1 /*
2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
26 #define SHARE_VM_OPTO_LOOPNODE_HPP
27 
28 #include "opto/cfgnode.hpp"
29 #include "opto/multnode.hpp"
30 #include "opto/phaseX.hpp"
31 #include "opto/subnode.hpp"
32 #include "opto/type.hpp"
33 
34 class CmpNode;
35 class CountedLoopEndNode;
36 class CountedLoopNode;
37 class IdealLoopTree;
38 class LoopNode;
39 class Node;
40 class OuterStripMinedLoopEndNode;
41 class PathFrequency;
42 class PhaseIdealLoop;
43 class CountedLoopReserveKit;
44 class VectorSet;
45 class Invariance;
46 struct small_cache;
47 
48 //
49 //                  I D E A L I Z E D   L O O P S
50 //
51 // Idealized loops are the set of loops I perform more interesting
52 // transformations on, beyond simple hoisting.
53 
54 //------------------------------LoopNode---------------------------------------
55 // Simple loop header.  Fall in path on left, loop-back path on right.
56 class LoopNode : public RegionNode {
57   // Size is bigger to hold the flags.  However, the flags do not change
58   // the semantics so it does not appear in the hash & cmp functions.
size_of() const59   virtual uint size_of() const { return sizeof(*this); }
60 protected:
61   uint _loop_flags;
62   // Names for flag bitfields
63   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
64          MainHasNoPreLoop=4,
65          HasExactTripCount=8,
66          InnerLoop=16,
67          PartialPeelLoop=32,
68          PartialPeelFailed=64,
69          HasReductions=128,
70          WasSlpAnalyzed=256,
71          PassedSlpAnalysis=512,
72          DoUnrollOnly=1024,
73          VectorizedLoop=2048,
74          HasAtomicPostLoop=4096,
75          HasRangeChecks=8192,
76          IsMultiversioned=16384,
77          StripMined=32768,
78          SubwordLoop=65536,
79          ProfileTripFailed=131072};
80   char _unswitch_count;
81   enum { _unswitch_max=3 };
82   char _postloop_flags;
83   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
84 
85   // Expected trip count from profile data
86   float _profile_trip_cnt;
87 
88 public:
89   // Names for edge indices
90   enum { Self=0, EntryControl, LoopBackControl };
91 
is_inner_loop() const92   bool is_inner_loop() const { return _loop_flags & InnerLoop; }
set_inner_loop()93   void set_inner_loop() { _loop_flags |= InnerLoop; }
94 
range_checks_present() const95   bool range_checks_present() const { return _loop_flags & HasRangeChecks; }
is_multiversioned() const96   bool is_multiversioned() const { return _loop_flags & IsMultiversioned; }
is_vectorized_loop() const97   bool is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
is_partial_peel_loop() const98   bool is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
set_partial_peel_loop()99   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
partial_peel_has_failed() const100   bool partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
is_strip_mined() const101   bool is_strip_mined() const { return _loop_flags & StripMined; }
is_profile_trip_failed() const102   bool is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
is_subword_loop() const103   bool is_subword_loop() const { return _loop_flags & SubwordLoop; }
104 
mark_partial_peel_failed()105   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
mark_has_reductions()106   void mark_has_reductions() { _loop_flags |= HasReductions; }
mark_was_slp()107   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
mark_passed_slp()108   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
mark_do_unroll_only()109   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
mark_loop_vectorized()110   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
mark_has_atomic_post_loop()111   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
mark_has_range_checks()112   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
mark_is_multiversioned()113   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
mark_strip_mined()114   void mark_strip_mined() { _loop_flags |= StripMined; }
clear_strip_mined()115   void clear_strip_mined() { _loop_flags &= ~StripMined; }
mark_profile_trip_failed()116   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
mark_subword_loop()117   void mark_subword_loop() { _loop_flags |= SubwordLoop; }
118 
unswitch_max()119   int unswitch_max() { return _unswitch_max; }
unswitch_count()120   int unswitch_count() { return _unswitch_count; }
121 
has_been_range_checked() const122   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
set_has_been_range_checked()123   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
is_rce_post_loop() const124   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
set_is_rce_post_loop()125   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
126 
set_unswitch_count(int val)127   void set_unswitch_count(int val) {
128     assert (val <= unswitch_max(), "too many unswitches");
129     _unswitch_count = val;
130   }
131 
set_profile_trip_cnt(float ptc)132   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
profile_trip_cnt()133   float profile_trip_cnt()             { return _profile_trip_cnt; }
134 
LoopNode(Node * entry,Node * backedge)135   LoopNode(Node *entry, Node *backedge)
136     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
137       _postloop_flags(0), _profile_trip_cnt(COUNT_UNKNOWN)  {
138     init_class_id(Class_Loop);
139     init_req(EntryControl, entry);
140     init_req(LoopBackControl, backedge);
141   }
142 
143   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
144   virtual int Opcode() const;
can_be_counted_loop(PhaseTransform * phase) const145   bool can_be_counted_loop(PhaseTransform* phase) const {
146     return req() == 3 && in(0) != NULL &&
147       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
148       in(2) != NULL && phase->type(in(2)) != Type::TOP;
149   }
150   bool is_valid_counted_loop() const;
151 #ifndef PRODUCT
152   virtual void dump_spec(outputStream *st) const;
153 #endif
154 
155   void verify_strip_mined(int expect_skeleton) const NOT_DEBUG_RETURN;
skip_strip_mined(int expect_skeleton=1)156   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
outer_loop_tail() const157   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; }
outer_loop_end() const158   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; }
outer_loop_exit() const159   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; }
outer_safepoint() const160   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; }
161 };
162 
163 //------------------------------Counted Loops----------------------------------
164 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
165 // path (and maybe some other exit paths).  The trip-counter exit is always
166 // last in the loop.  The trip-counter have to stride by a constant;
167 // the exit value is also loop invariant.
168 
169 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
170 // CountedLoopNode has the incoming loop control and the loop-back-control
171 // which is always the IfTrue before the matching CountedLoopEndNode.  The
172 // CountedLoopEndNode has an incoming control (possibly not the
173 // CountedLoopNode if there is control flow in the loop), the post-increment
174 // trip-counter value, and the limit.  The trip-counter value is always of
175 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
176 // by a Phi connected to the CountedLoopNode.  The stride is constant.
177 // The Op is any commutable opcode, including Add, Mul, Xor.  The
178 // CountedLoopEndNode also takes in the loop-invariant limit value.
179 
180 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
181 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
182 // via the old-trip-counter from the Op node.
183 
184 //------------------------------CountedLoopNode--------------------------------
185 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
186 // inputs the incoming loop-start control and the loop-back control, so they
187 // act like RegionNodes.  They also take in the initial trip counter, the
188 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
189 // produce a loop-body control and the trip counter value.  Since
190 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
191 
192 class CountedLoopNode : public LoopNode {
193   // Size is bigger to hold _main_idx.  However, _main_idx does not change
194   // the semantics so it does not appear in the hash & cmp functions.
size_of() const195   virtual uint size_of() const { return sizeof(*this); }
196 
197   // For Pre- and Post-loops during debugging ONLY, this holds the index of
198   // the Main CountedLoop.  Used to assert that we understand the graph shape.
