,Register arg_1,Register arg_2)2362 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2363   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2364   assert(arg_2 != Z_ARG1, "smashed argument");
2365   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2366   call_VM_leaf_static(entry_point);
2367 }
2368 
call_VM_leaf_static(address entry_point,Register arg_1,Register arg_2,Register arg_3)2369 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2370   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2371   assert(arg_2 != Z_ARG1, "smashed argument");
2372   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2373   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2374   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2375   call_VM_leaf_static(entry_point);
2376 }
2377 
2378 // Don't use detour via call_c(reg).
call_c(address function_entry)2379 address MacroAssembler::call_c(address function_entry) {
2380   load_const(Z_R1, function_entry);
2381   return call(Z_R1);
2382 }
2383 
2384 // Variant for really static (non-relocatable) calls which are never patched.
call_c_static(address function_entry)2385 address MacroAssembler::call_c_static(address function_entry) {
2386   load_absolute_address(Z_R1, function_entry);
2387 #if 0 // def ASSERT
2388   // Verify that call site did not move.
2389   load_const_optimized(Z_R0, function_entry);
2390   z_cgr(Z_R1, Z_R0);
2391   z_brc(bcondEqual, 3);
2392   z_illtrap(0xba);
2393 #endif
2394   return call(Z_R1);
2395 }
2396 
call_c_opt(address function_entry)2397 address MacroAssembler::call_c_opt(address function_entry) {
2398   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2399   _last_calls_return_pc = success ? pc() : NULL;
2400   return _last_calls_return_pc;
2401 }
2402 
2403 // Identify a call_far_patchable instruction: LARL + LG + BASR
2404 //
2405 //    nop                   ; optionally, if required for alignment
2406 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2407 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2408 //
2409 // Code pattern will eventually get patched into variant2 (see below for detection code).
2410 //
is_call_far_patchable_variant0_at(address instruction_addr)2411 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2412   address iaddr = instruction_addr;
2413 
2414   // Check for the actual load instruction.
2415   if (!is_load_const_from_toc(iaddr)) { return false; }
2416   iaddr += load_const_from_toc_size();
2417 
2418   // Check for the call (BASR) instruction, finally.
2419   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2420   return is_call_byregister(iaddr);
2421 }
2422 
2423 // Identify a call_far_patchable instruction: BRASL
2424 //
2425 // Code pattern to suits atomic patching:
2426 //    nop                       ; Optionally, if required for alignment.
2427 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2428 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2429 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
is_call_far_patchable_variant2_at(address instruction_addr)2430 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2431   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2432 
2433   // Check for correct number of leading nops.
2434   address iaddr;
2435   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2436     if (!is_z_nop(iaddr)) { return false; }
2437   }
2438   assert(iaddr == call_addr, "sanity");
2439 
2440   // --> Check for call instruction.
2441   if (is_call_far_pcrelative(call_addr)) {
2442     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2443     return true;
2444   }
2445 
2446   return false;
2447 }
2448 
2449 // Emit a NOT mt-safely patchable 64 bit absolute call.
2450 // If toc_offset == -2, then the destination of the call (= target) is emitted
2451 //                      to the constant pool and a runtime_call relocation is added
2452 //                      to the code buffer.
2453 // If toc_offset != -2, target must already be in the constant pool at
2454 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2455 //                      from the runtime_call relocation).
2456 // Special handling of emitting to scratch buffer when there is no constant pool.
2457 // Slightly changed code pattern. We emit an additional nop if we would
2458 // not end emitting at a word aligned address. This is to ensure
2459 // an atomically patchable displacement in brasl instructions.
2460 //
2461 // A call_far_patchable comes in different flavors:
2462 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2463 //  - LGRL(CP) / BR          (address in constant pool, pc-relative accesss)
2464 //  - BRASL                  (relative address of call target coded in instruction)
2465 // All flavors occupy the same amount of space. Length differences are compensated
2466 // by leading nops, such that the instruction sequence always ends at the same
2467 // byte offset. This is required to keep the return offset constant.
2468 // Furthermore, the return address (the end of the instruction sequence) is forced
2469 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2470 // need to patch the call target of the BRASL flavor.
2471 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
call_far_patchable(address target,int64_t tocOffset)2472 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2473   // Get current pc and ensure word alignment for end of instr sequence.
2474   const address start_pc = pc();
2475   const intptr_t       start_off = offset();
2476   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2477   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2478   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2479   const bool emit_relative_call  = !emit_target_to_pool &&
2480                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2481                                    ReoptimizeCallSequences &&
2482                                    !code_section()->scratch_emit();
2483 
2484   if (emit_relative_call) {
2485     // Add padding to get the same size as below.
2486     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2487     unsigned int current_padding;
2488     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2489     assert(current_padding == padding, "sanity");
2490 
2491     // relative call: len = 2(nop) + 6 (brasl)
2492     // CodeBlob resize cannot occur in this case because
2493     // this call is emitted into pre-existing space.
2494     z_nop(); // Prepend each BRASL with a nop.
2495     z_brasl(Z_R14, target);
2496   } else {
2497     // absolute call: Get address from TOC.
2498     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2499     if (emit_target_to_pool) {
2500       // When emitting the call for the first time, we do not need to use
2501       // the pc-relative version. It will be patched anyway, when the code
2502       // buffer is copied.
2503       // Relocation is not needed when !ReoptimizeCallSequences.
2504       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2505       AddressLiteral dest(target, rt);
2506       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2507       // inst_mark(). Reset if possible.
2508       bool reset_mark = (inst_mark() == pc());
2509       tocOffset = store_oop_in_toc(dest);
2510       if (reset_mark) { set_inst_mark(); }
2511       if (tocOffset == -1) {
2512         return false; // Couldn't create constant pool entry.
2513       }
2514     }
2515     assert(offset() == start_off, "emit no code before this point!");
2516 
2517     address tocPos = pc() + tocOffset;
2518     if (emit_target_to_pool) {
2519       tocPos = code()->consts()->start() + tocOffset;
2520     }
2521     load_long_pcrelative(Z_R14, tocPos);
2522     z_basr(Z_R14, Z_R14);
2523   }
2524 
2525 #ifdef ASSERT
2526   // Assert that we can identify the emitted call.
2527   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2528   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2529 
2530   if (emit_target_to_pool) {
2531     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2532            "wrong encoding of dest address");
2533   }
2534 #endif
2535   return true; // success
2536 }
2537 
2538 // Identify a call_far_patchable instruction.
2539 // For more detailed information see header comment of call_far_patchable.
is_call_far_patchable_at(address instruction_addr)2540 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2541   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2542          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2543 }
2544 
2545 // Does the call_far_patchable instruction use a pc-relative encoding
2546 // of the call destination?
is_call_far_patchable_pcrelative_at(address instruction_addr)2547 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2548   // Variant 2 is pc-relative.
2549   return is_call_far_patchable_variant2_at(instruction_addr);
2550 }
2551 
is_call_far_pcrelative(address instruction_addr)2552 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2553   // Prepend each BRASL with a nop.
2554   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2555 }
2556 
2557 // Set destination address of a call_far_patchable instruction.
set_dest_of_call_far_patchable_at(address instruction_addr,address dest,int64_t tocOffset)2558 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2559   ResourceMark rm;
2560 
2561   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2562   int code_size = MacroAssembler::call_far_patchable_size();
2563   CodeBuffer buf(instruction_addr, code_size);
2564   MacroAssembler masm(&buf);
2565   masm.call_far_patchable(dest, tocOffset);
2566   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2567 }
2568 
2569 // Get dest address of a call_far_patchable instruction.
get_dest_of_call_far_patchable_at(address instruction_addr,address ctable)2570 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2571   // Dynamic TOC: absolute address in constant pool.
2572   // Check variant2 first, it is more frequent.
2573 
2574   // Relative address encoded in call instruction.
2575   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2576     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2577 
2578   // Absolute address in constant pool.
2579   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2580     address iaddr = instruction_addr;
2581 
2582     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2583     address tocLoc    = iaddr + tocOffset;
2584     return *(address *)(tocLoc);
2585   } else {
2586     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2587     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2588             *(unsigned long*)instruction_addr,
2589             *(unsigned long*)(instruction_addr+8),
2590             call_far_patchable_size());
2591     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2592     ShouldNotReachHere();
2593     return NULL;
2594   }
2595 }
2596 
align_call_far_patchable(address pc)2597 void MacroAssembler::align_call_far_patchable(address pc) {
2598   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2599 }
2600 
check_and_handle_earlyret(Register java_thread)2601 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2602 }
2603 
check_and_handle_popframe(Register java_thread)2604 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2605 }
2606 
2607 // Read from the polling page.
2608 // Use TM or TMY instruction, depending on read offset.
2609 //   offset = 0: Use TM, safepoint polling.
2610 //   offset < 0: Use TMY, profiling safepoint polling.
load_from_polling_page(Register polling_page_address,int64_t offset)2611 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2612   if (Immediate::is_uimm12(offset)) {
2613     z_tm(offset, polling_page_address, mask_safepoint);
2614   } else {
2615     z_tmy(offset, polling_page_address, mask_profiling);
2616   }
2617 }
2618 
2619 // Check whether z_instruction is a read access to the polling page
2620 // which was emitted by load_from_polling_page(..).
is_load_from_polling_page(address instr_loc)2621 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2622   unsigned long z_instruction;
2623   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2624 
2625   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2626 
2627   if (ilen == 4) {
2628     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2629 
2630     int ms = inv_mask(z_instruction,8,32);  // mask
2631     int ra = inv_reg(z_instruction,16,32);  // base register
2632     int ds = inv_uimm12(z_instruction);     // displacement
2633 
2634     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2635       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2636     }
2637 
2638   } else { /* if (ilen == 6) */
2639 
2640     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2641 
2642     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2643 
2644     int ms = inv_mask(z_instruction,8,48);  // mask
2645     int ra = inv_reg(z_instruction,16,48);  // base register
2646     int ds = inv_simm20(z_instruction);     // displacement
2647   }
2648 
2649   return true;
2650 }
2651 
2652 // Extract poll address from instruction and ucontext.
get_poll_address(address instr_loc,void * ucontext)2653 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2654   assert(ucontext != NULL, "must have ucontext");
2655   ucontext_t* uc = (ucontext_t*) ucontext;
2656   unsigned long z_instruction;
2657   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2658 
2659   if (ilen == 4 && is_z_tm(z_instruction)) {
2660     int ra = inv_reg(z_instruction, 16, 32);  // base register
2661     int ds = inv_uimm12(z_instruction);       // displacement
2662     address addr = (address)uc->uc_mcontext.gregs[ra];
2663     return addr + ds;
2664   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2665     int ra = inv_reg(z_instruction, 16, 48);  // base register
2666     int ds = inv_simm20(z_instruction);       // displacement
2667     address addr = (address)uc->uc_mcontext.gregs[ra];
2668     return addr + ds;
2669   }
2670 
2671   ShouldNotReachHere();
2672   return NULL;
2673 }
2674 
2675 // Extract poll register from instruction.
get_poll_register(address instr_loc)2676 uint MacroAssembler::get_poll_register(address instr_loc) {
2677   unsigned long z_instruction;
2678   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2679 
2680   if (ilen == 4 && is_z_tm(z_instruction)) {
2681     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2682   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2683     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2684   }
2685 
2686   ShouldNotReachHere();
2687   return 0;
2688 }
2689 
is_memory_serialization(int instruction,JavaThread * thread,void * ucontext)2690 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
2691   ShouldNotCallThis();
2692   return false;
2693 }
2694 
2695 // Write serialization page so VM thread can do a pseudo remote membar
2696 // We use the current thread pointer to calculate a thread specific
2697 // offset to write to within the page. This minimizes bus traffic
2698 // due to cache line collision.
serialize_memory(Register thread,Register tmp1,Register tmp2)2699 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2700   assert_different_registers(tmp1, tmp2);
2701   z_sllg(tmp2, thread, os::get_serialize_page_shift_count());
2702   load_const_optimized(tmp1, (long) os::get_memory_serialize_page());
2703 
2704   int mask = os::get_serialize_page_mask();
2705   if (Immediate::is_uimm16(mask)) {
2706     z_nill(tmp2, mask);
2707     z_llghr(tmp2, tmp2);
2708   } else {
2709     z_nilf(tmp2, mask);
2710     z_llgfr(tmp2, tmp2);
2711   }
2712 
2713   z_release();
2714   z_st(Z_R0, 0, tmp2, tmp1);
2715 }
2716 
safepoint_poll(Label & slow_path,Register temp_reg)2717 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
2718   if (SafepointMechanism::uses_thread_local_poll()) {
2719     const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
2720     // Armed page has poll_bit set.
2721     z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2722     z_brnaz(slow_path);
2723   } else {
2724     load_const_optimized(temp_reg, SafepointSynchronize::address_of_state());
2725     z_cli(/*SafepointSynchronize::sz_state()*/4-1, temp_reg, SafepointSynchronize::_not_synchronized);
2726     z_brne(slow_path);
2727   }
2728 }
2729 
2730 // Don't rely on register locking, always use Z_R1 as scratch register instead.
bang_stack_with_offset(int offset)2731 void MacroAssembler::bang_stack_with_offset(int offset) {
2732   // Stack grows down, caller passes positive offset.
2733   assert(offset > 0, "must bang with positive offset");
2734   if (Displacement::is_validDisp(-offset)) {
2735     z_tmy(-offset, Z_SP, mask_stackbang);
2736   } else {
2737     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2738     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2739   }
2740 }
2741 
reserved_stack_check(Register return_pc)2742 void MacroAssembler::reserved_stack_check(Register return_pc) {
2743   // Test if reserved zone needs to be enabled.
2744   Label no_reserved_zone_enabling;
2745   assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
2746   BLOCK_COMMENT("reserved_stack_check {");
2747 
2748   z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2749   z_brl(no_reserved_zone_enabling);
2750 
2751   // Enable reserved zone again, throw stack overflow exception.
2752   save_return_pc();
2753   push_frame_abi160(0);
2754   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2755   pop_frame();
2756   restore_return_pc();
2757 
2758   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2759   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2760   z_br(Z_R1);
2761 
2762   should_not_reach_here();
2763 
2764   bind(no_reserved_zone_enabling);
2765   BLOCK_COMMENT("} reserved_stack_check");
2766 }
2767 
2768 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
tlab_allocate(Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Label & slow_case)2769 void MacroAssembler::tlab_allocate(Register obj,
2770                                    Register var_size_in_bytes,
2771                                    int con_size_in_bytes,
2772                                    Register t1,
2773                                    Label& slow_case) {
2774   assert_different_registers(obj, var_size_in_bytes, t1);
2775   Register end = t1;
2776   Register thread = Z_thread;
2777 
2778   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2779   if (var_size_in_bytes == noreg) {
2780     z_lay(end, Address(obj, con_size_in_bytes));
2781   } else {
2782     z_lay(end, Address(obj, var_size_in_bytes));
2783   }
2784   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2785   branch_optimized(bcondHigh, slow_case);
2786 
2787   // Update the tlab top pointer.
2788   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2789 
2790   // Recover var_size_in_bytes if necessary.
2791   if (var_size_in_bytes == end) {
2792     z_sgr(var_size_in_bytes, obj);
2793   }
2794 }
2795 
2796 // Emitter for interface method lookup.
2797 //   input: recv_klass, intf_klass, itable_index
2798 //   output: method_result
2799 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2800 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2801 // If the register is still not needed then, remove it.
lookup_interface_method(Register recv_klass,Register intf_klass,RegisterOrConstant itable_index,Register method_result,Register temp1_reg,Label & no_such_interface,bool return_method)2802 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2803                                              Register           intf_klass,
2804                                              RegisterOrConstant itable_index,
2805                                              Register           method_result,
2806                                              Register           temp1_reg,
2807                                              Label&             no_such_interface,
2808                                              bool               return_method) {
2809 
2810   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2811   const Register itable_entry_addr = Z_R1_scratch;
2812   const Register itable_interface = Z_R0_scratch;
2813 
2814   BLOCK_COMMENT("lookup_interface_method {");
2815 
2816   // Load start of itable entries into itable_entry_addr.
2817   z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
2818   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2819 
2820   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2821   const int vtable_base_offset = in_bytes(Klass::vtable_start_offset());
2822 
2823   add2reg_with_index(itable_entry_addr,
2824                      vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
2825                      recv_klass, vtable_len);
2826 
2827   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2828   Label     search;
2829 
2830   bind(search);
2831 
2832   // Handle IncompatibleClassChangeError.
2833   // If the entry is NULL then we've reached the end of the table
2834   // without finding the expected interface, so throw an exception.
2835   load_and_test_long(itable_interface, Address(itable_entry_addr));
2836   z_bre(no_such_interface);
2837 
2838   add2reg(itable_entry_addr, itable_offset_search_inc);
2839   z_cgr(itable_interface, intf_klass);
2840   z_brne(search);
2841 
2842   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2843   if (return_method) {
2844     const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
2845                                       itableOffsetEntry::interface_offset_in_bytes()) -
2846                                      itable_offset_search_inc;
2847 
2848     // Compute itableMethodEntry and get method and entry point
2849     // we use addressing with index and displacement, since the formula
2850     // for computing the entry's offset has a fixed and a dynamic part,
2851     // the latter depending on the matched interface entry and on the case,
2852     // that the itable index has been passed as a register, not a constant value.
2853     int method_offset = itableMethodEntry::method_offset_in_bytes();
2854                              // Fixed part (displacement), common operand.
2855     Register itable_offset = method_result;  // Dynamic part (index register).
2856 
2857     if (itable_index.is_register()) {
2858        // Compute the method's offset in that register, for the formula, see the
2859        // else-clause below.
2860        z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
2861        z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2862     } else {
2863       // Displacement increases.
2864       method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2865 
2866       // Load index from itable.
2867       z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2868     }
2869 
2870     // Finally load the method's oop.
2871     z_lg(method_result, method_offset, itable_offset, recv_klass);
2872   }
2873   BLOCK_COMMENT("} lookup_interface_method");
2874 }
2875 
2876 // Lookup for virtual method invocation.
lookup_virtual_method(Register recv_klass,RegisterOrConstant vtable_index,Register method_result)2877 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2878                                            RegisterOrConstant vtable_index,
2879                                            Register           method_result) {
2880   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2881   assert(vtableEntry::size() * wordSize == wordSize,
2882          "else adjust the scaling in the code below");
2883 
2884   BLOCK_COMMENT("lookup_virtual_method {");
2885 
2886   const int base = in_bytes(Klass::vtable_start_offset());
2887 
2888   if (vtable_index.is_constant()) {
2889     // Load with base + disp.
2890     Address vtable_entry_addr(recv_klass,
2891                               vtable_index.as_constant() * wordSize +
2892                               base +
2893                               vtableEntry::method_offset_in_bytes());
2894 
2895     z_lg(method_result, vtable_entry_addr);
2896   } else {
2897     // Shift index properly and load with base + index + disp.
2898     Register vindex = vtable_index.as_register();
2899     Address  vtable_entry_addr(recv_klass, vindex,
2900                                base + vtableEntry::method_offset_in_bytes());
2901 
2902     z_sllg(vindex, vindex, exact_log2(wordSize));
2903     z_lg(method_result, vtable_entry_addr);
2904   }
2905   BLOCK_COMMENT("} lookup_virtual_method");
2906 }
2907 
2908 // Factor out code to call ic_miss_handler.
2909 // Generate code to call the inline cache miss handler.
2910 //
2911 // In most cases, this code will be generated out-of-line.
2912 // The method parameters are intended to provide some variability.
2913 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2914 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2915 //                  Any value except 0x00 is supported.
2916 //                  = 0x00 - do not generate illtrap instructions.
2917 //                         use nops to fill ununsed space.
2918 //   requiredSize - required size of the generated code. If the actually
2919 //                  generated code is smaller, use padding instructions to fill up.
2920 //                  = 0 - no size requirement, no padding.
2921 //   scratch      - scratch register to hold branch target address.
2922 //
2923 //  The method returns the code offset of the bound label.
call_ic_miss_handler(Label & ICM,int trapMarker,int requiredSize,Register scratch)2924 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2925   intptr_t startOffset = offset();
2926 
2927   // Prevent entry at content_begin().
2928   if (trapMarker != 0) {
2929     z_illtrap(trapMarker);
2930   }
2931 
2932   // Load address of inline cache miss code into scratch register
2933   // and branch to cache miss handler.
2934   BLOCK_COMMENT("IC miss handler {");
2935   BIND(ICM);
2936   unsigned int   labelOffset = offset();
2937   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2938 
2939   load_const_optimized(scratch, icmiss);
2940   z_br(scratch);
2941 
2942   // Fill unused space.
