1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/objArrayKlass.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/connode.hpp"
34 #include "opto/convertnode.hpp"
35 #include "opto/loopnode.hpp"
36 #include "opto/machnode.hpp"
37 #include "opto/movenode.hpp"
38 #include "opto/narrowptrnode.hpp"
39 #include "opto/mulnode.hpp"
40 #include "opto/phaseX.hpp"
41 #include "opto/regmask.hpp"
42 #include "opto/runtime.hpp"
43 #include "opto/subnode.hpp"
44 #include "utilities/vmError.hpp"
45 
46 // Portions of code courtesy of Clifford Click
47 
48 // Optimization - Graph Style
49 
50 //=============================================================================
51 //------------------------------Value------------------------------------------
52 // Compute the type of the RegionNode.
Value(PhaseGVN * phase) const53 const Type* RegionNode::Value(PhaseGVN* phase) const {
54   for( uint i=1; i<req(); ++i ) {       // For all paths in
55     Node *n = in(i);            // Get Control source
56     if( !n ) continue;          // Missing inputs are TOP
57     if( phase->type(n) == Type::CONTROL )
58       return Type::CONTROL;
59   }
60   return Type::TOP;             // All paths dead?  Then so are we
61 }
62 
63 //------------------------------Identity---------------------------------------
64 // Check for Region being Identity.
Identity(PhaseGVN * phase)65 Node* RegionNode::Identity(PhaseGVN* phase) {
66   // Cannot have Region be an identity, even if it has only 1 input.
67   // Phi users cannot have their Region input folded away for them,
68   // since they need to select the proper data input
69   return this;
70 }
71 
72 //------------------------------merge_region-----------------------------------
73 // If a Region flows into a Region, merge into one big happy merge.  This is
74 // hard to do if there is stuff that has to happen
merge_region(RegionNode * region,PhaseGVN * phase)75 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
76   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
77     return NULL;
78   Node *progress = NULL;        // Progress flag
79   PhaseIterGVN *igvn = phase->is_IterGVN();
80 
81   uint rreq = region->req();
82   for( uint i = 1; i < rreq; i++ ) {
83     Node *r = region->in(i);
84     if( r && r->Opcode() == Op_Region && // Found a region?
85         r->in(0) == r &&        // Not already collapsed?
86         r != region &&          // Avoid stupid situations
87         r->outcnt() == 2 ) {    // Self user and 'region' user only?
88       assert(!r->as_Region()->has_phi(), "no phi users");
89       if( !progress ) {         // No progress
90         if (region->has_phi()) {
91           return NULL;        // Only flatten if no Phi users
92           // igvn->hash_delete( phi );
93         }
94         igvn->hash_delete( region );
95         progress = region;      // Making progress
96       }
97       igvn->hash_delete( r );
98 
99       // Append inputs to 'r' onto 'region'
100       for( uint j = 1; j < r->req(); j++ ) {
101         // Move an input from 'r' to 'region'
102         region->add_req(r->in(j));
103         r->set_req(j, phase->C->top());
104         // Update phis of 'region'
105         //for( uint k = 0; k < max; k++ ) {
106         //  Node *phi = region->out(k);
107         //  if( phi->is_Phi() ) {
108         //    phi->add_req(phi->in(i));
109         //  }
110         //}
111 
112         rreq++;                 // One more input to Region
113       } // Found a region to merge into Region
114       igvn->_worklist.push(r);
115       // Clobber pointer to the now dead 'r'
116       region->set_req(i, phase->C->top());
117     }
118   }
119 
120   return progress;
121 }
122 
123 
124 
125 //--------------------------------has_phi--------------------------------------
126 // Helper function: Return any PhiNode that uses this region or NULL
has_phi() const127 PhiNode* RegionNode::has_phi() const {
128   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
129     Node* phi = fast_out(i);
130     if (phi->is_Phi()) {   // Check for Phi users
131       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
132       return phi->as_Phi();  // this one is good enough
133     }
134   }
135 
136   return NULL;
137 }
138 
139 
140 //-----------------------------has_unique_phi----------------------------------
141 // Helper function: Return the only PhiNode that uses this region or NULL
has_unique_phi() const142 PhiNode* RegionNode::has_unique_phi() const {
143   // Check that only one use is a Phi
144   PhiNode* only_phi = NULL;
145   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
146     Node* phi = fast_out(i);
147     if (phi->is_Phi()) {   // Check for Phi users
148       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
149       if (only_phi == NULL) {
150         only_phi = phi->as_Phi();
151       } else {
152         return NULL;  // multiple phis
153       }
154     }
155   }
156 
157   return only_phi;
158 }
159 
160 
161 //------------------------------check_phi_clipping-----------------------------
162 // Helper function for RegionNode's identification of FP clipping
163 // Check inputs to the Phi
check_phi_clipping(PhiNode * phi,ConNode * & min,uint & min_idx,ConNode * & max,uint & max_idx,Node * & val,uint & val_idx)164 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
165   min     = NULL;
166   max     = NULL;
167   val     = NULL;
168   min_idx = 0;
169   max_idx = 0;
170   val_idx = 0;
171   uint  phi_max = phi->req();
172   if( phi_max == 4 ) {
173     for( uint j = 1; j < phi_max; ++j ) {
174       Node *n = phi->in(j);
175       int opcode = n->Opcode();
176       switch( opcode ) {
177       case Op_ConI:
178         {
179           if( min == NULL ) {
180             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
181             min_idx = j;
182           } else {
183             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
184             max_idx = j;
185             if( min->get_int() > max->get_int() ) {
186               // Swap min and max
187               ConNode *temp;
188               uint     temp_idx;
189               temp     = min;     min     = max;     max     = temp;
190               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
191             }
192           }
193         }
194         break;
195       default:
196         {
197           val = n;
198           val_idx = j;
199         }
200         break;
201       }
202     }
203   }
204   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
205 }
206 
207 
208 //------------------------------check_if_clipping------------------------------
209 // Helper function for RegionNode's identification of FP clipping
210 // Check that inputs to Region come from two IfNodes,
211 //
212 //            If
213 //      False    True
214 //       If        |
215 //  False  True    |
216 //    |      |     |
217 //  RegionNode_inputs
218 //
check_if_clipping(const RegionNode * region,IfNode * & bot_if,IfNode * & top_if)219 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
220   top_if = NULL;
221   bot_if = NULL;
222 
223   // Check control structure above RegionNode for (if  ( if  ) )
224   Node *in1 = region->in(1);
225   Node *in2 = region->in(2);
226   Node *in3 = region->in(3);
227   // Check that all inputs are projections
228   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
229     Node *in10 = in1->in(0);
230     Node *in20 = in2->in(0);
231     Node *in30 = in3->in(0);
232     // Check that #1 and #2 are ifTrue and ifFalse from same If
233     if( in10 != NULL && in10->is_If() &&
234         in20 != NULL && in20->is_If() &&
235         in30 != NULL && in30->is_If() && in10 == in20 &&
236         (in1->Opcode() != in2->Opcode()) ) {
237       Node  *in100 = in10->in(0);
238       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
239       // Check that control for in10 comes from other branch of IF from in3
240       if( in1000 != NULL && in1000->is_If() &&
241           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
242         // Control pattern checks
243         top_if = (IfNode*)in1000;
244         bot_if = (IfNode*)in10;
245       }
246     }
247   }
248 
249   return (top_if != NULL);
250 }
251 
252 
253 //------------------------------check_convf2i_clipping-------------------------
254 // Helper function for RegionNode's identification of FP clipping
255 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
check_convf2i_clipping(PhiNode * phi,uint idx,ConvF2INode * & convf2i,Node * min,Node * max)256 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
257   convf2i = NULL;
258 
259   // Check for the RShiftNode
260   Node *rshift = phi->in(idx);
261   assert( rshift, "Previous checks ensure phi input is present");
262   if( rshift->Opcode() != Op_RShiftI )  { return false; }
263 
264   // Check for the LShiftNode
265   Node *lshift = rshift->in(1);
266   assert( lshift, "Previous checks ensure phi input is present");
267   if( lshift->Opcode() != Op_LShiftI )  { return false; }
268 
269   // Check for the ConvF2INode
270   Node *conv = lshift->in(1);
271   if( conv->Opcode() != Op_ConvF2I ) { return false; }
272 
273   // Check that shift amounts are only to get sign bits set after F2I
274   jint max_cutoff     = max->get_int();
275   jint min_cutoff     = min->get_int();
276   jint left_shift     = lshift->in(2)->get_int();
277   jint right_shift    = rshift->in(2)->get_int();
278   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
279   if( left_shift != right_shift ||
280       0 > left_shift || left_shift >= BitsPerJavaInteger ||
281       max_post_shift < max_cutoff ||
282       max_post_shift < -min_cutoff ) {
283     // Shifts are necessary but current transformation eliminates them
284     return false;
285   }
286 
287   // OK to return the result of ConvF2I without shifting
288   convf2i = (ConvF2INode*)conv;
289   return true;
290 }
291 
292 
293 //------------------------------check_compare_clipping-------------------------
294 // Helper function for RegionNode's identification of FP clipping
check_compare_clipping(bool less_than,IfNode * iff,ConNode * limit,Node * & input)295 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
296   Node *i1 = iff->in(1);
297   if ( !i1->is_Bool() ) { return false; }
298   BoolNode *bool1 = i1->as_Bool();
299   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
300   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
301   const Node *cmpF = bool1->in(1);
302   if( cmpF->Opcode() != Op_CmpF )      { return false; }
303   // Test that the float value being compared against
304   // is equivalent to the int value used as a limit
305   Node *nodef = cmpF->in(2);
306   if( nodef->Opcode() != Op_ConF ) { return false; }
307   jfloat conf = nodef->getf();
308   jint   coni = limit->get_int();
309   if( ((int)conf) != coni )        { return false; }
310   input = cmpF->in(1);
311   return true;
312 }
313 
314 //------------------------------is_unreachable_region--------------------------
315 // Find if the Region node is reachable from the root.
is_unreachable_region(PhaseGVN * phase) const316 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
317   assert(req() == 2, "");
318 
319   // First, cut the simple case of fallthrough region when NONE of
320   // region's phis references itself directly or through a data node.
321   uint max = outcnt();
322   uint i;
323   for (i = 0; i < max; i++) {
324     Node* phi = raw_out(i);
325     if (phi != NULL && phi->is_Phi()) {
326       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
327       if (phi->outcnt() == 0)
328         continue; // Safe case - no loops
329       if (phi->outcnt() == 1) {
330         Node* u = phi->raw_out(0);
331         // Skip if only one use is an other Phi or Call or Uncommon trap.