199   node_idx_t _main_idx;
200 
201   // Known trip count calculated by compute_exact_trip_count()
202   uint  _trip_count;
203 
204   // Log2 of original loop bodies in unrolled loop
205   int _unrolled_count_log2;
206 
207   // Node count prior to last unrolling - used to decide if
208   // unroll,optimize,unroll,optimize,... is making progress
209   int _node_count_before_unroll;
210 
211   // If slp analysis is performed we record the maximum
212   // vector mapped unroll factor here
213   int _slp_maximum_unroll_factor;
214 
215 public:
CountedLoopNode(Node * entry,Node * backedge)216   CountedLoopNode( Node *entry, Node *backedge )
217     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
218       _unrolled_count_log2(0), _node_count_before_unroll(0),
219       _slp_maximum_unroll_factor(0) {
220     init_class_id(Class_CountedLoop);
221     // Initialize _trip_count to the largest possible value.
222     // Will be reset (lower) if the loop's trip count is known.
223   }
224 
225   virtual int Opcode() const;
226   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
227 
init_control() const228   Node *init_control() const { return in(EntryControl); }
back_control() const229   Node *back_control() const { return in(LoopBackControl); }
230   CountedLoopEndNode *loopexit_or_null() const;
231   CountedLoopEndNode *loopexit() const;
232   Node *init_trip() const;
233   Node *stride() const;
234   int   stride_con() const;
235   bool  stride_is_con() const;
236   Node *limit() const;
237   Node *incr() const;
238   Node *phi() const;
239 
240   // Match increment with optional truncation
241   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
242 
243   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
244   // can run short a few iterations and may start a few iterations in.
245   // It will be RCE'd and unrolled and aligned.
246 
247   // A following 'post' loop will run any remaining iterations.  Used
248   // during Range Check Elimination, the 'post' loop will do any final
249   // iterations with full checks.  Also used by Loop Unrolling, where
250   // the 'post' loop will do any epilog iterations needed.  Basically,
251   // a 'post' loop can not profitably be further unrolled or RCE'd.
252 
253   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
254   // it may do under-flow checks for RCE and may do alignment iterations
255   // so the following main loop 'knows' that it is striding down cache
256   // lines.
257 
258   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
259   // Aligned, may be missing it's pre-loop.
is_normal_loop() const260   bool is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
is_pre_loop() const261   bool is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
is_main_loop() const262   bool is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
is_post_loop() const263   bool is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
is_reduction_loop() const264   bool is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
was_slp_analyzed() const265   bool was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
has_passed_slp() const266   bool has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
do_unroll_only() const267   bool do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
is_main_no_pre_loop() const268   bool is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
has_atomic_post_loop() const269   bool has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
set_main_no_pre_loop()270   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
271 
main_idx() const272   int main_idx() const { return _main_idx; }
273 
274 
set_pre_loop(CountedLoopNode * main)275   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
set_main_loop()276   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
set_post_loop(CountedLoopNode * main)277   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
set_normal_loop()278   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
279 
set_trip_count(uint tc)280   void set_trip_count(uint tc) { _trip_count = tc; }
trip_count()281   uint trip_count()            { return _trip_count; }
282 
has_exact_trip_count() const283   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
set_exact_trip_count(uint tc)284   void set_exact_trip_count(uint tc) {
285     _trip_count = tc;
286     _loop_flags |= HasExactTripCount;
287   }
set_nonexact_trip_count()288   void set_nonexact_trip_count() {
289     _loop_flags &= ~HasExactTripCount;
290   }
set_notpassed_slp()291   void set_notpassed_slp() {
292     _loop_flags &= ~PassedSlpAnalysis;
293   }
294 
double_unrolled_count()295   void double_unrolled_count() { _unrolled_count_log2++; }
unrolled_count()296   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
297 
set_node_count_before_unroll(int ct)298   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
node_count_before_unroll()299   int  node_count_before_unroll()            { return _node_count_before_unroll; }
set_slp_max_unroll(int unroll_factor)300   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
slp_max_unroll() const301   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
302 
303   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1);
304   OuterStripMinedLoopNode* outer_loop() const;
305   virtual IfTrueNode* outer_loop_tail() const;
306   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
307   virtual IfFalseNode* outer_loop_exit() const;
308   virtual SafePointNode* outer_safepoint() const;
309 
310   // If this is a main loop in a pre/main/post loop nest, walk over
311   // the predicates that were inserted by
312   // duplicate_predicates()/add_range_check_predicate()
313   static Node* skip_predicates_from_entry(Node* ctrl);
314   Node* skip_predicates();
315 
316 #ifndef PRODUCT
317   virtual void dump_spec(outputStream *st) const;
318 #endif
319 };
320 
321 //------------------------------CountedLoopEndNode-----------------------------
322 // CountedLoopEndNodes end simple trip counted loops.  They act much like
323 // IfNodes.
324 class CountedLoopEndNode : public IfNode {
325 public:
326   enum { TestControl, TestValue };
327 
CountedLoopEndNode(Node * control,Node * test,float prob,float cnt)328   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
329     : IfNode( control, test, prob, cnt) {
330     init_class_id(Class_CountedLoopEnd);
331   }
332   virtual int Opcode() const;
333 
cmp_node() const334   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
incr() const335   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
limit() const336   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
stride() const337   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
init_trip() const338   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
339   int stride_con() const;
stride_is_con() const340   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
test_trip() const341   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
phi() const342   PhiNode *phi() const {
343     Node *tmp = incr();
344     if (tmp && tmp->req() == 3) {
345       Node* phi = tmp->in(1);
346       if (phi->is_Phi()) {
347         return phi->as_Phi();
348       }
349     }
350     return NULL;
351   }
loopnode() const352   CountedLoopNode *loopnode() const {
353     // The CountedLoopNode that goes with this CountedLoopEndNode may
354     // have been optimized out by the IGVN so be cautious with the
355     // pattern matching on the graph
356     PhiNode* iv_phi = phi();
357     if (iv_phi == NULL) {
358       return NULL;
359     }
360     Node *ln = iv_phi->in(0);
361     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit_or_null() == this) {
362       return (CountedLoopNode*)ln;
363     }
364     return NULL;
365   }
366 
367 #ifndef PRODUCT
368   virtual void dump_spec(outputStream *st) const;
369 #endif
370 };
371 
372 
loopexit_or_null() const373 inline CountedLoopEndNode *CountedLoopNode::loopexit_or_null() const {
374   Node *bc = back_control();
375   if( bc == NULL ) return NULL;
376   Node *le = bc->in(0);
377   if( le->Opcode() != Op_CountedLoopEnd )
378     return NULL;
379   return (CountedLoopEndNode*)le;
380 }
loopexit() const381 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
382   CountedLoopEndNode* cle = loopexit_or_null();
383   assert(cle != NULL, "loopexit is NULL");
384   return cle;
385 }
init_trip() const386 inline Node *CountedLoopNode::init_trip() const { return loopexit_or_null() ? loopexit()->init_trip() : NULL; }
stride() const387 inline Node *CountedLoopNode::stride() const { return loopexit_or_null() ? loopexit()->stride() : NULL; }
stride_con() const388 inline int CountedLoopNode::stride_con() const { return loopexit_or_null() ? loopexit()->stride_con() : 0; }
stride_is_con() const389 inline bool CountedLoopNode::stride_is_con() const { return loopexit_or_null() && loopexit()->stride_is_con(); }
limit() const390 inline Node *CountedLoopNode::limit() const { return loopexit_or_null() ? loopexit()->limit() : NULL; }
incr() const391 inline Node *CountedLoopNode::incr() const { return loopexit_or_null() ? loopexit()->incr() : NULL; }
phi() const392 inline Node *CountedLoopNode::phi() const { return loopexit_or_null() ? loopexit()->phi() : NULL; }
393 
394 //------------------------------LoopLimitNode-----------------------------
395 // Counted Loop limit node which represents exact final iterator value:
396 // trip_count = (limit - init_trip + stride - 1)/stride
397 // final_value= trip_count * stride + init_trip.
