1 /*
2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "libadt/vectset.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "memory/resourceArea.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/connode.hpp"
34 #include "opto/loopnode.hpp"
35 #include "opto/machnode.hpp"
36 #include "opto/matcher.hpp"
37 #include "opto/node.hpp"
38 #include "opto/opcodes.hpp"
39 #include "opto/regmask.hpp"
40 #include "opto/rootnode.hpp"
41 #include "opto/type.hpp"
42 #include "utilities/copy.hpp"
43 #include "utilities/macros.hpp"
44 
45 class RegMask;
46 // #include "phase.hpp"
47 class PhaseTransform;
48 class PhaseGVN;
49 
50 // Arena we are currently building Nodes in
51 const uint Node::NotAMachineReg = 0xffff0000;
52 
53 #ifndef PRODUCT
54 extern int nodes_created;
55 #endif
56 #ifdef __clang__
57 #pragma clang diagnostic push
58 #pragma GCC diagnostic ignored "-Wuninitialized"
59 #endif
60 
61 #ifdef ASSERT
62 
63 //-------------------------- construct_node------------------------------------
64 // Set a breakpoint here to identify where a particular node index is built.
verify_construction()65 void Node::verify_construction() {
66   _debug_orig = NULL;
67   int old_debug_idx = Compile::debug_idx();
68   int new_debug_idx = old_debug_idx+1;
69   if (new_debug_idx > 0) {
70     // Arrange that the lowest five decimal digits of _debug_idx
71     // will repeat those of _idx. In case this is somehow pathological,
72     // we continue to assign negative numbers (!) consecutively.
73     const int mod = 100000;
74     int bump = (int)(_idx - new_debug_idx) % mod;
75     if (bump < 0)  bump += mod;
76     assert(bump >= 0 && bump < mod, "");
77     new_debug_idx += bump;
78   }
79   Compile::set_debug_idx(new_debug_idx);
80   set_debug_idx( new_debug_idx );
81   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
82   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
83   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
84     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
85     BREAKPOINT;
86   }
87 #if OPTO_DU_ITERATOR_ASSERT
88   _last_del = NULL;
89   _del_tick = 0;
90 #endif
91   _hash_lock = 0;
92 }
93 
94 
95 // #ifdef ASSERT ...
96 
97 #if OPTO_DU_ITERATOR_ASSERT
sample(const Node * node)98 void DUIterator_Common::sample(const Node* node) {
99   _vdui     = VerifyDUIterators;
100   _node     = node;
101   _outcnt   = node->_outcnt;
102   _del_tick = node->_del_tick;
103   _last     = NULL;
104 }
105 
verify(const Node * node,bool at_end_ok)106 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
107   assert(_node     == node, "consistent iterator source");
108   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
109 }
110 
verify_resync()111 void DUIterator_Common::verify_resync() {
112   // Ensure that the loop body has just deleted the last guy produced.
113   const Node* node = _node;
114   // Ensure that at least one copy of the last-seen edge was deleted.
115   // Note:  It is OK to delete multiple copies of the last-seen edge.
116   // Unfortunately, we have no way to verify that all the deletions delete
117   // that same edge.  On this point we must use the Honor System.
118   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
119   assert(node->_last_del == _last, "must have deleted the edge just produced");
120   // We liked this deletion, so accept the resulting outcnt and tick.
121   _outcnt   = node->_outcnt;
122   _del_tick = node->_del_tick;
123 }
124 
reset(const DUIterator_Common & that)125 void DUIterator_Common::reset(const DUIterator_Common& that) {
126   if (this == &that)  return;  // ignore assignment to self
127   if (!_vdui) {
128     // We need to initialize everything, overwriting garbage values.
129     _last = that._last;
130     _vdui = that._vdui;
131   }
132   // Note:  It is legal (though odd) for an iterator over some node x
133   // to be reassigned to iterate over another node y.  Some doubly-nested
134   // progress loops depend on being able to do this.
135   const Node* node = that._node;
136   // Re-initialize everything, except _last.