332         // It is safe to consider this case as fallthrough.
333         if (u != NULL && (u->is_Phi() || u->is_CFG()))
334           continue;
335       }
336       // Check when phi references itself directly or through an other node.
337       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
338         break; // Found possible unsafe data loop.
339     }
340   }
341   if (i >= max)
342     return false; // An unsafe case was NOT found - don't need graph walk.
343 
344   // Unsafe case - check if the Region node is reachable from root.
345   ResourceMark rm;
346 
347   Arena *a = Thread::current()->resource_area();
348   Node_List nstack(a);
349   VectorSet visited(a);
350 
351   // Mark all control nodes reachable from root outputs
352   Node *n = (Node*)phase->C->root();
353   nstack.push(n);
354   visited.set(n->_idx);
355   while (nstack.size() != 0) {
356     n = nstack.pop();
357     uint max = n->outcnt();
358     for (uint i = 0; i < max; i++) {
359       Node* m = n->raw_out(i);
360       if (m != NULL && m->is_CFG()) {
361         if (phase->eqv(m, this)) {
362           return false; // We reached the Region node - it is not dead.
363         }
364         if (!visited.test_set(m->_idx))
365           nstack.push(m);
366       }
367     }
368   }
369 
370   return true; // The Region node is unreachable - it is dead.
371 }
372 
try_clean_mem_phi(PhaseGVN * phase)373 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
374   // Incremental inlining + PhaseStringOpts sometimes produce:
375   //
376   // cmpP with 1 top input
377   //           |
378   //          If
379   //         /  \
380   //   IfFalse  IfTrue  /- Some Node
381   //         \  /      /    /
382   //        Region    / /-MergeMem
383   //             \---Phi
384   //
385   //
386   // It's expected by PhaseStringOpts that the Region goes away and is
387   // replaced by If's control input but because there's still a Phi,
388   // the Region stays in the graph. The top input from the cmpP is
389   // propagated forward and a subgraph that is useful goes away. The
390   // code below replaces the Phi with the MergeMem so that the Region
391   // is simplified.
392 
393   PhiNode* phi = has_unique_phi();
394   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
395     MergeMemNode* m = NULL;
396     assert(phi->req() == 3, "same as region");
397     for (uint i = 1; i < 3; ++i) {
398       Node *mem = phi->in(i);
399       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
400         // Nothing is control-dependent on path #i except the region itself.
401         m = mem->as_MergeMem();
402         uint j = 3 - i;
403         Node* other = phi->in(j);
404         if (other && other == m->base_memory()) {
405           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
406           // This will allow the diamond to collapse completely.
407           phase->is_IterGVN()->replace_node(phi, m);
408           return true;
409         }
410       }
411     }
412   }
413   return false;
414 }
415 
416 //------------------------------Ideal------------------------------------------
417 // Return a node which is more "ideal" than the current node.  Must preserve
418 // the CFG, but we can still strip out dead paths.
Ideal(PhaseGVN * phase,bool can_reshape)419 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
420   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
421   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
422 
423   // Check for RegionNode with no Phi users and both inputs come from either
424   // arm of the same IF.  If found, then the control-flow split is useless.
425   bool has_phis = false;
426   if (can_reshape) {            // Need DU info to check for Phi users
427     has_phis = (has_phi() != NULL);       // Cache result
428     if (has_phis && try_clean_mem_phi(phase)) {
429       has_phis = false;
430     }
431 
432     if (!has_phis) {            // No Phi users?  Nothing merging?
433       for (uint i = 1; i < req()-1; i++) {
434         Node *if1 = in(i);
435         if( !if1 ) continue;
436         Node *iff = if1->in(0);
437         if( !iff || !iff->is_If() ) continue;
438         for( uint j=i+1; j<req(); j++ ) {
439           if( in(j) && in(j)->in(0) == iff &&
440               if1->Opcode() != in(j)->Opcode() ) {
441             // Add the IF Projections to the worklist. They (and the IF itself)
442             // will be eliminated if dead.
443             phase->is_IterGVN()->add_users_to_worklist(iff);
444             set_req(i, iff->in(0));// Skip around the useless IF diamond
445             set_req(j, NULL);
446             return this;      // Record progress
447           }
448         }
449       }
450     }
451   }
452 
453   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
454   // degrades to a copy.
455   bool add_to_worklist = false;
456   bool modified = false;
457   int cnt = 0;                  // Count of values merging
458   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
459   int del_it = 0;               // The last input path we delete
460   // For all inputs...
461   for( uint i=1; i<req(); ++i ){// For all paths in
462     Node *n = in(i);            // Get the input
463     if( n != NULL ) {
464       // Remove useless control copy inputs
465       if( n->is_Region() && n->as_Region()->is_copy() ) {
466         set_req(i, n->nonnull_req());
467         modified = true;
468         i--;
469         continue;
470       }
471       if( n->is_Proj() ) {      // Remove useless rethrows
472         Node *call = n->in(0);
473         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
474           set_req(i, call->in(0));
475           modified = true;
476           i--;
477           continue;
478         }
479       }
480       if( phase->type(n) == Type::TOP ) {
481         set_req(i, NULL);       // Ignore TOP inputs
482         modified = true;
483         i--;
484         continue;
485       }
486       cnt++;                    // One more value merging
487 
488     } else if (can_reshape) {   // Else found dead path with DU info
489       PhaseIterGVN *igvn = phase->is_IterGVN();
490       del_req(i);               // Yank path from self
491       del_it = i;
492       uint max = outcnt();
493       DUIterator j;
494       bool progress = true;
495       while(progress) {         // Need to establish property over all users
496         progress = false;
497         for (j = outs(); has_out(j); j++) {
498           Node *n = out(j);
499           if( n->req() != req() && n->is_Phi() ) {
500             assert( n->in(0) == this, "" );
501             igvn->hash_delete(n); // Yank from hash before hacking edges
502             n->set_req_X(i,NULL,igvn);// Correct DU info
503             n->del_req(i);        // Yank path from Phis
504             if( max != outcnt() ) {
505               progress = true;
506               j = refresh_out_pos(j);
507               max = outcnt();
508             }
509           }
510         }
511       }
512       add_to_worklist = true;
513       i--;
514     }
515   }
516 
517   if (can_reshape && cnt == 1) {
518     // Is it dead loop?
519     // If it is LoopNopde it had 2 (+1 itself) inputs and
520     // one of them was cut. The loop is dead if it was EntryContol.
521     // Loop node may have only one input because entry path
522     // is removed in PhaseIdealLoop::Dominators().
523     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
524     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
525                              (del_it == 0 && is_unreachable_region(phase)))) ||
526         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
527       // Yes,  the region will be removed during the next step below.
528       // Cut the backedge input and remove phis since no data paths left.
529       // We don't cut outputs to other nodes here since we need to put them
530       // on the worklist.
531       PhaseIterGVN *igvn = phase->is_IterGVN();
532       if (in(1)->outcnt() == 1) {
533         igvn->_worklist.push(in(1));
534       }
535       del_req(1);
536       cnt = 0;
537       assert( req() == 1, "no more inputs expected" );
538       uint max = outcnt();
539       bool progress = true;
540       Node *top = phase->C->top();
541       DUIterator j;
542       while(progress) {
543         progress = false;
544         for (j = outs(); has_out(j); j++) {
545           Node *n = out(j);
546           if( n->is_Phi() ) {
547             assert( igvn->eqv(n->in(0), this), "" );
548             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
549             // Break dead loop data path.
550             // Eagerly replace phis with top to avoid phis copies generation.
551             igvn->replace_node(n, top);
552             if( max != outcnt() ) {
553               progress = true;
554               j = refresh_out_pos(j);
555               max = outcnt();
556             }
557           }
558         }
559       }
560       add_to_worklist = true;
561     }
562   }
563   if (add_to_worklist) {
564     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
565   }
566 
567   if( cnt <= 1 ) {              // Only 1 path in?
568     set_req(0, NULL);           // Null control input for region copy
569     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
570       // No inputs or all inputs are NULL.
571       return NULL;
572     } else if (can_reshape) {   // Optimization phase - remove the node
573       PhaseIterGVN *igvn = phase->is_IterGVN();
574       // Strip mined (inner) loop is going away, remove outer loop.
575       if (is_CountedLoop() &&
576           as_Loop()->is_strip_mined()) {
577         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
578         Node* outer_out = as_CountedLoop()->outer_loop_exit();
579         if (outer_sfpt != NULL && outer_out != NULL) {
580           Node* in = outer_sfpt->in(0);
581           igvn->replace_node(outer_out, in);
582           LoopNode* outer = as_CountedLoop()->outer_loop();
583           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
584         }
585       }
586       Node *parent_ctrl;
587       if( cnt == 0 ) {
588         assert( req() == 1, "no inputs expected" );
589         // During IGVN phase such region will be subsumed by TOP node
590         // so region's phis will have TOP as control node.
591         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
592         // Also set other user's input to top.
593         parent_ctrl = phase->C->top();
594       } else {
595         // The fallthrough case since we already checked dead loops above.
596         parent_ctrl = in(1);
597         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
598         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
599       }
600       if (!add_to_worklist)
601         igvn->add_users_to_worklist(this); // Check for further allowed opts
602       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
603         Node* n = last_out(i);
604         igvn->hash_delete(n); // Remove from worklist before modifying edges
605         if( n->is_Phi() ) {   // Collapse all Phis
606           // Eagerly replace phis to avoid copies generation.
607           Node* in;
608           if( cnt == 0 ) {
609             assert( n->req() == 1, "No data inputs expected" );
610             in = parent_ctrl; // replaced by top
611           } else {
612             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
613             in = n->in(1);               // replaced by unique input
614             if( n->as_Phi()->is_unsafe_data_reference(in) )
615               in = phase->C->top();      // replaced by top
616           }
617           igvn->replace_node(n, in);
618         }
619         else if( n->is_Region() ) { // Update all incoming edges
620           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
621           uint uses_found = 0;
622           for( uint k=1; k < n->req(); k++ ) {
623             if( n->in(k) == this ) {
624               n->set_req(k, parent_ctrl);
625               uses_found++;
626             }
627           }
628           if( uses_found > 1 ) { // (--i) done at the end of the loop.