398 // Use HW instructions to calculate it when it can overflow in integer.
399 // Note, final_value should fit into integer since counted loop has
400 // limit check: limit <= max_int-stride.
401 class LoopLimitNode : public Node {
402   enum { Init=1, Limit=2, Stride=3 };
403  public:
LoopLimitNode(Compile * C,Node * init,Node * limit,Node * stride)404   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
405     // Put it on the Macro nodes list to optimize during macro nodes expansion.
406     init_flags(Flag_is_macro);
407     C->add_macro_node(this);
408   }
409   virtual int Opcode() const;
bottom_type() const410   virtual const Type *bottom_type() const { return TypeInt::INT; }
ideal_reg() const411   virtual uint ideal_reg() const { return Op_RegI; }
412   virtual const Type* Value(PhaseGVN* phase) const;
413   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
414   virtual Node* Identity(PhaseGVN* phase);
415 };
416 
417 // Support for strip mining
418 class OuterStripMinedLoopNode : public LoopNode {
419 private:
420   CountedLoopNode* inner_loop() const;
421 public:
OuterStripMinedLoopNode(Compile * C,Node * entry,Node * backedge)422   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
423     : LoopNode(entry, backedge) {
424     init_class_id(Class_OuterStripMinedLoop);
425     init_flags(Flag_is_macro);
426     C->add_macro_node(this);
427   }
428 
429   virtual int Opcode() const;
430 
431   virtual IfTrueNode* outer_loop_tail() const;
432   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
433   virtual IfFalseNode* outer_loop_exit() const;
434   virtual SafePointNode* outer_safepoint() const;
435   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
436 };
437 
438 class OuterStripMinedLoopEndNode : public IfNode {
439 public:
OuterStripMinedLoopEndNode(Node * control,Node * test,float prob,float cnt)440   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
441     : IfNode(control, test, prob, cnt) {
442     init_class_id(Class_OuterStripMinedLoopEnd);
443   }
444 
445   virtual int Opcode() const;
446 
447   virtual const Type* Value(PhaseGVN* phase) const;
448   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
449 
450   bool is_expanded(PhaseGVN *phase) const;
451 };
452 
453 // -----------------------------IdealLoopTree----------------------------------
454 class IdealLoopTree : public ResourceObj {
455 public:
456   IdealLoopTree *_parent;       // Parent in loop tree
457   IdealLoopTree *_next;         // Next sibling in loop tree
458   IdealLoopTree *_child;        // First child in loop tree
459 
460   // The head-tail backedge defines the loop.
461   // If tail is NULL then this loop has multiple backedges as part of the
462   // same loop.  During cleanup I'll peel off the multiple backedges; merge
463   // them at the loop bottom and flow 1 real backedge into the loop.
464   Node *_head;                  // Head of loop
465   Node *_tail;                  // Tail of loop
466   inline Node *tail();          // Handle lazy update of _tail field
467   inline Node *head();          // Handle lazy update of _head field
468   PhaseIdealLoop* _phase;
469   int _local_loop_unroll_limit;
470   int _local_loop_unroll_factor;
471 
472   Node_List _body;              // Loop body for inner loops
473 
474   uint16_t _nest;               // Nesting depth
475   uint8_t _irreducible:1,       // True if irreducible
476           _has_call:1,          // True if has call safepoint
477           _has_sfpt:1,          // True if has non-call safepoint
478           _rce_candidate:1;     // True if candidate for range check elimination
479 
480   Node_List* _safepts;          // List of safepoints in this loop
481   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
482   bool  _allow_optimizations;   // Allow loop optimizations
483 
IdealLoopTree(PhaseIdealLoop * phase,Node * head,Node * tail)484   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
485     : _parent(0), _next(0), _child(0),
486       _head(head), _tail(tail),
487       _phase(phase),
488       _safepts(NULL),
489       _required_safept(NULL),
490       _allow_optimizations(true),
491       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
492       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
493   { }
494 
495   // Is 'l' a member of 'this'?
496   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
497 
498   // Set loop nesting depth.  Accumulate has_call bits.
499   int set_nest( uint depth );
500 
501   // Split out multiple fall-in edges from the loop header.  Move them to a
502   // private RegionNode before the loop.  This becomes the loop landing pad.
503   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
504 
505   // Split out the outermost loop from this shared header.
506   void split_outer_loop( PhaseIdealLoop *phase );
507 
508   // Merge all the backedges from the shared header into a private Region.
509   // Feed that region as the one backedge to this loop.
510   void merge_many_backedges( PhaseIdealLoop *phase );
511 
512   // Split shared headers and insert loop landing pads.
513   // Insert a LoopNode to replace the RegionNode.
514   // Returns TRUE if loop tree is structurally changed.
515   bool beautify_loops( PhaseIdealLoop *phase );
516 
517   // Perform optimization to use the loop predicates for null checks and range checks.
518   // Applies to any loop level (not just the innermost one)
519   bool loop_predication( PhaseIdealLoop *phase);
520 
521   // Perform iteration-splitting on inner loops.  Split iterations to
522   // avoid range checks or one-shot null checks.  Returns false if the
523   // current round of loop opts should stop.
524   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
525 
526   // Driver for various flavors of iteration splitting.  Returns false
527   // if the current round of loop opts should stop.
528   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
529 
530   // Given dominators, try to find loops with calls that must always be
531   // executed (call dominates loop tail).  These loops do not need non-call
532   // safepoints (ncsfpt).
533   void check_safepts(VectorSet &visited, Node_List &stack);
534 
535   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
536   // encountered.
537   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
538 
539   // Remove safepoints from loop. Optionally keeping one.
540   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
541 
542   // Convert to counted loops where possible
543   void counted_loop( PhaseIdealLoop *phase );
544 
545   // Check for Node being a loop-breaking test
546   Node *is_loop_exit(Node *iff) const;
547 
548   // Remove simplistic dead code from loop body
549   void DCE_loop_body();
550 
551   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
552   // Replace with a 1-in-10 exit guess.