137   _node     = node;
138   _outcnt   = node->_outcnt;
139   _del_tick = node->_del_tick;
140 }
141 
sample(const Node * node)142 void DUIterator::sample(const Node* node) {
143   DUIterator_Common::sample(node);      // Initialize the assertion data.
144   _refresh_tick = 0;                    // No refreshes have happened, as yet.
145 }
146 
verify(const Node * node,bool at_end_ok)147 void DUIterator::verify(const Node* node, bool at_end_ok) {
148   DUIterator_Common::verify(node, at_end_ok);
149   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
150 }
151 
verify_increment()152 void DUIterator::verify_increment() {
153   if (_refresh_tick & 1) {
154     // We have refreshed the index during this loop.
155     // Fix up _idx to meet asserts.
156     if (_idx > _outcnt)  _idx = _outcnt;
157   }
158   verify(_node, true);
159 }
160 
verify_resync()161 void DUIterator::verify_resync() {
162   // Note:  We do not assert on _outcnt, because insertions are OK here.
163   DUIterator_Common::verify_resync();
164   // Make sure we are still in sync, possibly with no more out-edges:
165   verify(_node, true);
166 }
167 
reset(const DUIterator & that)168 void DUIterator::reset(const DUIterator& that) {
169   if (this == &that)  return;  // self assignment is always a no-op
170   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
171   assert(that._idx          == 0, "assign only the result of Node::outs()");
172   assert(_idx               == that._idx, "already assigned _idx");
173   if (!_vdui) {
174     // We need to initialize everything, overwriting garbage values.
175     sample(that._node);
176   } else {
177     DUIterator_Common::reset(that);
178     if (_refresh_tick & 1) {
179       _refresh_tick++;                  // Clear the "was refreshed" flag.
180     }
181     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
182   }
183 }
184 
refresh()185 void DUIterator::refresh() {
186   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
187   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
188 }
189 
verify_finish()190 void DUIterator::verify_finish() {
191   // If the loop has killed the node, do not require it to re-run.
192   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
193   // If this assert triggers, it means that a loop used refresh_out_pos
194   // to re-synch an iteration index, but the loop did not correctly
195   // re-run itself, using a "while (progress)" construct.
196   // This iterator enforces the rule that you must keep trying the loop
197   // until it "runs clean" without any need for refreshing.
198   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
199 }
200 
201 
verify(const Node * node,bool at_end_ok)202 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
203   DUIterator_Common::verify(node, at_end_ok);
204   Node** out    = node->_out;
205   uint   cnt    = node->_outcnt;
206   assert(cnt == _outcnt, "no insertions allowed");
207   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
208   // This last check is carefully designed to work for NO_OUT_ARRAY.
209 }
210 
verify_limit()211 void DUIterator_Fast::verify_limit() {
212   const Node* node = _node;
213   verify(node, true);
214   assert(_outp == node->_out + node->_outcnt, "limit still correct");
215 }
216 
verify_resync()217 void DUIterator_Fast::verify_resync() {
218   const Node* node = _node;
219   if (_outp == node->_out + _outcnt) {
220     // Note that the limit imax, not the pointer i, gets updated with the
221     // exact count of deletions.  (For the pointer it's always "--i".)
222     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
223     // This is a limit pointer, with a name like "imax".
224     // Fudge the _last field so that the common assert will be happy.
225     _last = (Node*) node->_last_del;
226     DUIterator_Common::verify_resync();
227   } else {
228     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
229     // A normal internal pointer.
230     DUIterator_Common::verify_resync();
231     // Make sure we are still in sync, possibly with no more out-edges:
232     verify(node, true);
233   }
234 }
235 
verify_relimit(uint n)236 void DUIterator_Fast::verify_relimit(uint n) {
237   const Node* node = _node;
238   assert((int)n > 0, "use imax -= n only with a positive count");
239   // This must be a limit pointer, with a name like "imax".
240   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
241   // The reported number of deletions must match what the node saw.
242   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
243   // Fudge the _last field so that the common assert will be happy.