2943   if (requiredSize > 0) {
2944     while ((offset() - startOffset) < requiredSize) {
2945       if (trapMarker == 0) {
2946         z_nop();
2947       } else {
2948         z_illtrap(trapMarker);
2949       }
2950     }
2951   }
2952   BLOCK_COMMENT("} IC miss handler");
2953   return labelOffset;
2954 }
2955 
nmethod_UEP(Label & ic_miss)2956 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2957   Register ic_reg       = Z_inline_cache;
2958   int      klass_offset = oopDesc::klass_offset_in_bytes();
2959   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2960     if (VM_Version::has_CompareBranch()) {
2961       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2962     } else {
2963       z_ltgr(Z_ARG1, Z_ARG1);
2964       z_bre(ic_miss);
2965     }
2966   }
2967   // Compare cached class against klass from receiver.
2968   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2969   z_brne(ic_miss);
2970 }
2971 
check_klass_subtype_fast_path(Register sub_klass,Register super_klass,Register temp1_reg,Label * L_success,Label * L_failure,Label * L_slow_path,RegisterOrConstant super_check_offset)2972 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2973                                                    Register   super_klass,
2974                                                    Register   temp1_reg,
2975                                                    Label*     L_success,
2976                                                    Label*     L_failure,
2977                                                    Label*     L_slow_path,
2978                                                    RegisterOrConstant super_check_offset) {
2979 
2980   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2981   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2982 
2983   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2984   bool need_slow_path = (must_load_sco ||
2985                          super_check_offset.constant_or_zero() == sc_offset);
2986 
2987   // Input registers must not overlap.
2988   assert_different_registers(sub_klass, super_klass, temp1_reg);
2989   if (super_check_offset.is_register()) {
2990     assert_different_registers(sub_klass, super_klass,
2991                                super_check_offset.as_register());
2992   } else if (must_load_sco) {
2993     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2994   }
2995 
2996   const Register Rsuper_check_offset = temp1_reg;
2997 
2998   NearLabel L_fallthrough;
2999   int label_nulls = 0;
3000   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3001   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3002   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
3003   assert(label_nulls <= 1 ||
3004          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
3005          "at most one NULL in the batch, usually");
3006 
3007   BLOCK_COMMENT("check_klass_subtype_fast_path {");
3008   // If the pointers are equal, we are done (e.g., String[] elements).
3009   // This self-check enables sharing of secondary supertype arrays among
3010   // non-primary types such as array-of-interface. Otherwise, each such
3011   // type would need its own customized SSA.
3012   // We move this check to the front of the fast path because many
3013   // type checks are in fact trivially successful in this manner,
3014   // so we get a nicely predicted branch right at the start of the check.
3015   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
3016 
3017   // Check the supertype display, which is uint.
3018   if (must_load_sco) {
3019     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
3020     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
3021   }
3022   Address super_check_addr(sub_klass, super_check_offset, 0);
3023   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
3024 
3025   // This check has worked decisively for primary supers.
3026   // Secondary supers are sought in the super_cache ('super_cache_addr').
3027   // (Secondary supers are interfaces and very deeply nested subtypes.)
3028   // This works in the same check above because of a tricky aliasing
3029   // between the super_cache and the primary super display elements.
3030   // (The 'super_check_addr' can address either, as the case requires.)
3031   // Note that the cache is updated below if it does not help us find
3032   // what we need immediately.
3033   // So if it was a primary super, we can just fail immediately.
3034   // Otherwise, it's the slow path for us (no success at this point).
3035 
3036   // Hacked jmp, which may only be used just before L_fallthrough.
3037 #define final_jmp(label)                                                \
3038   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3039   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
3040 
3041   if (super_check_offset.is_register()) {
3042     branch_optimized(Assembler::bcondEqual, *L_success);
3043     z_cfi(super_check_offset.as_register(), sc_offset);
3044     if (L_failure == &L_fallthrough) {
3045       branch_optimized(Assembler::bcondEqual, *L_slow_path);
3046     } else {
3047       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3048       final_jmp(*L_slow_path);
3049     }
3050   } else if (super_check_offset.as_constant() == sc_offset) {
3051     // Need a slow path; fast failure is impossible.
3052     if (L_slow_path == &L_fallthrough) {
3053       branch_optimized(Assembler::bcondEqual, *L_success);
3054     } else {
3055       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
3056       final_jmp(*L_success);
3057     }
3058   } else {
3059     // No slow path; it's a fast decision.
3060     if (L_failure == &L_fallthrough) {
3061       branch_optimized(Assembler::bcondEqual, *L_success);
3062     } else {
3063       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3064       final_jmp(*L_success);
3065     }
3066   }
3067 
3068   bind(L_fallthrough);
3069 #undef local_brc
3070 #undef final_jmp
3071   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3072   // fallthru (to slow path)
3073 }
3074 
check_klass_subtype_slow_path(Register Rsubklass,Register Rsuperklass,Register Rarray_ptr,Register Rlength,Label * L_success,Label * L_failure)3075 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3076                                                    Register Rsuperklass,
3077                                                    Register Rarray_ptr,  // tmp
3078                                                    Register Rlength,     // tmp
3079                                                    Label* L_success,
3080                                                    Label* L_failure) {
3081   // Input registers must not overlap.
3082   // Also check for R1 which is explicitely used here.
3083   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3084   NearLabel L_fallthrough, L_loop;
3085   int label_nulls = 0;
3086   if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3087   if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3088   assert(label_nulls <= 1, "at most one NULL in the batch");
3089 
3090   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3091   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3092 
3093   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3094   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3095 
3096   // Hacked jmp, which may only be used just before L_fallthrough.
3097 #define final_jmp(label)                                                \
3098   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3099   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3100 
3101   NearLabel loop_iterate, loop_count, match;
3102 
3103   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3104   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3105 
3106   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3107   branch_optimized(Assembler::bcondZero, *L_failure);
3108 
3109   // Oops in table are NO MORE compressed.
3110   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3111   z_bre(match);                               // Shortcut for array length = 1.
3112 
3113   // No match yet, so we must walk the array's elements.
3114   z_lngfr(Rlength, Rlength);
3115   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3116   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3117   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3118   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3119   z_bru(loop_count);
3120 
3121   BIND(loop_iterate);
3122   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3123   z_bre(match);
3124   BIND(loop_count);
3125   z_brxlg(Rlength, Z_R1, loop_iterate);
3126 
3127   // Rsuperklass not found among secondary super classes -> failure.
3128   branch_optimized(Assembler::bcondAlways, *L_failure);
3129 
3130   // Got a hit. Return success (zero result). Set cache.
3131   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3132 
3133   BIND(match);
3134 
3135   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3136 
3137   final_jmp(*L_success);
3138 
3139   // Exit to the surrounding code.
3140   BIND(L_fallthrough);
3141 #undef local_brc
3142 #undef final_jmp
3143   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3144 }
3145 
3146 // Emitter for combining fast and slow path.
check_klass_subtype(Register sub_klass,Register super_klass,Register temp1_reg,Register temp2_reg,Label & L_success)3147 void MacroAssembler::check_klass_subtype(Register sub_klass,
3148                                          Register super_klass,
3149                                          Register temp1_reg,
3150                                          Register temp2_reg,
3151                                          Label&   L_success) {
3152   NearLabel failure;
3153   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3154   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3155                                 &L_success, &failure, NULL);
3156   check_klass_subtype_slow_path(sub_klass, super_klass,
3157                                 temp1_reg, temp2_reg, &L_success, NULL);
3158   BIND(failure);
3159   BLOCK_COMMENT("} check_klass_subtype");
3160 }
3161 
3162 // Increment a counter at counter_address when the eq condition code is
3163 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
increment_counter_eq(address counter_address,Register tmp1_reg,Register tmp2_reg)3164 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3165   Label l;
3166   z_brne(l);
3167   load_const(tmp1_reg, counter_address);
3168   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3169   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3170   bind(l);
3171 }
3172 
3173 // Semantics are dependent on the slow_case label:
3174 //   If the slow_case label is not NULL, failure to biased-lock the object
3175 //   transfers control to the location of the slow_case label. If the
3176 //   object could be biased-locked, control is transferred to the done label.
3177 //   The condition code is unpredictable.
3178 //
3179 //   If the slow_case label is NULL, failure to biased-lock the object results
3180 //   in a transfer of control to the done label with a condition code of not_equal.
3181 //   If the biased-lock could be successfully obtained, control is transfered to
3182 //   the done label with a condition code of equal.
3183 //   It is mandatory to react on the condition code At the done label.
3184 //
biased_locking_enter(Register obj_reg,Register mark_reg,Register temp_reg,Register temp2_reg,Label & done,Label * slow_case)3185 void MacroAssembler::biased_locking_enter(Register  obj_reg,
3186                                           Register  mark_reg,
3187                                           Register  temp_reg,
3188                                           Register  temp2_reg,    // May be Z_RO!
3189                                           Label    &done,
3190                                           Label    *slow_case) {
3191   assert(UseBiasedLocking, "why call this otherwise?");
3192   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
3193 
3194   Label cas_label; // Try, if implemented, CAS locking. Fall thru to slow path otherwise.
3195 
3196   BLOCK_COMMENT("biased_locking_enter {");
3197 
3198   // Biased locking
3199   // See whether the lock is currently biased toward our thread and
3200   // whether the epoch is still valid.
3201   // Note that the runtime guarantees sufficient alignment of JavaThread
3202   // pointers to allow age to be placed into low bits.
3203   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
3204          "biased locking makes assumptions about bit layout");
3205   z_lr(temp_reg, mark_reg);
3206   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3207   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3208   z_brne(cas_label);  // Try cas if object is not biased, i.e. cannot be biased locked.
3209 
3210   load_prototype_header(temp_reg, obj_reg);
3211   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
3212 
3213   z_ogr(temp_reg, Z_thread);
3214   z_xgr(temp_reg, mark_reg);
3215   z_ngr(temp_reg, temp2_reg);
3216   if (PrintBiasedLockingStatistics) {
3217     increment_counter_eq((address) BiasedLocking::biased_lock_entry_count_addr(), mark_reg, temp2_reg);
3218     // Restore mark_reg.
3219     z_lg(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
3220   }
3221   branch_optimized(Assembler::bcondEqual, done);  // Biased lock obtained, return success.
3222 
3223   Label try_revoke_bias;
3224   Label try_rebias;
3225   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3226 
3227   //----------------------------------------------------------------------------
3228   // At this point we know that the header has the bias pattern and
3229   // that we are not the bias owner in the current epoch. We need to
3230   // figure out more details about the state of the header in order to
3231   // know what operations can be legally performed on the object's
3232   // header.
3233 
3234   // If the low three bits in the xor result aren't clear, that means
3235   // the prototype header is no longer biased and we have to revoke
3236   // the bias on this object.
3237   z_tmll(temp_reg, markOopDesc::biased_lock_mask_in_place);
3238   z_brnaz(try_revoke_bias);
3239 
3240   // Biasing is still enabled for this data type. See whether the
3241   // epoch of the current bias is still valid, meaning that the epoch
3242   // bits of the mark word are equal to the epoch bits of the
3243   // prototype header. (Note that the prototype header's epoch bits
3244   // only change at a safepoint.) If not, attempt to rebias the object
3245   // toward the current thread. Note that we must be absolutely sure
3246   // that the current epoch is invalid in order to do this because
3247   // otherwise the manipulations it performs on the mark word are
3248   // illegal.
3249   z_tmll(temp_reg, markOopDesc::epoch_mask_in_place);
3250   z_brnaz(try_rebias);
3251 
3252   //----------------------------------------------------------------------------
3253   // The epoch of the current bias is still valid but we know nothing
3254   // about the owner; it might be set or it might be clear. Try to
3255   // acquire the bias of the object using an atomic operation. If this
3256   // fails we will go in to the runtime to revoke the object's bias.
3257   // Note that we first construct the presumed unbiased header so we
3258   // don't accidentally blow away another thread's valid bias.
3259   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place |
3260          markOopDesc::epoch_mask_in_place);
3261   z_lgr(temp_reg, Z_thread);
3262   z_llgfr(mark_reg, mark_reg);
3263   z_ogr(temp_reg, mark_reg);
3264 
3265   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3266 
3267   z_csg(mark_reg, temp_reg, 0, obj_reg);
3268 
3269   // If the biasing toward our thread failed, this means that
3270   // another thread succeeded in biasing it toward itself and we
3271   // need to revoke that bias. The revocation will occur in the
3272   // interpreter runtime in the slow case.
3273 
3274   if (PrintBiasedLockingStatistics) {
3275     increment_counter_eq((address) BiasedLocking::anonymously_biased_lock_entry_count_addr(),
3276                          temp_reg, temp2_reg);
3277   }
3278   if (slow_case != NULL) {
3279     branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
3280   }
3281   branch_optimized(Assembler::bcondAlways, done);           // Biased lock status given in condition code.
3282 
3283   //----------------------------------------------------------------------------
3284   bind(try_rebias);
3285   // At this point we know the epoch has expired, meaning that the
3286   // current "bias owner", if any, is actually invalid. Under these
3287   // circumstances _only_, we are allowed to use the current header's
3288   // value as the comparison value when doing the cas to acquire the
3289   // bias in the current epoch. In other words, we allow transfer of
3290   // the bias from one thread to another directly in this situation.
3291 
3292   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
3293   load_prototype_header(temp_reg, obj_reg);
3294   z_llgfr(mark_reg, mark_reg);
3295 
3296   z_ogr(temp_reg, Z_thread);
3297 
3298   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3299 
3300   z_csg(mark_reg, temp_reg, 0, obj_reg);
3301 
3302   // If the biasing toward our thread failed, this means that
3303   // another thread succeeded in biasing it toward itself and we
3304   // need to revoke that bias. The revocation will occur in the
3305   // interpreter runtime in the slow case.
3306 
3307   if (PrintBiasedLockingStatistics) {
3308     increment_counter_eq((address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg, temp2_reg);
3309   }
3310   if (slow_case != NULL) {
3311     branch_optimized(Assembler::bcondNotEqual, *slow_case);  // Biased lock not obtained, need to go the long way.
3312   }
3313   z_bru(done);           // Biased lock status given in condition code.
3314 
3315   //----------------------------------------------------------------------------
3316   bind(try_revoke_bias);
3317   // The prototype mark in the klass doesn't have the bias bit set any
3318   // more, indicating that objects of this data type are not supposed
3319   // to be biased any more. We are going to try to reset the mark of
3320   // this object to the prototype value and fall through to the
3321   // CAS-based locking scheme. Note that if our CAS fails, it means
3322   // that another thread raced us for the privilege of revoking the
3323   // bias of this particular object, so it's okay to continue in the
3324   // normal locking code.
3325   load_prototype_header(temp_reg, obj_reg);
3326 
3327   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3328 
3329   z_csg(mark_reg, temp_reg, 0, obj_reg);
3330 
3331   // Fall through to the normal CAS-based lock, because no matter what
3332   // the result of the above CAS, some thread must have succeeded in
3333   // removing the bias bit from the object's header.
3334   if (PrintBiasedLockingStatistics) {
3335     // z_cgr(mark_reg, temp2_reg);
3336     increment_counter_eq((address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg, temp2_reg);
3337   }
3338 
3339   bind(cas_label);
3340   BLOCK_COMMENT("} biased_locking_enter");
3341 }
3342 
biased_locking_exit(Register mark_addr,Register temp_reg,Label & done)3343 void MacroAssembler::biased_locking_exit(Register mark_addr, Register temp_reg, Label& done) {
3344   // Check for biased locking unlock case, which is a no-op
3345   // Note: we do not have to check the thread ID for two reasons.
3346   // First, the interpreter checks for IllegalMonitorStateException at
3347   // a higher level. Second, if the bias was revoked while we held the
3348   // lock, the object could not be rebiased toward another thread, so
3349   // the bias bit would be clear.
3350   BLOCK_COMMENT("biased_locking_exit {");
3351 
3352   z_lg(temp_reg, 0, mark_addr);
3353   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3354 
3355   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3356   z_bre(done);
3357   BLOCK_COMMENT("} biased_locking_exit");
3358 }
3359 
compiler_fast_lock_object(Register oop,Register box,Register temp1,Register temp2,bool try_bias)3360 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3361   Register displacedHeader = temp1;
3362   Register currentHeader = temp1;
3363   Register temp = temp2;
3364   NearLabel done, object_has_monitor;
3365 
3366   BLOCK_COMMENT("compiler_fast_lock_object {");
3367 
3368   // Load markOop from oop into mark.
3369   z_lg(displacedHeader, 0, oop);
3370 
3371   if (try_bias) {
3372     biased_locking_enter(oop, displacedHeader, temp, Z_R0, done);
3373   }
3374 
3375   // Handle existing monitor.
3376   if ((EmitSync & 0x01) == 0) {
3377     // The object has an existing monitor iff (mark & monitor_value) != 0.
3378     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3379     z_lr(temp, displacedHeader);
3380     z_nill(temp, markOopDesc::monitor_value);
3381     z_brne(object_has_monitor);
3382   }
3383 
3384   // Set mark to markOop | markOopDesc::unlocked_value.
3385   z_oill(displacedHeader, markOopDesc::unlocked_value);
3386 
3387   // Load Compare Value application register.
3388 
3389   // Initialize the box (must happen before we update the object mark).
3390   z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
3391 
3392   // Memory Fence (in cmpxchgd)
3393   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
3394 
3395   // If the compare-and-swap succeeded, then we found an unlocked object and we
3396   // have now locked it.
3397   z_csg(displacedHeader, box, 0, oop);
3398   assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3399   z_bre(done);
3400 
3401   // We did not see an unlocked object so try the fast recursive case.
3402 
3403   z_sgr(currentHeader, Z_SP);
3404   load_const_optimized(temp, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
3405 
3406   z_ngr(currentHeader, temp);
3407   //   z_brne(done);
3408   //   z_release();
3409   z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
3410 
3411   z_bru(done);
3412 
3413   if ((EmitSync & 0x01) == 0) {
3414     Register zero = temp;
3415     Register monitor_tagged = displacedHeader; // Tagged with markOopDesc::monitor_value.
3416     bind(object_has_monitor);
3417     // The object's monitor m is unlocked iff m->owner == NULL,
3418     // otherwise m->owner may contain a thread or a stack address.
3419     //
3420     // Try to CAS m->owner from NULL to current thread.
3421     z_lghi(zero, 0);
3422     // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3423     z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3424     // Store a non-null value into the box.
3425     z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
3426 #ifdef ASSERT
3427       z_brne(done);
3428       // We've acquired the monitor, check some invariants.
3429       // Invariant 1: _recursions should be 0.
3430       asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
3431                               "monitor->_recursions should be 0", -1);
3432       z_ltgr(zero, zero); // Set CR=EQ.
3433 #endif
3434   }
3435   bind(done);
3436 
3437   BLOCK_COMMENT("} compiler_fast_lock_object");
3438   // If locking was successful, CR should indicate 'EQ'.
3439   // The compiler or the native wrapper generates a branch to the runtime call
3440   // _complete_monitor_locking_Java.
3441 }
3442 
compiler_fast_unlock_object(Register oop,Register box,Register temp1,Register temp2,bool try_bias)3443 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3444   Register displacedHeader = temp1;
3445   Register currentHeader = temp2;
3446   Register temp = temp1;
3447   Register monitor = temp2;
3448 
3449   Label done, object_has_monitor;
3450 
3451   BLOCK_COMMENT("compiler_fast_unlock_object {");
3452 
3453   if (try_bias) {
3454     biased_locking_exit(oop, currentHeader, done);
3455   }
3456 
3457   // Find the lock address and load the displaced header from the stack.
3458   // if the displaced header is zero, we have a recursive unlock.
3459   load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
3460   z_bre(done);
3461 
3462   // Handle existing monitor.
3463   if ((EmitSync & 0x02) == 0) {
3464     // The object has an existing monitor iff (mark & monitor_value) != 0.
3465     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
3466     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3467     z_nill(currentHeader, markOopDesc::monitor_value);
3468     z_brne(object_has_monitor);
3469   }
3470 
3471   // Check if it is still a light weight lock, this is true if we see
3472   // the stack address of the basicLock in the markOop of the object
3473   // copy box to currentHeader such that csg does not kill it.
3474   z_lgr(currentHeader, box);
3475   z_csg(currentHeader, displacedHeader, 0, oop);
3476   z_bru(done); // Csg sets CR as desired.
3477 
3478   // Handle existing monitor.
3479   if ((EmitSync & 0x02) == 0) {
3480     bind(object_has_monitor);
3481     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);    // CurrentHeader is tagged with monitor_value set.
3482     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3483     z_brne(done);
3484     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3485     z_brne(done);
3486     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3487     z_brne(done);
3488     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3489     z_brne(done);
3490     z_release();
3491     z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3492   }
3493 
3494   bind(done);
3495 
3496   BLOCK_COMMENT("} compiler_fast_unlock_object");
3497   // flag == EQ indicates success
3498   // flag == NE indicates failure
3499 }
3500 
resolve_jobject(Register value,Register tmp1,Register tmp2)3501 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3502   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3503   bs->resolve_jobject(this, value, tmp1, tmp2);
3504 }
3505 
3506 // Last_Java_sp must comply to the rules in frame_s390.hpp.
set_last_Java_frame(Register last_Java_sp,Register last_Java_pc,bool allow_relocation)3507 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3508   BLOCK_COMMENT("set_last_Java_frame {");
3509 
3510   // Always set last_Java_pc and flags first because once last_Java_sp
3511   // is visible has_last_Java_frame is true and users will look at the
3512   // rest of the fields. (Note: flags should always be zero before we
3513   // get here so doesn't need to be set.)