553   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
554 
555   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
556   // Useful for unrolling loops with NO array accesses.
557   bool policy_peel_only( PhaseIdealLoop *phase ) const;
558 
559   // Return TRUE or FALSE if the loop should be unswitched -- clone
560   // loop with an invariant test
561   bool policy_unswitching( PhaseIdealLoop *phase ) const;
562 
563   // Micro-benchmark spamming.  Remove empty loops.
564   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
565 
566   // Convert one iteration loop into normal code.
567   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
568 
569   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
570   // make some loop-invariant test (usually a null-check) happen before the
571   // loop.
572   bool policy_peeling( PhaseIdealLoop *phase ) const;
573 
574   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
575   // known trip count in the counted loop node.
576   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
577 
578   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
579   // the loop is a CountedLoop and the body is small enough.
580   bool policy_unroll(PhaseIdealLoop *phase);
581 
582   // Loop analyses to map to a maximal superword unrolling for vectorization.
583   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
584 
585   // Return TRUE or FALSE if the loop should be range-check-eliminated.
586   // Gather a list of IF tests that are dominated by iteration splitting;
587   // also gather the end of the first split and the start of the 2nd split.
588   bool policy_range_check( PhaseIdealLoop *phase ) const;
589 
590   // Return TRUE or FALSE if the loop should be cache-line aligned.
591   // Gather the expression that does the alignment.  Note that only
592   // one array base can be aligned in a loop (unless the VM guarantees
593   // mutual alignment).  Note that if we vectorize short memory ops
594   // into longer memory ops, we may want to increase alignment.
595   bool policy_align( PhaseIdealLoop *phase ) const;
596 
597   // Return TRUE if "iff" is a range check.
598   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
599 
600   // Compute loop trip count if possible
601   void compute_trip_count(PhaseIdealLoop* phase);
602 
603   // Compute loop trip count from profile data
604   float compute_profile_trip_cnt_helper(Node* n);
605   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
606 
607   // Reassociate invariant expressions.
608   void reassociate_invariants(PhaseIdealLoop *phase);
609   // Reassociate invariant add and subtract expressions.
610   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
611   // Return nonzero index of invariant operand if invariant and variant
612   // are combined with an Add or Sub. Helper for reassociate_invariants.
613   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
614 
615   // Return true if n is invariant
616   bool is_invariant(Node* n) const;
617 
618   // Put loop body on igvn work list
619   void record_for_igvn();
620 
is_loop()621   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
is_inner()622   bool is_inner()   { return is_loop() && _child == NULL; }
is_counted()623   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
624 
625   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
626 
627 #ifndef PRODUCT
628   void dump_head( ) const;      // Dump loop head only
629   void dump() const;            // Dump this loop recursively
630   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
631 #endif
632 
633 };
634 
635 // -----------------------------PhaseIdealLoop---------------------------------
636 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
637 // loop tree.  Drives the loop-based transformations on the ideal graph.
638 class PhaseIdealLoop : public PhaseTransform {
639   friend class IdealLoopTree;
640   friend class SuperWord;
641   friend class CountedLoopReserveKit;
642 
643   // Pre-computed def-use info
644   PhaseIterGVN &_igvn;
645 
646   // Head of loop tree
647   IdealLoopTree *_ltree_root;
648 
649   // Array of pre-order numbers, plus post-visited bit.
650   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
651   // ODD for post-visited.  Other bits are the pre-order number.
652   uint *_preorders;
653   uint _max_preorder;
654 
655   const PhaseIdealLoop* _verify_me;
656   bool _verify_only;
657 
658   // Allocate _preorders[] array
allocate_preorders()659   void allocate_preorders() {
660     _max_preorder = C->unique()+8;
661     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
662     memset(_preorders, 0, sizeof(uint) * _max_preorder);
663   }
664 
665   // Allocate _preorders[] array
reallocate_preorders()666   void reallocate_preorders() {
667     if ( _max_preorder < C->unique() ) {
668       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
669       _max_preorder = C->unique();
670     }
671     memset(_preorders, 0, sizeof(uint) * _max_preorder);
672   }
673 
674   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
675   // adds new nodes.
check_grow_preorders()676   void check_grow_preorders( ) {
677     if ( _max_preorder < C->unique() ) {
678       uint newsize = _max_preorder<<1;  // double size of array
679       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
680       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
681       _max_preorder = newsize;
682     }
683   }
684   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
is_visited(Node * n) const685   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
686   // Pre-order numbers are written to the Nodes array as low-bit-set values.
set_preorder_visited(Node * n,int pre_order)687   void set_preorder_visited( Node *n, int pre_order ) {
688     assert( !is_visited( n ), "already set" );
689     _preorders[n->_idx] = (pre_order<<1);
690   };
691   // Return pre-order number.
get_preorder(Node * n) const692   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
693 
694   // Check for being post-visited.
695   // Should be previsited already (checked with assert(is_visited(n))).
is_postvisited(Node * n) const696   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
697 
698   // Mark as post visited
set_postvisited(Node * n)699   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
700 
701 public:
702   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
703   // Returns true if "n" is a data node, false if it's a control node.
has_ctrl(Node * n) const704   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
705 
706 private:
707   // clear out dead code after build_loop_late
708   Node_List _deadlist;
709 
710   // Support for faster execution of get_late_ctrl()/dom_lca()
711   // when a node has many uses and dominator depth is deep.
712   Node_Array _dom_lca_tags;
713   void   init_dom_lca_tags();
714   void   clear_dom_lca_tags();
715 
716   // Helper for debugging bad dominance relationships
717   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
718 
719   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
720 
721   // Inline wrapper for frequent cases:
722   // 1) only one use
723   // 2) a use is the same as the current LCA passed as 'n1'
dom_lca_for_get_late_ctrl(Node * lca,Node * n,Node * tag)724   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
725     assert( n->is_CFG(), "" );
726     // Fast-path NULL lca
727     if( lca != NULL && lca != n ) {
728       assert( lca->is_CFG(), "" );
729       // find LCA of all uses
730       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
731     }
732     return find_non_split_ctrl(n);
733   }
734   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
735 
736   // Helper function for directing control inputs away from CFG split
737   // points.
