1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
27 
28 #include "runtime/globals.hpp"
29 #include "utilities/globalDefinitions.hpp"
30 #include "utilities/macros.hpp"
31 
32 #include <new>
33 
34 class AllocFailStrategy {
35 public:
36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
37 };
38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
39 
40 // The virtual machine must never call one of the implicitly declared
41 // global allocation or deletion functions.  (Such calls may result in
42 // link-time or run-time errors.)  For convenience and documentation of
43 // intended use, classes in the virtual machine may be derived from one
44 // of the following allocation classes, some of which define allocation
45 // and deletion functions.
46 // Note: std::malloc and std::free should never called directly.
47 
48 //
49 // For objects allocated in the resource area (see resourceArea.hpp).
50 // - ResourceObj
51 //
52 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
53 // - CHeapObj
54 //
55 // For objects allocated on the stack.
56 // - StackObj
57 //
58 // For classes used as name spaces.
59 // - AllStatic
60 //
61 // For classes in Metaspace (class data)
62 // - MetaspaceObj
63 //
64 // The printable subclasses are used for debugging and define virtual
65 // member functions for printing. Classes that avoid allocating the
66 // vtbl entries in the objects should therefore not be the printable
67 // subclasses.
68 //
69 // The following macros and function should be used to allocate memory
70 // directly in the resource area or in the C-heap, The _OBJ variants
71 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
72 // objects which are not inherited from CHeapObj, note constructor and
73 // destructor are not called. The preferable way to allocate objects
74 // is using the new operator.
75 //
76 // WARNING: The array variant must only be used for a homogenous array
77 // where all objects are of the exact type specified. If subtypes are
78 // stored in the array then must pay attention to calling destructors
79 // at needed.
80 //
81 //   NEW_RESOURCE_ARRAY(type, size)
82 //   NEW_RESOURCE_OBJ(type)
83 //   NEW_C_HEAP_ARRAY(type, size)
84 //   NEW_C_HEAP_OBJ(type, memflags)
85 //   FREE_C_HEAP_ARRAY(type, old)
86 //   FREE_C_HEAP_OBJ(objname, type, memflags)
87 //   char* AllocateHeap(size_t size, const char* name);
88 //   void  FreeHeap(void* p);
89 //
90 
91 // In non product mode we introduce a super class for all allocation classes
92 // that supports printing.
93 // We avoid the superclass in product mode to save space.
94 
95 #ifdef PRODUCT
96 #define ALLOCATION_SUPER_CLASS_SPEC
97 #else
98 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
99 class AllocatedObj {
100  public:
101   // Printing support
102   void print() const;
103   void print_value() const;
104 
105   virtual void print_on(outputStream* st) const;
106   virtual void print_value_on(outputStream* st) const;
107 };
108 #endif
109 
110 
111 /*
112  * Memory types
113  */
114 enum MemoryType {
115   // Memory type by sub systems. It occupies lower byte.
116   mtJavaHeap,          // Java heap
117   mtClass,             // memory class for Java classes
118   mtThread,            // memory for thread objects
119   mtThreadStack,
120   mtCode,              // memory for generated code
121   mtGC,                // memory for GC
122   mtCompiler,          // memory for compiler
123   mtInternal,          // memory used by VM, but does not belong to
124                        // any of above categories, and not used for
125                        // native memory tracking
126   mtOther,             // memory not used by VM
127   mtSymbol,            // symbol
128   mtNMT,               // memory used by native memory tracking
129   mtClassShared,       // class data sharing
130   mtChunk,             // chunk that holds content of arenas
131   mtTest,              // Test type for verifying NMT
132   mtTracing,           // memory used for Tracing
133   mtLogging,           // memory for logging
134   mtArguments,         // memory for argument processing
135   mtModule,            // memory for module processing
136   mtSynchronizer,      // memory for synchronization primitives
137   mtSafepoint,         // memory for safepoint support
138   mtNone,              // undefined
139   mt_number_of_types   // number of memory types (mtDontTrack
140                        // is not included as validate type)
141 };
142 
143 typedef MemoryType MEMFLAGS;
144 
145 