3514 
3515   // Verify that last_Java_pc was zeroed on return to Java.
3516   if (allow_relocation) {
3517     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3518                             Z_thread,
3519                             "last_Java_pc not zeroed before leaving Java",
3520                             0x200);
3521   } else {
3522     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3523                                    Z_thread,
3524                                    "last_Java_pc not zeroed before leaving Java",
3525                                    0x200);
3526   }
3527 
3528   // When returning from calling out from Java mode the frame anchor's
3529   // last_Java_pc will always be set to NULL. It is set here so that
3530   // if we are doing a call to native (not VM) that we capture the
3531   // known pc and don't have to rely on the native call having a
3532   // standard frame linkage where we can find the pc.
3533   if (last_Java_pc!=noreg) {
3534     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3535   }
3536 
3537   // This membar release is not required on z/Architecture, since the sequence of stores
3538   // in maintained. Nevertheless, we leave it in to document the required ordering.
3539   // The implementation of z_release() should be empty.
3540   // z_release();
3541 
3542   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3543   BLOCK_COMMENT("} set_last_Java_frame");
3544 }
3545 
reset_last_Java_frame(bool allow_relocation)3546 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3547   BLOCK_COMMENT("reset_last_Java_frame {");
3548 
3549   if (allow_relocation) {
3550     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3551                                Z_thread,
3552                                "SP was not set, still zero",
3553                                0x202);
3554   } else {
3555     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3556                                       Z_thread,
3557                                       "SP was not set, still zero",
3558                                       0x202);
3559   }
3560 
3561   // _last_Java_sp = 0
3562   // Clearing storage must be atomic here, so don't use clear_mem()!
3563   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3564 
3565   // _last_Java_pc = 0
3566   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3567 
3568   BLOCK_COMMENT("} reset_last_Java_frame");
3569   return;
3570 }
3571 
set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp,Register tmp1,bool allow_relocation)3572 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3573   assert_different_registers(sp, tmp1);
3574 
3575   // We cannot trust that code generated by the C++ compiler saves R14
3576   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3577   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3578   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3579   // it into the frame anchor.
3580   get_PC(tmp1);
3581   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3582 }
3583 
set_thread_state(JavaThreadState new_state)3584 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3585   z_release();
3586 
3587   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3588   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3589   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3590 }
3591 
get_vm_result(Register oop_result)3592 void MacroAssembler::get_vm_result(Register oop_result) {
3593   verify_thread();
3594 
3595   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3596   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3597 
3598   verify_oop(oop_result);
3599 }
3600 
get_vm_result_2(Register result)3601 void MacroAssembler::get_vm_result_2(Register result) {
3602   verify_thread();
3603 
3604   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3605   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3606 }
3607 
3608 // We require that C code which does not return a value in vm_result will
3609 // leave it undisturbed.
set_vm_result(Register oop_result)3610 void MacroAssembler::set_vm_result(Register oop_result) {
3611   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3612 }
3613 
3614 // Explicit null checks (used for method handle code).
null_check(Register reg,Register tmp,int64_t offset)3615 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3616   if (!ImplicitNullChecks) {
3617     NearLabel ok;
3618 
3619     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3620 
3621     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3622     address exception_entry = Interpreter::throw_NullPointerException_entry();
3623     load_absolute_address(reg, exception_entry);
3624     z_br(reg);
3625 
3626     bind(ok);
3627   } else {
3628     if (needs_explicit_null_check((intptr_t)offset)) {
3629       // Provoke OS NULL exception if reg = NULL by
3630       // accessing M[reg] w/o changing any registers.
3631       z_lg(tmp, 0, reg);
3632     }
3633     // else
3634       // Nothing to do, (later) access of M[reg + offset]
3635       // will provoke OS NULL exception if reg = NULL.
3636   }
3637 }
3638 
3639 //-------------------------------------
3640 //  Compressed Klass Pointers
3641 //-------------------------------------
3642 
3643 // Klass oop manipulations if compressed.
encode_klass_not_null(Register dst,Register src)3644 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3645   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3646   address  base    = Universe::narrow_klass_base();
3647   int      shift   = Universe::narrow_klass_shift();
3648   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3649 
3650   BLOCK_COMMENT("cKlass encoder {");
3651 
3652 #ifdef ASSERT
3653   Label ok;
3654   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3655   z_brc(Assembler::bcondAllZero, ok);
3656   // The plain disassembler does not recognize illtrap. It instead displays
3657   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3658   // the proper beginning of the next instruction.
3659   z_illtrap(0xee);
3660   z_illtrap(0xee);
3661   bind(ok);
3662 #endif
3663 
3664   if (base != NULL) {
3665     unsigned int base_h = ((unsigned long)base)>>32;
3666     unsigned int base_l = (unsigned int)((unsigned long)base);
3667     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3668       lgr_if_needed(dst, current);
3669       z_aih(dst, -((int)base_h));     // Base has no set bits in lower half.
3670     } else if ((base_h == 0) && (base_l != 0)) {
3671       lgr_if_needed(dst, current);
3672       z_agfi(dst, -(int)base_l);
3673     } else {
3674       load_const(Z_R0, base);
3675       lgr_if_needed(dst, current);
3676       z_sgr(dst, Z_R0);
3677     }
3678     current = dst;
3679   }
3680   if (shift != 0) {
3681     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3682     z_srlg(dst, current, shift);
3683     current = dst;
3684   }
3685   lgr_if_needed(dst, current); // Move may be required (if neither base nor shift != 0).
3686 
3687   BLOCK_COMMENT("} cKlass encoder");
3688 }
3689 
3690 // This function calculates the size of the code generated by
3691 //   decode_klass_not_null(register dst, Register src)
3692 // when (Universe::heap() != NULL). Hence, if the instructions
3693 // it generates change, then this method needs to be updated.
instr_size_for_decode_klass_not_null()3694 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3695   address  base    = Universe::narrow_klass_base();
3696   int shift_size   = Universe::narrow_klass_shift() == 0 ? 0 : 6; /* sllg */
3697   int addbase_size = 0;
3698   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3699 
3700   if (base != NULL) {
3701     unsigned int base_h = ((unsigned long)base)>>32;
3702     unsigned int base_l = (unsigned int)((unsigned long)base);
3703     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3704       addbase_size += 6; /* aih */
3705     } else if ((base_h == 0) && (base_l != 0)) {
3706       addbase_size += 6; /* algfi */
3707     } else {
3708       addbase_size += load_const_size();
3709       addbase_size += 4; /* algr */
3710     }
3711   }
3712 #ifdef ASSERT
3713   addbase_size += 10;
3714   addbase_size += 2; // Extra sigill.
3715 #endif
3716   return addbase_size + shift_size;
3717 }
3718 
3719 // !!! If the instructions that get generated here change
3720 //     then function instr_size_for_decode_klass_not_null()
3721 //     needs to get updated.
3722 // This variant of decode_klass_not_null() must generate predictable code!
3723 // The code must only depend on globally known parameters.
decode_klass_not_null(Register dst)3724 void MacroAssembler::decode_klass_not_null(Register dst) {
3725   address  base    = Universe::narrow_klass_base();
3726   int      shift   = Universe::narrow_klass_shift();
3727   int      beg_off = offset();
3728   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3729 
3730   BLOCK_COMMENT("cKlass decoder (const size) {");
3731 
3732   if (shift != 0) { // Shift required?
3733     z_sllg(dst, dst, shift);
3734   }
3735   if (base != NULL) {
3736     unsigned int base_h = ((unsigned long)base)>>32;
3737     unsigned int base_l = (unsigned int)((unsigned long)base);
3738     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3739       z_aih(dst, base_h);     // Base has no set bits in lower half.
3740     } else if ((base_h == 0) && (base_l != 0)) {
3741       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3742     } else {
3743       load_const(Z_R0, base); // Base has set bits everywhere.
3744       z_algr(dst, Z_R0);
3745     }
3746   }
3747 
3748 #ifdef ASSERT
3749   Label ok;
3750   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3751   z_brc(Assembler::bcondAllZero, ok);
3752   // The plain disassembler does not recognize illtrap. It instead displays
3753   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3754   // the proper beginning of the next instruction.
3755   z_illtrap(0xd1);
3756   z_illtrap(0xd1);
3757   bind(ok);
3758 #endif
3759   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3760 
3761   BLOCK_COMMENT("} cKlass decoder (const size)");
3762 }
3763 
3764 // This variant of decode_klass_not_null() is for cases where
3765 //  1) the size of the generated instructions may vary
3766 //  2) the result is (potentially) stored in a register different from the source.
decode_klass_not_null(Register dst,Register src)3767 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3768   address base  = Universe::narrow_klass_base();
3769   int     shift = Universe::narrow_klass_shift();
3770   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3771 
3772   BLOCK_COMMENT("cKlass decoder {");
3773 
3774   if (src == noreg) src = dst;
3775 
3776   if (shift != 0) { // Shift or at least move required?
3777     z_sllg(dst, src, shift);
3778   } else {
3779     lgr_if_needed(dst, src);
3780   }
3781 
3782   if (base != NULL) {
3783     unsigned int base_h = ((unsigned long)base)>>32;
3784     unsigned int base_l = (unsigned int)((unsigned long)base);
3785     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3786       z_aih(dst, base_h);     // Base has not set bits in lower half.
3787     } else if ((base_h == 0) && (base_l != 0)) {
3788       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3789     } else {
3790       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3791       z_algr(dst, Z_R0);
3792     }
3793   }
3794 
3795 #ifdef ASSERT
3796   Label ok;
3797   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3798   z_brc(Assembler::bcondAllZero, ok);
3799   // The plain disassembler does not recognize illtrap. It instead displays
3800   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3801   // the proper beginning of the next instruction.
3802   z_illtrap(0xd2);
3803   z_illtrap(0xd2);
3804   bind(ok);
3805 #endif
3806   BLOCK_COMMENT("} cKlass decoder");
3807 }
3808 
load_klass(Register klass,Address mem)3809 void MacroAssembler::load_klass(Register klass, Address mem) {
3810   if (UseCompressedClassPointers) {
3811     z_llgf(klass, mem);
3812     // Attention: no null check here!
3813     decode_klass_not_null(klass);
3814   } else {
3815     z_lg(klass, mem);
3816   }
3817 }
3818 
load_klass(Register klass,Register src_oop)3819 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3820   if (UseCompressedClassPointers) {
3821     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3822     // Attention: no null check here!
3823     decode_klass_not_null(klass);
3824   } else {
3825     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3826   }
3827 }
3828 
load_prototype_header(Register Rheader,Register Rsrc_oop)3829 void MacroAssembler::load_prototype_header(Register Rheader, Register Rsrc_oop) {
3830   assert_different_registers(Rheader, Rsrc_oop);
3831   load_klass(Rheader, Rsrc_oop);
3832   z_lg(Rheader, Address(Rheader, Klass::prototype_header_offset()));
3833 }
3834 
store_klass(Register klass,Register dst_oop,Register ck)3835 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
3836   if (UseCompressedClassPointers) {
3837     assert_different_registers(dst_oop, klass, Z_R0);
3838     if (ck == noreg) ck = klass;
3839     encode_klass_not_null(ck, klass);
3840     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3841   } else {
3842     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3843   }
3844 }
3845 
store_klass_gap(Register s,Register d)3846 void MacroAssembler::store_klass_gap(Register s, Register d) {
3847   if (UseCompressedClassPointers) {
3848     assert(s != d, "not enough registers");
3849     // Support s = noreg.
3850     if (s != noreg) {
3851       z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
3852     } else {
3853       z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
3854     }
3855   }
3856 }
3857 
3858 // Compare klass ptr in memory against klass ptr in register.
3859 //
3860 // Rop1            - klass in register, always uncompressed.
3861 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
3862 // Rbase           - Base address of cKlass in memory.
3863 // maybeNULL       - True if Rop1 possibly is a NULL.
compare_klass_ptr(Register Rop1,int64_t disp,Register Rbase,bool maybeNULL)3864 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
3865 
3866   BLOCK_COMMENT("compare klass ptr {");
3867 
3868   if (UseCompressedClassPointers) {
3869     const int shift = Universe::narrow_klass_shift();
3870     address   base  = Universe::narrow_klass_base();
3871 
3872     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
3873     assert_different_registers(Rop1, Z_R0);
3874     assert_different_registers(Rop1, Rbase, Z_R1);
3875 
3876     // First encode register oop and then compare with cOop in memory.
3877     // This sequence saves an unnecessary cOop load and decode.
3878     if (base == NULL) {
3879       if (shift == 0) {
3880         z_cl(Rop1, disp, Rbase);     // Unscaled
3881       } else {
3882         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
3883         z_cl(Z_R0, disp, Rbase);
3884       }
3885     } else {                         // HeapBased
3886 #ifdef ASSERT
3887       bool     used_R0 = true;
3888       bool     used_R1 = true;
3889 #endif
3890       Register current = Rop1;
3891       Label    done;
3892 
3893       if (maybeNULL) {       // NULL ptr must be preserved!
3894         z_ltgr(Z_R0, current);
3895         z_bre(done);
3896         current = Z_R0;
3897       }
3898 
3899       unsigned int base_h = ((unsigned long)base)>>32;
3900       unsigned int base_l = (unsigned int)((unsigned long)base);
3901       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3902         lgr_if_needed(Z_R0, current);
3903         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
3904       } else if ((base_h == 0) && (base_l != 0)) {
3905         lgr_if_needed(Z_R0, current);
3906         z_agfi(Z_R0, -(int)base_l);
3907       } else {
3908         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3909         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
3910       }
3911 
3912       if (shift != 0) {
3913         z_srlg(Z_R0, Z_R0, shift);
3914       }
3915       bind(done);
3916       z_cl(Z_R0, disp, Rbase);
3917 #ifdef ASSERT
3918       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3919       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3920 #endif
3921     }
3922   } else {
3923     z_clg(Rop1, disp, Z_R0, Rbase);
3924   }
3925   BLOCK_COMMENT("} compare klass ptr");
3926 }
3927 
3928 //---------------------------
3929 //  Compressed oops
3930 //---------------------------
3931 
encode_heap_oop(Register oop)3932 void MacroAssembler::encode_heap_oop(Register oop) {
3933   oop_encoder(oop, oop, true /*maybe null*/);
3934 }
3935 
encode_heap_oop_not_null(Register oop)3936 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
3937   oop_encoder(oop, oop, false /*not null*/);
3938 }
3939 
3940 // Called with something derived from the oop base. e.g. oop_base>>3.
get_oop_base_pow2_offset(uint64_t oop_base)3941 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
3942   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
3943   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
3944   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
3945   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
3946   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
3947                                + (oop_base_lh == 0 ? 0:1)
3948                                + (oop_base_hl == 0 ? 0:1)
3949                                + (oop_base_hh == 0 ? 0:1);
3950 
3951   assert(oop_base != 0, "This is for HeapBased cOops only");
3952 
3953   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
3954     uint64_t pow2_offset = 0x10000 - oop_base_ll;
3955     if (pow2_offset < 0x8000) {  // This might not be necessary.
3956       uint64_t oop_base2 = oop_base + pow2_offset;
3957 
3958       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
3959       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
3960       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
3961       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
3962       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
3963                         (oop_base_lh == 0 ? 0:1) +
3964                         (oop_base_hl == 0 ? 0:1) +
3965                         (oop_base_hh == 0 ? 0:1);
3966       if (n_notzero_parts == 1) {
3967         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
3968         return -pow2_offset;
3969       }
3970     }
3971   }
3972   return 0;
3973 }
3974 
3975 // If base address is offset from a straight power of two by just a few pages,
3976 // return this offset to the caller for a possible later composite add.
3977 // TODO/FIX: will only work correctly for 4k pages.
get_oop_base(Register Rbase,uint64_t oop_base)3978 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
3979   int pow2_offset = get_oop_base_pow2_offset(oop_base);
3980 
3981   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
3982 
3983   return pow2_offset;
3984 }
3985 
get_oop_base_complement(Register Rbase,uint64_t oop_base)3986 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
3987   int offset = get_oop_base(Rbase, oop_base);
3988   z_lcgr(Rbase, Rbase);
3989   return -offset;
3990 }
3991 
3992 // Compare compressed oop in memory against oop in register.
3993 // Rop1            - Oop in register.
3994 // disp            - Offset of cOop in memory.
3995 // Rbase           - Base address of cOop in memory.
3996 // maybeNULL       - True if Rop1 possibly is a NULL.
3997 // maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
compare_heap_oop(Register Rop1,Address mem,bool maybeNULL)3998 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
3999   Register Rbase  = mem.baseOrR0();
4000   Register Rindex = mem.indexOrR0();
4001   int64_t  disp   = mem.disp();
4002 
4003   const int shift = Universe::narrow_oop_shift();
4004   address   base  = Universe::narrow_oop_base();
4005 
4006   assert(UseCompressedOops, "must be on to call this method");
4007   assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
4008   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4009   assert_different_registers(Rop1, Z_R0);
4010   assert_different_registers(Rop1, Rbase, Z_R1);
4011   assert_different_registers(Rop1, Rindex, Z_R1);
4012 
4013   BLOCK_COMMENT("compare heap oop {");
4014 
4015   // First encode register oop and then compare with cOop in memory.
4016   // This sequence saves an unnecessary cOop load and decode.
4017   if (base == NULL) {
4018     if (shift == 0) {
4019       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
4020     } else {
4021       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
4022       z_cl(Z_R0, disp, Rindex, Rbase);
4023     }
4024   } else {                              // HeapBased
4025 #ifdef ASSERT
4026     bool  used_R0 = true;
4027     bool  used_R1 = true;
4028 #endif
4029     Label done;
4030     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
4031 
4032     if (maybeNULL) {       // NULL ptr must be preserved!
4033       z_ltgr(Z_R0, Rop1);
4034       z_bre(done);
4035     }
4036 
4037     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
4038     z_srlg(Z_R0, Z_R0, shift);
4039 
4040     bind(done);
4041     z_cl(Z_R0, disp, Rindex, Rbase);
4042 #ifdef ASSERT
4043     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
4044     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
4045 #endif
4046   }
4047   BLOCK_COMMENT("} compare heap oop");
4048 }
4049 
access_store_at(BasicType type,DecoratorSet decorators,const Address & addr,Register val,Register tmp1,Register tmp2,Register tmp3)4050 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4051                                      const Address& addr, Register val,
4052                                      Register tmp1, Register tmp2, Register tmp3) {
4053   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
4054                          ON_UNKNOWN_OOP_REF)) == 0, "unsupported decorator");
4055   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4056   decorators = AccessInternal::decorator_fixup(decorators);
4057   bool as_raw = (decorators & AS_RAW) != 0;
4058   if (as_raw) {
4059     bs->BarrierSetAssembler::store_at(this, decorators, type,
4060                                       addr, val,
4061                                       tmp1, tmp2, tmp3);
4062   } else {
4063     bs->store_at(this, decorators, type,
4064                  addr, val,
4065                  tmp1, tmp2, tmp3);
4066   }
4067 }
4068 
access_load_at(BasicType type,DecoratorSet decorators,const Address & addr,Register dst,Register tmp1,Register tmp2,Label * is_null)4069 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
4070                                     const Address& addr, Register dst,
4071                                     Register tmp1, Register tmp2, Label *is_null) {
4072   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
4073                          ON_PHANTOM_OOP_REF | ON_WEAK_OOP_REF)) == 0, "unsupported decorator");
4074   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4075   decorators = AccessInternal::decorator_fixup(decorators);
4076   bool as_raw = (decorators & AS_RAW) != 0;
4077   if (as_raw) {
4078     bs->BarrierSetAssembler::load_at(this, decorators, type,
4079                                      addr, dst,
4080                                      tmp1, tmp2, is_null);
4081   } else {
4082     bs->load_at(this, decorators, type,
4083                 addr, dst,
4084                 tmp1, tmp2, is_null);
4085   }
4086 }
4087 
load_heap_oop(Register dest,const Address & a,Register tmp1,Register tmp2,DecoratorSet decorators,Label * is_null)4088 void MacroAssembler::load_heap_oop(Register dest, const Address &a,
4089                                    Register tmp1, Register tmp2,
4090                                    DecoratorSet decorators, Label *is_null) {
4091   access_load_at(T_OBJECT, IN_HEAP | decorators, a, dest, tmp1, tmp2, is_null);
4092 }
4093 
store_heap_oop(Register Roop,const Address & a,Register tmp1,Register tmp2,Register tmp3,DecoratorSet decorators)4094 void MacroAssembler::store_heap_oop(Register Roop, const Address &a,
4095                                     Register tmp1, Register tmp2, Register tmp3,
4096                                     DecoratorSet decorators) {
4097   access_store_at(T_OBJECT, IN_HEAP | decorators, a, Roop, tmp1, tmp2, tmp3);
4098 }
4099 
4100 //-------------------------------------------------
4101 // Encode compressed oop. Generally usable encoder.