244   _last = (Node*) node->_last_del;
245   DUIterator_Common::verify_resync();
246 }
247 
reset(const DUIterator_Fast & that)248 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
249   assert(_outp              == that._outp, "already assigned _outp");
250   DUIterator_Common::reset(that);
251 }
252 
verify(const Node * node,bool at_end_ok)253 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
254   // at_end_ok means the _outp is allowed to underflow by 1
255   _outp += at_end_ok;
256   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
257   _outp -= at_end_ok;
258   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
259 }
260 
verify_limit()261 void DUIterator_Last::verify_limit() {
262   // Do not require the limit address to be resynched.
263   //verify(node, true);
264   assert(_outp == _node->_out, "limit still correct");
265 }
266 
verify_step(uint num_edges)267 void DUIterator_Last::verify_step(uint num_edges) {
268   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
269   _outcnt   -= num_edges;
270   _del_tick += num_edges;
271   // Make sure we are still in sync, possibly with no more out-edges:
272   const Node* node = _node;
273   verify(node, true);
274   assert(node->_last_del == _last, "must have deleted the edge just produced");
275 }
276 
277 #endif //OPTO_DU_ITERATOR_ASSERT
278 
279 
280 #endif //ASSERT
281 
282 
283 // This constant used to initialize _out may be any non-null value.
284 // The value NULL is reserved for the top node only.
285 #define NO_OUT_ARRAY ((Node**)-1)
286 
287 // Out-of-line code from node constructors.
288 // Executed only when extra debug info. is being passed around.
init_node_notes(Compile * C,int idx,Node_Notes * nn)289 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
290   C->set_node_notes_at(idx, nn);
291 }
292 
293 // Shared initialization code.
Init(int req)294 inline int Node::Init(int req) {
295   Compile* C = Compile::current();
296   int idx = C->next_unique();
297 
298   // Allocate memory for the necessary number of edges.
299   if (req > 0) {
300     // Allocate space for _in array to have double alignment.
301     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
302   }
303   // If there are default notes floating around, capture them:
304   Node_Notes* nn = C->default_node_notes();
305   if (nn != NULL)  init_node_notes(C, idx, nn);
306 
307   // Note:  At this point, C is dead,
308   // and we begin to initialize the new Node.
309 
310   _cnt = _max = req;
311   _outcnt = _outmax = 0;
312   _class_id = Class_Node;
313   _flags = 0;
314   _out = NO_OUT_ARRAY;
315   return idx;
316 }
317 
318 //------------------------------Node-------------------------------------------
319 // Create a Node, with a given number of required edges.
Node(uint req)320 Node::Node(uint req)
321   : _idx(Init(req))
322 #ifdef ASSERT
323   , _parse_idx(_idx)
324 #endif
325 {
326   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
327   debug_only( verify_construction() );
328   NOT_PRODUCT(nodes_created++);
329   if (req == 0) {
330     _in = NULL;
331   } else {
332     Node** to = _in;
333     for(uint i = 0; i < req; i++) {
334       to[i] = NULL;
335     }
336   }
337 }
338 
339 //------------------------------Node-------------------------------------------
Node(Node * n0)340 Node::Node(Node *n0)
341   : _idx(Init(1))
342 #ifdef ASSERT
343   , _parse_idx(_idx)
344 #endif
345 {
346   debug_only( verify_construction() );
347   NOT_PRODUCT(nodes_created++);
348   assert( is_not_dead(n0), "can not use dead node");
349   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
350 }
351 
352 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1)353 Node::Node(Node *n0, Node *n1)
354   : _idx(Init(2))
355 #ifdef ASSERT
356   , _parse_idx(_idx)
357 #endif
358 {
359   debug_only( verify_construction() );
360   NOT_PRODUCT(nodes_created++);
361   assert( is_not_dead(n0), "can not use dead node");
362   assert( is_not_dead(n1), "can not use dead node");
363   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
364   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
365 }
366 
367 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2)368 Node::Node(Node *n0, Node *n1, Node *n2)
369   : _idx(Init(3))
370 #ifdef ASSERT
371   , _parse_idx(_idx)
372 #endif
373 {
374   debug_only( verify_construction() );
375   NOT_PRODUCT(nodes_created++);
376   assert( is_not_dead(n0), "can not use dead node");
377   assert( is_not_dead(n1), "can not use dead node");