find_non_split_ctrl(Node * ctrl) const738   Node *find_non_split_ctrl( Node *ctrl ) const {
739     if (ctrl != NULL) {
740       if (ctrl->is_MultiBranch()) {
741         ctrl = ctrl->in(0);
742       }
743       assert(ctrl->is_CFG(), "CFG");
744     }
745     return ctrl;
746   }
747 
748   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
749 
750 #ifdef ASSERT
751   void ensure_zero_trip_guard_proj(Node* node, bool is_main_loop);
752 #endif
753   void copy_skeleton_predicates_to_main_loop_helper(Node* predicate, Node* init, Node* stride, IdealLoopTree* outer_loop, LoopNode* outer_main_head,
754                                                     uint dd_main_head, const uint idx_before_pre_post, const uint idx_after_post_before_pre,
755                                                     Node* zero_trip_guard_proj_main, Node* zero_trip_guard_proj_post, const Node_List &old_new);
756   void copy_skeleton_predicates_to_main_loop(CountedLoopNode* pre_head, Node* init, Node* stride, IdealLoopTree* outer_loop, LoopNode* outer_main_head,
757                                              uint dd_main_head, const uint idx_before_pre_post, const uint idx_after_post_before_pre,
758                                              Node* zero_trip_guard_proj_main, Node* zero_trip_guard_proj_post, const Node_List &old_new);
759   Node* clone_skeleton_predicate_for_main_loop(Node* iff, Node* new_init, Node* new_stride, Node* predicate, Node* uncommon_proj, Node* control,
760                                                IdealLoopTree* outer_loop, Node* input_proj);
761   Node* clone_skeleton_predicate_bool(Node* iff, Node* new_init, Node* new_stride, Node* predicate, Node* uncommon_proj, Node* control,
762                                       IdealLoopTree* outer_loop);
763   bool skeleton_predicate_has_opaque(IfNode* iff);
764   void update_main_loop_skeleton_predicates(Node* ctrl, CountedLoopNode* loop_head, Node* init, int stride_con);
765   void insert_loop_limit_check(ProjNode* limit_check_proj, Node* cmp_limit, Node* bol);
766 #ifdef ASSERT
767   bool only_has_infinite_loops();
768 #endif
769 
770 public:
771 
igvn() const772   PhaseIterGVN &igvn() const { return _igvn; }
773 
774   static bool is_canonical_loop_entry(CountedLoopNode* cl);
775 
has_node(Node * n) const776   bool has_node( Node* n ) const {
777     guarantee(n != NULL, "No Node.");
778     return _nodes[n->_idx] != NULL;
779   }
780   // check if transform created new nodes that need _ctrl recorded
781   Node *get_late_ctrl( Node *n, Node *early );
782   Node *get_early_ctrl( Node *n );
783   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
784   void set_early_ctrl( Node *n );
785   void set_subtree_ctrl( Node *root );
set_ctrl(Node * n,Node * ctrl)786   void set_ctrl( Node *n, Node *ctrl ) {
787     assert( !has_node(n) || has_ctrl(n), "" );
788     assert( ctrl->in(0), "cannot set dead control node" );
789     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
790     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
791   }
792   // Set control and update loop membership
set_ctrl_and_loop(Node * n,Node * ctrl)793   void set_ctrl_and_loop(Node* n, Node* ctrl) {
794     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
795     IdealLoopTree* new_loop = get_loop(ctrl);
796     if (old_loop != new_loop) {
797       if (old_loop->_child == NULL) old_loop->_body.yank(n);
798       if (new_loop->_child == NULL) new_loop->_body.push(n);
799     }
800     set_ctrl(n, ctrl);
801   }
802   // Control nodes can be replaced or subsumed.  During this pass they
803   // get their replacement Node in slot 1.  Instead of updating the block
804   // location of all Nodes in the subsumed block, we lazily do it.  As we
805   // pull such a subsumed block out of the array, we write back the final
806   // correct block.
get_ctrl(Node * i)807   Node *get_ctrl( Node *i ) {
808     assert(has_node(i), "");
809     Node *n = get_ctrl_no_update(i);
810     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
811     assert(has_node(i) && has_ctrl(i), "");
812     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
813     return n;
814   }
815   // true if CFG node d dominates CFG node n
816   bool is_dominator(Node *d, Node *n);
817   // return get_ctrl for a data node and self(n) for a CFG node
ctrl_or_self(Node * n)818   Node* ctrl_or_self(Node* n) {
819     if (has_ctrl(n))
820       return get_ctrl(n);
821     else {
822       assert (n->is_CFG(), "must be a CFG node");
823       return n;
824     }
825   }
826 
get_ctrl_no_update_helper(Node * i) const827   Node *get_ctrl_no_update_helper(Node *i) const {
828     assert(has_ctrl(i), "should be control, not loop");
829     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
830   }
831 
get_ctrl_no_update(Node * i) const832   Node *get_ctrl_no_update(Node *i) const {
833     assert( has_ctrl(i), "" );
834     Node *n = get_ctrl_no_update_helper(i);
835     if (!n->in(0)) {
836       // Skip dead CFG nodes
837       do {
838         n = get_ctrl_no_update_helper(n);
839       } while (!n->in(0));
840       n = find_non_split_ctrl(n);
841     }
842     return n;
843   }
844 
845   // Check for loop being set
846   // "n" must be a control node. Returns true if "n" is known to be in a loop.
has_loop(Node * n) const847   bool has_loop( Node *n ) const {
848     assert(!has_node(n) || !has_ctrl(n), "");
849     return has_node(n);
850   }
851   // Set loop
set_loop(Node * n,IdealLoopTree * loop)852   void set_loop( Node *n, IdealLoopTree *loop ) {
853     _nodes.map(n->_idx, (Node*)loop);
854   }
855   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
856   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
857   // from old_node to new_node to support the lazy update.  Reference
858   // replaces loop reference, since that is not needed for dead node.
lazy_update(Node * old_node,Node * new_node)859   void lazy_update(Node *old_node, Node *new_node) {
860     assert(old_node != new_node, "no cycles please");
861     // Re-use the side array slot for this node to provide the
862     // forwarding pointer.
863     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
864   }
lazy_replace(Node * old_node,Node * new_node)865   void lazy_replace(Node *old_node, Node *new_node) {
866     _igvn.replace_node(old_node, new_node);
867     lazy_update(old_node, new_node);
868   }
869 
870 private:
871 
872   // Place 'n' in some loop nest, where 'n' is a CFG node
873   void build_loop_tree();
874   int build_loop_tree_impl( Node *n, int pre_order );
875   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
876   // loop tree, not the root.
877   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
878 
879   // Place Data nodes in some loop nest
880   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
881   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
882   void build_loop_late_post ( Node* n );
883   void verify_strip_mined_scheduling(Node *n, Node* least);
884 
885   // Array of immediate dominance info for each CFG node indexed by node idx
886 private:
887   uint _idom_size;
888   Node **_idom;                  // Array of immediate dominators
889   uint *_dom_depth;              // Used for fast LCA test
890   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
891 
892 public:
idom_no_update(Node * d) const893   Node* idom_no_update(Node* d) const {
894     return idom_no_update(d->_idx);
895   }
896 
idom_no_update(uint didx) const897   Node* idom_no_update(uint didx) const {
898     assert(didx < _idom_size, "oob");
899     Node* n = _idom[didx];
900     assert(n != NULL,"Bad immediate dominator info.");
901     while (n->in(0) == NULL) { // Skip dead CFG nodes
902       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
903       assert(n != NULL,"Bad immediate dominator info.");
904     }
905     return n;
906   }
907 
idom(Node * d) const908   Node *idom(Node* d) const {
909     return idom(d->_idx);
910   }
911 
idom(uint didx) const912   Node *idom(uint didx) const {
913     Node *n = idom_no_update(didx);
914     _idom[didx] = n; // Lazily remove dead CFG nodes from table.