4102 //-------------------------------------------------
4103 // Rsrc - contains regular oop on entry. It remains unchanged.
4104 // Rdst - contains compressed oop on exit.
4105 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
4106 //
4107 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
4108 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
4109 //
4110 // only32bitValid is set, if later code only uses the lower 32 bits. In this
4111 // case we must not fix the upper 32 bits.
oop_encoder(Register Rdst,Register Rsrc,bool maybeNULL,Register Rbase,int pow2_offset,bool only32bitValid)4112 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
4113                                  Register Rbase, int pow2_offset, bool only32bitValid) {
4114 
4115   const address oop_base  = Universe::narrow_oop_base();
4116   const int     oop_shift = Universe::narrow_oop_shift();
4117   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4118 
4119   assert(UseCompressedOops, "must be on to call this method");
4120   assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
4121   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4122 
4123   if (disjoint || (oop_base == NULL)) {
4124     BLOCK_COMMENT("cOop encoder zeroBase {");
4125     if (oop_shift == 0) {
4126       if (oop_base != NULL && !only32bitValid) {
4127         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
4128       } else {
4129         lgr_if_needed(Rdst, Rsrc);
4130       }
4131     } else {
4132       z_srlg(Rdst, Rsrc, oop_shift);
4133       if (oop_base != NULL && !only32bitValid) {
4134         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4135       }
4136     }
4137     BLOCK_COMMENT("} cOop encoder zeroBase");
4138     return;
4139   }
4140 
4141   bool used_R0 = false;
4142   bool used_R1 = false;
4143 
4144   BLOCK_COMMENT("cOop encoder general {");
4145   assert_different_registers(Rdst, Z_R1);
4146   assert_different_registers(Rsrc, Rbase);
4147   if (maybeNULL) {
4148     Label done;
4149     // We reorder shifting and subtracting, so that we can compare
4150     // and shift in parallel:
4151     //
4152     // cycle 0:  potential LoadN, base = <const>
4153     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
4154     // cycle 2:  if (cr) br,      dst = dst + base + offset
4155 
4156     // Get oop_base components.
4157     if (pow2_offset == -1) {
4158       if (Rdst == Rbase) {
4159         if (Rdst == Z_R1 || Rsrc == Z_R1) {
4160           Rbase = Z_R0;
4161           used_R0 = true;
4162         } else {
4163           Rdst = Z_R1;
4164           used_R1 = true;
4165         }
4166       }
4167       if (Rbase == Z_R1) {
4168         used_R1 = true;
4169       }
4170       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
4171     }
4172     assert_different_registers(Rdst, Rbase);
4173 
4174     // Check for NULL oop (must be left alone) and shift.
4175     if (oop_shift != 0) {  // Shift out alignment bits
4176       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
4177         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4178       } else {
4179         z_srlg(Rdst, Rsrc, oop_shift);
4180         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
4181         // This probably is faster, as it does not write a register. No!
4182         // z_cghi(Rsrc, 0);
4183       }
4184     } else {
4185       z_ltgr(Rdst, Rsrc);   // Move NULL to result register.
4186     }
4187     z_bre(done);
4188 
4189     // Subtract oop_base components.
4190     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
4191       z_algr(Rdst, Rbase);
4192       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
4193     } else {
4194       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
4195     }
4196     if (!only32bitValid) {
4197       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4198     }
4199     bind(done);
4200 
4201   } else {  // not null
4202     // Get oop_base components.
4203     if (pow2_offset == -1) {
4204       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4205     }
4206 
4207     // Subtract oop_base components and shift.
4208     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4209       // Don't use lay instruction.
4210       if (Rdst == Rsrc) {
4211         z_algr(Rdst, Rbase);
4212       } else {
4213         lgr_if_needed(Rdst, Rbase);
4214         z_algr(Rdst, Rsrc);
4215       }
4216       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4217     } else {
4218       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4219     }
4220     if (oop_shift != 0) {   // Shift out alignment bits.
4221       z_srlg(Rdst, Rdst, oop_shift);
4222     }
4223     if (!only32bitValid) {
4224       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4225     }
4226   }
4227 #ifdef ASSERT
4228   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4229   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4230 #endif
4231   BLOCK_COMMENT("} cOop encoder general");
4232 }
4233 
4234 //-------------------------------------------------
4235 // decode compressed oop. Generally usable decoder.
4236 //-------------------------------------------------
4237 // Rsrc - contains compressed oop on entry.
4238 // Rdst - contains regular oop on exit.
4239 // Rdst and Rsrc may indicate same register.
4240 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4241 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4242 // Rbase - register to use for the base
4243 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4244 // For performance, it is good to
4245 //  - avoid Z_R0 for any of the argument registers.
4246 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4247 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
oop_decoder(Register Rdst,Register Rsrc,bool maybeNULL,Register Rbase,int pow2_offset)4248 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
4249 
4250   const address oop_base  = Universe::narrow_oop_base();
4251   const int     oop_shift = Universe::narrow_oop_shift();
4252   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4253 
4254   assert(UseCompressedOops, "must be on to call this method");
4255   assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
4256   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4257          "cOop encoder detected bad shift");
4258 
4259   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4260 
4261   if (oop_base != NULL) {
4262     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4263     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4264     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4265     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4266       BLOCK_COMMENT("cOop decoder disjointBase {");
4267       // We do not need to load the base. Instead, we can install the upper bits
4268       // with an OR instead of an ADD.
4269       Label done;
4270 
4271       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4272       if (maybeNULL) {  // NULL ptr must be preserved!
4273         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4274         z_bre(done);
4275       } else {
4276         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4277       }
4278       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4279         z_oihf(Rdst, oop_base_hf);
4280       } else if (oop_base_hl != 0) {
4281         z_oihl(Rdst, oop_base_hl);
4282       } else {
4283         assert(oop_base_hh != 0, "not heapbased mode");
4284         z_oihh(Rdst, oop_base_hh);
4285       }
4286       bind(done);
4287       BLOCK_COMMENT("} cOop decoder disjointBase");
4288     } else {
4289       BLOCK_COMMENT("cOop decoder general {");
4290       // There are three decode steps:
4291       //   scale oop offset (shift left)
4292       //   get base (in reg) and pow2_offset (constant)
4293       //   add base, pow2_offset, and oop offset
4294       // The following register overlap situations may exist:
4295       // Rdst == Rsrc,  Rbase any other
4296       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4297       //   Loading Rbase does not impact the scaled offset.
4298       // Rdst == Rbase, Rsrc  any other
4299       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4300       //   would destroy the scaled offset.
4301       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4302       //           use Rbase_tmp if base has to be loaded.
4303       // Rsrc == Rbase, Rdst  any other
4304       //   Only possible without preloaded Rbase.
4305       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4306       // Rsrc == Rbase, Rdst == Rbase
4307       //   Only possible without preloaded Rbase.
4308       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4309       //   Remedy: use Rbase_tmp.
4310       //
4311       Label    done;
4312       Register Rdst_tmp       = Rdst;
4313       Register Rbase_tmp      = Rbase;
4314       bool     used_R0        = false;
4315       bool     used_R1        = false;
4316       bool     base_preloaded = pow2_offset >= 0;
4317       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4318       assert(oop_shift != 0, "room for optimization");
4319 
4320       // Check if we need to use scratch registers.
4321       if (Rdst == Rbase) {
4322         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4323         if (Rdst != Rsrc) {
4324           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4325           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4326         } else {
4327           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4328         }
4329       }
4330       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4331 
4332       // Scale oop and check for NULL.
4333       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4334       if (maybeNULL) {  // NULL ptr must be preserved!
4335         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4336         z_bre(done);
4337       } else {
4338         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4339       }
4340 
4341       // Get oop_base components.
4342       if (!base_preloaded) {
4343         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4344       }
4345 
4346       // Add up all components.
4347       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4348         z_algr(Rdst_tmp, Rbase_tmp);
4349         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4350       } else {
4351         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4352       }
4353 
4354       bind(done);
4355       lgr_if_needed(Rdst, Rdst_tmp);
4356 #ifdef ASSERT
4357       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4358       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4359 #endif
4360       BLOCK_COMMENT("} cOop decoder general");
4361     }
4362   } else {
4363     BLOCK_COMMENT("cOop decoder zeroBase {");
4364     if (oop_shift == 0) {
4365       lgr_if_needed(Rdst, Rsrc);
4366     } else {
4367       z_sllg(Rdst, Rsrc, oop_shift);
4368     }
4369     BLOCK_COMMENT("} cOop decoder zeroBase");
4370   }
4371 }
4372 
4373 // ((OopHandle)result).resolve();
resolve_oop_handle(Register result)4374 void MacroAssembler::resolve_oop_handle(Register result) {
4375   // OopHandle::resolve is an indirection.
4376   z_lg(result, 0, result);
4377 }
4378 
load_mirror(Register mirror,Register method)4379 void MacroAssembler::load_mirror(Register mirror, Register method) {
4380   mem2reg_opt(mirror, Address(method, Method::const_offset()));
4381   mem2reg_opt(mirror, Address(mirror, ConstMethod::constants_offset()));
4382   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
4383   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4384   resolve_oop_handle(mirror);
4385 }
4386 
4387 //---------------------------------------------------------------
4388 //---  Operations on arrays.
4389 //---------------------------------------------------------------
4390 
4391 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4392 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4393 // work registers anyway.
4394 // Actually, only r0, r1, and r5 are killed.
Clear_Array(Register cnt_arg,Register base_pointer_arg,Register src_addr,Register src_len)4395 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register src_addr, Register src_len) {
4396   // Src_addr is evenReg.
4397   // Src_len is odd_Reg.
4398 
4399   int      block_start = offset();
4400   Register tmp_reg  = src_len; // Holds target instr addr for EX.
4401   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4402   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4403 
4404   Label doXC, doMVCLE, done;
4405 
4406   BLOCK_COMMENT("Clear_Array {");
4407 
4408   // Check for zero len and convert to long.
4409   z_ltgfr(src_len, cnt_arg);      // Remember casted value for doSTG case.
4410   z_bre(done);                    // Nothing to do if len == 0.
4411 
4412   // Prefetch data to be cleared.
4413   if (VM_Version::has_Prefetch()) {
4414     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4415     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4416   }
4417 
4418   z_sllg(dst_len, src_len, 3);    // #bytes to clear.
4419   z_cghi(src_len, 32);            // Check for len <= 256 bytes (<=32 DW).
4420   z_brnh(doXC);                   // If so, use executed XC to clear.
4421 
4422   // MVCLE: initialize long arrays (general case).
4423   bind(doMVCLE);
4424   z_lgr(dst_addr, base_pointer_arg);
4425   clear_reg(src_len, true, false); // Src len of MVCLE is zero.
4426 
4427   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4428   z_bru(done);
4429 
4430   // XC: initialize short arrays.
4431   Label XC_template; // Instr template, never exec directly!
4432     bind(XC_template);
4433     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4434 
4435   bind(doXC);
4436     add2reg(dst_len, -1);             // Get #bytes-1 for EXECUTE.
4437     if (VM_Version::has_ExecuteExtensions()) {
4438       z_exrl(dst_len, XC_template);   // Execute XC with var. len.
4439     } else {
4440       z_larl(tmp_reg, XC_template);
4441       z_ex(dst_len,0,Z_R0,tmp_reg);   // Execute XC with var. len.
4442     }
4443     // z_bru(done);      // fallthru
4444 
4445   bind(done);
4446 
4447   BLOCK_COMMENT("} Clear_Array");
4448 
4449   int block_end = offset();
4450   return block_end - block_start;
4451 }
4452 
4453 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4454 // Emitter does not KILL any arguments nor work registers.
4455 // Emitter generates up to 16 XC instructions, depending on the array length.
Clear_Array_Const(long cnt,Register base)4456 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4457   int  block_start    = offset();
4458   int  off;
4459   int  lineSize_Bytes = AllocatePrefetchStepSize;
4460   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4461   bool doPrefetch     = VM_Version::has_Prefetch();
4462   int  XC_maxlen      = 256;
4463   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4464 
4465   BLOCK_COMMENT("Clear_Array_Const {");
4466   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4467 
4468   // Do less prefetching for very short arrays.
4469   if (numXCInstr > 0) {
4470     // Prefetch only some cache lines, then begin clearing.
4471     if (doPrefetch) {
4472       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4473         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4474       } else {
4475         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4476         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4477           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4478         }
4479       }
4480     }
4481 
4482     for (off=0; off<(numXCInstr-1); off++) {
4483       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4484 
4485       // Prefetch some cache lines in advance.
4486       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4487         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4488       }
4489     }
4490     if (off*XC_maxlen < cnt*BytesPerWord) {
4491       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4492     }
4493   }
4494   BLOCK_COMMENT("} Clear_Array_Const");
4495 
4496   int block_end = offset();
4497   return block_end - block_start;
4498 }
4499 
4500 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4501 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4502 // work registers anyway.
4503 // Actually, only r0, r1, r4, and r5 (which are work registers) are killed.
4504 //
4505 // For very large arrays, exploit MVCLE H/W support.
4506 // MVCLE instruction automatically exploits H/W-optimized page mover.
4507 // - Bytes up to next page boundary are cleared with a series of XC to self.
4508 // - All full pages are cleared with the page mover H/W assist.
4509 // - Remaining bytes are again cleared by a series of XC to self.
4510 //
Clear_Array_Const_Big(long cnt,Register base_pointer_arg,Register src_addr,Register src_len)4511 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register src_addr, Register src_len) {
4512   // Src_addr is evenReg.
4513   // Src_len is odd_Reg.
4514 
4515   int      block_start = offset();
4516   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4517   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4518 
4519   BLOCK_COMMENT("Clear_Array_Const_Big {");
4520 
4521   // Get len to clear.
4522   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4523 
4524   // Prepare other args to MVCLE.
4525   z_lgr(dst_addr, base_pointer_arg);
4526   // Indicate unused result.
4527   (void) clear_reg(src_len, true, false);  // Src len of MVCLE is zero.
4528 
4529   // Clear.
4530   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4531   BLOCK_COMMENT("} Clear_Array_Const_Big");
4532 
4533   int block_end = offset();
4534   return block_end - block_start;
4535 }
4536 
4537 // Allocator.
CopyRawMemory_AlignedDisjoint(Register src_reg,Register dst_reg,Register cnt_reg,Register tmp1_reg,Register tmp2_reg)4538 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4539                                                            Register cnt_reg,
4540                                                            Register tmp1_reg, Register tmp2_reg) {
4541   // Tmp1 is oddReg.
4542   // Tmp2 is evenReg.
4543 
4544   int block_start = offset();
4545   Label doMVC, doMVCLE, done, MVC_template;
4546 
4547   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4548 
4549   // Check for zero len and convert to long.
4550   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4551   z_bre(done);                    // Nothing to do if len == 0.
4552 
4553   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4554 
4555   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4556   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4557 
4558   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4559   // Prep dest reg pair.
4560   z_lgr(Z_R0, dst_reg);           // dst addr
4561   // Dst len already in Z_R1.
4562   // Prep src reg pair.
4563   z_lgr(tmp2_reg, src_reg);       // src addr
4564   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4565 
4566   // Do the copy.
4567   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4568   z_bru(done);                         // All done.
4569 
4570   bind(MVC_template);             // Just some data (not more than 256 bytes).
4571   z_mvc(0, 0, dst_reg, 0, src_reg);
4572 
4573   bind(doMVC);
4574 
4575   if (VM_Version::has_ExecuteExtensions()) {
4576     add2reg(Z_R1, -1);
4577   } else {
4578     add2reg(tmp1_reg, -1, Z_R1);
4579     z_larl(Z_R1, MVC_template);
4580   }
4581 
4582   if (VM_Version::has_Prefetch()) {
4583     z_pfd(1,  0,Z_R0,src_reg);
4584     z_pfd(2,  0,Z_R0,dst_reg);
4585     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4586     //    z_pfd(2,256,Z_R0,dst_reg);
4587   }
4588 
4589   if (VM_Version::has_ExecuteExtensions()) {
4590     z_exrl(Z_R1, MVC_template);
4591   } else {
4592     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4593   }
4594 
4595   bind(done);
4596 
4597   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4598 
4599   int block_end = offset();
4600   return block_end - block_start;
4601 }
4602 
4603 #ifdef COMPILER2
4604 //------------------------------------------------------
4605 //   Special String Intrinsics. Implementation
4606 //------------------------------------------------------
4607 
4608 // Intrinsics for CompactStrings
4609 
4610 // Compress char[] to byte[].
4611 //   Restores: src, dst
4612 //   Uses:     cnt
4613 //   Kills:    tmp, Z_R0, Z_R1.
4614 //   Early clobber: result.
4615 // Note:
4616 //   cnt is signed int. Do not rely on high word!
4617 //       counts # characters, not bytes.
4618 // The result is the number of characters copied before the first incompatible character was found.
4619 // If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
4620 // by a few bytes. The result always indicates the number of copied characters.
4621 // When used as a character index, the returned value points to the first incompatible character.
4622 //
4623 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4624 // - Different number of characters may have been written to dead array (if precise is false).
4625 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
string_compress(Register result,Register src,Register dst,Register cnt,Register tmp,bool precise)4626 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
4627                                              Register tmp,    bool precise) {
4628   assert_different_registers(Z_R0, Z_R1, result, src, dst, cnt, tmp);
4629 
4630   if (precise) {
4631     BLOCK_COMMENT("encode_iso_array {");
4632   } else {
4633     BLOCK_COMMENT("string_compress {");
4634   }
4635   int  block_start = offset();
4636 
4637   Register       Rsrc  = src;
4638   Register       Rdst  = dst;
4639   Register       Rix   = tmp;
4640   Register       Rcnt  = cnt;
4641   Register       Rmask = result;  // holds incompatibility check mask until result value is stored.
4642   Label          ScalarShortcut, AllDone;
4643 
4644   z_iilf(Rmask, 0xFF00FF00);
4645   z_iihf(Rmask, 0xFF00FF00);
4646 
4647 #if 0  // Sacrifice shortcuts for code compactness
4648   {
4649     //---<  shortcuts for short strings (very frequent)   >---
4650     //   Strings with 4 and 8 characters were fond to occur very frequently.
4651     //   Therefore, we handle them right away with minimal overhead.
4652     Label     skipShortcut, skip4Shortcut, skip8Shortcut;
4653     Register  Rout = Z_R0;
4654     z_chi(Rcnt, 4);
4655     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4656       z_lg(Z_R0, 0, Rsrc);                 // Treat exactly 4 characters specially.
4657       if (VM_Version::has_DistinctOpnds()) {
4658         Rout = Z_R0;
4659         z_ngrk(Rix, Z_R0, Rmask);
4660       } else {
4661         Rout = Rix;
4662         z_lgr(Rix, Z_R0);
4663         z_ngr(Z_R0, Rmask);
4664       }
4665       z_brnz(skipShortcut);
4666       z_stcmh(Rout, 5, 0, Rdst);
4667       z_stcm(Rout,  5, 2, Rdst);
4668       z_lgfr(result, Rcnt);
4669       z_bru(AllDone);
4670     bind(skip4Shortcut);
4671 
4672     z_chi(Rcnt, 8);
4673     z_brne(skip8Shortcut);                 // There's more to do...
4674       z_lmg(Z_R0, Z_R1, 0, Rsrc);          // Treat exactly 8 characters specially.
4675       if (VM_Version::has_DistinctOpnds()) {
4676         Rout = Z_R0;
4677         z_ogrk(Rix, Z_R0, Z_R1);
4678         z_ngr(Rix, Rmask);
4679       } else {
4680         Rout = Rix;
4681         z_lgr(Rix, Z_R0);
4682         z_ogr(Z_R0, Z_R1);
4683         z_ngr(Z_R0, Rmask);
4684       }
4685       z_brnz(skipShortcut);
4686       z_stcmh(Rout, 5, 0, Rdst);
4687       z_stcm(Rout,  5, 2, Rdst);
4688       z_stcmh(Z_R1, 5, 4, Rdst);
4689       z_stcm(Z_R1,  5, 6, Rdst);
4690       z_lgfr(result, Rcnt);
4691       z_bru(AllDone);
4692 
4693     bind(skip8Shortcut);
4694     clear_reg(Z_R0, true, false);          // #characters already processed (none). Precond for scalar loop.
4695     z_brl(ScalarShortcut);                 // Just a few characters
4696 
4697     bind(skipShortcut);
4698   }
4699 #endif
4700   clear_reg(Z_R0);                         // make sure register is properly initialized.
4701 
4702   if (VM_Version::has_VectorFacility()) {
4703     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4704                                            // Otherwise just do nothing in vector mode.