629             i -= (uses_found - 1);
630           }
631         }
632         else {
633           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
634           n->set_req(0, parent_ctrl);
635         }
636 #ifdef ASSERT
637         for( uint k=0; k < n->req(); k++ ) {
638           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
639         }
640 #endif
641       }
642       // Remove the RegionNode itself from DefUse info
643       igvn->remove_dead_node(this);
644       return NULL;
645     }
646     return this;                // Record progress
647   }
648 
649 
650   // If a Region flows into a Region, merge into one big happy merge.
651   if (can_reshape) {
652     Node *m = merge_region(this, phase);
653     if (m != NULL)  return m;
654   }
655 
656   // Check if this region is the root of a clipping idiom on floats
657   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
658     // Check that only one use is a Phi and that it simplifies to two constants +
659     PhiNode* phi = has_unique_phi();
660     if (phi != NULL) {          // One Phi user
661       // Check inputs to the Phi
662       ConNode *min;
663       ConNode *max;
664       Node    *val;
665       uint     min_idx;
666       uint     max_idx;
667       uint     val_idx;
668       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
669         IfNode *top_if;
670         IfNode *bot_if;
671         if( check_if_clipping( this, bot_if, top_if ) ) {
672           // Control pattern checks, now verify compares
673           Node   *top_in = NULL;   // value being compared against
674           Node   *bot_in = NULL;
675           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
676               check_compare_clipping( false, top_if, max, top_in ) ) {
677             if( bot_in == top_in ) {
678               PhaseIterGVN *gvn = phase->is_IterGVN();
679               assert( gvn != NULL, "Only had DefUse info in IterGVN");
680               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
681 
682               // Check for the ConvF2INode
683               ConvF2INode *convf2i;
684               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
685                 convf2i->in(1) == bot_in ) {
686                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
687                 // max test
688                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
689                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
690                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
691                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
692                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
693                 // min test
694                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
695                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
696                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
697                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
698                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
699                 // update input edges to region node
700                 set_req_X( min_idx, if_min, gvn );
701                 set_req_X( max_idx, if_max, gvn );
702                 set_req_X( val_idx, ifF,    gvn );
703                 // remove unnecessary 'LShiftI; RShiftI' idiom
704                 gvn->hash_delete(phi);
705                 phi->set_req_X( val_idx, convf2i, gvn );
706                 gvn->hash_find_insert(phi);
707                 // Return transformed region node
708                 return this;
709               }
710             }
711           }
712         }
713       }
714     }
715   }
716 
717   return modified ? this : NULL;
718 }
719 
720 
721 
out_RegMask() const722 const RegMask &RegionNode::out_RegMask() const {
723   return RegMask::Empty;
724 }
725 
726 // Find the one non-null required input.  RegionNode only
nonnull_req() const727 Node *Node::nonnull_req() const {
728   assert( is_Region(), "" );
729   for( uint i = 1; i < _cnt; i++ )
730     if( in(i) )
731       return in(i);
732   ShouldNotReachHere();
733   return NULL;
734 }
735 
736 
737 //=============================================================================
738 // note that these functions assume that the _adr_type field is flattened
hash() const739 uint PhiNode::hash() const {
740   const Type* at = _adr_type;
741   return TypeNode::hash() + (at ? at->hash() : 0);
742 }
cmp(const Node & n) const743 uint PhiNode::cmp( const Node &n ) const {
744   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
745 }
746 static inline
flatten_phi_adr_type(const TypePtr * at)747 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
748   if (at == NULL || at == TypePtr::BOTTOM)  return at;
749   return Compile::current()->alias_type(at)->adr_type();
750 }
751 
752 //----------------------------make---------------------------------------------
753 // create a new phi with edges matching r and set (initially) to x
make(Node * r,Node * x,const Type * t,const TypePtr * at)754 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
755   uint preds = r->req();   // Number of predecessor paths
756   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
757   PhiNode* p = new PhiNode(r, t, at);
758   for (uint j = 1; j < preds; j++) {
759     // Fill in all inputs, except those which the region does not yet have
760     if (r->in(j) != NULL)
761       p->init_req(j, x);
762   }
763   return p;
764 }
make(Node * r,Node * x)765 PhiNode* PhiNode::make(Node* r, Node* x) {
766   const Type*    t  = x->bottom_type();
767   const TypePtr* at = NULL;
768   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
769   return make(r, x, t, at);
770 }
make_blank(Node * r,Node * x)771 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
772   const Type*    t  = x->bottom_type();
773   const TypePtr* at = NULL;
774   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
775   return new PhiNode(r, t, at);
776 }
777 
778 
779 //------------------------slice_memory-----------------------------------------
780 // create a new phi with narrowed memory type
slice_memory(const TypePtr * adr_type) const781 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
782   PhiNode* mem = (PhiNode*) clone();
783   *(const TypePtr**)&mem->_adr_type = adr_type;
784   // convert self-loops, or else we get a bad graph
785   for (uint i = 1; i < req(); i++) {
786     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
787   }
788   mem->verify_adr_type();
789   return mem;
790 }
791 
792 //------------------------split_out_instance-----------------------------------
793 // Split out an instance type from a bottom phi.
split_out_instance(const TypePtr * at,PhaseIterGVN * igvn) const794 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
795   const TypeOopPtr *t_oop = at->isa_oopptr();
796   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
797   const TypePtr *t = adr_type();
798   assert(type() == Type::MEMORY &&
799          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
800           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
801           t->is_oopptr()->cast_to_exactness(true)
802            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
803            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
804          "bottom or raw memory required");
805 
806   // Check if an appropriate node already exists.
807   Node *region = in(0);
808   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
809     Node* use = region->fast_out(k);
810     if( use->is_Phi()) {
811       PhiNode *phi2 = use->as_Phi();
812       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
813         return phi2;
814       }
815     }
816   }
817   Compile *C = igvn->C;
818   Arena *a = Thread::current()->resource_area();
819   Node_Array node_map = new Node_Array(a);
820   Node_Stack stack(a, C->live_nodes() >> 4);
821   PhiNode *nphi = slice_memory(at);
822   igvn->register_new_node_with_optimizer( nphi );
823   node_map.map(_idx, nphi);
824   stack.push((Node *)this, 1);
825   while(!stack.is_empty()) {
826     PhiNode *ophi = stack.node()->as_Phi();
827     uint i = stack.index();
828     assert(i >= 1, "not control edge");
829     stack.pop();
830     nphi = node_map[ophi->_idx]->as_Phi();
831     for (; i < ophi->req(); i++) {
832       Node *in = ophi->in(i);
833       if (in == NULL || igvn->type(in) == Type::TOP)
834         continue;
835       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
836       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
837       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
838         opt = node_map[optphi->_idx];
839         if (opt == NULL) {
840           stack.push(ophi, i);
841           nphi = optphi->slice_memory(at);
842           igvn->register_new_node_with_optimizer( nphi );
843           node_map.map(optphi->_idx, nphi);
844           ophi = optphi;
845           i = 0; // will get incremented at top of loop
846           continue;
847         }
848       }
849       nphi->set_req(i, opt);
850     }
851   }
852   return nphi;
853 }
854 
855 //------------------------verify_adr_type--------------------------------------
856 #ifdef ASSERT
verify_adr_type(VectorSet & visited,const TypePtr * at) const857 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
858   if (visited.test_set(_idx))  return;  //already visited
859 
860   // recheck constructor invariants:
861   verify_adr_type(false);
862 
863   // recheck local phi/phi consistency:
864   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
865          "adr_type must be consistent across phi nest");
866 
867   // walk around
868   for (uint i = 1; i < req(); i++) {
869     Node* n = in(i);
870     if (n == NULL)  continue;
871     const Node* np = in(i);
872     if (np->is_Phi()) {
873       np->as_Phi()->verify_adr_type(visited, at);
874     } else if (n->bottom_type() == Type::TOP
875                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
876       // ignore top inputs
877     } else {
878       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
879       // recheck phi/non-phi consistency at leaves:
880       assert((nat != NULL) == (at != NULL), "");
881       assert(nat == at || nat == TypePtr::BOTTOM,
882              "adr_type must be consistent at leaves of phi nest");
883     }
884   }
885 }
886 
887 // Verify a whole nest of phis rooted at this one.
verify_adr_type(bool recursive) const888 void PhiNode::verify_adr_type(bool recursive) const {
889   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
890   if (Node::in_dump())               return;  // muzzle asserts when printing
891 
892   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
893 
894   if (!VerifyAliases)       return;  // verify thoroughly only if requested
895 
896   assert(_adr_type == flatten_phi_adr_type(_adr_type),
897          "Phi::adr_type must be pre-normalized");
898 
899   if (recursive) {
900     VectorSet visited(Thread::current()->resource_area());
901     verify_adr_type(visited, _adr_type);
902   }
903 }
904 #endif
905 
906 
907 //------------------------------Value------------------------------------------
908 // Compute the type of the PhiNode
Value(PhaseGVN * phase) const909 const Type* PhiNode::Value(PhaseGVN* phase) const {
910   Node *r = in(0);              // RegionNode
911   if( !r )                      // Copy or dead
912     return in(1) ? phase->type(in(1)) : Type::TOP;
913 
914   // Note: During parsing, phis are often transformed before their regions.
915   // This means we have to use type_or_null to defend against untyped regions.
916   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
917     return Type::TOP;
918 
919   // Check for trip-counted loop.  If so, be smarter.
920   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
921   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
922     // protect against init_trip() or limit() returning NULL
923     if (l->can_be_counted_loop(phase)) {
924       const Node *init   = l->init_trip();
925       const Node *limit  = l->limit();
926       const Node* stride = l->stride();
927       if (init != NULL && limit != NULL && stride != NULL) {
928         const TypeInt* lo = phase->type(init)->isa_int();
929         const TypeInt* hi = phase->type(limit)->isa_int();
930         const TypeInt* stride_t = phase->type(stride)->isa_int();
931         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
932           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
933           BoolTest::mask bt = l->loopexit()->test_trip();
934           // If the loop exit condition is "not equal", the condition
935           // would not trigger if init > limit (if stride > 0) or if
936           // init < limit if (stride > 0) so we can't deduce bounds
937           // for the iv from the exit condition.
938           if (bt != BoolTest::ne) {
939             if (stride_t->_hi < 0) {          // Down-counter loop
940               swap(lo, hi);
941               return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
942             } else if (stride_t->_lo >= 0) {
943               return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
944             }
945           }
946         }
947       }
948     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
949                in(LoopNode::EntryControl) != NULL &&
950                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
951       // During CCP, if we saturate the type of a counted loop's Phi
952       // before the special code for counted loop above has a chance
953       // to run (that is as long as the type of the backedge's control
954       // is top), we might end up with non monotonic types
955       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
956     }
957   }
958 
959   // Until we have harmony between classes and interfaces in the type
960   // lattice, we must tread carefully around phis which implicitly
961   // convert the one to the other.