915     return n;
916   }
917 
dom_depth(Node * d) const918   uint dom_depth(Node* d) const {
919     guarantee(d != NULL, "Null dominator info.");
920     guarantee(d->_idx < _idom_size, "");
921     return _dom_depth[d->_idx];
922   }
923   void set_idom(Node* d, Node* n, uint dom_depth);
924   // Locally compute IDOM using dom_lca call
925   Node *compute_idom( Node *region ) const;
926   // Recompute dom_depth
927   void recompute_dom_depth();
928 
929   // Is safept not required by an outer loop?
930   bool is_deleteable_safept(Node* sfpt);
931 
932   // Replace parallel induction variable (parallel to trip counter)
933   void replace_parallel_iv(IdealLoopTree *loop);
934 
935   // Perform verification that the graph is valid.
PhaseIdealLoop(PhaseIterGVN & igvn)936   PhaseIdealLoop( PhaseIterGVN &igvn) :
937     PhaseTransform(Ideal_Loop),
938     _igvn(igvn),
939     _dom_lca_tags(arena()), // Thread::resource_area
940     _verify_me(NULL),
941     _verify_only(true) {
942     build_and_optimize(LoopOptsVerify);
943   }
944 
945   // build the loop tree and perform any requested optimizations
946   void build_and_optimize(LoopOptsMode mode);
947 
948   // Dominators for the sea of nodes
949   void Dominators();
dom_lca(Node * n1,Node * n2) const950   Node *dom_lca( Node *n1, Node *n2 ) const {
951     return find_non_split_ctrl(dom_lca_internal(n1, n2));
952   }
953   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
954 
955   // Compute the Ideal Node to Loop mapping
PhaseIdealLoop(PhaseIterGVN & igvn,LoopOptsMode mode)956   PhaseIdealLoop(PhaseIterGVN &igvn, LoopOptsMode mode) :
957     PhaseTransform(Ideal_Loop),
958     _igvn(igvn),
959     _dom_lca_tags(arena()), // Thread::resource_area
960     _verify_me(NULL),
961     _verify_only(false) {
962     build_and_optimize(mode);
963   }
964 
965   // Verify that verify_me made the same decisions as a fresh run.
PhaseIdealLoop(PhaseIterGVN & igvn,const PhaseIdealLoop * verify_me)966   PhaseIdealLoop(PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
967     PhaseTransform(Ideal_Loop),
968     _igvn(igvn),
969     _dom_lca_tags(arena()), // Thread::resource_area
970     _verify_me(verify_me),
971     _verify_only(false) {
972     build_and_optimize(LoopOptsVerify);
973   }
974 
975   // Build and verify the loop tree without modifying the graph.  This
976   // is useful to verify that all inputs properly dominate their uses.
verify(PhaseIterGVN & igvn)977   static void verify(PhaseIterGVN& igvn) {
978 #ifdef ASSERT
979     PhaseIdealLoop v(igvn);
980 #endif
981   }
982 
983   // True if the method has at least 1 irreducible loop
984   bool _has_irreducible_loops;
985 
986   // Per-Node transform
transform(Node * a_node)987   virtual Node *transform( Node *a_node ) { return 0; }
988 
989   bool is_counted_loop(Node* x, IdealLoopTree*& loop);
990   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
991                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
992                                                Node*& entry_control, Node*& iffalse);
993 
994   Node* exact_limit( IdealLoopTree *loop );
995 
996   // Return a post-walked LoopNode
get_loop(Node * n) const997   IdealLoopTree *get_loop( Node *n ) const {
998     // Dead nodes have no loop, so return the top level loop instead
999     if (!has_node(n))  return _ltree_root;
1000     assert(!has_ctrl(n), "");
1001     return (IdealLoopTree*)_nodes[n->_idx];
1002   }
1003 
ltree_root() const1004   IdealLoopTree *ltree_root() const { return _ltree_root; }
1005 
1006   // Is 'n' a (nested) member of 'loop'?
is_member(const IdealLoopTree * loop,Node * n) const1007   int is_member( const IdealLoopTree *loop, Node *n ) const {
1008     return loop->is_member(get_loop(n)); }
1009 
1010   // This is the basic building block of the loop optimizations.  It clones an
1011   // entire loop body.  It makes an old_new loop body mapping; with this
1012   // mapping you can find the new-loop equivalent to an old-loop node.  All
1013   // new-loop nodes are exactly equal to their old-loop counterparts, all
1014   // edges are the same.  All exits from the old-loop now have a RegionNode
1015   // that merges the equivalent new-loop path.  This is true even for the
1016   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
1017   // now come from (one or more) Phis that merge their new-loop equivalents.
1018   // Parameter side_by_side_idom:
1019   //   When side_by_size_idom is NULL, the dominator tree is constructed for
1020   //      the clone loop to dominate the original.  Used in construction of
1021   //      pre-main-post loop sequence.
1022   //   When nonnull, the clone and original are side-by-side, both are
1023   //      dominated by the passed in side_by_side_idom node.  Used in
1024   //      construction of unswitched loops.
1025   enum CloneLoopMode {
1026     IgnoreStripMined = 0,        // Only clone inner strip mined loop
1027     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
1028     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
1029                                  // result control flow branches
1030                                  // either to inner clone or outer
1031                                  // strip mined loop.
1032   };
1033   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1034                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
1035   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1036                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1037                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1038                                    Node_List*& split_cex_set, Node_List& worklist,
1039                                    uint new_counter, CloneLoopMode mode);
1040   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1041                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1042                         Node_List& extra_data_nodes);
1043 
1044   // If we got the effect of peeling, either by actually peeling or by
1045   // making a pre-loop which must execute at least once, we can remove
1046   // all loop-invariant dominated tests in the main body.
1047   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1048 
1049   // Generate code to do a loop peel for the given loop (and body).
1050   // old_new is a temp array.
1051   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1052 
1053   // Add pre and post loops around the given loop.  These loops are used
1054   // during RCE, unrolling and aligning loops.
1055   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1056 
1057   // Add post loop after the given loop.
1058   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1059                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1060                          Node *incr, Node *limit, CountedLoopNode *&post_head);
1061 
1062   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
1063   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
1064 
1065   // Add a vector post loop between a vector main loop and the current post loop
1066   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1067   // If Node n lives in the back_ctrl block, we clone a private version of n
1068   // in preheader_ctrl block and return that, otherwise return n.
1069   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1070 
1071   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1072   // unroll to do double iterations.  The next round of major loop transforms
1073   // will repeat till the doubled loop body does all remaining iterations in 1
1074   // pass.
1075   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1076 
1077   // Unroll the loop body one step - make each trip do 2 iterations.