4705                                            // Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
4706     const int  log_min_vcnt = exact_log2(min_vcnt);
4707     Label      VectorLoop, VectorDone, VectorBreak;
4708 
4709     VectorRegister Vtmp1      = Z_V16;
4710     VectorRegister Vtmp2      = Z_V17;
4711     VectorRegister Vmask      = Z_V18;
4712     VectorRegister Vzero      = Z_V19;
4713     VectorRegister Vsrc_first = Z_V20;
4714     VectorRegister Vsrc_last  = Z_V23;
4715 
4716     assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
4717     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
4718     z_srak(Rix, Rcnt, log_min_vcnt);       // # vector loop iterations
4719     z_brz(VectorDone);                     // not enough data for vector loop
4720 
4721     z_vzero(Vzero);                        // all zeroes
4722     z_vgmh(Vmask, 0, 7);                   // generate 0xff00 mask for all 2-byte elements
4723     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
4724 
4725     bind(VectorLoop);
4726       z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
4727       add2reg(Rsrc, min_vcnt*2);
4728 
4729       //---<  check for incompatible character  >---
4730       z_vo(Vtmp1, Z_V20, Z_V21);
4731       z_vo(Vtmp2, Z_V22, Z_V23);
4732       z_vo(Vtmp1, Vtmp1, Vtmp2);
4733       z_vn(Vtmp1, Vtmp1, Vmask);
4734       z_vceqhs(Vtmp1, Vtmp1, Vzero);       // high half of all chars must be zero for successful compress.
4735       z_bvnt(VectorBreak);                 // break vector loop if not all vector elements compare eq -> incompatible character found.
4736                                            // re-process data from current iteration in break handler.
4737 
4738       //---<  pack & store characters  >---
4739       z_vpkh(Vtmp1, Z_V20, Z_V21);         // pack (src1, src2) -> tmp1
4740       z_vpkh(Vtmp2, Z_V22, Z_V23);         // pack (src3, src4) -> tmp2
4741       z_vstm(Vtmp1, Vtmp2, 0, Rdst);       // store packed string
4742       add2reg(Rdst, min_vcnt);
4743 
4744       z_brct(Rix, VectorLoop);
4745 
4746     z_bru(VectorDone);
4747 
4748     bind(VectorBreak);
4749       add2reg(Rsrc, -min_vcnt*2);          // Fix Rsrc. Rsrc was already updated, but Rdst and Rix are not.
4750       z_sll(Rix, log_min_vcnt);            // # chars processed so far in VectorLoop, excl. current iteration.
4751       z_sr(Z_R0, Rix);                     // correct # chars processed in total.
4752 
4753     bind(VectorDone);
4754   }
4755 
4756   {
4757     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled loop.
4758                                            // Otherwise just do nothing in unrolled loop.
4759                                            // Must be multiple of 8.
4760     const int  log_min_cnt = exact_log2(min_cnt);
4761     Label      UnrolledLoop, UnrolledDone, UnrolledBreak;
4762 
4763     if (VM_Version::has_DistinctOpnds()) {
4764       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4765     } else {
4766       z_lr(Rix, Rcnt);
4767       z_sr(Rix, Z_R0);
4768     }
4769     z_sra(Rix, log_min_cnt);             // unrolled loop count
4770     z_brz(UnrolledDone);
4771 
4772     bind(UnrolledLoop);
4773       z_lmg(Z_R0, Z_R1, 0, Rsrc);
4774       if (precise) {
4775         z_ogr(Z_R1, Z_R0);                 // check all 8 chars for incompatibility
4776         z_ngr(Z_R1, Rmask);
4777         z_brnz(UnrolledBreak);
4778 
4779         z_lg(Z_R1, 8, Rsrc);               // reload destroyed register
4780         z_stcmh(Z_R0, 5, 0, Rdst);
4781         z_stcm(Z_R0,  5, 2, Rdst);
4782       } else {
4783         z_stcmh(Z_R0, 5, 0, Rdst);
4784         z_stcm(Z_R0,  5, 2, Rdst);
4785 
4786         z_ogr(Z_R0, Z_R1);
4787         z_ngr(Z_R0, Rmask);
4788         z_brnz(UnrolledBreak);
4789       }
4790       z_stcmh(Z_R1, 5, 4, Rdst);
4791       z_stcm(Z_R1,  5, 6, Rdst);
4792 
4793       add2reg(Rsrc, min_cnt*2);
4794       add2reg(Rdst, min_cnt);
4795       z_brct(Rix, UnrolledLoop);
4796 
4797     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop.
4798     z_nilf(Z_R0, ~(min_cnt-1));
4799     z_tmll(Rcnt, min_cnt-1);
4800     z_brnaz(ScalarShortcut);               // if all bits zero, there is nothing left to do for scalar loop.
4801                                            // Rix == 0 in all cases.
4802     z_sllg(Z_R1, Rcnt, 1);                 // # src bytes already processed. Only lower 32 bits are valid!
4803                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4804                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4805     z_lgfr(result, Rcnt);                  // all characters processed.
4806     z_slgfr(Rdst, Rcnt);                   // restore ptr
4807     z_slgfr(Rsrc, Z_R1);                   // restore ptr, double the element count for Rsrc restore
4808     z_bru(AllDone);
4809 
4810     bind(UnrolledBreak);
4811     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop
4812     z_nilf(Z_R0, ~(min_cnt-1));
4813     z_sll(Rix, log_min_cnt);               // # chars not yet processed in UnrolledLoop (due to break), broken iteration not included.
4814     z_sr(Z_R0, Rix);                       // fix # chars processed OK so far.
4815     if (!precise) {
4816       z_lgfr(result, Z_R0);
4817       z_sllg(Z_R1, Z_R0, 1);               // # src bytes already processed. Only lower 32 bits are valid!
4818                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4819                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4820       z_aghi(result, min_cnt/2);           // min_cnt/2 characters have already been written
4821                                            // but ptrs were not updated yet.
4822       z_slgfr(Rdst, Z_R0);                 // restore ptr
4823       z_slgfr(Rsrc, Z_R1);                 // restore ptr, double the element count for Rsrc restore
4824       z_bru(AllDone);
4825     }
4826     bind(UnrolledDone);
4827   }
4828 
4829   {
4830     Label     ScalarLoop, ScalarDone, ScalarBreak;
4831 
4832     bind(ScalarShortcut);
4833     z_ltgfr(result, Rcnt);
4834     z_brz(AllDone);
4835 
4836 #if 0  // Sacrifice shortcuts for code compactness
4837     {
4838       //---<  Special treatment for very short strings (one or two characters)  >---
4839       //   For these strings, we are sure that the above code was skipped.
4840       //   Thus, no registers were modified, register restore is not required.
4841       Label     ScalarDoit, Scalar2Char;
4842       z_chi(Rcnt, 2);
4843       z_brh(ScalarDoit);
4844       z_llh(Z_R1,  0, Z_R0, Rsrc);
4845       z_bre(Scalar2Char);
4846       z_tmll(Z_R1, 0xff00);
4847       z_lghi(result, 0);                   // cnt == 1, first char invalid, no chars successfully processed
4848       z_brnaz(AllDone);
4849       z_stc(Z_R1,  0, Z_R0, Rdst);
4850       z_lghi(result, 1);
4851       z_bru(AllDone);
4852 
4853       bind(Scalar2Char);
4854       z_llh(Z_R0,  2, Z_R0, Rsrc);
4855       z_tmll(Z_R1, 0xff00);
4856       z_lghi(result, 0);                   // cnt == 2, first char invalid, no chars successfully processed
4857       z_brnaz(AllDone);
4858       z_stc(Z_R1,  0, Z_R0, Rdst);
4859       z_tmll(Z_R0, 0xff00);
4860       z_lghi(result, 1);                   // cnt == 2, second char invalid, one char successfully processed
4861       z_brnaz(AllDone);
4862       z_stc(Z_R0,  1, Z_R0, Rdst);
4863       z_lghi(result, 2);
4864       z_bru(AllDone);
4865 
4866       bind(ScalarDoit);
4867     }
4868 #endif
4869 
4870     if (VM_Version::has_DistinctOpnds()) {
4871       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4872     } else {
4873       z_lr(Rix, Rcnt);
4874       z_sr(Rix, Z_R0);
4875     }
4876     z_lgfr(result, Rcnt);                  // # processed characters (if all runs ok).
4877     z_brz(ScalarDone);                     // uses CC from Rix calculation
4878 
4879     bind(ScalarLoop);
4880       z_llh(Z_R1, 0, Z_R0, Rsrc);
4881       z_tmll(Z_R1, 0xff00);
4882       z_brnaz(ScalarBreak);
4883       z_stc(Z_R1, 0, Z_R0, Rdst);
4884       add2reg(Rsrc, 2);
4885       add2reg(Rdst, 1);
4886       z_brct(Rix, ScalarLoop);
4887 
4888     z_bru(ScalarDone);
4889 
4890     bind(ScalarBreak);
4891     z_sr(result, Rix);
4892 
4893     bind(ScalarDone);
4894     z_sgfr(Rdst, result);                  // restore ptr
4895     z_sgfr(Rsrc, result);                  // restore ptr, double the element count for Rsrc restore
4896     z_sgfr(Rsrc, result);
4897   }
4898   bind(AllDone);
4899 
4900   if (precise) {
4901     BLOCK_COMMENT("} encode_iso_array");
4902   } else {
4903     BLOCK_COMMENT("} string_compress");
4904   }
4905   return offset() - block_start;
4906 }
4907 
4908 // Inflate byte[] to char[].
string_inflate_trot(Register src,Register dst,Register cnt,Register tmp)4909 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
4910   int block_start = offset();
4911 
4912   BLOCK_COMMENT("string_inflate {");
4913 
4914   Register stop_char = Z_R0;
4915   Register table     = Z_R1;
4916   Register src_addr  = tmp;
4917 
4918   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
4919   assert(dst->encoding()%2 == 0, "must be even reg");
4920   assert(cnt->encoding()%2 == 1, "must be odd reg");
4921   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
4922 
4923   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
4924   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
4925   lgr_if_needed(src_addr, src);
4926   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
4927 
4928   translate_ot(dst, src_addr, /* mask = */ 0x0001);
4929 
4930   BLOCK_COMMENT("} string_inflate");
4931 
4932   return offset() - block_start;
4933 }
4934 
4935 // Inflate byte[] to char[].
4936 //   Restores: src, dst
4937 //   Uses:     cnt
4938 //   Kills:    tmp, Z_R0, Z_R1.
4939 // Note:
4940 //   cnt is signed int. Do not rely on high word!
4941 //       counts # characters, not bytes.
string_inflate(Register src,Register dst,Register cnt,Register tmp)4942 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
4943   assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
4944 
4945   BLOCK_COMMENT("string_inflate {");
4946   int block_start = offset();
4947 
4948   Register   Rcnt = cnt;   // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
4949   Register   Rix  = tmp;   // loop index
4950   Register   Rsrc = src;   // addr(src array)
4951   Register   Rdst = dst;   // addr(dst array)
4952   Label      ScalarShortcut, AllDone;
4953 
4954 #if 0  // Sacrifice shortcuts for code compactness
4955   {
4956     //---<  shortcuts for short strings (very frequent)   >---
4957     Label   skipShortcut, skip4Shortcut;
4958     z_ltr(Rcnt, Rcnt);                     // absolutely nothing to do for strings of len == 0.
4959     z_brz(AllDone);
4960     clear_reg(Z_R0);                       // make sure registers are properly initialized.
4961     clear_reg(Z_R1);
4962     z_chi(Rcnt, 4);
4963     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4964       z_icm(Z_R0, 5,    0, Rsrc);          // Treat exactly 4 characters specially.
4965       z_icm(Z_R1, 5,    2, Rsrc);
4966       z_stm(Z_R0, Z_R1, 0, Rdst);
4967       z_bru(AllDone);
4968     bind(skip4Shortcut);
4969 
4970     z_chi(Rcnt, 8);
4971     z_brh(skipShortcut);                   // There's a lot to do...
4972     z_lgfr(Z_R0, Rcnt);                    // remaining #characters (<= 8). Precond for scalar loop.
4973                                            // This does not destroy the "register cleared" state of Z_R0.
4974     z_brl(ScalarShortcut);                 // Just a few characters
4975       z_icmh(Z_R0, 5, 0, Rsrc);            // Treat exactly 8 characters specially.
4976       z_icmh(Z_R1, 5, 4, Rsrc);
4977       z_icm(Z_R0,  5, 2, Rsrc);
4978       z_icm(Z_R1,  5, 6, Rsrc);
4979       z_stmg(Z_R0, Z_R1, 0, Rdst);
4980       z_bru(AllDone);
4981     bind(skipShortcut);
4982   }
4983 #endif
4984   clear_reg(Z_R0);                         // make sure register is properly initialized.
4985 
4986   if (VM_Version::has_VectorFacility()) {
4987     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4988                                            // Otherwise just do nothing in vector mode.
4989                                            // Must be multiple of vector register length (16 bytes = 128 bits).
4990     const int  log_min_vcnt = exact_log2(min_vcnt);
4991     Label      VectorLoop, VectorDone;
4992 
4993     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
4994     z_srak(Rix, Rcnt, log_min_vcnt);       // calculate # vector loop iterations
4995     z_brz(VectorDone);                     // skip if none
4996 
4997     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
4998 
4999     bind(VectorLoop);
5000       z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5001       add2reg(Rsrc, min_vcnt);
5002 
5003       z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5004       z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5005       z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5006       z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5007       z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5008       add2reg(Rdst, min_vcnt*2);
5009 
5010       z_brct(Rix, VectorLoop);
5011 
5012     bind(VectorDone);
5013   }
5014 
5015   const int  min_cnt     =  8;             // Minimum #characters required to use unrolled scalar loop.
5016                                            // Otherwise just do nothing in unrolled scalar mode.
5017                                            // Must be multiple of 8.
5018   {
5019     const int  log_min_cnt = exact_log2(min_cnt);
5020     Label      UnrolledLoop, UnrolledDone;
5021 
5022 
5023     if (VM_Version::has_DistinctOpnds()) {
5024       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to process in unrolled loop
5025     } else {
5026       z_lr(Rix, Rcnt);
5027       z_sr(Rix, Z_R0);
5028     }
5029     z_sra(Rix, log_min_cnt);               // unrolled loop count
5030     z_brz(UnrolledDone);
5031 
5032     clear_reg(Z_R0);
5033     clear_reg(Z_R1);
5034 
5035     bind(UnrolledLoop);
5036       z_icmh(Z_R0, 5, 0, Rsrc);
5037       z_icmh(Z_R1, 5, 4, Rsrc);
5038       z_icm(Z_R0,  5, 2, Rsrc);
5039       z_icm(Z_R1,  5, 6, Rsrc);
5040       add2reg(Rsrc, min_cnt);
5041 
5042       z_stmg(Z_R0, Z_R1, 0, Rdst);
5043 
5044       add2reg(Rdst, min_cnt*2);
5045       z_brct(Rix, UnrolledLoop);
5046 
5047     bind(UnrolledDone);
5048     z_lgfr(Z_R0, Rcnt);                    // # chars left over after unrolled loop.
5049     z_nilf(Z_R0, min_cnt-1);
5050     z_brnz(ScalarShortcut);                // if zero, there is nothing left to do for scalar loop.
5051                                            // Rix == 0 in all cases.
5052     z_sgfr(Z_R0, Rcnt);                    // negative # characters the ptrs have been advanced previously.
5053     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5054     z_agr(Rdst, Z_R0);
5055     z_agr(Rsrc, Z_R0);                     // restore ptr.
5056     z_bru(AllDone);
5057   }
5058 
5059   {
5060     bind(ScalarShortcut);
5061     // Z_R0 must contain remaining # characters as 64-bit signed int here.
5062     //      register contents is preserved over scalar processing (for register fixup).
5063 
5064 #if 0  // Sacrifice shortcuts for code compactness
5065     {
5066       Label      ScalarDefault;
5067       z_chi(Rcnt, 2);
5068       z_brh(ScalarDefault);
5069       z_llc(Z_R0,  0, Z_R0, Rsrc);     // 6 bytes
5070       z_sth(Z_R0,  0, Z_R0, Rdst);     // 4 bytes
5071       z_brl(AllDone);
5072       z_llc(Z_R0,  1, Z_R0, Rsrc);     // 6 bytes
5073       z_sth(Z_R0,  2, Z_R0, Rdst);     // 4 bytes
5074       z_bru(AllDone);
5075       bind(ScalarDefault);
5076     }
5077 #endif
5078 
5079     Label   CodeTable;
5080     // Some comments on Rix calculation:
5081     //  - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
5082     //  - high word of both Rix and Rcnt may contain garbage
5083     //  - the final lngfr takes care of that garbage, extending the sign to high word
5084     z_sllg(Rix, Z_R0, 2);                // calculate 10*Rix = (4*Rix + Rix)*2
5085     z_ar(Rix, Z_R0);
5086     z_larl(Z_R1, CodeTable);
5087     z_sll(Rix, 1);
5088     z_lngfr(Rix, Rix);      // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
5089     z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
5090 
5091     z_llc(Z_R1,  6, Z_R0, Rsrc);  // 6 bytes
5092     z_sth(Z_R1, 12, Z_R0, Rdst);  // 4 bytes
5093 
5094     z_llc(Z_R1,  5, Z_R0, Rsrc);
5095     z_sth(Z_R1, 10, Z_R0, Rdst);
5096 
5097     z_llc(Z_R1,  4, Z_R0, Rsrc);
5098     z_sth(Z_R1,  8, Z_R0, Rdst);
5099 
5100     z_llc(Z_R1,  3, Z_R0, Rsrc);
5101     z_sth(Z_R1,  6, Z_R0, Rdst);
5102 
5103     z_llc(Z_R1,  2, Z_R0, Rsrc);
5104     z_sth(Z_R1,  4, Z_R0, Rdst);
5105 
5106     z_llc(Z_R1,  1, Z_R0, Rsrc);
5107     z_sth(Z_R1,  2, Z_R0, Rdst);
5108 
5109     z_llc(Z_R1,  0, Z_R0, Rsrc);
5110     z_sth(Z_R1,  0, Z_R0, Rdst);
5111     bind(CodeTable);
5112 
5113     z_chi(Rcnt, 8);                        // no fixup for small strings. Rdst, Rsrc were not modified.
5114     z_brl(AllDone);
5115 
5116     z_sgfr(Z_R0, Rcnt);                    // # characters the ptrs have been advanced previously.
5117     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5118     z_agr(Rdst, Z_R0);
5119     z_agr(Rsrc, Z_R0);                     // restore ptr.
5120   }
5121   bind(AllDone);
5122 
5123   BLOCK_COMMENT("} string_inflate");
5124   return offset() - block_start;
5125 }
5126 
5127 // Inflate byte[] to char[], length known at compile time.
5128 //   Restores: src, dst
5129 //   Kills:    tmp, Z_R0, Z_R1.
5130 // Note:
5131 //   len is signed int. Counts # characters, not bytes.
string_inflate_const(Register src,Register dst,Register tmp,int len)5132 unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
5133   assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
5134 
5135   BLOCK_COMMENT("string_inflate_const {");
5136   int block_start = offset();
5137 
5138   Register   Rix  = tmp;   // loop index
5139   Register   Rsrc = src;   // addr(src array)
5140   Register   Rdst = dst;   // addr(dst array)
5141   Label      ScalarShortcut, AllDone;
5142   int        nprocessed = 0;
5143   int        src_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5144   int        dst_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5145   bool       restore_inputs = false;
5146   bool       workreg_clear  = false;
5147 
5148   if ((len >= 32) && VM_Version::has_VectorFacility()) {
5149     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5150                                            // Otherwise just do nothing in vector mode.
5151                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5152     const int  log_min_vcnt = exact_log2(min_vcnt);
5153     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5154     nprocessed             += iterations << log_min_vcnt;
5155     Label      VectorLoop;
5156 
5157     if (iterations == 1) {
5158       z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc);  // get next 32 characters (single-byte)
5159       z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5160       z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5161       z_vuplhb(Z_V24, Z_V21);                // V4 <- (expand) V1(high)
5162       z_vupllb(Z_V25, Z_V21);                // V5 <- (expand) V1(low)
5163       z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
5164 
5165       src_off += min_vcnt;
5166       dst_off += min_vcnt*2;
5167     } else {
5168       restore_inputs = true;
5169 
5170       z_lgfi(Rix, len>>log_min_vcnt);
5171       bind(VectorLoop);
5172         z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5173         add2reg(Rsrc, min_vcnt);
5174 
5175         z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5176         z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5177         z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5178         z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5179         z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5180         add2reg(Rdst, min_vcnt*2);
5181 
5182         z_brct(Rix, VectorLoop);
5183     }
5184   }
5185 
5186   if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
5187     const int  min_vcnt     = 16;          // Minimum #characters required to use vector instructions.
5188                                            // Otherwise just do nothing in vector mode.