962   const TypePtr* ttp = _type->make_ptr();
963   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
964   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
965   bool is_intf = false;
966   if (ttip != NULL) {
967     ciKlass* k = ttip->klass();
968     if (k->is_loaded() && k->is_interface())
969       is_intf = true;
970   }
971   if (ttkp != NULL) {
972     ciKlass* k = ttkp->klass();
973     if (k->is_loaded() && k->is_interface())
974       is_intf = true;
975   }
976 
977   // Default case: merge all inputs
978   const Type *t = Type::TOP;        // Merged type starting value
979   for (uint i = 1; i < req(); ++i) {// For all paths in
980     // Reachable control path?
981     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
982       const Type* ti = phase->type(in(i));
983       // We assume that each input of an interface-valued Phi is a true
984       // subtype of that interface.  This might not be true of the meet
985       // of all the input types.  The lattice is not distributive in
986       // such cases.  Ward off asserts in type.cpp by refusing to do
987       // meets between interfaces and proper classes.
988       const TypePtr* tip = ti->make_ptr();
989       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
990       if (tiip) {
991         bool ti_is_intf = false;
992         ciKlass* k = tiip->klass();
993         if (k->is_loaded() && k->is_interface())
994           ti_is_intf = true;
995         if (is_intf != ti_is_intf)
996           { t = _type; break; }
997       }
998       t = t->meet_speculative(ti);
999     }
1000   }
1001 
1002   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1003   // That is, we expect that "t->higher_equal(_type)" holds true.
1004   // There are various exceptions:
1005   // - Inputs which are phis might in fact be widened unnecessarily.
1006   //   For example, an input might be a widened int while the phi is a short.
1007   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1008   //   and postCCP has removed the cast which encodes the result of the check.
1009   // - The type of this phi is an interface, and the inputs are classes.
1010   // - Value calls on inputs might produce fuzzy results.
1011   //   (Occurrences of this case suggest improvements to Value methods.)
1012   //
1013   // It is not possible to see Type::BOTTOM values as phi inputs,
1014   // because the ciTypeFlow pre-pass produces verifier-quality types.
1015   const Type* ft = t->filter_speculative(_type);  // Worst case type
1016 
1017 #ifdef ASSERT
1018   // The following logic has been moved into TypeOopPtr::filter.
1019   const Type* jt = t->join_speculative(_type);
1020   if (jt->empty()) {           // Emptied out???
1021 
1022     // Check for evil case of 't' being a class and '_type' expecting an
1023     // interface.  This can happen because the bytecodes do not contain
1024     // enough type info to distinguish a Java-level interface variable
1025     // from a Java-level object variable.  If we meet 2 classes which
1026     // both implement interface I, but their meet is at 'j/l/O' which
1027     // doesn't implement I, we have no way to tell if the result should
1028     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1029     // into a Phi which "knows" it's an Interface type we'll have to
1030     // uplift the type.
1031     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1032       assert(ft == _type, ""); // Uplift to interface
1033     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1034       assert(ft == _type, ""); // Uplift to interface
1035     } else {
1036       // We also have to handle 'evil cases' of interface- vs. class-arrays
1037       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1038       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1039           assert(ft == _type, "");   // Uplift to array of interface
1040       } else {
1041         // Otherwise it's something stupid like non-overlapping int ranges
1042         // found on dying counted loops.
1043         assert(ft == Type::TOP, ""); // Canonical empty value
1044       }
1045     }
1046   }
1047 
1048   else {
1049 
1050     // If we have an interface-typed Phi and we narrow to a class type, the join
1051     // should report back the class.  However, if we have a J/L/Object
1052     // class-typed Phi and an interface flows in, it's possible that the meet &
1053     // join report an interface back out.  This isn't possible but happens
1054     // because the type system doesn't interact well with interfaces.
1055     const TypePtr *jtp = jt->make_ptr();
1056     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1057     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1058     if( jtip && ttip ) {
1059       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1060           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1061         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1062                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1063         jt = ft;
1064       }
1065     }
1066     if( jtkp && ttkp ) {
1067       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1068           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1069           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1070         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1071                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1072         jt = ft;
1073       }
1074     }
1075     if (jt != ft && jt->base() == ft->base()) {
1076       if (jt->isa_int() &&
1077           jt->is_int()->_lo == ft->is_int()->_lo &&
1078           jt->is_int()->_hi == ft->is_int()->_hi)
1079         jt = ft;
1080       if (jt->isa_long() &&
1081           jt->is_long()->_lo == ft->is_long()->_lo &&
1082           jt->is_long()->_hi == ft->is_long()->_hi)
1083         jt = ft;
1084     }
1085     if (jt != ft) {
1086       tty->print("merge type:  "); t->dump(); tty->cr();
1087       tty->print("kill type:   "); _type->dump(); tty->cr();
1088       tty->print("join type:   "); jt->dump(); tty->cr();
1089       tty->print("filter type: "); ft->dump(); tty->cr();
1090     }
1091     assert(jt == ft, "");
1092   }
1093 #endif //ASSERT
1094 
1095   // Deal with conversion problems found in data loops.
1096   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1097 
1098   return ft;
1099 }
1100 
1101 
1102 //------------------------------is_diamond_phi---------------------------------
1103 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1104 // index of the true path or 0 otherwise.
1105 // If check_control_only is true, do not inspect the If node at the
1106 // top, and return -1 (not an edge number) on success.
is_diamond_phi(bool check_control_only) const1107 int PhiNode::is_diamond_phi(bool check_control_only) const {
1108   // Check for a 2-path merge
1109   Node *region = in(0);
1110   if( !region ) return 0;
1111   if( region->req() != 3 ) return 0;
1112   if(         req() != 3 ) return 0;
1113   // Check that both paths come from the same If
1114   Node *ifp1 = region->in(1);
1115   Node *ifp2 = region->in(2);
1116   if( !ifp1 || !ifp2 ) return 0;
1117   Node *iff = ifp1->in(0);
1118   if( !iff || !iff->is_If() ) return 0;
1119   if( iff != ifp2->in(0) ) return 0;
1120   if (check_control_only)  return -1;
1121   // Check for a proper bool/cmp
1122   const Node *b = iff->in(1);
1123   if( !b->is_Bool() ) return 0;
1124   const Node *cmp = b->in(1);
1125   if( !cmp->is_Cmp() ) return 0;
1126 
1127   // Check for branching opposite expected
1128   if( ifp2->Opcode() == Op_IfTrue ) {
1129     assert( ifp1->Opcode() == Op_IfFalse, "" );
1130     return 2;
1131   } else {
1132     assert( ifp1->Opcode() == Op_IfTrue, "" );
1133     return 1;
1134   }
1135 }
1136 
1137 //----------------------------check_cmove_id-----------------------------------
1138 // Check for CMove'ing a constant after comparing against the constant.
1139 // Happens all the time now, since if we compare equality vs a constant in
1140 // the parser, we "know" the variable is constant on one path and we force
1141 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1142 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1143 // general in that we don't need constants.  Since CMove's are only inserted
1144 // in very special circumstances, we do it here on generic Phi's.
is_cmove_id(PhaseTransform * phase,int true_path)1145 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1146   assert(true_path !=0, "only diamond shape graph expected");
1147 
1148   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1149   // phi->region->if_proj->ifnode->bool->cmp
1150   Node*     region = in(0);
1151   Node*     iff    = region->in(1)->in(0);
1152   BoolNode* b      = iff->in(1)->as_Bool();
1153   Node*     cmp    = b->in(1);
1154   Node*     tval   = in(true_path);
1155   Node*     fval   = in(3-true_path);
1156   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1157   if (id == NULL)
1158     return NULL;
1159 
1160   // Either value might be a cast that depends on a branch of 'iff'.
1161   // Since the 'id' value will float free of the diamond, either
1162   // decast or return failure.
1163   Node* ctl = id->in(0);
1164   if (ctl != NULL && ctl->in(0) == iff) {
1165     if (id->is_ConstraintCast()) {
1166       return id->in(1);
1167     } else {
1168       // Don't know how to disentangle this value.
1169       return NULL;
1170     }
1171   }
1172 
1173   return id;
1174 }
1175 
1176 //------------------------------Identity---------------------------------------
1177 // Check for Region being Identity.
Identity(PhaseGVN * phase)1178 Node* PhiNode::Identity(PhaseGVN* phase) {
1179   // Check for no merging going on
1180   // (There used to be special-case code here when this->region->is_Loop.
1181   // It would check for a tributary phi on the backedge that the main phi
1182   // trivially, perhaps with a single cast.  The unique_input method
1183   // does all this and more, by reducing such tributaries to 'this'.)
1184   Node* uin = unique_input(phase, false);
1185   if (uin != NULL) {
1186     return uin;
1187   }
1188 
1189   int true_path = is_diamond_phi();
1190   if (true_path != 0) {
1191     Node* id = is_cmove_id(phase, true_path);
1192     if (id != NULL)  return id;
1193   }
1194 
1195   // Looking for phis with identical inputs.  If we find one that has
1196   // type TypePtr::BOTTOM, replace the current phi with the bottom phi.
1197   if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() !=
1198       TypePtr::BOTTOM && !adr_type()->is_known_instance()) {
1199     uint phi_len = req();
1200     Node* phi_reg = region();
1201     for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) {
1202       Node* u = phi_reg->fast_out(i);
1203       if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY &&
1204           u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg &&
1205           u->req() == phi_len) {
1206         for (uint j = 1; j < phi_len; j++) {
1207           if (in(j) != u->in(j)) {
1208             u = NULL;
1209             break;
1210           }
1211         }
1212         if (u != NULL) {
1213           return u;
1214         }
1215       }
1216     }
1217   }
1218 
1219   return this;                     // No identity
1220 }
1221 
1222 //-----------------------------unique_input------------------------------------
1223 // Find the unique value, discounting top, self-loops, and casts.
