1 /*
2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.
7  *
8  * This code is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  * version 2 for more details (a copy is included in the LICENSE file that
12  * accompanied this code).
13  *
14  * You should have received a copy of the GNU General Public License version
15  * 2 along with this work; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
19  * or visit www.oracle.com if you need additional information or have any
20  * questions.
21  *
22  */
23 
24 #include "precompiled.hpp"
25 
26 #include "gc/shenandoah/shenandoahNumberSeq.hpp"
27 #include "runtime/atomic.hpp"
28 
HdrSeq()29 HdrSeq::HdrSeq() {
30   _hdr = NEW_C_HEAP_ARRAY(int*, MagBuckets, mtInternal);
31   for (int c = 0; c < MagBuckets; c++) {
32     _hdr[c] = NULL;
33   }
34 }
35 
~HdrSeq()36 HdrSeq::~HdrSeq() {
37   for (int c = 0; c < MagBuckets; c++) {
38     int* sub = _hdr[c];
39     if (sub != NULL) {
40       FREE_C_HEAP_ARRAY(int, sub);
41     }
42   }
43   FREE_C_HEAP_ARRAY(int*, _hdr);
44 }
45 
add(double val)46 void HdrSeq::add(double val) {
47   if (val < 0) {
48     assert (false, "value (%8.2f) is not negative", val);
49     val = 0;
50   }
51 
52   NumberSeq::add(val);
53 
54   double v = val;
55   int mag;
56   if (v > 0) {
57     mag = 0;
58     while (v > 1) {
59       mag++;
60       v /= 10;
61     }
62     while (v < 0.1) {
63       mag--;
64       v *= 10;
65     }
66   } else {
67     mag = MagMinimum;
68   }
69 
70   int bucket = -MagMinimum + mag;
71   int sub_bucket = (int) (v * ValBuckets);
72 
73   // Defensively saturate for product bits:
74   if (bucket < 0) {
75     assert (false, "bucket index (%d) underflow for value (%8.2f)", bucket, val);
76     bucket = 0;
77   }
78 
79   if (bucket >= MagBuckets) {
80     assert (false, "bucket index (%d) overflow for value (%8.2f)", bucket, val);
81     bucket = MagBuckets - 1;
82   }
83 
84   if (sub_bucket < 0) {
85     assert (false, "sub-bucket index (%d) underflow for value (%8.2f)", sub_bucket, val);
86     sub_bucket = 0;
87   }
88 
89   if (sub_bucket >= ValBuckets) {
90     assert (false, "sub-bucket index (%d) overflow for value (%8.2f)", sub_bucket, val);
91     sub_bucket = ValBuckets - 1;
92   }
93 
94   int* b = _hdr[bucket];
95   if (b == NULL) {
96     b = NEW_C_HEAP_ARRAY(int, ValBuckets, mtInternal);
97     for (int c = 0; c < ValBuckets; c++) {
98       b[c] = 0;
99     }
100     _hdr[bucket] = b;
101   }
102   b[sub_bucket]++;
103 }
104 
percentile(double level) const105 double HdrSeq::percentile(double level) const {
106   // target should be non-zero to find the first sample
107   int target = MAX2(1, (int) (level * num() / 100));
108   int cnt = 0;
109   for (int mag = 0; mag < MagBuckets; mag++) {
110     if (_hdr[mag] != NULL) {
111       for (int val = 0; val < ValBuckets; val++) {
112         cnt += _hdr[mag][val];
113         if (cnt >= target) {
114           return pow(10.0, MagMinimum + mag) * val / ValBuckets;
115         }
116       }
117     }
118   }
119   return maximum();
120 }
121 
BinaryMagnitudeSeq()122 BinaryMagnitudeSeq::BinaryMagnitudeSeq() {
123   _mags = NEW_C_HEAP_ARRAY(size_t, BitsPerSize_t, mtInternal);
124   clear();
125 }
126 
~BinaryMagnitudeSeq()127 BinaryMagnitudeSeq::~BinaryMagnitudeSeq() {
128   FREE_C_HEAP_ARRAY(size_t, _mags);
129 }
130 
clear()131 void BinaryMagnitudeSeq::clear() {
132   for (int c = 0; c < BitsPerSize_t; c++) {
133     _mags[c] = 0;
134   }
135   _sum = 0;
136 }
137 
add(size_t val)138 void BinaryMagnitudeSeq::add(size_t val) {
139   Atomic::add(val, &_sum);
140 
141   int mag = log2_intptr(val) + 1;
142 
143   // Defensively saturate for product bits:
144   if (mag < 0) {
145     assert (false, "bucket index (%d) underflow for value (" SIZE_FORMAT ")", mag, val);
146     mag = 0;
147   }
148 
149   if (mag >= BitsPerSize_t) {
150     assert (false, "bucket index (%d) overflow for value (" SIZE_FORMAT ")", mag, val);
151     mag = BitsPerSize_t - 1;
152   }
153 
154   Atomic::add((size_t)1, &_mags[mag]);
155 }
156 
level(int level) const157 size_t BinaryMagnitudeSeq::level(int level) const {
158   if (0 <= level && level < BitsPerSize_t) {
159     return _mags[level];
160   } else {
161     return 0;
162   }
163 }
164 
num() const165 size_t BinaryMagnitudeSeq::num() const {
166   size_t r = 0;
167   for (int c = 0; c < BitsPerSize_t; c++) {
168     r += _mags[c];
169   }
170   return r;
171 }
172 
sum() const173 size_t BinaryMagnitudeSeq::sum() const {
174   return _sum;
175 }
176 
min_level() const177 int BinaryMagnitudeSeq::min_level() const {
178   for (int c = 0; c < BitsPerSize_t; c++) {
179     if (_mags[c] != 0) {
180       return c;
181     }
182   }
183   return BitsPerSize_t - 1;
184 }
185 
max_level() const186 int BinaryMagnitudeSeq::max_level() const {
187   for (int c = BitsPerSize_t - 1; c > 0; c--) {
188     if (_mags[c] != 0) {
189       return c;
190     }
191   }
192   return 0;
193 }
194