5189                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5190     const int  log_min_vcnt = exact_log2(min_vcnt);
5191     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5192     nprocessed             += iterations << log_min_vcnt;
5193     assert(iterations == 1, "must be!");
5194 
5195     z_vl(Z_V20, 0+src_off, Z_R0, Rsrc);    // get next 16 characters (single-byte)
5196     z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5197     z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5198     z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
5199 
5200     src_off += min_vcnt;
5201     dst_off += min_vcnt*2;
5202   }
5203 
5204   if ((len-nprocessed) > 8) {
5205     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled scalar loop.
5206                                            // Otherwise just do nothing in unrolled scalar mode.
5207                                            // Must be multiple of 8.
5208     const int  log_min_cnt = exact_log2(min_cnt);
5209     const int  iterations  = (len - nprocessed) >> log_min_cnt;
5210     nprocessed     += iterations << log_min_cnt;
5211 
5212     //---<  avoid loop overhead/ptr increment for small # iterations  >---
5213     if (iterations <= 2) {
5214       clear_reg(Z_R0);
5215       clear_reg(Z_R1);
5216       workreg_clear = true;
5217 
5218       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5219       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5220       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5221       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5222       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5223 
5224       src_off += min_cnt;
5225       dst_off += min_cnt*2;
5226     }
5227 
5228     if (iterations == 2) {
5229       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5230       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5231       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5232       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5233       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5234 
5235       src_off += min_cnt;
5236       dst_off += min_cnt*2;
5237     }
5238 
5239     if (iterations > 2) {
5240       Label      UnrolledLoop;
5241       restore_inputs  = true;
5242 
5243       clear_reg(Z_R0);
5244       clear_reg(Z_R1);
5245       workreg_clear = true;
5246 
5247       z_lgfi(Rix, iterations);
5248       bind(UnrolledLoop);
5249         z_icmh(Z_R0, 5, 0, Rsrc);
5250         z_icmh(Z_R1, 5, 4, Rsrc);
5251         z_icm(Z_R0,  5, 2, Rsrc);
5252         z_icm(Z_R1,  5, 6, Rsrc);
5253         add2reg(Rsrc, min_cnt);
5254 
5255         z_stmg(Z_R0, Z_R1, 0, Rdst);
5256         add2reg(Rdst, min_cnt*2);
5257 
5258         z_brct(Rix, UnrolledLoop);
5259     }
5260   }
5261 
5262   if ((len-nprocessed) > 0) {
5263     switch (len-nprocessed) {
5264       case 8:
5265         if (!workreg_clear) {
5266           clear_reg(Z_R0);
5267           clear_reg(Z_R1);
5268         }
5269         z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5270         z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5271         z_icm(Z_R0,  5, 2+src_off, Rsrc);
5272         z_icm(Z_R1,  5, 6+src_off, Rsrc);
5273         z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5274         break;
5275       case 7:
5276         if (!workreg_clear) {
5277           clear_reg(Z_R0);
5278           clear_reg(Z_R1);
5279         }
5280         clear_reg(Rix);
5281         z_icm(Z_R0,  5, 0+src_off, Rsrc);
5282         z_icm(Z_R1,  5, 2+src_off, Rsrc);
5283         z_icm(Rix,   5, 4+src_off, Rsrc);
5284         z_stm(Z_R0,  Z_R1, 0+dst_off, Rdst);
5285         z_llc(Z_R0,  6+src_off, Z_R0, Rsrc);
5286         z_st(Rix,    8+dst_off, Z_R0, Rdst);
5287         z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
5288         break;
5289       case 6:
5290         if (!workreg_clear) {
5291           clear_reg(Z_R0);
5292           clear_reg(Z_R1);
5293         }
5294         clear_reg(Rix);
5295         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5296         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5297         z_icm(Rix,  5, 4+src_off, Rsrc);
5298         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5299         z_st(Rix,   8+dst_off, Z_R0, Rdst);
5300         break;
5301       case 5:
5302         if (!workreg_clear) {
5303           clear_reg(Z_R0);
5304           clear_reg(Z_R1);
5305         }
5306         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5307         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5308         z_llc(Rix,  4+src_off, Z_R0, Rsrc);
5309         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5310         z_sth(Rix,  8+dst_off, Z_R0, Rdst);
5311         break;
5312       case 4:
5313         if (!workreg_clear) {
5314           clear_reg(Z_R0);
5315           clear_reg(Z_R1);
5316         }
5317         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5318         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5319         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5320         break;
5321       case 3:
5322         if (!workreg_clear) {
5323           clear_reg(Z_R0);
5324         }
5325         z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
5326         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5327         z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
5328         z_st(Z_R0,  0+dst_off, Rdst);
5329         break;
5330       case 2:
5331         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5332         z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
5333         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5334         z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
5335         break;
5336       case 1:
5337         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5338         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5339         break;
5340       default:
5341         guarantee(false, "Impossible");
5342         break;
5343     }
5344     src_off   +=  len-nprocessed;
5345     dst_off   += (len-nprocessed)*2;
5346     nprocessed = len;
5347   }
5348 
5349   //---< restore modified input registers  >---
5350   if ((nprocessed > 0) && restore_inputs) {
5351     z_agfi(Rsrc, -(nprocessed-src_off));
5352     if (nprocessed < 1000000000) { // avoid int overflow
5353       z_agfi(Rdst, -(nprocessed*2-dst_off));
5354     } else {
5355       z_agfi(Rdst, -(nprocessed-dst_off));
5356       z_agfi(Rdst, -nprocessed);
5357     }
5358   }
5359 
5360   BLOCK_COMMENT("} string_inflate_const");
5361   return offset() - block_start;
5362 }
5363 
5364 // Kills src.
has_negatives(Register result,Register src,Register cnt,Register odd_reg,Register even_reg,Register tmp)5365 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
5366                                            Register odd_reg, Register even_reg, Register tmp) {
5367   int block_start = offset();
5368   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
5369   const Register addr = src, mask = tmp;
5370 
5371   BLOCK_COMMENT("has_negatives {");
5372 
5373   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
5374   z_llilf(mask, 0x80808080);
5375   z_lhi(result, 1);        // Assume true.
5376   // Last possible addr for fast loop.
5377   z_lay(odd_reg, -16, Z_R1, src);
5378   z_chi(cnt, 16);
5379   z_brl(Lslow);
5380 
5381   // ind1: index, even_reg: index increment, odd_reg: index limit
5382   z_iihf(mask, 0x80808080);
5383   z_lghi(even_reg, 16);
5384 
5385   bind(Lloop1); // 16 bytes per iteration.
5386   z_lg(Z_R0, Address(addr));
5387   z_lg(Z_R1, Address(addr, 8));
5388   z_ogr(Z_R0, Z_R1);
5389   z_ngr(Z_R0, mask);
5390   z_brne(Ldone);           // If found return 1.
5391   z_brxlg(addr, even_reg, Lloop1);
5392 
5393   bind(Lslow);
5394   z_aghi(odd_reg, 16-1);   // Last possible addr for slow loop.
5395   z_lghi(even_reg, 1);
5396   z_cgr(addr, odd_reg);
5397   z_brh(Lnotfound);
5398 
5399   bind(Lloop2); // 1 byte per iteration.
5400   z_cli(Address(addr), 0x80);
5401   z_brnl(Ldone);           // If found return 1.
5402   z_brxlg(addr, even_reg, Lloop2);
5403 
5404   bind(Lnotfound);
5405   z_lhi(result, 0);
5406 
5407   bind(Ldone);
5408 
5409   BLOCK_COMMENT("} has_negatives");
5410 
5411   return offset() - block_start;
5412 }
5413 
5414 // kill: cnt1, cnt2, odd_reg, even_reg; early clobber: result
string_compare(Register str1,Register str2,Register cnt1,Register cnt2,Register odd_reg,Register even_reg,Register result,int ae)5415 unsigned int MacroAssembler::string_compare(Register str1, Register str2,
5416                                             Register cnt1, Register cnt2,
5417                                             Register odd_reg, Register even_reg, Register result, int ae) {
5418   int block_start = offset();
5419 
5420   assert_different_registers(str1, cnt1, cnt2, odd_reg, even_reg, result);
5421   assert_different_registers(str2, cnt1, cnt2, odd_reg, even_reg, result);
5422 
5423   // If strings are equal up to min length, return the length difference.
5424   const Register diff = result, // Pre-set result with length difference.
5425                  min  = cnt1,   // min number of bytes
5426                  tmp  = cnt2;
5427 
5428   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
5429   // we interchange str1 and str2 in the UL case and negate the result.
5430   // Like this, str1 is always latin1 encoded, except for the UU case.
5431   // In addition, we need 0 (or sign which is 0) extend when using 64 bit register.
5432   const bool used_as_LU = (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL);
5433 
5434   BLOCK_COMMENT("string_compare {");
5435 
5436   if (used_as_LU) {
5437     z_srl(cnt2, 1);
5438   }
5439 
5440   // See if the lengths are different, and calculate min in cnt1.
5441   // Save diff in case we need it for a tie-breaker.
5442 
5443   // diff = cnt1 - cnt2
5444   if (VM_Version::has_DistinctOpnds()) {
5445     z_srk(diff, cnt1, cnt2);
5446   } else {
5447     z_lr(diff, cnt1);
5448     z_sr(diff, cnt2);
5449   }
5450   if (str1 != str2) {
5451     if (VM_Version::has_LoadStoreConditional()) {
5452       z_locr(min, cnt2, Assembler::bcondHigh);
5453     } else {
5454       Label Lskip;
5455       z_brl(Lskip);    // min ok if cnt1 < cnt2
5456       z_lr(min, cnt2); // min = cnt2
5457       bind(Lskip);
5458     }
5459   }
5460 
5461   if (ae == StrIntrinsicNode::UU) {
5462     z_sra(diff, 1);
5463   }
5464   if (str1 != str2) {
5465     Label Ldone;
5466     if (used_as_LU) {
5467       // Loop which searches the first difference character by character.
5468       Label Lloop;
5469       const Register ind1 = Z_R1,
5470                      ind2 = min;
5471       int stride1 = 1, stride2 = 2; // See comment above.
5472 
5473       // ind1: index, even_reg: index increment, odd_reg: index limit
5474       z_llilf(ind1, (unsigned int)(-stride1));
5475       z_lhi(even_reg, stride1);
5476       add2reg(odd_reg, -stride1, min);
5477       clear_reg(ind2); // kills min
5478 
5479       bind(Lloop);
5480       z_brxh(ind1, even_reg, Ldone);
5481       z_llc(tmp, Address(str1, ind1));
5482       z_llh(Z_R0, Address(str2, ind2));
5483       z_ahi(ind2, stride2);
5484       z_sr(tmp, Z_R0);
5485       z_bre(Lloop);
5486 
5487       z_lr(result, tmp);
5488 
5489     } else {
5490       // Use clcle in fast loop (only for same encoding).
5491       z_lgr(Z_R0, str1);
5492       z_lgr(even_reg, str2);
5493       z_llgfr(Z_R1, min);
5494       z_llgfr(odd_reg, min);
5495 
5496       if (ae == StrIntrinsicNode::LL) {
5497         compare_long_ext(Z_R0, even_reg, 0);
5498       } else {
5499         compare_long_uni(Z_R0, even_reg, 0);
5500       }
5501       z_bre(Ldone);
5502       z_lgr(Z_R1, Z_R0);
5503       if (ae == StrIntrinsicNode::LL) {
5504         z_llc(Z_R0, Address(even_reg));
5505         z_llc(result, Address(Z_R1));
5506       } else {
5507         z_llh(Z_R0, Address(even_reg));
5508         z_llh(result, Address(Z_R1));
5509       }
5510       z_sr(result, Z_R0);
5511     }
5512 
5513     // Otherwise, return the difference between the first mismatched chars.
5514     bind(Ldone);
5515   }
5516 
5517   if (ae == StrIntrinsicNode::UL) {
5518     z_lcr(result, result); // Negate result (see note above).
5519   }
5520 
5521   BLOCK_COMMENT("} string_compare");
5522 
5523   return offset() - block_start;
5524 }
5525 
array_equals(bool is_array_equ,Register ary1,Register ary2,Register limit,Register odd_reg,Register even_reg,Register result,bool is_byte)5526 unsigned int MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2, Register limit,
5527                                           Register odd_reg, Register even_reg, Register result, bool is_byte) {
5528   int block_start = offset();
5529 
5530   BLOCK_COMMENT("array_equals {");
5531 
5532   assert_different_registers(ary1, limit, odd_reg, even_reg);
5533   assert_different_registers(ary2, limit, odd_reg, even_reg);
5534 
5535   Label Ldone, Ldone_true, Ldone_false, Lclcle, CLC_template;
5536   int base_offset = 0;
5537 
5538   if (ary1 != ary2) {
5539     if (is_array_equ) {
5540       base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
5541 
5542       // Return true if the same array.
5543       compareU64_and_branch(ary1, ary2, Assembler::bcondEqual, Ldone_true);
5544 
5545       // Return false if one of them is NULL.
5546       compareU64_and_branch(ary1, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5547       compareU64_and_branch(ary2, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5548 
5549       // Load the lengths of arrays.
5550       z_llgf(odd_reg, Address(ary1, arrayOopDesc::length_offset_in_bytes()));
5551 
5552       // Return false if the two arrays are not equal length.
5553       z_c(odd_reg, Address(ary2, arrayOopDesc::length_offset_in_bytes()));
5554       z_brne(Ldone_false);
5555 
5556       // string len in bytes (right operand)
5557       if (!is_byte) {
5558         z_chi(odd_reg, 128);
5559         z_sll(odd_reg, 1); // preserves flags
5560         z_brh(Lclcle);
5561       } else {
5562         compareU32_and_branch(odd_reg, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5563       }
5564     } else {
5565       z_llgfr(odd_reg, limit); // Need to zero-extend prior to using the value.
5566       compareU32_and_branch(limit, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5567     }
5568 
5569 
5570     // Use clc instruction for up to 256 bytes.
5571     {
5572       Register str1_reg = ary1,
5573           str2_reg = ary2;
5574       if (is_array_equ) {
5575         str1_reg = Z_R1;
5576         str2_reg = even_reg;
5577         add2reg(str1_reg, base_offset, ary1); // string addr (left operand)
5578         add2reg(str2_reg, base_offset, ary2); // string addr (right operand)
5579       }
5580       z_ahi(odd_reg, -1); // Clc uses decremented limit. Also compare result to 0.
5581       z_brl(Ldone_true);
5582       // Note: We could jump to the template if equal.
5583 
5584       assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5585       z_exrl(odd_reg, CLC_template);
5586       z_bre(Ldone_true);
5587       // fall through
5588 
5589       bind(Ldone_false);
5590       clear_reg(result);
5591       z_bru(Ldone);
5592 
5593       bind(CLC_template);
5594       z_clc(0, 0, str1_reg, 0, str2_reg);
5595     }
5596 
5597     // Use clcle instruction.
5598     {
5599       bind(Lclcle);
5600       add2reg(even_reg, base_offset, ary2); // string addr (right operand)
5601       add2reg(Z_R0, base_offset, ary1);     // string addr (left operand)
5602 
5603       z_lgr(Z_R1, odd_reg); // string len in bytes (left operand)
5604       if (is_byte) {
5605         compare_long_ext(Z_R0, even_reg, 0);
5606       } else {
5607         compare_long_uni(Z_R0, even_reg, 0);
5608       }
5609       z_lghi(result, 0); // Preserve flags.
5610       z_brne(Ldone);
5611     }
5612   }
5613   // fall through
5614 
5615   bind(Ldone_true);
5616   z_lghi(result, 1); // All characters are equal.
5617   bind(Ldone);
5618 
5619   BLOCK_COMMENT("} array_equals");
5620 
5621   return offset() - block_start;
5622 }
5623 
5624 // kill: haycnt, needlecnt, odd_reg, even_reg; early clobber: result
string_indexof(Register result,Register haystack,Register haycnt,Register needle,Register needlecnt,int needlecntval,Register odd_reg,Register even_reg,int ae)5625 unsigned int MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
5626                                             Register needle, Register needlecnt, int needlecntval,
5627                                             Register odd_reg, Register even_reg, int ae) {
5628   int block_start = offset();
5629 
5630   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
5631   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5632   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
5633   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
5634   Label L_needle1, L_Found, L_NotFound;
5635 
5636   BLOCK_COMMENT("string_indexof {");
5637 
5638   if (needle == haystack) {
5639     z_lhi(result, 0);
5640   } else {
5641 
5642   // Load first character of needle (R0 used by search_string instructions).
5643   if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); }
5644 
5645   // Compute last haystack addr to use if no match gets found.
5646   if (needlecnt != noreg) { // variable needlecnt
5647     z_ahi(needlecnt, -1); // Remaining characters after first one.
5648     z_sr(haycnt, needlecnt); // Compute index succeeding last element to compare.
5649     if (n_csize == 2) { z_sll(needlecnt, 1); } // In bytes.
5650   } else { // constant needlecnt
5651     assert((needlecntval & 0x7fff) == needlecntval, "must be positive simm16 immediate");
5652     // Compute index succeeding last element to compare.
5653     if (needlecntval != 1) { z_ahi(haycnt, 1 - needlecntval); }
5654   }
5655 
5656   z_llgfr(haycnt, haycnt); // Clear high half.
5657   z_lgr(result, haystack); // Final result will be computed from needle start pointer.
5658   if (h_csize == 2) { z_sll(haycnt, 1); } // Scale to number of bytes.
5659   z_agr(haycnt, haystack); // Point to address succeeding last element (haystack+scale*(haycnt-needlecnt+1)).
5660 
5661   if (h_csize != n_csize) {
5662     assert(ae == StrIntrinsicNode::UL, "Invalid encoding");
5663 
5664     if (needlecnt != noreg || needlecntval != 1) {
5665       if (needlecnt != noreg) {
5666         compare32_and_branch(needlecnt, (intptr_t)0, Assembler::bcondEqual, L_needle1);
5667       }
5668 
5669       // Main Loop: UL version (now we have at least 2 characters).
5670       Label L_OuterLoop, L_InnerLoop, L_Skip;
5671       bind(L_OuterLoop); // Search for 1st 2 characters.
5672       z_lgr(Z_R1, haycnt);
5673       MacroAssembler::search_string_uni(Z_R1, result);
5674       z_brc(Assembler::bcondNotFound, L_NotFound);
5675       z_lgr(result, Z_R1);
5676 
5677       z_lghi(Z_R1, n_csize);
5678       z_lghi(even_reg, h_csize);
5679       bind(L_InnerLoop);
5680       z_llgc(odd_reg, Address(needle, Z_R1));
5681       z_ch(odd_reg, Address(result, even_reg));
5682       z_brne(L_Skip);
5683       if (needlecnt != noreg) { z_cr(Z_R1, needlecnt); } else { z_chi(Z_R1, needlecntval - 1); }
5684       z_brnl(L_Found);
5685       z_aghi(Z_R1, n_csize);
5686       z_aghi(even_reg, h_csize);
5687       z_bru(L_InnerLoop);
5688 
5689       bind(L_Skip);
5690       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5691       z_bru(L_OuterLoop);
5692     }
5693 
5694   } else {
5695     const intptr_t needle_bytes = (n_csize == 2) ? ((needlecntval - 1) << 1) : (needlecntval - 1);
5696     Label L_clcle;
5697 
5698     if (needlecnt != noreg || (needlecntval != 1 && needle_bytes <= 256)) {
5699       if (needlecnt != noreg) {
5700         compare32_and_branch(needlecnt, 256, Assembler::bcondHigh, L_clcle);
5701         z_ahi(needlecnt, -1); // remaining bytes -1 (for CLC)
5702         z_brl(L_needle1);
5703       }
5704 
5705       // Main Loop: clc version (now we have at least 2 characters).
5706       Label L_OuterLoop, CLC_template;
5707       bind(L_OuterLoop); // Search for 1st 2 characters.
5708       z_lgr(Z_R1, haycnt);
5709       if (h_csize == 1) {
5710         MacroAssembler::search_string(Z_R1, result);
5711       } else {
5712         MacroAssembler::search_string_uni(Z_R1, result);
5713       }
5714       z_brc(Assembler::bcondNotFound, L_NotFound);
5715       z_lgr(result, Z_R1);
5716 
5717       if (needlecnt != noreg) {
5718         assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5719         z_exrl(needlecnt, CLC_template);
5720       } else {
5721         z_clc(h_csize, needle_bytes -1, Z_R1, n_csize, needle);
5722       }
5723       z_bre(L_Found);
5724       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5725       z_bru(L_OuterLoop);
5726 
5727       if (needlecnt != noreg) {
5728         bind(CLC_template);
5729         z_clc(h_csize, 0, Z_R1, n_csize, needle);
5730       }
5731     }
5732 
5733     if (needlecnt != noreg || needle_bytes > 256) {
5734       bind(L_clcle);
5735 
5736       // Main Loop: clcle version (now we have at least 256 bytes).
5737       Label L_OuterLoop, CLC_template;
5738       bind(L_OuterLoop); // Search for 1st 2 characters.