1224 // Return top if there are no inputs, and self if there are multiple.
unique_input(PhaseTransform * phase,bool uncast)1225 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1226   //  1) One unique direct input,
1227   // or if uncast is true:
1228   //  2) some of the inputs have an intervening ConstraintCast
1229   //  3) an input is a self loop
1230   //
1231   //  1) input   or   2) input     or   3) input __
1232   //     /   \           /   \               \  /  \
1233   //     \   /          |    cast             phi  cast
1234   //      phi            \   /               /  \  /
1235   //                      phi               /    --
1236 
1237   Node* r = in(0);                      // RegionNode
1238   if (r == NULL)  return in(1);         // Already degraded to a Copy
1239   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1240 
1241   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1242     Node* rc = r->in(i);
1243     if (rc == NULL || phase->type(rc) == Type::TOP)
1244       continue;                 // ignore unreachable control path
1245     Node* n = in(i);
1246     if (n == NULL)
1247       continue;
1248     Node* un = n;
1249     if (uncast) {
1250 #ifdef ASSERT
1251       Node* m = un->uncast();
1252 #endif
1253       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1254         Node* next = un->in(1);
1255         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1256           // risk exposing raw ptr at safepoint
1257           break;
1258         }
1259         un = next;
1260       }
1261       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1262     }
1263     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1264       continue; // ignore if top, or in(i) and "this" are in a data cycle
1265     }
1266     // Check for a unique input (maybe uncasted)
1267     if (input == NULL) {
1268       input = un;
1269     } else if (input != un) {
1270       input = NodeSentinel; // no unique input
1271     }
1272   }
1273   if (input == NULL) {
1274     return phase->C->top();        // no inputs
1275   }
1276 
1277   if (input != NodeSentinel) {
1278     return input;           // one unique direct input
1279   }
1280 
1281   // Nothing.
1282   return NULL;
1283 }
1284 
1285 //------------------------------is_x2logic-------------------------------------
1286 // Check for simple convert-to-boolean pattern
1287 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1288 // Convert Phi to an ConvIB.
is_x2logic(PhaseGVN * phase,PhiNode * phi,int true_path)1289 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1290   assert(true_path !=0, "only diamond shape graph expected");
1291   // Convert the true/false index into an expected 0/1 return.
1292   // Map 2->0 and 1->1.
1293   int flipped = 2-true_path;
1294 
1295   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1296   // phi->region->if_proj->ifnode->bool->cmp
1297   Node *region = phi->in(0);
1298   Node *iff = region->in(1)->in(0);
1299   BoolNode *b = (BoolNode*)iff->in(1);
1300   const CmpNode *cmp = (CmpNode*)b->in(1);
1301 
1302   Node *zero = phi->in(1);
1303   Node *one  = phi->in(2);
1304   const Type *tzero = phase->type( zero );
1305   const Type *tone  = phase->type( one  );
1306 
1307   // Check for compare vs 0
1308   const Type *tcmp = phase->type(cmp->in(2));
1309   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1310     // Allow cmp-vs-1 if the other input is bounded by 0-1
1311     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1312       return NULL;
1313     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1314   }
1315 
1316   // Check for setting zero/one opposite expected
1317   if( tzero == TypeInt::ZERO ) {
1318     if( tone == TypeInt::ONE ) {
1319     } else return NULL;
1320   } else if( tzero == TypeInt::ONE ) {
1321     if( tone == TypeInt::ZERO ) {
1322       flipped = 1-flipped;
1323     } else return NULL;
1324   } else return NULL;
1325 
1326   // Check for boolean test backwards
1327   if( b->_test._test == BoolTest::ne ) {
1328   } else if( b->_test._test == BoolTest::eq ) {
1329     flipped = 1-flipped;
1330   } else return NULL;
1331 
1332   // Build int->bool conversion
1333   Node *n = new Conv2BNode( cmp->in(1) );
1334   if( flipped )
1335     n = new XorINode( phase->transform(n), phase->intcon(1) );
1336 
1337   return n;
1338 }
1339 
1340 //------------------------------is_cond_add------------------------------------
1341 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1342 // To be profitable the control flow has to disappear; there can be no other
1343 // values merging here.  We replace the test-and-branch with:
1344 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1345 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1346 // Then convert Y to 0-or-Y and finally add.
1347 // This is a key transform for SpecJava _201_compress.
is_cond_add(PhaseGVN * phase,PhiNode * phi,int true_path)1348 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1349   assert(true_path !=0, "only diamond shape graph expected");
1350 
1351   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1352   // phi->region->if_proj->ifnode->bool->cmp
1353   RegionNode *region = (RegionNode*)phi->in(0);
1354   Node *iff = region->in(1)->in(0);
1355   BoolNode* b = iff->in(1)->as_Bool();
1356   const CmpNode *cmp = (CmpNode*)b->in(1);
1357 
1358   // Make sure only merging this one phi here
1359   if (region->has_unique_phi() != phi)  return NULL;
1360 
1361   // Make sure each arm of the diamond has exactly one output, which we assume
1362   // is the region.  Otherwise, the control flow won't disappear.
1363   if (region->in(1)->outcnt() != 1) return NULL;
1364   if (region->in(2)->outcnt() != 1) return NULL;
1365 
1366   // Check for "(P < Q)" of type signed int
1367   if (b->_test._test != BoolTest::lt)  return NULL;
1368   if (cmp->Opcode() != Op_CmpI)        return NULL;
1369 
1370   Node *p = cmp->in(1);
1371   Node *q = cmp->in(2);
1372   Node *n1 = phi->in(  true_path);
1373   Node *n2 = phi->in(3-true_path);
1374 
1375   int op = n1->Opcode();
1376   if( op != Op_AddI           // Need zero as additive identity
1377       /*&&op != Op_SubI &&
1378       op != Op_AddP &&
1379       op != Op_XorI &&
1380       op != Op_OrI*/ )
1381     return NULL;
1382 
1383   Node *x = n2;
1384   Node *y = NULL;
1385   if( x == n1->in(1) ) {
1386     y = n1->in(2);
1387   } else if( x == n1->in(2) ) {
1388     y = n1->in(1);
1389   } else return NULL;
1390 
1391   // Not so profitable if compare and add are constants
1392   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1393     return NULL;
1394 
1395   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1396   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1397   return new AddINode(j_and,x);
1398 }
1399 
1400 //------------------------------is_absolute------------------------------------
1401 // Check for absolute value.
is_absolute(PhaseGVN * phase,PhiNode * phi_root,int true_path)1402 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1403   assert(true_path !=0, "only diamond shape graph expected");
1404 
1405   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1406   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1407 
1408   // ABS ends with the merge of 2 control flow paths.
1409   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1410   int false_path = 3 - true_path;
1411 
1412   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1413   // phi->region->if_proj->ifnode->bool->cmp
1414   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1415 
1416   // Check bool sense
1417   switch( bol->_test._test ) {
1418   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1419   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1420   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1421   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1422   default:           return NULL;                              break;
1423   }
1424 
1425   // Test is next
1426   Node *cmp = bol->in(1);
1427   const Type *tzero = NULL;
1428   switch( cmp->Opcode() ) {
1429   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1430   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1431   default: return NULL;
1432   }
1433 
1434   // Find zero input of compare; the other input is being abs'd
1435   Node *x = NULL;
1436   bool flip = false;
1437   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1438     x = cmp->in(3 - cmp_zero_idx);
1439   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1440     // The test is inverted, we should invert the result...
1441     x = cmp->in(cmp_zero_idx);
1442     flip = true;
1443   } else {
1444     return NULL;
1445   }
1446 
1447   // Next get the 2 pieces being selected, one is the original value
1448   // and the other is the negated value.
1449   if( phi_root->in(phi_x_idx) != x ) return NULL;
1450 
1451   // Check other phi input for subtract node
1452   Node *sub = phi_root->in(3 - phi_x_idx);
1453 
1454   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1455   if( tzero == TypeF::ZERO ) {
1456     if( sub->Opcode() != Op_SubF ||
1457         sub->in(2) != x ||
1458         phase->type(sub->in(1)) != tzero ) return NULL;
1459     x = new AbsFNode(x);
1460     if (flip) {
1461       x = new SubFNode(sub->in(1), phase->transform(x));
1462     }
1463   } else {
1464     if( sub->Opcode() != Op_SubD ||
1465         sub->in(2) != x ||
1466         phase->type(sub->in(1)) != tzero ) return NULL;
1467     x = new AbsDNode(x);
1468     if (flip) {
1469       x = new SubDNode(sub->in(1), phase->transform(x));
1470     }
1471   }
1472 
1473   return x;
1474 }
1475 
1476 //------------------------------split_once-------------------------------------
1477 // Helper for split_flow_path
split_once(PhaseIterGVN * igvn,Node * phi,Node * val,Node * n,Node * newn)1478 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1479   igvn->hash_delete(n);         // Remove from hash before hacking edges
1480 
1481   uint j = 1;
1482   for (uint i = phi->req()-1; i > 0; i--) {
1483     if (phi->in(i) == val) {   // Found a path with val?
1484       // Add to NEW Region/Phi, no DU info
1485       newn->set_req( j++, n->in(i) );
1486       // Remove from OLD Region/Phi
1487       n->del_req(i);
1488     }
1489   }
1490 
1491   // Register the new node but do not transform it.  Cannot transform until the
1492   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1493   igvn->register_new_node_with_optimizer( newn );
1494 
1495   // Now I can point to the new node.
1496   n->add_req(newn);
1497   igvn->_worklist.push(n);
1498 }
1499 
1500 //------------------------------split_flow_path--------------------------------
1501 // Check for merging identical values and split flow paths
split_flow_path(PhaseGVN * phase,PhiNode * phi)1502 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1503   BasicType bt = phi->type()->basic_type();
1504   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1505     return NULL;                // Bail out on funny non-value stuff
1506   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1507     return NULL;                // third unequal input to be worth doing
1508 
1509   // Scan for a constant
1510   uint i;
1511   for( i = 1; i < phi->req()-1; i++ ) {
1512     Node *n = phi->in(i);
1513     if( !n ) return NULL;
1514     if( phase->type(n) == Type::TOP ) return NULL;
1515     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1516       break;
1517   }
1518   if( i >= phi->req() )         // Only split for constants
1519     return NULL;
1520 
1521   Node *val = phi->in(i);       // Constant to split for
1522   uint hit = 0;                 // Number of times it occurs
1523   Node *r = phi->region();
1524 
1525   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1526     Node *n = phi->in(i);
1527     if( !n ) return NULL;
1528     if( phase->type(n) == Type::TOP ) return NULL;
1529     if( phi->in(i) == val ) {
1530       hit++;
1531       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1532         return NULL;            // don't split loop entry path
1533       }
1534     }
1535   }
1536 
1537   if( hit <= 1 ||               // Make sure we find 2 or more
1538       hit == phi->req()-1 )     // and not ALL the same value
1539     return NULL;
1540 
1541   // Now start splitting out the flow paths that merge the same value.