146 #if INCLUDE_NMT
147 
148 extern bool NMT_track_callsite;
149 
150 #else
151 
152 const bool NMT_track_callsite = false;
153 
154 #endif // INCLUDE_NMT
155 
156 class NativeCallStack;
157 
158 
159 char* AllocateHeap(size_t size,
160                    MEMFLAGS flags,
161                    const NativeCallStack& stack,
162                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
163 char* AllocateHeap(size_t size,
164                    MEMFLAGS flags,
165                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
166 
167 char* ReallocateHeap(char *old,
168                      size_t size,
169                      MEMFLAGS flag,
170                      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
171 
172 void FreeHeap(void* p);
173 
174 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
175  public:
operator new(size_t size)176   ALWAYSINLINE void* operator new(size_t size) throw() {
177     return (void*)AllocateHeap(size, F);
178   }
179 
operator new(size_t size,const NativeCallStack & stack)180   ALWAYSINLINE void* operator new(size_t size,
181                                   const NativeCallStack& stack) throw() {
182     return (void*)AllocateHeap(size, F, stack);
183   }
184 
operator new(size_t size,const std::nothrow_t &,const NativeCallStack & stack)185   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
186                                   const NativeCallStack& stack) throw() {
187     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
188   }
189 
operator new(size_t size,const std::nothrow_t &)190   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
191     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
192   }
193 
operator new[](size_t size)194   ALWAYSINLINE void* operator new[](size_t size) throw() {
195     return (void*)AllocateHeap(size, F);
196   }
197 
operator new[](size_t size,const NativeCallStack & stack)198   ALWAYSINLINE void* operator new[](size_t size,
199                                   const NativeCallStack& stack) throw() {
200     return (void*)AllocateHeap(size, F, stack);
201   }
202 
operator new[](size_t size,const std::nothrow_t &,const NativeCallStack & stack)203   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
204                                     const NativeCallStack& stack) throw() {
205     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
206   }
207 
operator new[](size_t size,const std::nothrow_t &)208   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
209     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
210   }
211 
operator delete(void * p)212   void  operator delete(void* p)     { FreeHeap(p); }
operator delete[](void * p)213   void  operator delete [] (void* p) { FreeHeap(p); }
214 };
215 
216 // Base class for objects allocated on the stack only.
217 // Calling new or delete will result in fatal error.
218 
219 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
220  private:
221   void* operator new(size_t size) throw();
222   void* operator new [](size_t size) throw();
223 #ifdef __IBMCPP__
224  public:
225 #endif
226   void  operator delete(void* p);
227   void  operator delete [](void* p);
228 };
229 
230 // Base class for objects stored in Metaspace.
231 // Calling delete will result in fatal error.
232 //
233 // Do not inherit from something with a vptr because this class does
234 // not introduce one.  This class is used to allocate both shared read-only
235 // and shared read-write classes.
236 //
237 
238 class ClassLoaderData;
239 class MetaspaceClosure;
240 
241 class MetaspaceObj {
242   // When CDS is enabled, all shared metaspace objects are mapped
243   // into a single contiguous memory block, so we can use these
244   // two pointers to quickly determine if something is in the
245   // shared metaspace.
246   //
247   // When CDS is not enabled, both pointers are set to NULL.
248   static void* _shared_metaspace_base; // (inclusive) low address
249   static void* _shared_metaspace_top;  // (exclusive) high address
250 
251  public:
252 
253   // Returns true if the pointer points to a valid MetaspaceObj. A valid
254   // MetaspaceObj is MetaWord-aligned and contained within either
255   // non-shared or shared metaspace.
256   static bool is_valid(const MetaspaceObj* p);
257 
is_shared(const MetaspaceObj * p)258   static bool is_shared(const MetaspaceObj* p) {
259     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
260     // both be NULL and all values of p will be rejected quickly.