1078   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1079 
1080   // Mark vector reduction candidates before loop unrolling
1081   void mark_reductions( IdealLoopTree *loop );
1082 
1083   // Return true if exp is a constant times an induction var
1084   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
1085 
1086   // Return true if exp is a scaled induction var plus (or minus) constant
1087   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
1088 
1089   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1090   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, Deoptimization::DeoptReason reason,
1091                                         int opcode, bool if_cont_is_true_proj = true);
1092 
1093   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
1094 
1095   static Node* skip_all_loop_predicates(Node* entry);
1096   static Node* skip_loop_predicates(Node* entry);
1097 
1098   // Find a good location to insert a predicate
1099   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1100   // Find a predicate
1101   static Node* find_predicate(Node* entry);
1102   // Construct a range check for a predicate if
1103   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1104                          int scale, Node* offset,
1105                          Node* init, Node* limit, jint stride,
1106                          Node* range, bool upper, bool &overflow);
1107 
1108   // Implementation of the loop predication to promote checks outside the loop
1109   bool loop_predication_impl(IdealLoopTree *loop);
1110   bool loop_predication_impl_helper(IdealLoopTree *loop, ProjNode* proj, ProjNode *predicate_proj,
1111                                     CountedLoopNode *cl, ConNode* zero, Invariance& invar,
1112                                     Deoptimization::DeoptReason reason);
1113   bool loop_predication_should_follow_branches(IdealLoopTree *loop, ProjNode *predicate_proj, float& loop_trip_cnt);
1114   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1115                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1116                                         Node_List& if_proj_list);
1117   ProjNode* insert_initial_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
1118                                               ProjNode* proj, ProjNode *predicate_proj,
1119                                               ProjNode* upper_bound_proj,
1120                                               int scale, Node* offset,
1121                                               Node* init, Node* limit, jint stride,
1122                                               Node* rng, bool& overflow,
1123                                               Deoptimization::DeoptReason reason);
1124   Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl,
1125                                   Node* predicate_proj, int scale_con, Node* offset,
1126                                   Node* limit, jint stride_con, Node* value);
1127 
1128   // Helper function to collect predicate for eliminating the useless ones
1129   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1130   void eliminate_useless_predicates();
1131 
1132   // Change the control input of expensive nodes to allow commoning by
1133   // IGVN when it is guaranteed to not result in a more frequent
1134   // execution of the expensive node. Return true if progress.
1135   bool process_expensive_nodes();
1136 
1137   // Check whether node has become unreachable
is_node_unreachable(Node * n) const1138   bool is_node_unreachable(Node *n) const {
1139     return !has_node(n) || n->is_unreachable(_igvn);
1140   }
1141 
1142   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1143   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1144 
1145   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1146   void has_range_checks(IdealLoopTree *loop);
1147 
1148   // Process post loops which have range checks and try to build a multi-version
1149   // guard to safely determine if we can execute the post loop which was RCE'd.
1150   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1151 
1152   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1153   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1154 
1155   // Create a slow version of the loop by cloning the loop
1156   // and inserting an if to select fast-slow versions.
1157   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1158                                         Node_List &old_new,
1159                                         int opcode,
1160                                         CloneLoopMode mode);
1161 
1162   // Clone a loop and return the clone head (clone_loop_head).
1163   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1164   // This routine was created for usage in CountedLoopReserveKit.
1165   //
1166   //    int(1) -> If -> IfTrue -> original_loop_head
1167   //              |
1168   //              V
1169   //           IfFalse -> clone_loop_head (returned by function pointer)
1170   //
1171   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1172   // Clone loop with an invariant test (that does not exit) and
1173   // insert a clone of the test that selects which version to
1174   // execute.
1175   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1176 
1177   // Find candidate "if" for unswitching
1178   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1179 
1180   // Range Check Elimination uses this function!
1181   // Constrain the main loop iterations so the affine function:
1182   //    low_limit <= scale_con * I + offset  <  upper_limit
1183   // always holds true.  That is, either increase the number of iterations in
1184   // the pre-loop or the post-loop until the condition holds true in the main
1185   // loop.  Scale_con, offset and limit are all loop invariant.
1186   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
1187   // Helper function for add_constraint().
1188   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
1189 
1190   // Partially peel loop up through last_peel node.
1191   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1192 
1193   // Create a scheduled list of nodes control dependent on ctrl set.
1194   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1195   // Has a use in the vector set
1196   bool has_use_in_set( Node* n, VectorSet& vset );
1197   // Has use internal to the vector set (ie. not in a phi at the loop head)
1198   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1199   // clone "n" for uses that are outside of loop
1200   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1201   // clone "n" for special uses that are in the not_peeled region
1202   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1203                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1204   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1205   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1206 #ifdef ASSERT
1207   // Validate the loop partition sets: peel and not_peel
1208   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1209   // Ensure that uses outside of loop are of the right form
1210   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1211                                  uint orig_exit_idx, uint clone_exit_idx);
1212   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1213 #endif
1214 
1215   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1216   int stride_of_possible_iv( Node* iff );
is_possible_iv_test(Node * iff)1217   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1218   // Return the (unique) control output node that's in the loop (if it exists.)
1219   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1220   // Insert a signed compare loop exit cloned from an unsigned compare.
1221   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1222   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1223   // Utility to register node "n" with PhaseIdealLoop
1224   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1225   // Utility to create an if-projection
1226   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1227   // Force the iff control output to be the live_proj
1228   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1229   // Insert a region before an if projection
1230   RegionNode* insert_region_before_proj(ProjNode* proj);
1231   // Insert a new if before an if projection
1232   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1233 
1234   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1235   // "Nearly" because all Nodes have been cloned from the original in the loop,
1236   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1237   // through the Phi recursively, and return a Bool.
1238   Node *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1239   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1240 
1241 
1242   // Rework addressing expressions to get the most loop-invariant stuff
1243   // moved out.  We'd like to do all associative operators, but it's especially
1244   // important (common) to do address expressions.
1245   Node *remix_address_expressions( Node *n );
1246 
1247   // Attempt to use a conditional move instead of a phi/branch
1248   Node *conditional_move( Node *n );
1249 
1250   // Reorganize offset computations to lower register pressure.
1251   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1252   // (which are then alive with the post-incremented trip counter
1253   // forcing an extra register move)
1254   void reorg_offsets( IdealLoopTree *loop );
1255 
1256   // Check for aggressive application of 'split-if' optimization,
1257   // using basic block level info.
1258   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack, bool last_round );
1259   Node *split_if_with_blocks_pre ( Node *n );
1260   void  split_if_with_blocks_post( Node *n, bool last_round );
1261   Node *has_local_phi_input( Node *n );
1262   // Mark an IfNode as being dominated by a prior test,
1263   // without actually altering the CFG (and hence IDOM info).
1264   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1265 
1266   // Split Node 'n' through merge point
1267   Node *split_thru_region( Node *n, Node *region );
1268   // Split Node 'n' through merge point if there is enough win.
1269   Node *split_thru_phi( Node *n, Node *region, int policy );
1270   // Found an If getting its condition-code input from a Phi in the
1271   // same block.  Split thru the Region.