1542   // Split first the RegionNode.
1543   PhaseIterGVN *igvn = phase->is_IterGVN();
1544   RegionNode *newr = new RegionNode(hit+1);
1545   split_once(igvn, phi, val, r, newr);
1546 
1547   // Now split all other Phis than this one
1548   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1549     Node* phi2 = r->fast_out(k);
1550     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1551       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1552       split_once(igvn, phi, val, phi2, newphi);
1553     }
1554   }
1555 
1556   // Clean up this guy
1557   igvn->hash_delete(phi);
1558   for( i = phi->req()-1; i > 0; i-- ) {
1559     if( phi->in(i) == val ) {
1560       phi->del_req(i);
1561     }
1562   }
1563   phi->add_req(val);
1564 
1565   return phi;
1566 }
1567 
1568 //=============================================================================
1569 //------------------------------simple_data_loop_check-------------------------
1570 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1571 //  Returns:
1572 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1573 // Safe       - safe case when the phi and it's inputs reference only safe data
1574 //              nodes;
1575 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1576 //              is no reference back to the phi - need a graph walk
1577 //              to determine if it is in a loop;
1578 // UnsafeLoop - unsafe case when the phi references itself directly or through
1579 //              unsafe data node.
1580 //  Note: a safe data node is a node which could/never reference itself during
1581 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1582 //  I mark Phi nodes as safe node not only because they can reference itself
1583 //  but also to prevent mistaking the fallthrough case inside an outer loop
1584 //  as dead loop when the phi references itselfs through an other phi.
simple_data_loop_check(Node * in) const1585 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1586   // It is unsafe loop if the phi node references itself directly.
1587   if (in == (Node*)this)
1588     return UnsafeLoop; // Unsafe loop
1589   // Unsafe loop if the phi node references itself through an unsafe data node.
1590   // Exclude cases with null inputs or data nodes which could reference
1591   // itself (safe for dead loops).
1592   if (in != NULL && !in->is_dead_loop_safe()) {
1593     // Check inputs of phi's inputs also.
1594     // It is much less expensive then full graph walk.
1595     uint cnt = in->req();
1596     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1597     for (; i < cnt; ++i) {
1598       Node* m = in->in(i);
1599       if (m == (Node*)this)
1600         return UnsafeLoop; // Unsafe loop
1601       if (m != NULL && !m->is_dead_loop_safe()) {
1602         // Check the most common case (about 30% of all cases):
1603         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1604         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1605         if (m1 == (Node*)this)
1606           return UnsafeLoop; // Unsafe loop
1607         if (m1 != NULL && m1 == m->in(2) &&
1608             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1609           continue; // Safe case
1610         }
1611         // The phi references an unsafe node - need full analysis.
1612         return Unsafe;
1613       }
1614     }
1615   }
1616   return Safe; // Safe case - we can optimize the phi node.
1617 }
1618 
1619 //------------------------------is_unsafe_data_reference-----------------------
1620 // If phi can be reached through the data input - it is data loop.
is_unsafe_data_reference(Node * in) const1621 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1622   assert(req() > 1, "");
1623   // First, check simple cases when phi references itself directly or
1624   // through an other node.
1625   LoopSafety safety = simple_data_loop_check(in);
1626   if (safety == UnsafeLoop)
1627     return true;  // phi references itself - unsafe loop
1628   else if (safety == Safe)
1629     return false; // Safe case - phi could be replaced with the unique input.
1630 
1631   // Unsafe case when we should go through data graph to determine
1632   // if the phi references itself.
1633 
1634   ResourceMark rm;
1635 
1636   Arena *a = Thread::current()->resource_area();
1637   Node_List nstack(a);
1638   VectorSet visited(a);
1639 
1640   nstack.push(in); // Start with unique input.
1641   visited.set(in->_idx);
1642   while (nstack.size() != 0) {
1643     Node* n = nstack.pop();
1644     uint cnt = n->req();
1645     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1646     for (; i < cnt; i++) {
1647       Node* m = n->in(i);
1648       if (m == (Node*)this) {
1649         return true;    // Data loop
1650       }
1651       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1652         if (!visited.test_set(m->_idx))
1653           nstack.push(m);
1654       }
1655     }
1656   }
1657   return false; // The phi is not reachable from its inputs
1658 }
1659 
1660 
1661 //------------------------------Ideal------------------------------------------
1662 // Return a node which is more "ideal" than the current node.  Must preserve
1663 // the CFG, but we can still strip out dead paths.
Ideal(PhaseGVN * phase,bool can_reshape)1664 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1665   // The next should never happen after 6297035 fix.
1666   if( is_copy() )               // Already degraded to a Copy ?
1667     return NULL;                // No change
1668 
1669   Node *r = in(0);              // RegionNode
1670   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1671 
1672   // Note: During parsing, phis are often transformed before their regions.
1673   // This means we have to use type_or_null to defend against untyped regions.
1674   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1675     return NULL;                // No change
1676 
1677   Node *top = phase->C->top();
1678   bool new_phi = (outcnt() == 0); // transforming new Phi
1679   // No change for igvn if new phi is not hooked
1680   if (new_phi && can_reshape)
1681     return NULL;
1682 
1683   // The are 2 situations when only one valid phi's input is left
1684   // (in addition to Region input).
1685   // One: region is not loop - replace phi with this input.
1686   // Two: region is loop - replace phi with top since this data path is dead
1687   //                       and we need to break the dead data loop.
1688   Node* progress = NULL;        // Record if any progress made
1689   for( uint j = 1; j < req(); ++j ){ // For all paths in
1690     // Check unreachable control paths
1691     Node* rc = r->in(j);
1692     Node* n = in(j);            // Get the input
1693     if (rc == NULL || phase->type(rc) == Type::TOP) {
1694       if (n != top) {           // Not already top?
1695         PhaseIterGVN *igvn = phase->is_IterGVN();
1696         if (can_reshape && igvn != NULL) {
1697           igvn->_worklist.push(r);
1698         }
1699         set_req(j, top);        // Nuke it down
1700         progress = this;        // Record progress
1701       }
1702     }
1703   }
1704 
1705   if (can_reshape && outcnt() == 0) {
1706     // set_req() above may kill outputs if Phi is referenced
1707     // only by itself on the dead (top) control path.
1708     return top;
1709   }
1710 
1711   bool uncasted = false;
1712   Node* uin = unique_input(phase, false);
1713   if (uin == NULL && can_reshape) {
1714     uncasted = true;
1715     uin = unique_input(phase, true);
1716   }
1717   if (uin == top) {             // Simplest case: no alive inputs.
1718     if (can_reshape)            // IGVN transformation
1719       return top;
1720     else
1721       return NULL;              // Identity will return TOP
1722   } else if (uin != NULL) {
1723     // Only one not-NULL unique input path is left.
1724     // Determine if this input is backedge of a loop.
1725     // (Skip new phis which have no uses and dead regions).
1726     if (outcnt() > 0 && r->in(0) != NULL) {
1727       // First, take the short cut when we know it is a loop and
1728       // the EntryControl data path is dead.
1729       // Loop node may have only one input because entry path
1730       // is removed in PhaseIdealLoop::Dominators().
1731       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1732       bool is_loop = (r->is_Loop() && r->req() == 3);
1733       // Then, check if there is a data loop when phi references itself directly
1734       // or through other data nodes.
1735       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1736           (!is_loop && is_unsafe_data_reference(uin))) {
1737         // Break this data loop to avoid creation of a dead loop.
1738         if (can_reshape) {
1739           return top;
1740         } else {
1741           // We can't return top if we are in Parse phase - cut inputs only
1742           // let Identity to handle the case.
1743           replace_edge(uin, top);
1744           return NULL;
1745         }
1746       }
1747     }
1748 
1749     if (uncasted) {
1750       // Add cast nodes between the phi to be removed and its unique input.
1751       // Wait until after parsing for the type information to propagate from the casts.
1752       assert(can_reshape, "Invalid during parsing");
1753       const Type* phi_type = bottom_type();
1754       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1755       // Add casts to carry the control dependency of the Phi that is
1756       // going away
1757       Node* cast = NULL;
1758       if (phi_type->isa_int()) {
1759         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1760       } else {
1761         const Type* uin_type = phase->type(uin);
1762         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1763           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1764         } else {
1765           // Use a CastPP for a cast to not null and a CheckCastPP for
1766           // a cast to a new klass (and both if both null-ness and
1767           // klass change).
1768 
1769           // If the type of phi is not null but the type of uin may be
1770           // null, uin's type must be casted to not null
1771           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1772               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1773             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1774           }
1775 
1776           // If the type of phi and uin, both casted to not null,
1777           // differ the klass of uin must be (check)cast'ed to match
1778           // that of phi
1779           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1780             Node* n = uin;
1781             if (cast != NULL) {
1782               cast = phase->transform(cast);
1783               n = cast;
1784             }
1785             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1786           }
1787           if (cast == NULL) {
1788             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1789           }
1790         }
1791       }
1792       assert(cast != NULL, "cast should be set");
1793       cast = phase->transform(cast);
1794       // set all inputs to the new cast(s) so the Phi is removed by Identity
1795       PhaseIterGVN* igvn = phase->is_IterGVN();
1796       for (uint i = 1; i < req(); i++) {
1797         set_req_X(i, cast, igvn);
1798       }
1799       uin = cast;
1800     }
1801 
1802     // One unique input.
1803     debug_only(Node* ident = Identity(phase));
1804     // The unique input must eventually be detected by the Identity call.
1805 #ifdef ASSERT
1806     if (ident != uin && !ident->is_top()) {
1807       // print this output before failing assert
1808       r->dump(3);
1809       this->dump(3);
1810       ident->dump();
1811       uin->dump();
1812     }
1813 #endif
1814     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1815     return NULL;
1816   }
1817 
1818   Node* opt = NULL;
1819   int true_path = is_diamond_phi();
1820   if( true_path != 0 ) {
1821     // Check for CMove'ing identity. If it would be unsafe,
1822     // handle it here. In the safe case, let Identity handle it.
1823     Node* unsafe_id = is_cmove_id(phase, true_path);
1824     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1825       opt = unsafe_id;
1826 
1827     // Check for simple convert-to-boolean pattern
1828     if( opt == NULL )
1829       opt = is_x2logic(phase, this, true_path);
1830 
1831     // Check for absolute value
1832     if( opt == NULL )
1833       opt = is_absolute(phase, this, true_path);
1834 
1835     // Check for conditional add
1836     if( opt == NULL && can_reshape )
1837       opt = is_cond_add(phase, this, true_path);
1838 
1839     // These 4 optimizations could subsume the phi:
1840     // have to check for a dead data loop creation.