5739       z_lgr(Z_R1, haycnt);
5740       if (h_csize == 1) {
5741         MacroAssembler::search_string(Z_R1, result);
5742       } else {
5743         MacroAssembler::search_string_uni(Z_R1, result);
5744       }
5745       z_brc(Assembler::bcondNotFound, L_NotFound);
5746 
5747       add2reg(Z_R0, n_csize, needle);
5748       add2reg(even_reg, h_csize, Z_R1);
5749       z_lgr(result, Z_R1);
5750       if (needlecnt != noreg) {
5751         z_llgfr(Z_R1, needlecnt); // needle len in bytes (left operand)
5752         z_llgfr(odd_reg, needlecnt);
5753       } else {
5754         load_const_optimized(Z_R1, needle_bytes);
5755         if (Immediate::is_simm16(needle_bytes)) { z_lghi(odd_reg, needle_bytes); } else { z_lgr(odd_reg, Z_R1); }
5756       }
5757       if (h_csize == 1) {
5758         compare_long_ext(Z_R0, even_reg, 0);
5759       } else {
5760         compare_long_uni(Z_R0, even_reg, 0);
5761       }
5762       z_bre(L_Found);
5763 
5764       if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); } // Reload.
5765       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5766       z_bru(L_OuterLoop);
5767     }
5768   }
5769 
5770   if (needlecnt != noreg || needlecntval == 1) {
5771     bind(L_needle1);
5772 
5773     // Single needle character version.
5774     if (h_csize == 1) {
5775       MacroAssembler::search_string(haycnt, result);
5776     } else {
5777       MacroAssembler::search_string_uni(haycnt, result);
5778     }
5779     z_lgr(result, haycnt);
5780     z_brc(Assembler::bcondFound, L_Found);
5781   }
5782 
5783   bind(L_NotFound);
5784   add2reg(result, -1, haystack); // Return -1.
5785 
5786   bind(L_Found); // Return index (or -1 in fallthrough case).
5787   z_sgr(result, haystack);
5788   if (h_csize == 2) { z_srag(result, result, exact_log2(sizeof(jchar))); }
5789   }
5790   BLOCK_COMMENT("} string_indexof");
5791 
5792   return offset() - block_start;
5793 }
5794 
5795 // early clobber: result
string_indexof_char(Register result,Register haystack,Register haycnt,Register needle,jchar needleChar,Register odd_reg,Register even_reg,bool is_byte)5796 unsigned int MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
5797                                                  Register needle, jchar needleChar, Register odd_reg, Register even_reg, bool is_byte) {
5798   int block_start = offset();
5799 
5800   BLOCK_COMMENT("string_indexof_char {");
5801 
5802   if (needle == haystack) {
5803     z_lhi(result, 0);
5804   } else {
5805 
5806   Label Ldone;
5807 
5808   z_llgfr(odd_reg, haycnt);  // Preset loop ctr/searchrange end.
5809   if (needle == noreg) {
5810     load_const_optimized(Z_R0, (unsigned long)needleChar);
5811   } else {
5812     if (is_byte) {
5813       z_llgcr(Z_R0, needle); // First (and only) needle char.
5814     } else {
5815       z_llghr(Z_R0, needle); // First (and only) needle char.
5816     }
5817   }
5818 
5819   if (!is_byte) {
5820     z_agr(odd_reg, odd_reg); // Calc #bytes to be processed with SRSTU.
5821   }
5822 
5823   z_lgr(even_reg, haystack); // haystack addr
5824   z_agr(odd_reg, haystack);  // First char after range end.
5825   z_lghi(result, -1);
5826 
5827   if (is_byte) {
5828     MacroAssembler::search_string(odd_reg, even_reg);
5829   } else {
5830     MacroAssembler::search_string_uni(odd_reg, even_reg);
5831   }
5832   z_brc(Assembler::bcondNotFound, Ldone);
5833   if (is_byte) {
5834     if (VM_Version::has_DistinctOpnds()) {
5835       z_sgrk(result, odd_reg, haystack);
5836     } else {
5837       z_sgr(odd_reg, haystack);
5838       z_lgr(result, odd_reg);
5839     }
5840   } else {
5841     z_slgr(odd_reg, haystack);
5842     z_srlg(result, odd_reg, exact_log2(sizeof(jchar)));
5843   }
5844 
5845   bind(Ldone);
5846   }
5847   BLOCK_COMMENT("} string_indexof_char");
5848 
5849   return offset() - block_start;
5850 }
5851 #endif
5852 
5853 //-------------------------------------------------
5854 //   Constants (scalar and oop) in constant pool
5855 //-------------------------------------------------
5856 
5857 // Add a non-relocated constant to the CP.
store_const_in_toc(AddressLiteral & val)5858 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
5859   long    value  = val.value();
5860   address tocPos = long_constant(value);
5861 
5862   if (tocPos != NULL) {
5863     int tocOffset = (int)(tocPos - code()->consts()->start());
5864     return tocOffset;
5865   }
5866   // Address_constant returned NULL, so no constant entry has been created.
5867   // In that case, we return a "fatal" offset, just in case that subsequently
5868   // generated access code is executed.
5869   return -1;
5870 }
5871 
5872 // Returns the TOC offset where the address is stored.
5873 // Add a relocated constant to the CP.
store_oop_in_toc(AddressLiteral & oop)5874 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
5875   // Use RelocationHolder::none for the constant pool entry.
5876   // Otherwise we will end up with a failing NativeCall::verify(x),
5877   // where x is the address of the constant pool entry.
5878   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
5879 
5880   if (tocPos != NULL) {
5881     int              tocOffset = (int)(tocPos - code()->consts()->start());
5882     RelocationHolder rsp = oop.rspec();
5883     Relocation      *rel = rsp.reloc();
5884 
5885     // Store toc_offset in relocation, used by call_far_patchable.
5886     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
5887       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
5888     }
5889     // Relocate at the load's pc.
5890     relocate(rsp);
5891 
5892     return tocOffset;
5893   }
5894   // Address_constant returned NULL, so no constant entry has been created
5895   // in that case, we return a "fatal" offset, just in case that subsequently
5896   // generated access code is executed.
5897   return -1;
5898 }
5899 
load_const_from_toc(Register dst,AddressLiteral & a,Register Rtoc)5900 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5901   int     tocOffset = store_const_in_toc(a);
5902   if (tocOffset == -1) return false;
5903   address tocPos    = tocOffset + code()->consts()->start();
5904   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5905   relocate(a.rspec());
5906   load_long_pcrelative(dst, tocPos);
5907   return true;
5908 }
5909 
load_oop_from_toc(Register dst,AddressLiteral & a,Register Rtoc)5910 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5911   int     tocOffset = store_oop_in_toc(a);
5912   if (tocOffset == -1) return false;
5913   address tocPos    = tocOffset + code()->consts()->start();
5914   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5915 
5916   load_addr_pcrelative(dst, tocPos);
5917   return true;
5918 }
5919 
5920 // If the instruction sequence at the given pc is a load_const_from_toc
5921 // sequence, return the value currently stored at the referenced position
5922 // in the TOC.
get_const_from_toc(address pc)5923 intptr_t MacroAssembler::get_const_from_toc(address pc) {
5924 
5925   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5926 
5927   long    offset  = get_load_const_from_toc_offset(pc);
5928   address dataLoc = NULL;
5929   if (is_load_const_from_toc_pcrelative(pc)) {
5930     dataLoc = pc + offset;
5931   } else {
5932     CodeBlob* cb = CodeCache::find_blob_unsafe(pc);   // Else we get assertion if nmethod is zombie.
5933     assert(cb && cb->is_nmethod(), "sanity");
5934     nmethod* nm = (nmethod*)cb;
5935     dataLoc = nm->ctable_begin() + offset;
5936   }
5937   return *(intptr_t *)dataLoc;
5938 }
5939 
5940 // If the instruction sequence at the given pc is a load_const_from_toc
5941 // sequence, copy the passed-in new_data value into the referenced
5942 // position in the TOC.
set_const_in_toc(address pc,unsigned long new_data,CodeBlob * cb)5943 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
5944   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5945 
5946   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
5947   address dataLoc = NULL;
5948   if (is_load_const_from_toc_pcrelative(pc)) {
5949     dataLoc = pc+offset;
5950   } else {
5951     nmethod* nm = CodeCache::find_nmethod(pc);
5952     assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
5953     dataLoc = nm->ctable_begin() + offset;
5954   }
5955   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
5956     *(unsigned long *)dataLoc = new_data;
5957   }
5958 }
5959 
5960 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
5961 // site. Verify by calling is_load_const_from_toc() before!!
5962 // Offset is +/- 2**32 -> use long.
get_load_const_from_toc_offset(address a)5963 long MacroAssembler::get_load_const_from_toc_offset(address a) {
5964   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
5965   //  expected code sequence:
5966   //    z_lgrl(t, simm32);    len = 6
5967   unsigned long inst;
5968   unsigned int  len = get_instruction(a, &inst);
5969   return get_pcrel_offset(inst);
5970 }
5971 
5972 //**********************************************************************************
5973 //  inspection of generated instruction sequences for a particular pattern
5974 //**********************************************************************************
5975 
is_load_const_from_toc_pcrelative(address a)5976 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
5977 #ifdef ASSERT
5978   unsigned long inst;
5979   unsigned int  len = get_instruction(a+2, &inst);
5980   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
5981     const int range = 128;
5982     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
5983     VM_Version::z_SIGSEGV();
5984   }
5985 #endif
5986   // expected code sequence:
5987   //   z_lgrl(t, relAddr32);    len = 6
5988   //TODO: verify accessed data is in CP, if possible.
5989   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
5990 }
5991 
is_load_const_from_toc_call(address a)5992 bool MacroAssembler::is_load_const_from_toc_call(address a) {
5993   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
5994 }
5995 
is_load_const_call(address a)5996 bool MacroAssembler::is_load_const_call(address a) {
5997   return is_load_const(a) && is_call_byregister(a + load_const_size());
5998 }
5999 
6000 //-------------------------------------------------
6001 //   Emitters for some really CICS instructions
6002 //-------------------------------------------------
6003 
move_long_ext(Register dst,Register src,unsigned int pad)6004 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
6005   assert(dst->encoding()%2==0, "must be an even/odd register pair");
6006   assert(src->encoding()%2==0, "must be an even/odd register pair");
6007   assert(pad<256, "must be a padding BYTE");
6008 
6009   Label retry;
6010   bind(retry);
6011   Assembler::z_mvcle(dst, src, pad);
6012   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6013 }
6014 
compare_long_ext(Register left,Register right,unsigned int pad)6015 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
6016   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6017   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6018   assert(pad<256, "must be a padding BYTE");
6019 
6020   Label retry;
6021   bind(retry);
6022   Assembler::z_clcle(left, right, pad, Z_R0);
6023   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6024 }
6025 
compare_long_uni(Register left,Register right,unsigned int pad)6026 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
6027   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6028   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6029   assert(pad<=0xfff, "must be a padding HALFWORD");
6030   assert(VM_Version::has_ETF2(), "instruction must be available");
6031 
6032   Label retry;
6033   bind(retry);
6034   Assembler::z_clclu(left, right, pad, Z_R0);
6035   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6036 }
6037 
search_string(Register end,Register start)6038 void MacroAssembler::search_string(Register end, Register start) {
6039   assert(end->encoding() != 0, "end address must not be in R0");
6040   assert(start->encoding() != 0, "start address must not be in R0");
6041 
6042   Label retry;
6043   bind(retry);
6044   Assembler::z_srst(end, start);
6045   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6046 }
6047 
search_string_uni(Register end,Register start)6048 void MacroAssembler::search_string_uni(Register end, Register start) {
6049   assert(end->encoding() != 0, "end address must not be in R0");
6050   assert(start->encoding() != 0, "start address must not be in R0");
6051   assert(VM_Version::has_ETF3(), "instruction must be available");
6052 
6053   Label retry;
6054   bind(retry);
6055   Assembler::z_srstu(end, start);
6056   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6057 }
6058 
kmac(Register srcBuff)6059 void MacroAssembler::kmac(Register srcBuff) {
6060   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6061   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6062 
6063   Label retry;
6064   bind(retry);
6065   Assembler::z_kmac(Z_R0, srcBuff);
6066   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6067 }
6068 
kimd(Register srcBuff)6069 void MacroAssembler::kimd(Register srcBuff) {
6070   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6071   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6072 
6073   Label retry;
6074   bind(retry);
6075   Assembler::z_kimd(Z_R0, srcBuff);
6076   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6077 }
6078 
klmd(Register srcBuff)6079 void MacroAssembler::klmd(Register srcBuff) {
6080   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6081   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6082 
6083   Label retry;
6084   bind(retry);
6085   Assembler::z_klmd(Z_R0, srcBuff);
6086   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6087 }
6088 
km(Register dstBuff,Register srcBuff)6089 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
6090   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6091   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6092   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6093   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6094   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6095 
6096   Label retry;
6097   bind(retry);
6098   Assembler::z_km(dstBuff, srcBuff);
6099   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6100 }
6101 
kmc(Register dstBuff,Register srcBuff)6102 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
6103   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6104   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6105   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6106   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6107   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6108 
6109   Label retry;
6110   bind(retry);
6111   Assembler::z_kmc(dstBuff, srcBuff);
6112   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6113 }
6114 
cksm(Register crcBuff,Register srcBuff)6115 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
6116   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6117 
6118   Label retry;
6119   bind(retry);
6120   Assembler::z_cksm(crcBuff, srcBuff);
6121   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6122 }
6123 
translate_oo(Register r1,Register r2,uint m3)6124 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
6125   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6126   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6127 
6128   Label retry;
6129   bind(retry);
6130   Assembler::z_troo(r1, r2, m3);
6131   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6132 }
6133 
translate_ot(Register r1,Register r2,uint m3)6134 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
6135   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6136   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6137 
6138   Label retry;
6139   bind(retry);
6140   Assembler::z_trot(r1, r2, m3);
6141   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6142 }
6143 
translate_to(Register r1,Register r2,uint m3)6144 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
6145   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6146   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6147 
6148   Label retry;
6149   bind(retry);
6150   Assembler::z_trto(r1, r2, m3);
6151   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6152 }
6153 
translate_tt(Register r1,Register r2,uint m3)6154 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
6155   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6156   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6157 
6158   Label retry;
6159   bind(retry);
6160   Assembler::z_trtt(r1, r2, m3);
6161   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6162 }
6163 
6164 //---------------------------------------
6165 // Helpers for Intrinsic Emitters
6166 //---------------------------------------
6167 
6168 /**
6169  * uint32_t crc;
6170  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6171  */
fold_byte_crc32(Register crc,Register val,Register table,Register tmp)6172 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
6173   assert_different_registers(crc, table, tmp);
6174   assert_different_registers(val, table);
6175   if (crc == val) {      // Must rotate first to use the unmodified value.
6176     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6177     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6178   } else {
6179     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6180     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6181   }
6182   z_x(crc, Address(table, tmp, 0));
6183 }
6184 
6185 /**
6186  * uint32_t crc;
6187  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6188  */
fold_8bit_crc32(Register crc,Register table,Register tmp)6189 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
6190   fold_byte_crc32(crc, crc, table, tmp);
6191 }
6192 
6193 /**
6194  * Emits code to update CRC-32 with a byte value according to constants in table.
6195  *
6196  * @param [in,out]crc Register containing the crc.
6197  * @param [in]val     Register containing the byte to fold into the CRC.
6198  * @param [in]table   Register containing the table of crc constants.
6199  *
6200  * uint32_t crc;
6201  * val = crc_table[(val ^ crc) & 0xFF];
6202  * crc = val ^ (crc >> 8);
6203  */
update_byte_crc32(Register crc,Register val,Register table)6204 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
6205   z_xr(val, crc);
6206   fold_byte_crc32(crc, val, table, val);
6207 }
6208 
6209 
6210 /**
6211  * @param crc   register containing existing CRC (32-bit)
6212  * @param buf   register pointing to input byte buffer (byte*)
6213  * @param len   register containing number of bytes
6214  * @param table register pointing to CRC table
6215  */
update_byteLoop_crc32(Register crc,Register buf,Register len,Register table,Register data)6216 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
6217   assert_different_registers(crc, buf, len, table, data);
6218 
6219   Label L_mainLoop, L_done;
6220   const int mainLoop_stepping = 1;
6221 
6222   // Process all bytes in a single-byte loop.
6223   z_ltr(len, len);
6224   z_brnh(L_done);
6225 
6226   bind(L_mainLoop);
6227     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6228     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
6229     update_byte_crc32(crc, data, table);
6230     z_brct(len, L_mainLoop);                // Iterate.
6231 
6232   bind(L_done);
6233 }
6234 
6235 /**
6236  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
6237  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
6238  *
6239  */
update_1word_crc32(Register crc,Register buf,Register table,int bufDisp,int bufInc,Register t0,Register t1,Register t2,Register t3)6240 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
6241                                         Register t0,  Register t1,  Register t2,    Register t3) {
6242   // This is what we implement (the DOBIG4 part):
6243   //
6244   // #define DOBIG4 c ^= *++buf4; \
6245   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
6246   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
6247   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
6248   // Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
6249   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
6250   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
6251   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
6252   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
6253 
6254   // XOR crc with next four bytes of buffer.
6255   lgr_if_needed(t0, crc);
6256   z_x(t0, Address(buf, bufDisp));
6257   if (bufInc != 0) {
6258     add2reg(buf, bufInc);
6259   }
6260 
6261   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
6262   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
6263   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
6264   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
6265   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
6266 
6267   // XOR indexed table values to calculate updated crc.
6268   z_ly(t2, Address(table, t2, (intptr_t)ix1));
6269   z_ly(t0, Address(table, t0, (intptr_t)ix3));
6270   z_xy(t2, Address(table, t3, (intptr_t)ix0));
6271   z_xy(t0, Address(table, t1, (intptr_t)ix2));
6272   z_xr(t0, t2);           // Now t0 contains the updated CRC value.
6273   lgr_if_needed(crc, t0);
6274 }
6275 
6276 /**
6277  * @param crc   register containing existing CRC (32-bit)
6278  * @param buf   register pointing to input byte buffer (byte*)
6279  * @param len   register containing number of bytes
6280  * @param table register pointing to CRC table
6281  *
6282  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
6283  */
kernel_crc32_1word(Register crc,Register buf,Register len,Register table,Register t0,Register t1,Register t2,Register t3,bool invertCRC)6284 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
6285                                         Register t0,  Register t1,  Register t2,  Register t3,
6286                                         bool invertCRC) {
6287   assert_different_registers(crc, buf, len, table);
6288 
6289   Label L_mainLoop, L_tail;
6290   Register  data = t0;
6291   Register  ctr  = Z_R0;
6292   const int mainLoop_stepping = 4;
6293   const int log_stepping      = exact_log2(mainLoop_stepping);
6294 
6295   // Don't test for len <= 0 here. This pathological case should not occur anyway.
6296   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
6297   // The situation itself is detected and handled correctly by the conditional branches
6298   // following aghi(len, -stepping) and aghi(len, +stepping).
6299 
6300   if (invertCRC) {
6301     not_(crc, noreg, false);           // 1s complement of crc
6302   }
6303 
6304   // Check for short (<4 bytes) buffer.
6305   z_srag(ctr, len, log_stepping);
6306   z_brnh(L_tail);
6307 
6308   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
6309   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6310 
6311   BIND(L_mainLoop);
6312     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
6313     z_brct(ctr, L_mainLoop); // Iterate.
6314 
6315   z_lrvr(crc, crc);          // Revert byte order back to original.
6316 
6317   // Process last few (<8) bytes of buffer.
6318   BIND(L_tail);
6319   update_byteLoop_crc32(crc, buf, len, table, data);
6320 
6321   if (invertCRC) {
6322     not_(crc, noreg, false);           // 1s complement of crc
6323   }
6324 }
6325 
6326 /**
6327  * @param crc   register containing existing CRC (32-bit)
6328  * @param buf   register pointing to input byte buffer (byte*)
6329  * @param len   register containing number of bytes
6330  * @param table register pointing to CRC table
6331  */
kernel_crc32_1byte(Register crc,Register buf,Register len,Register table,Register t0,Register t1,Register t2,Register t3,bool invertCRC)6332 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
6333                                         Register t0,  Register t1,  Register t2,  Register t3,
6334                                         bool invertCRC) {
6335   assert_different_registers(crc, buf, len, table);
6336   Register data = t0;
6337 
6338   if (invertCRC) {
6339     not_(crc, noreg, false);           // 1s complement of crc
6340   }
6341 
6342   update_byteLoop_crc32(crc, buf, len, table, data);
6343 
6344   if (invertCRC) {
6345     not_(crc, noreg, false);           // 1s complement of crc
6346   }
6347 }
6348 
kernel_crc32_singleByte(Register crc,Register buf,Register len,Register table,Register tmp,bool invertCRC)6349 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
6350                                              bool invertCRC) {
6351   assert_different_registers(crc, buf, len, table, tmp);
6352 
6353   if (invertCRC) {
6354     not_(crc, noreg, false);           // 1s complement of crc
6355   }
6356 
6357   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6358   update_byte_crc32(crc, tmp, table);
6359 
6360   if (invertCRC) {
6361     not_(crc, noreg, false);           // 1s complement of crc
6362   }
6363 }
6364 
kernel_crc32_singleByteReg(Register crc,Register val,Register table,bool invertCRC)6365 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
6366                                                 bool invertCRC) {
6367   assert_different_registers(crc, val, table);
6368 
6369   if (invertCRC) {
6370     not_(crc, noreg, false);           // 1s complement of crc
6371   }
6372 
6373   update_byte_crc32(crc, val, table);
6374 
6375   if (invertCRC) {
6376     not_(crc, noreg, false);           // 1s complement of crc
6377   }
6378 }
6379 
6380 //
6381 // Code for BigInteger::multiplyToLen() intrinsic.