261     return (((void*)p) < _shared_metaspace_top && ((void*)p) >= _shared_metaspace_base);
262   }
is_shared() const263   bool is_shared() const { return MetaspaceObj::is_shared(this); }
264 
265   void print_address_on(outputStream* st) const;  // nonvirtual address printing
266 
set_shared_metaspace_range(void * base,void * top)267   static void set_shared_metaspace_range(void* base, void* top) {
268     _shared_metaspace_base = base;
269     _shared_metaspace_top = top;
270   }
shared_metaspace_base()271   static void* shared_metaspace_base() { return _shared_metaspace_base; }
shared_metaspace_top()272   static void* shared_metaspace_top()  { return _shared_metaspace_top;  }
273 
274 #define METASPACE_OBJ_TYPES_DO(f) \
275   f(Class) \
276   f(Symbol) \
277   f(TypeArrayU1) \
278   f(TypeArrayU2) \
279   f(TypeArrayU4) \
280   f(TypeArrayU8) \
281   f(TypeArrayOther) \
282   f(Method) \
283   f(ConstMethod) \
284   f(MethodData) \
285   f(ConstantPool) \
286   f(ConstantPoolCache) \
287   f(Annotations) \
288   f(MethodCounters)
289 
290 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
291 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
292 
293   enum Type {
294     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
295     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
296     _number_of_types
297   };
298 
type_name(Type type)299   static const char * type_name(Type type) {
300     switch(type) {
301     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
302     default:
303       ShouldNotReachHere();
304       return NULL;
305     }
306   }
307 
array_type(size_t elem_size)308   static MetaspaceObj::Type array_type(size_t elem_size) {
309     switch (elem_size) {
310     case 1: return TypeArrayU1Type;
311     case 2: return TypeArrayU2Type;
312     case 4: return TypeArrayU4Type;
313     case 8: return TypeArrayU8Type;
314     default:
315       return TypeArrayOtherType;
316     }
317   }
318 
319   void* operator new(size_t size, ClassLoaderData* loader_data,
320                      size_t word_size,
321                      Type type, Thread* thread) throw();
322                      // can't use TRAPS from this header file.
operator delete(void * p)323   void operator delete(void* p) { ShouldNotCallThis(); }
324 
325   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
326   // that should be read-only by default. See symbol.hpp for an example. This function
327   // is used by the templates in metaspaceClosure.hpp
is_read_only_by_default()328   static bool is_read_only_by_default() { return false; }
329 };
330 
331 // Base class for classes that constitute name spaces.
332 
333 class Arena;
334 
335 class AllStatic {
336  public:
AllStatic()337   AllStatic()  { ShouldNotCallThis(); }
~AllStatic()338   ~AllStatic() { ShouldNotCallThis(); }
339 };
340 
341 
342 extern char* resource_allocate_bytes(size_t size,
343     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
344 extern char* resource_allocate_bytes(Thread* thread, size_t size,
345     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
346 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
347     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
348 extern void resource_free_bytes( char *old, size_t size );
349 
350 //----------------------------------------------------------------------
351 // Base class for objects allocated in the resource area per default.
352 // Optionally, objects may be allocated on the C heap with
353 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
354 // ResourceObj's can be allocated within other objects, but don't use
355 // new or delete (allocation_type is unknown).  If new is used to allocate,
356 // use delete to deallocate.
357 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
358  public:
359   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
360   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
361 #ifdef ASSERT
362  private:
363   // When this object is allocated on stack the new() operator is not
364   // called but garbage on stack may look like a valid allocation_type.
365   // Store negated 'this' pointer when new() is called to distinguish cases.
366   // Use second array's element for verification value to distinguish garbage.
367   uintptr_t _allocation_t[2];
368   bool is_type_set() const;
369  public:
370   allocation_type get_allocation_type() const;
allocated_on_stack() const371   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
allocated_on_res_area() const372   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
allocated_on_C_heap() const373   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
allocated_on_arena() const374   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
375   ResourceObj(); // default constructor
376   ResourceObj(const ResourceObj& r); // default copy constructor
377   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
378   ~ResourceObj();
379 #endif // ASSERT
380 
381  public:
382   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
383   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
384   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
385       allocation_type type, MEMFLAGS flags) throw();
386   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
387       allocation_type type, MEMFLAGS flags) throw();
388 
389   void* operator new(size_t size, Arena *arena) throw();
390 
391   void* operator new [](size_t size, Arena *arena) throw();
392 
operator new(size_t size)393   void* operator new(size_t size) throw() {
394       address res = (address)resource_allocate_bytes(size);
395       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
396       return res;
397   }
398 
operator new(size_t size,const std::nothrow_t & nothrow_constant)399   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
400       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
401       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
402       return res;
403   }
404 
operator new[](size_t size)405   void* operator new [](size_t size) throw() {
406       address res = (address)resource_allocate_bytes(size);
407       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
408       return res;
409   }
410 
operator new[](size_t size,const std::nothrow_t & nothrow_constant)411   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
412       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
413       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
414       return res;
415   }
416 
417   void  operator delete(void* p);
418   void  operator delete [](void* p);
419 };
420 
421 // One of the following macros must be used when allocating an array
422 // or object to determine whether it should reside in the C heap on in
423 // the resource area.