1841     if( opt != NULL ) {
1842       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1843         // Found dead loop.
1844         if( can_reshape )
1845           return top;
1846         // We can't return top if we are in Parse phase - cut inputs only
1847         // to stop further optimizations for this phi. Identity will return TOP.
1848         assert(req() == 3, "only diamond merge phi here");
1849         set_req(1, top);
1850         set_req(2, top);
1851         return NULL;
1852       } else {
1853         return opt;
1854       }
1855     }
1856   }
1857 
1858   // Check for merging identical values and split flow paths
1859   if (can_reshape) {
1860     opt = split_flow_path(phase, this);
1861     // This optimization only modifies phi - don't need to check for dead loop.
1862     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1863     if (opt != NULL)  return opt;
1864   }
1865 
1866   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1867     // Try to undo Phi of AddP:
1868     // (Phi (AddP base base y) (AddP base2 base2 y))
1869     // becomes:
1870     // newbase := (Phi base base2)
1871     // (AddP newbase newbase y)
1872     //
1873     // This occurs as a result of unsuccessful split_thru_phi and
1874     // interferes with taking advantage of addressing modes. See the
1875     // clone_shift_expressions code in matcher.cpp
1876     Node* addp = in(1);
1877     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1878     Node* y = addp->in(AddPNode::Offset);
1879     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1880       // make sure that all the inputs are similar to the first one,
1881       // i.e. AddP with base == address and same offset as first AddP
1882       bool doit = true;
1883       for (uint i = 2; i < req(); i++) {
1884         if (in(i) == NULL ||
1885             in(i)->Opcode() != Op_AddP ||
1886             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1887             in(i)->in(AddPNode::Offset) != y) {
1888           doit = false;
1889           break;
1890         }
1891         // Accumulate type for resulting Phi
1892         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1893       }
1894       Node* base = NULL;
1895       if (doit) {
1896         // Check for neighboring AddP nodes in a tree.
1897         // If they have a base, use that it.
1898         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1899           Node* u = this->fast_out(k);
1900           if (u->is_AddP()) {
1901             Node* base2 = u->in(AddPNode::Base);
1902             if (base2 != NULL && !base2->is_top()) {
1903               if (base == NULL)
1904                 base = base2;
1905               else if (base != base2)
1906                 { doit = false; break; }
1907             }
1908           }
1909         }
1910       }
1911       if (doit) {
1912         if (base == NULL) {
1913           base = new PhiNode(in(0), type, NULL);
1914           for (uint i = 1; i < req(); i++) {
1915             base->init_req(i, in(i)->in(AddPNode::Base));
1916           }
1917           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1918         }
1919         return new AddPNode(base, base, y);
1920       }
1921     }
1922   }
1923 
1924   // Split phis through memory merges, so that the memory merges will go away.
1925   // Piggy-back this transformation on the search for a unique input....
1926   // It will be as if the merged memory is the unique value of the phi.
1927   // (Do not attempt this optimization unless parsing is complete.
1928   // It would make the parser's memory-merge logic sick.)
1929   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1930   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1931     // see if this phi should be sliced
1932     uint merge_width = 0;
1933     bool saw_self = false;
1934     for( uint i=1; i<req(); ++i ) {// For all paths in
1935       Node *ii = in(i);
1936       // TOP inputs should not be counted as safe inputs because if the
1937       // Phi references itself through all other inputs then splitting the
1938       // Phi through memory merges would create dead loop at later stage.
1939       if (ii == top) {
1940         return NULL; // Delay optimization until graph is cleaned.
1941       }
1942       if (ii->is_MergeMem()) {
1943         MergeMemNode* n = ii->as_MergeMem();
1944         merge_width = MAX2(merge_width, n->req());
1945         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1946       }
1947     }
1948 
1949     // This restriction is temporarily necessary to ensure termination:
1950     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1951 
1952     if (merge_width > Compile::AliasIdxRaw) {
1953       // found at least one non-empty MergeMem
1954       const TypePtr* at = adr_type();
1955       if (at != TypePtr::BOTTOM) {
1956         // Patch the existing phi to select an input from the merge:
1957         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1958         //     Phi:AT1(...m1...)
1959         int alias_idx = phase->C->get_alias_index(at);
1960         for (uint i=1; i<req(); ++i) {
1961           Node *ii = in(i);
1962           if (ii->is_MergeMem()) {
1963             MergeMemNode* n = ii->as_MergeMem();
1964             // compress paths and change unreachable cycles to TOP
1965             // If not, we can update the input infinitely along a MergeMem cycle
1966             // Equivalent code is in MemNode::Ideal_common
1967             Node *m  = phase->transform(n);
1968             if (outcnt() == 0) {  // Above transform() may kill us!
1969               return top;
1970             }
1971             // If transformed to a MergeMem, get the desired slice
1972             // Otherwise the returned node represents memory for every slice
1973             Node *new_mem = (m->is_MergeMem()) ?
1974                              m->as_MergeMem()->memory_at(alias_idx) : m;
1975             // Update input if it is progress over what we have now
1976             if (new_mem != ii) {
1977               set_req(i, new_mem);
1978               progress = this;
1979             }
1980           }
1981         }
1982       } else {
1983         // We know that at least one MergeMem->base_memory() == this
1984         // (saw_self == true). If all other inputs also references this phi
1985         // (directly or through data nodes) - it is a dead loop.
1986         bool saw_safe_input = false;
1987         for (uint j = 1; j < req(); ++j) {
1988           Node* n = in(j);
1989           if (n->is_MergeMem()) {
1990             MergeMemNode* mm = n->as_MergeMem();
1991             if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) {
1992               // Skip this input if it references back to this phi or if the memory path is dead
1993               continue;
1994             }
1995           }
1996           if (!is_unsafe_data_reference(n)) {
1997             saw_safe_input = true; // found safe input
1998             break;
1999           }
2000         }
2001         if (!saw_safe_input) {
2002           // There is a dead loop: All inputs are either dead or reference back to this phi
2003           return top;
2004         }
2005 
2006         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2007         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2008         PhaseIterGVN* igvn = phase->is_IterGVN();
2009         Node* hook = new Node(1);
2010         PhiNode* new_base = (PhiNode*) clone();
2011         // Must eagerly register phis, since they participate in loops.
2012         if (igvn) {
2013           igvn->register_new_node_with_optimizer(new_base);
2014           hook->add_req(new_base);
2015         }
2016         MergeMemNode* result = MergeMemNode::make(new_base);
2017         for (uint i = 1; i < req(); ++i) {
2018           Node *ii = in(i);
2019           if (ii->is_MergeMem()) {
2020             MergeMemNode* n = ii->as_MergeMem();
2021             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2022               // If we have not seen this slice yet, make a phi for it.
2023               bool made_new_phi = false;
2024               if (mms.is_empty()) {
2025                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2026                 made_new_phi = true;
2027                 if (igvn) {
2028                   igvn->register_new_node_with_optimizer(new_phi);
2029                   hook->add_req(new_phi);
2030                 }
2031                 mms.set_memory(new_phi);
2032               }
2033               Node* phi = mms.memory();
2034               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2035               phi->set_req(i, mms.memory2());
2036             }
2037           }
2038         }
2039         // Distribute all self-loops.
2040         { // (Extra braces to hide mms.)
2041           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2042             Node* phi = mms.memory();
2043             for (uint i = 1; i < req(); ++i) {
2044               if (phi->in(i) == this)  phi->set_req(i, phi);
2045             }
2046           }
2047         }
2048         // now transform the new nodes, and return the mergemem
2049         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2050           Node* phi = mms.memory();
2051           mms.set_memory(phase->transform(phi));
2052         }
2053         if (igvn) { // Unhook.
2054           igvn->hash_delete(hook);
2055           for (uint i = 1; i < hook->req(); i++) {
2056             hook->set_req(i, NULL);
2057           }
2058         }
2059         // Replace self with the result.
2060         return result;
2061       }
2062     }
2063     //
2064     // Other optimizations on the memory chain
2065     //
2066     const TypePtr* at = adr_type();
2067     for( uint i=1; i<req(); ++i ) {// For all paths in
2068       Node *ii = in(i);
2069       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2070       if (ii != new_in ) {
2071         set_req(i, new_in);
2072         progress = this;
2073       }
2074     }
2075   }
2076 
2077 #ifdef _LP64
2078   // Push DecodeN/DecodeNKlass down through phi.
2079   // The rest of phi graph will transform by split EncodeP node though phis up.
2080   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2081     bool may_push = true;
2082     bool has_decodeN = false;
2083     bool is_decodeN = false;
2084     for (uint i=1; i<req(); ++i) {// For all paths in
2085       Node *ii = in(i);
2086       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2087         // Do optimization if a non dead path exist.
2088         if (ii->in(1)->bottom_type() != Type::TOP) {
2089           has_decodeN = true;
2090           is_decodeN = ii->is_DecodeN();
2091         }
2092       } else if (!ii->is_Phi()) {
2093         may_push = false;
2094       }
2095     }
2096 
2097     if (has_decodeN && may_push) {
2098       PhaseIterGVN *igvn = phase->is_IterGVN();
2099       // Make narrow type for new phi.
2100       const Type* narrow_t;
2101       if (is_decodeN) {
2102         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2103       } else {
2104         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2105       }
2106       PhiNode* new_phi = new PhiNode(r, narrow_t);
2107       uint orig_cnt = req();
2108       for (uint i=1; i<req(); ++i) {// For all paths in
2109         Node *ii = in(i);
2110         Node* new_ii = NULL;
2111         if (ii->is_DecodeNarrowPtr()) {
2112           assert(ii->bottom_type() == bottom_type(), "sanity");
2113           new_ii = ii->in(1);
2114         } else {
2115           assert(ii->is_Phi(), "sanity");
2116           if (ii->as_Phi() == this) {
2117             new_ii = new_phi;
2118           } else {
2119             if (is_decodeN) {
2120               new_ii = new EncodePNode(ii, narrow_t);
2121             } else {
2122               new_ii = new EncodePKlassNode(ii, narrow_t);
2123             }
2124             igvn->register_new_node_with_optimizer(new_ii);
2125           }
2126         }
2127         new_phi->set_req(i, new_ii);
2128       }
2129       igvn->register_new_node_with_optimizer(new_phi, this);
2130       if (is_decodeN) {
2131         progress = new DecodeNNode(new_phi, bottom_type());
2132       } else {
2133         progress = new DecodeNKlassNode(new_phi, bottom_type());
2134       }
2135     }
2136   }
2137 #endif
2138 
2139   return progress;              // Return any progress
2140 }
2141 
2142 //------------------------------is_tripcount-----------------------------------
is_tripcount() const2143 bool PhiNode::is_tripcount() const {
2144   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2145           in(0)->as_CountedLoop()->phi() == this);
2146 }
2147 
2148 //------------------------------out_RegMask------------------------------------
in_RegMask(uint i) const2149 const RegMask &PhiNode::in_RegMask(uint i) const {
2150   return i ? out_RegMask() : RegMask::Empty;
2151 }
2152 
out_RegMask() const2153 const RegMask &PhiNode::out_RegMask() const {
2154   uint ideal_reg = _type->ideal_reg();
2155   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2156   if( ideal_reg == 0 ) return RegMask::Empty;
2157   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2158   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2159 }
2160 
2161 #ifndef PRODUCT
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2162 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2163   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2164   // and all outputs till level 1. In compact mode, inputs till level 1 are
2165   // collected.