6382 //
6383 
6384 // dest_lo += src1 + src2
6385 // dest_hi += carry1 + carry2
6386 // Z_R7 is destroyed !
add2_with_carry(Register dest_hi,Register dest_lo,Register src1,Register src2)6387 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
6388                                      Register src1, Register src2) {
6389   clear_reg(Z_R7);
6390   z_algr(dest_lo, src1);
6391   z_alcgr(dest_hi, Z_R7);
6392   z_algr(dest_lo, src2);
6393   z_alcgr(dest_hi, Z_R7);
6394 }
6395 
6396 // Multiply 64 bit by 64 bit first loop.
multiply_64_x_64_loop(Register x,Register xstart,Register x_xstart,Register y,Register y_idx,Register z,Register carry,Register product,Register idx,Register kdx)6397 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
6398                                            Register x_xstart,
6399                                            Register y, Register y_idx,
6400                                            Register z,
6401                                            Register carry,
6402                                            Register product,
6403                                            Register idx, Register kdx) {
6404   // jlong carry, x[], y[], z[];
6405   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
6406   //   huge_128 product = y[idx] * x[xstart] + carry;
6407   //   z[kdx] = (jlong)product;
6408   //   carry  = (jlong)(product >>> 64);
6409   // }
6410   // z[xstart] = carry;
6411 
6412   Label L_first_loop, L_first_loop_exit;
6413   Label L_one_x, L_one_y, L_multiply;
6414 
6415   z_aghi(xstart, -1);
6416   z_brl(L_one_x);   // Special case: length of x is 1.
6417 
6418   // Load next two integers of x.
6419   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6420   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6421 
6422 
6423   bind(L_first_loop);
6424 
6425   z_aghi(idx, -1);
6426   z_brl(L_first_loop_exit);
6427   z_aghi(idx, -1);
6428   z_brl(L_one_y);
6429 
6430   // Load next two integers of y.
6431   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
6432   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
6433 
6434 
6435   bind(L_multiply);
6436 
6437   Register multiplicand = product->successor();
6438   Register product_low = multiplicand;
6439 
6440   lgr_if_needed(multiplicand, x_xstart);
6441   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
6442   clear_reg(Z_R7);
6443   z_algr(product_low, carry); // Add carry to result.
6444   z_alcgr(product, Z_R7);     // Add carry of the last addition.
6445   add2reg(kdx, -2);
6446 
6447   // Store result.
6448   z_sllg(Z_R7, kdx, LogBytesPerInt);
6449   reg2mem_opt(product_low, Address(z, Z_R7, 0));
6450   lgr_if_needed(carry, product);
6451   z_bru(L_first_loop);
6452 
6453 
6454   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
6455 
6456   clear_reg(y_idx);
6457   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
6458   z_bru(L_multiply);
6459 
6460 
6461   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
6462 
6463   clear_reg(x_xstart);
6464   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6465   z_bru(L_first_loop);
6466 
6467   bind(L_first_loop_exit);
6468 }
6469 
6470 // Multiply 64 bit by 64 bit and add 128 bit.
multiply_add_128_x_128(Register x_xstart,Register y,Register z,Register yz_idx,Register idx,Register carry,Register product,int offset)6471 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
6472                                             Register z,
6473                                             Register yz_idx, Register idx,
6474                                             Register carry, Register product,
6475                                             int offset) {
6476   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6477   // z[kdx] = (jlong)product;
6478 
6479   Register multiplicand = product->successor();
6480   Register product_low = multiplicand;
6481 
6482   z_sllg(Z_R7, idx, LogBytesPerInt);
6483   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
6484 
6485   lgr_if_needed(multiplicand, x_xstart);
6486   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6487   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
6488 
6489   add2_with_carry(product, product_low, carry, yz_idx);
6490 
6491   z_sllg(Z_R7, idx, LogBytesPerInt);
6492   reg2mem_opt(product_low, Address(z, Z_R7, offset));
6493 
6494 }
6495 
6496 // Multiply 128 bit by 128 bit. Unrolled inner loop.
multiply_128_x_128_loop(Register x_xstart,Register y,Register z,Register yz_idx,Register idx,Register jdx,Register carry,Register product,Register carry2)6497 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
6498                                              Register y, Register z,
6499                                              Register yz_idx, Register idx,
6500                                              Register jdx,
6501                                              Register carry, Register product,
6502                                              Register carry2) {
6503   // jlong carry, x[], y[], z[];
6504   // int kdx = ystart+1;
6505   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6506   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6507   //   z[kdx+idx+1] = (jlong)product;
6508   //   jlong carry2 = (jlong)(product >>> 64);
6509   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6510   //   z[kdx+idx] = (jlong)product;
6511   //   carry = (jlong)(product >>> 64);
6512   // }
6513   // idx += 2;
6514   // if (idx > 0) {
6515   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6516   //   z[kdx+idx] = (jlong)product;
6517   //   carry = (jlong)(product >>> 64);
6518   // }
6519 
6520   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6521 
6522   // scale the index
6523   lgr_if_needed(jdx, idx);
6524   and_imm(jdx, 0xfffffffffffffffcL);
6525   rshift(jdx, 2);
6526 
6527 
6528   bind(L_third_loop);
6529 
6530   z_aghi(jdx, -1);
6531   z_brl(L_third_loop_exit);
6532   add2reg(idx, -4);
6533 
6534   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6535   lgr_if_needed(carry2, product);
6536 
6537   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6538   lgr_if_needed(carry, product);
6539   z_bru(L_third_loop);
6540 
6541 
6542   bind(L_third_loop_exit);  // Handle any left-over operand parts.
6543 
6544   and_imm(idx, 0x3);
6545   z_brz(L_post_third_loop_done);
6546 
6547   Label L_check_1;
6548 
6549   z_aghi(idx, -2);
6550   z_brl(L_check_1);
6551 
6552   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6553   lgr_if_needed(carry, product);
6554 
6555 
6556   bind(L_check_1);
6557 
6558   add2reg(idx, 0x2);
6559   and_imm(idx, 0x1);
6560   z_aghi(idx, -1);
6561   z_brl(L_post_third_loop_done);
6562 
6563   Register   multiplicand = product->successor();
6564   Register   product_low = multiplicand;
6565 
6566   z_sllg(Z_R7, idx, LogBytesPerInt);
6567   clear_reg(yz_idx);
6568   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
6569   lgr_if_needed(multiplicand, x_xstart);
6570   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6571   clear_reg(yz_idx);
6572   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
6573 
6574   add2_with_carry(product, product_low, yz_idx, carry);
6575 
6576   z_sllg(Z_R7, idx, LogBytesPerInt);
6577   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
6578   rshift(product_low, 32);
6579 
6580   lshift(product, 32);
6581   z_ogr(product_low, product);
6582   lgr_if_needed(carry, product_low);
6583 
6584   bind(L_post_third_loop_done);
6585 }
6586 
multiply_to_len(Register x,Register xlen,Register y,Register ylen,Register z,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5)6587 void MacroAssembler::multiply_to_len(Register x, Register xlen,
6588                                      Register y, Register ylen,
6589                                      Register z,
6590                                      Register tmp1, Register tmp2,
6591                                      Register tmp3, Register tmp4,
6592                                      Register tmp5) {
6593   ShortBranchVerifier sbv(this);
6594 
6595   assert_different_registers(x, xlen, y, ylen, z,
6596                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
6597   assert_different_registers(x, xlen, y, ylen, z,
6598                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
6599 
6600   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6601 
6602   // In openJdk, we store the argument as 32-bit value to slot.
6603   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
6604 
6605   const Register idx = tmp1;
6606   const Register kdx = tmp2;
6607   const Register xstart = tmp3;
6608 
6609   const Register y_idx = tmp4;
6610   const Register carry = tmp5;
6611   const Register product  = Z_R0_scratch;
6612   const Register x_xstart = Z_R8;
6613 
6614   // First Loop.
6615   //
6616   //   final static long LONG_MASK = 0xffffffffL;
6617   //   int xstart = xlen - 1;
6618   //   int ystart = ylen - 1;
6619   //   long carry = 0;
6620   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6621   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6622   //     z[kdx] = (int)product;
6623   //     carry = product >>> 32;
6624   //   }
6625   //   z[xstart] = (int)carry;
6626   //
6627 
6628   lgr_if_needed(idx, ylen);  // idx = ylen
6629   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
6630   clear_reg(carry);          // carry = 0
6631 
6632   Label L_done;
6633 
6634   lgr_if_needed(xstart, xlen);
6635   z_aghi(xstart, -1);
6636   z_brl(L_done);
6637 
6638   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6639 
6640   NearLabel L_second_loop;
6641   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
6642 
6643   NearLabel L_carry;
6644   z_aghi(kdx, -1);
6645   z_brz(L_carry);
6646 
6647   // Store lower 32 bits of carry.
6648   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6649   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6650   rshift(carry, 32);
6651   z_aghi(kdx, -1);
6652 
6653 
6654   bind(L_carry);
6655 
6656   // Store upper 32 bits of carry.
6657   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6658   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6659 
6660   // Second and third (nested) loops.
6661   //
6662   // for (int i = xstart-1; i >= 0; i--) { // Second loop
6663   //   carry = 0;
6664   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6665   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6666   //                    (z[k] & LONG_MASK) + carry;
6667   //     z[k] = (int)product;
6668   //     carry = product >>> 32;
6669   //   }
6670   //   z[i] = (int)carry;
6671   // }
6672   //
6673   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6674 
6675   const Register jdx = tmp1;
6676 
6677   bind(L_second_loop);
6678 
6679   clear_reg(carry);           // carry = 0;
6680   lgr_if_needed(jdx, ylen);   // j = ystart+1
6681 
6682   z_aghi(xstart, -1);         // i = xstart-1;
6683   z_brl(L_done);
6684 
6685   // Use free slots in the current stackframe instead of push/pop.
6686   Address zsave(Z_SP, _z_abi(carg_1));
6687   reg2mem_opt(z, zsave);
6688 
6689 
6690   Label L_last_x;
6691 
6692   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6693   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
6694   z_aghi(xstart, -1);                           // i = xstart-1;
6695   z_brl(L_last_x);
6696 
6697   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6698   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6699 
6700 
6701   Label L_third_loop_prologue;
6702 
6703   bind(L_third_loop_prologue);
6704 
6705   Address xsave(Z_SP, _z_abi(carg_2));
6706   Address xlensave(Z_SP, _z_abi(carg_3));
6707   Address ylensave(Z_SP, _z_abi(carg_4));
6708 
6709   reg2mem_opt(x, xsave);
6710   reg2mem_opt(xstart, xlensave);
6711   reg2mem_opt(ylen, ylensave);
6712 
6713 
6714   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6715 
6716   mem2reg_opt(z, zsave);
6717   mem2reg_opt(x, xsave);
6718   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
6719   mem2reg_opt(ylen, ylensave);
6720 
6721   add2reg(tmp3, 1, xlen);
6722   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6723   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6724   z_aghi(tmp3, -1);
6725   z_brl(L_done);
6726 
6727   rshift(carry, 32);
6728   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6729   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6730   z_bru(L_second_loop);
6731 
6732   // Next infrequent code is moved outside loops.
6733   bind(L_last_x);
6734 
6735   clear_reg(x_xstart);
6736   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6737   z_bru(L_third_loop_prologue);
6738 
6739   bind(L_done);
6740 
6741   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6742 }
6743 
6744 #ifndef PRODUCT
6745 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
asm_assert(bool check_equal,const char * msg,int id)6746 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
6747   Label ok;
6748   if (check_equal) {
6749     z_bre(ok);
6750   } else {
6751     z_brne(ok);
6752   }
6753   stop(msg, id);
6754   bind(ok);
6755 }
6756 
6757 // Assert if CC indicates "low".
asm_assert_low(const char * msg,int id)6758 void MacroAssembler::asm_assert_low(const char *msg, int id) {
6759   Label ok;
6760   z_brnl(ok);
6761   stop(msg, id);
6762   bind(ok);
6763 }
6764 
6765 // Assert if CC indicates "high".
asm_assert_high(const char * msg,int id)6766 void MacroAssembler::asm_assert_high(const char *msg, int id) {
6767   Label ok;
6768   z_brnh(ok);
6769   stop(msg, id);
6770   bind(ok);
6771 }
6772 
6773 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
6774 // generate non-relocatable code.
asm_assert_static(bool check_equal,const char * msg,int id)6775 void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
6776   Label ok;
6777   if (check_equal) { z_bre(ok); }
6778   else             { z_brne(ok); }
6779   stop_static(msg, id);
6780   bind(ok);
6781 }
6782 
asm_assert_mems_zero(bool check_equal,bool allow_relocation,int size,int64_t mem_offset,Register mem_base,const char * msg,int id)6783 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
6784                                           Register mem_base, const char* msg, int id) {
6785   switch (size) {
6786     case 4:
6787       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
6788       break;
6789     case 8:
6790       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
6791       break;
6792     default:
6793       ShouldNotReachHere();
6794   }
6795   if (allow_relocation) { asm_assert(check_equal, msg, id); }
6796   else                  { asm_assert_static(check_equal, msg, id); }
6797 }
6798 
6799 // Check the condition
6800 //   expected_size == FP - SP
6801 // after transformation:
6802 //   expected_size - FP + SP == 0
6803 // Destroys Register expected_size if no tmp register is passed.
asm_assert_frame_size(Register expected_size,Register tmp,const char * msg,int id)6804 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
6805   if (tmp == noreg) {
6806     tmp = expected_size;
6807   } else {
6808     if (tmp != expected_size) {
6809       z_lgr(tmp, expected_size);
6810     }
6811     z_algr(tmp, Z_SP);
6812     z_slg(tmp, 0, Z_R0, Z_SP);
6813     asm_assert_eq(msg, id);
6814   }
6815 }
6816 #endif // !PRODUCT
6817 
verify_thread()6818 void MacroAssembler::verify_thread() {
6819   if (VerifyThread) {
6820     unimplemented("", 117);
6821   }
6822 }
6823 
6824 // Plausibility check for oops.
verify_oop(Register oop,const char * msg)6825 void MacroAssembler::verify_oop(Register oop, const char* msg) {
6826   if (!VerifyOops) return;
6827 
6828   BLOCK_COMMENT("verify_oop {");
6829   Register tmp = Z_R0;
6830   unsigned int nbytes_save = 5*BytesPerWord;
6831   address entry = StubRoutines::verify_oop_subroutine_entry_address();
6832 
6833   save_return_pc();
6834   push_frame_abi160(nbytes_save);
6835   z_stmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
6836 
6837   z_lgr(Z_ARG2, oop);
6838   load_const(Z_ARG1, (address) msg);
6839   load_const(Z_R1, entry);
6840   z_lg(Z_R1, 0, Z_R1);
6841   call_c(Z_R1);
6842 
6843   z_lmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
6844   pop_frame();
6845   restore_return_pc();
6846 
6847   BLOCK_COMMENT("} verify_oop ");
6848 }
6849 
6850 const char* MacroAssembler::stop_types[] = {
6851   "stop",
6852   "untested",
6853   "unimplemented",
6854   "shouldnotreachhere"
6855 };
6856 
stop_on_request(const char * tp,const char * msg)6857 static void stop_on_request(const char* tp, const char* msg) {
6858   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
6859   guarantee(false, "Z assembly code requires stop: %s", msg);
6860 }
6861 
stop(int type,const char * msg,int id)6862 void MacroAssembler::stop(int type, const char* msg, int id) {
6863   BLOCK_COMMENT(err_msg("stop: %s {", msg));
6864 
6865   // Setup arguments.
6866   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6867   load_const(Z_ARG2, (void*) msg);
6868   get_PC(Z_R14);     // Following code pushes a frame without entering a new function. Use current pc as return address.
6869   save_return_pc();  // Saves return pc Z_R14.
6870   push_frame_abi160(0);
6871   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6872   // The plain disassembler does not recognize illtrap. It instead displays
6873   // a 32-bit value. Issueing two illtraps assures the disassembler finds
6874   // the proper beginning of the next instruction.
6875   z_illtrap(); // Illegal instruction.
6876   z_illtrap(); // Illegal instruction.
6877 
6878   BLOCK_COMMENT(" } stop");
6879 }
6880 
6881 // Special version of stop() for code size reduction.
6882 // Reuses the previously generated call sequence, if any.
6883 // Generates the call sequence on its own, if necessary.
6884 // Note: This code will work only in non-relocatable code!
6885 //       The relative address of the data elements (arg1, arg2) must not change.
6886 //       The reentry point must not move relative to it's users. This prerequisite
6887 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
6888 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
stop_chain(address reentry,int type,const char * msg,int id,bool allow_relocation)6889 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
6890   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
6891 
6892   // Setup arguments.
6893   if (allow_relocation) {
6894     // Relocatable version (for comparison purposes). Remove after some time.
6895     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6896     load_const(Z_ARG2, (void*) msg);
6897   } else {
6898     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
6899     load_absolute_address(Z_ARG2, (address)msg);
6900   }
6901   if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
6902     BLOCK_COMMENT("branch to reentry point:");
6903     z_brc(bcondAlways, reentry);
6904   } else {
6905     BLOCK_COMMENT("reentry point:");
6906     reentry = pc();      // Re-entry point for subsequent stop calls.
6907     save_return_pc();    // Saves return pc Z_R14.
6908     push_frame_abi160(0);
6909     if (allow_relocation) {
6910       reentry = NULL;    // Prevent reentry if code relocation is allowed.
6911       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6912     } else {
6913       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6914     }
6915     z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
6916   }
6917   BLOCK_COMMENT(" } stop_chain");
6918 
6919   return reentry;
6920 }
6921 
6922 // Special version of stop() for code size reduction.
6923 // Assumes constant relative addresses for data and runtime call.
stop_static(int type,const char * msg,int id)6924 void MacroAssembler::stop_static(int type, const char* msg, int id) {
6925   stop_chain(NULL, type, msg, id, false);
6926 }
6927 
stop_subroutine()6928 void MacroAssembler::stop_subroutine() {
6929   unimplemented("stop_subroutine", 710);
6930 }
6931 
6932 // Prints msg to stdout from within generated code..
warn(const char * msg)6933 void MacroAssembler::warn(const char* msg) {
6934   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
6935   load_absolute_address(Z_R1, (address) warning);
6936   load_absolute_address(Z_ARG1, (address) msg);
6937   (void) call(Z_R1);
6938   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
6939 }
6940 
6941 #ifndef PRODUCT
6942 
6943 // Write pattern 0x0101010101010101 in region [low-before, high+after].
zap_from_to(Register low,Register high,Register val,Register addr,int before,int after)6944 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
6945   if (!ZapEmptyStackFields) return;
6946   BLOCK_COMMENT("zap memory region {");
6947   load_const_optimized(val, 0x0101010101010101);
6948   int size = before + after;
6949   if (low == high && size < 5 && size > 0) {
6950     int offset = -before*BytesPerWord;
6951     for (int i = 0; i < size; ++i) {
6952       z_stg(val, Address(low, offset));
6953       offset +=(1*BytesPerWord);
6954     }
6955   } else {
6956     add2reg(addr, -before*BytesPerWord, low);
6957     if (after) {
6958 #ifdef ASSERT
6959       jlong check = after * BytesPerWord;
6960       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
6961 #endif
6962       add2reg(high, after * BytesPerWord);
6963     }
6964     NearLabel loop;
6965     bind(loop);
6966     z_stg(val, Address(addr));
6967     add2reg(addr, 8);
6968     compare64_and_branch(addr, high, bcondNotHigh, loop);
6969     if (after) {
6970       add2reg(high, -after * BytesPerWord);
6971     }
6972   }
6973   BLOCK_COMMENT("} zap memory region");
6974 }
6975 #endif // !PRODUCT
6976 
SkipIfEqual(MacroAssembler * masm,const bool * flag_addr,bool value,Register _rscratch)6977 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
6978   _masm = masm;
6979   _masm->load_absolute_address(_rscratch, (address)flag_addr);
6980   _masm->load_and_test_int(_rscratch, Address(_rscratch));
6981   if (value) {
6982     _masm->z_brne(_label); // Skip if true, i.e. != 0.
6983   } else {
6984     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
6985   }
6986 }
6987 
~SkipIfEqual()6988 SkipIfEqual::~SkipIfEqual() {
6989   _masm->bind(_label);
6990 }
6991