424 
425 #define NEW_RESOURCE_ARRAY(type, size)\
426   (type*) resource_allocate_bytes((size) * sizeof(type))
427 
428 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
429   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
430 
431 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
432   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
433 
434 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
435   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
436 
437 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
438   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
439 
440 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
441   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
442                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
443 
444 #define FREE_RESOURCE_ARRAY(type, old, size)\
445   resource_free_bytes((char*)(old), (size) * sizeof(type))
446 
447 #define FREE_FAST(old)\
448     /* nop */
449 
450 #define NEW_RESOURCE_OBJ(type)\
451   NEW_RESOURCE_ARRAY(type, 1)
452 
453 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
454   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
455 
456 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
457   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
458 
459 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
460   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
461 
462 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
463   (type*) (AllocateHeap((size) * sizeof(type), memflags))
464 
465 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
466   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
467 
468 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
469   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
470 
471 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
472   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
473 
474 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
475   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
476 
477 #define FREE_C_HEAP_ARRAY(type, old) \
478   FreeHeap((char*)(old))
479 
480 // allocate type in heap without calling ctor
481 #define NEW_C_HEAP_OBJ(type, memflags)\
482   NEW_C_HEAP_ARRAY(type, 1, memflags)
483 
484 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
485   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
486 
487 // deallocate obj of type in heap without calling dtor
488 #define FREE_C_HEAP_OBJ(objname)\
489   FreeHeap((char*)objname);
490 
491 // for statistics
492 #ifndef PRODUCT
493 class AllocStats : StackObj {
494   julong start_mallocs, start_frees;
495   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
496  public:
497   AllocStats();
498 
499   julong num_mallocs();    // since creation of receiver
500   julong alloc_bytes();
501   julong num_frees();
502   julong free_bytes();
503   julong resource_bytes();
504   void   print();
505 };
506 #endif
507 
508 
509 //------------------------------ReallocMark---------------------------------
510 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
511 // ReallocMark, which is declared in the same scope as the reallocated
512 // pointer.  Any operation that could __potentially__ cause a reallocation
513 // should check the ReallocMark.
514 class ReallocMark: public StackObj {
515 protected:
516   NOT_PRODUCT(int _nesting;)
517 
518 public:
519   ReallocMark()   PRODUCT_RETURN;
520   void check()    PRODUCT_RETURN;
521 };
522 
523 // Helper class to allocate arrays that may become large.
524 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
525 // and uses mapped memory for larger allocations.
526 // Most OS mallocs do something similar but Solaris malloc does not revert
527 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
528 // is set so that we always use malloc except for Solaris where we set the
529 // limit to get mapped memory.
530 template <class E>
531 class ArrayAllocator : public AllStatic {
532  private:
533   static bool should_use_malloc(size_t length);
534 
535   static E* allocate_malloc(size_t length, MEMFLAGS flags);
536   static E* allocate_mmap(size_t length, MEMFLAGS flags);
537 
538   static void free_malloc(E* addr, size_t length);
539   static void free_mmap(E* addr, size_t length);
540 
541  public:
542   static E* allocate(size_t length, MEMFLAGS flags);
543   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
544   static void free(E* addr, size_t length);
545 };
546 
547 // Uses mmaped memory for all allocations. All allocations are initially
548 // zero-filled. No pre-touching.
549 template <class E>
550 class MmapArrayAllocator : public AllStatic {
551  private:
552   static size_t size_for(size_t length);
553 
554  public:
555   static E* allocate_or_null(size_t length, MEMFLAGS flags);
556   static E* allocate(size_t length, MEMFLAGS flags);
557   static void free(E* addr, size_t length);
558 };
559 
560 // Uses malloc:ed memory for all allocations.
561 template <class E>
562 class MallocArrayAllocator : public AllStatic {
563  public:
564   static size_t size_for(size_t length);
565 
566   static E* allocate(size_t length, MEMFLAGS flags);
567   static void free(E* addr);
568 };
569 
570 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP
571