1272   void do_split_if( Node *iff );
1273 
1274   // Conversion of fill/copy patterns into intrisic versions
1275   bool do_intrinsify_fill();
1276   bool intrinsify_fill(IdealLoopTree* lpt);
1277   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1278                        Node*& shift, Node*& offset);
1279 
1280 private:
1281   // Return a type based on condition control flow
1282   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
filtered_type(Node * n)1283   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1284  // Helpers for filtered type
1285   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1286 
1287   // Helper functions
1288   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1289   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1290   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1291   bool split_up( Node *n, Node *blk1, Node *blk2 );
1292   void sink_use( Node *use, Node *post_loop );
1293   Node *place_near_use( Node *useblock ) const;
1294   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1295   void try_move_store_after_loop(Node* n);
1296 SHENANDOAHGC_ONLY(public:)
1297   bool identical_backtoback_ifs(Node *n);
1298   bool can_split_if(Node *n_ctrl);
1299 SHENANDOAHGC_ONLY(private:)
1300 
1301   // Clone loop predicates to slow and fast loop when unswitching a loop
1302   void clone_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, ProjNode*& iffast_pred, ProjNode*& ifslow_pred);
1303   ProjNode* clone_predicate_to_unswitched_loop(ProjNode* predicate_proj, Node* new_entry, Deoptimization::DeoptReason reason);
1304   void clone_skeleton_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, Deoptimization::DeoptReason reason,
1305                                                     ProjNode* old_predicate_proj, ProjNode* iffast_pred, ProjNode* ifslow_pred);
1306   ProjNode* clone_skeleton_predicate_for_unswitched_loops(Node* iff, ProjNode* predicate, Node* uncommon_proj, Deoptimization::DeoptReason reason,
1307                                                           ProjNode* output_proj, IdealLoopTree* loop);
1308   void check_created_predicate_for_unswitching(const Node* new_entry) const PRODUCT_RETURN;
1309 
1310   bool _created_loop_node;
1311 #ifdef ASSERT
1312   void dump_real_LCA(Node* early, Node* wrong_lca);
1313   bool check_idom_chains_intersection(const Node* n, uint& idom_idx_new, uint& idom_idx_other, const Node_List* nodes_seen) const;
1314 #endif
1315 
1316 public:
set_created_loop_node()1317   void set_created_loop_node() { _created_loop_node = true; }
created_loop_node()1318   bool created_loop_node()     { return _created_loop_node; }
1319   void register_new_node( Node *n, Node *blk );
1320 
1321 #ifdef ASSERT
1322   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1323 #endif
1324 
1325 #ifndef PRODUCT
1326   void dump() const;
1327   void dump_idom(Node* n) const;
1328   void dump(IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list) const;
1329   void verify() const;          // Major slow  :-)
1330   void verify_compare(Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited) const;
get_loop_idx(Node * n) const1331   IdealLoopTree *get_loop_idx(Node* n) const {
1332     // Dead nodes have no loop, so return the top level loop instead
1333     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1334   }
1335   // Print some stats
1336   static void print_statistics();
1337   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1338   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1339 #endif
1340 #if !defined(PRODUCT) || INCLUDE_SHENANDOAHGC
1341   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1342 #endif
1343 #if INCLUDE_SHENANDOAHGC
igvn()1344   PhaseIterGVN& igvn() { return _igvn; }
1345 #endif
1346 };
1347 
1348 // This kit may be used for making of a reserved copy of a loop before this loop
1349 //  goes under non-reversible changes.
1350 //
1351 // Function create_reserve() creates a reserved copy (clone) of the loop.
1352 // The reserved copy is created by calling
1353 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1354 // the original and reserved loops are connected in the outer graph.
1355 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1356 //
1357 // By default the reserved copy (clone) of the loop is created as dead code - it is
1358 // dominated in the outer loop by this node chain:
1359 //   intcon(1)->If->IfFalse->reserved_copy.
1360 // The original loop is dominated by the the same node chain but IfTrue projection:
1361 //   intcon(0)->If->IfTrue->original_loop.
1362 //
1363 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1364 // and the dtor, checks _use_new value.
1365 // If _use_new == false, it "switches" control to reserved copy of the loop
1366 // by simple replacing of node intcon(1) with node intcon(0).
1367 //
1368 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1369 //
1370 // void CountedLoopReserveKit_example()
1371 // {
1372 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1373 //    if (DoReserveCopy && !lrk.has_reserved()) {
1374 //      return; //failed to create reserved loop copy
1375 //    }
1376 //    ...
1377 //    //something is wrong, switch to original loop
1378 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1379 //    ...
1380 //    //everything worked ok, return with the newly modified loop
1381 //    lrk.use_new();
1382 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1383 //  }
1384 //
1385 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1386 // the dtor will "switch to the original" loop.
1387 // NOTE. You you modify outside of the original loop this class is no help.
1388 //
1389 class CountedLoopReserveKit {
1390   private:
1391     PhaseIdealLoop* _phase;
1392     IdealLoopTree*  _lpt;
1393     LoopNode*       _lp;
1394     IfNode*         _iff;
1395     LoopNode*       _lp_reserved;
1396     bool            _has_reserved;
1397     bool            _use_new;
1398     const bool      _active; //may be set to false in ctor, then the object is dummy
1399 
1400   public:
1401     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1402     ~CountedLoopReserveKit();
use_new()1403     void use_new()                {_use_new = true;}
set_iff(IfNode * x)1404     void set_iff(IfNode* x)       {_iff = x;}
has_reserved() const1405     bool has_reserved()     const { return _active && _has_reserved;}
1406   private:
1407     bool create_reserve();
1408 };// class CountedLoopReserveKit
1409 
tail()1410 inline Node* IdealLoopTree::tail() {
1411 // Handle lazy update of _tail field
1412   Node *n = _tail;
1413   //while( !n->in(0) )  // Skip dead CFG nodes
1414     //n = n->in(1);
1415   if (n->in(0) == NULL)
1416     n = _phase->get_ctrl(n);
1417   _tail = n;
1418   return n;
1419 }
1420 
head()1421 inline Node* IdealLoopTree::head() {
1422   // Handle lazy update of _head field.
1423   if (_head->in(0) == NULL) {
1424     _head = _phase->get_ctrl(_head);
1425   }
1426   return _head;
1427 }
1428 
1429 // Iterate over the loop tree using a preorder, left-to-right traversal.
1430 //
1431 // Example that visits all counted loops from within PhaseIdealLoop
1432 //
1433 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1434 //   IdealLoopTree* lpt = iter.current();
1435 //   if (!lpt->is_counted()) continue;
1436 //   ...
1437 class LoopTreeIterator : public StackObj {
1438 private:
1439   IdealLoopTree* _root;
1440   IdealLoopTree* _curnt;
1441 
1442 public:
LoopTreeIterator(IdealLoopTree * root)1443   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1444 
done()1445   bool done() { return _curnt == NULL; }       // Finished iterating?
1446 
1447   void next();                                 // Advance to next loop tree
1448 
current()1449   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1450 };
1451 
1452 #endif // SHARE_VM_OPTO_LOOPNODE_HPP
1453