2166   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2167   this->collect_nodes(out_rel, -1, false, false);
2168 }
2169 
dump_spec(outputStream * st) const2170 void PhiNode::dump_spec(outputStream *st) const {
2171   TypeNode::dump_spec(st);
2172   if (is_tripcount()) {
2173     st->print(" #tripcount");
2174   }
2175 }
2176 #endif
2177 
2178 
2179 //=============================================================================
Value(PhaseGVN * phase) const2180 const Type* GotoNode::Value(PhaseGVN* phase) const {
2181   // If the input is reachable, then we are executed.
2182   // If the input is not reachable, then we are not executed.
2183   return phase->type(in(0));
2184 }
2185 
Identity(PhaseGVN * phase)2186 Node* GotoNode::Identity(PhaseGVN* phase) {
2187   return in(0);                // Simple copy of incoming control
2188 }
2189 
out_RegMask() const2190 const RegMask &GotoNode::out_RegMask() const {
2191   return RegMask::Empty;
2192 }
2193 
2194 #ifndef PRODUCT
2195 //-----------------------------related-----------------------------------------
2196 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2197 // outputs at level 1. This is regardless of compact mode.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2198 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2199   this->collect_nodes(in_rel, 1, false, false);
2200   this->collect_nodes(out_rel, -1, false, false);
2201 }
2202 #endif
2203 
2204 
2205 //=============================================================================
out_RegMask() const2206 const RegMask &JumpNode::out_RegMask() const {
2207   return RegMask::Empty;
2208 }
2209 
2210 #ifndef PRODUCT
2211 //-----------------------------related-----------------------------------------
2212 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2213 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2214 // This is regardless of compact mode.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2215 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2216   this->collect_nodes(in_rel, 1, false, false);
2217   this->collect_nodes(out_rel, -2, false, false);
2218 }
2219 #endif
2220 
2221 //=============================================================================
out_RegMask() const2222 const RegMask &JProjNode::out_RegMask() const {
2223   return RegMask::Empty;
2224 }
2225 
2226 //=============================================================================
out_RegMask() const2227 const RegMask &CProjNode::out_RegMask() const {
2228   return RegMask::Empty;
2229 }
2230 
2231 
2232 
2233 //=============================================================================
2234 
hash() const2235 uint PCTableNode::hash() const { return Node::hash() + _size; }
cmp(const Node & n) const2236 uint PCTableNode::cmp( const Node &n ) const
2237 { return _size == ((PCTableNode&)n)._size; }
2238 
bottom_type() const2239 const Type *PCTableNode::bottom_type() const {
2240   const Type** f = TypeTuple::fields(_size);
2241   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2242   return TypeTuple::make(_size, f);
2243 }
2244 
2245 //------------------------------Value------------------------------------------
2246 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2247 // Control, otherwise the table targets are not reachable
Value(PhaseGVN * phase) const2248 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2249   if( phase->type(in(0)) == Type::CONTROL )
2250     return bottom_type();
2251   return Type::TOP;             // All paths dead?  Then so are we
2252 }
2253 
2254 //------------------------------Ideal------------------------------------------
2255 // Return a node which is more "ideal" than the current node.  Strip out
2256 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)2257 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2258   return remove_dead_region(phase, can_reshape) ? this : NULL;
2259 }
2260 
2261 //=============================================================================
hash() const2262 uint JumpProjNode::hash() const {
2263   return Node::hash() + _dest_bci;
2264 }
2265 
cmp(const Node & n) const2266 uint JumpProjNode::cmp( const Node &n ) const {
2267   return ProjNode::cmp(n) &&
2268     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2269 }
2270 
2271 #ifndef PRODUCT
dump_spec(outputStream * st) const2272 void JumpProjNode::dump_spec(outputStream *st) const {
2273   ProjNode::dump_spec(st);
2274   st->print("@bci %d ",_dest_bci);
2275 }
2276 
dump_compact_spec(outputStream * st) const2277 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2278   ProjNode::dump_compact_spec(st);
2279   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2280 }
2281 
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const2282 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2283   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2284   this->collect_nodes(in_rel, 1, false, false);
2285   this->collect_nodes(out_rel, -1, false, false);
2286 }
2287 #endif
2288 
2289 //=============================================================================
2290 //------------------------------Value------------------------------------------
2291 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2292 // have the default "fall_through_index" path.
Value(PhaseGVN * phase) const2293 const Type* CatchNode::Value(PhaseGVN* phase) const {
2294   // Unreachable?  Then so are all paths from here.
2295   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2296   // First assume all paths are reachable
2297   const Type** f = TypeTuple::fields(_size);
2298   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2299   // Identify cases that will always throw an exception
2300   // () rethrow call
2301   // () virtual or interface call with NULL receiver
2302   // () call is a check cast with incompatible arguments
2303   if( in(1)->is_Proj() ) {
2304     Node *i10 = in(1)->in(0);
2305     if( i10->is_Call() ) {
2306       CallNode *call = i10->as_Call();
2307       // Rethrows always throw exceptions, never return
2308       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2309         f[CatchProjNode::fall_through_index] = Type::TOP;
2310       } else if( call->req() > TypeFunc::Parms ) {
2311         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2312         // Check for null receiver to virtual or interface calls
2313         if( call->is_CallDynamicJava() &&
2314             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2315           f[CatchProjNode::fall_through_index] = Type::TOP;
2316         }
2317       } // End of if not a runtime stub
2318     } // End of if have call above me
2319   } // End of slot 1 is not a projection
2320   return TypeTuple::make(_size, f);
2321 }
2322 
2323 //=============================================================================
hash() const2324 uint CatchProjNode::hash() const {
2325   return Node::hash() + _handler_bci;
2326 }
2327 
2328 
cmp(const Node & n) const2329 uint CatchProjNode::cmp( const Node &n ) const {
2330   return ProjNode::cmp(n) &&
2331     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2332 }
2333 
2334 
2335 //------------------------------Identity---------------------------------------
2336 // If only 1 target is possible, choose it if it is the main control
Identity(PhaseGVN * phase)2337 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2338   // If my value is control and no other value is, then treat as ID
2339   const TypeTuple *t = phase->type(in(0))->is_tuple();
2340   if (t->field_at(_con) != Type::CONTROL)  return this;
2341   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2342   // also remove any exception table entry.  Thus we must know the call
2343   // feeding the Catch will not really throw an exception.  This is ok for
2344   // the main fall-thru control (happens when we know a call can never throw
2345   // an exception) or for "rethrow", because a further optimization will
2346   // yank the rethrow (happens when we inline a function that can throw an
2347   // exception and the caller has no handler).  Not legal, e.g., for passing
2348   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2349   // These cases MUST throw an exception via the runtime system, so the VM
2350   // will be looking for a table entry.
2351   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2352   CallNode *call;
2353   if (_con != TypeFunc::Control && // Bail out if not the main control.
2354       !(proj->is_Proj() &&      // AND NOT a rethrow
2355         proj->in(0)->is_Call() &&
2356         (call = proj->in(0)->as_Call()) &&
2357         call->entry_point() == OptoRuntime::rethrow_stub()))
2358     return this;
2359 
2360   // Search for any other path being control
2361   for (uint i = 0; i < t->cnt(); i++) {
2362     if (i != _con && t->field_at(i) == Type::CONTROL)
2363       return this;
2364   }
2365   // Only my path is possible; I am identity on control to the jump
2366   return in(0)->in(0);
2367 }
2368 
2369 
2370 #ifndef PRODUCT
dump_spec(outputStream * st) const2371 void CatchProjNode::dump_spec(outputStream *st) const {
2372   ProjNode::dump_spec(st);
2373   st->print("@bci %d ",_handler_bci);
2374 }
2375 #endif
2376 
2377 //=============================================================================
2378 //------------------------------Identity---------------------------------------
2379 // Check for CreateEx being Identity.
Identity(PhaseGVN * phase)2380 Node* CreateExNode::Identity(PhaseGVN* phase) {
2381   if( phase->type(in(1)) == Type::TOP ) return in(1);
2382   if( phase->type(in(0)) == Type::TOP ) return in(0);
2383   // We only come from CatchProj, unless the CatchProj goes away.
2384   // If the CatchProj is optimized away, then we just carry the
2385   // exception oop through.
2386   CallNode *call = in(1)->in(0)->as_Call();
2387 
2388   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2389     ? this
2390     : call->in(TypeFunc::Parms);
2391 }
2392 
2393 //=============================================================================
2394 //------------------------------Value------------------------------------------
2395 // Check for being unreachable.
Value(PhaseGVN * phase) const2396 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2397   if (!in(0) || in(0)->is_top()) return Type::TOP;
2398   return bottom_type();
2399 }
2400 
2401 //------------------------------Ideal------------------------------------------
2402 // Check for no longer being part of a loop
Ideal(PhaseGVN * phase,bool can_reshape)2403 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2404   if (can_reshape && !in(0)->is_Loop()) {
2405     // Dead code elimination can sometimes delete this projection so
2406     // if it's not there, there's nothing to do.
2407     Node* fallthru = proj_out_or_null(0);
2408     if (fallthru != NULL) {
2409       phase->is_IterGVN()->replace_node(fallthru, in(0));
2410     }
2411     return phase->C->top();
2412   }
2413   return NULL;
2414 }
2415 
2416 #ifndef PRODUCT
format(PhaseRegAlloc * ra_,outputStream * st) const2417 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2418   st->print("%s", Name());
2419 }
2420 #endif
2421