378   assert( is_not_dead(n2), "can not use dead node");
379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
382 }
383 
384 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3)385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
386   : _idx(Init(4))
387 #ifdef ASSERT
388   , _parse_idx(_idx)
389 #endif
390 {
391   debug_only( verify_construction() );
392   NOT_PRODUCT(nodes_created++);
393   assert( is_not_dead(n0), "can not use dead node");
394   assert( is_not_dead(n1), "can not use dead node");
395   assert( is_not_dead(n2), "can not use dead node");
396   assert( is_not_dead(n3), "can not use dead node");
397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
401 }
402 
403 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4)404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
405   : _idx(Init(5))
406 #ifdef ASSERT
407   , _parse_idx(_idx)
408 #endif
409 {
410   debug_only( verify_construction() );
411   NOT_PRODUCT(nodes_created++);
412   assert( is_not_dead(n0), "can not use dead node");
413   assert( is_not_dead(n1), "can not use dead node");
414   assert( is_not_dead(n2), "can not use dead node");
415   assert( is_not_dead(n3), "can not use dead node");
416   assert( is_not_dead(n4), "can not use dead node");
417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
422 }
423 
424 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4,Node * n5)425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
426                      Node *n4, Node *n5)
427   : _idx(Init(6))
428 #ifdef ASSERT
429   , _parse_idx(_idx)
430 #endif
431 {
432   debug_only( verify_construction() );
433   NOT_PRODUCT(nodes_created++);
434   assert( is_not_dead(n0), "can not use dead node");
435   assert( is_not_dead(n1), "can not use dead node");
436   assert( is_not_dead(n2), "can not use dead node");
437   assert( is_not_dead(n3), "can not use dead node");
438   assert( is_not_dead(n4), "can not use dead node");
439   assert( is_not_dead(n5), "can not use dead node");
440   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
441   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
442   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
443   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
444   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
445   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
446 }
447 
448 //------------------------------Node-------------------------------------------
Node(Node * n0,Node * n1,Node * n2,Node * n3,Node * n4,Node * n5,Node * n6)449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
450                      Node *n4, Node *n5, Node *n6)
451   : _idx(Init(7))
452 #ifdef ASSERT
453   , _parse_idx(_idx)
454 #endif
455 {
456   debug_only( verify_construction() );
457   NOT_PRODUCT(nodes_created++);
458   assert( is_not_dead(n0), "can not use dead node");
459   assert( is_not_dead(n1), "can not use dead node");
460   assert( is_not_dead(n2), "can not use dead node");
461   assert( is_not_dead(n3), "can not use dead node");
462   assert( is_not_dead(n4), "can not use dead node");
463   assert( is_not_dead(n5), "can not use dead node");
464   assert( is_not_dead(n6), "can not use dead node");
465   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
466   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
467   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
468   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
469   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
470   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
471   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
472 }
473 
474 #ifdef __clang__
475 #pragma clang diagnostic pop
476 #endif
477 
478 
479 //------------------------------clone------------------------------------------
480 // Clone a Node.
clone() const481 Node *Node::clone() const {
482   Compile* C = Compile::current();
483   uint s = size_of();           // Size of inherited Node
484   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
485   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
486   // Set the new input pointer array
487   n->_in = (Node**)(((char*)n)+s);
488   // Cannot share the old output pointer array, so kill it
489   n->_out = NO_OUT_ARRAY;
490   // And reset the counters to 0
491   n->_outcnt = 0;
492   n->_outmax = 0;
493   // Unlock this guy, since he is not in any hash table.
494   debug_only(n->_hash_lock = 0);
495   // Walk the old node's input list to duplicate its edges
496   uint i;
497   for( i = 0; i < len(); i++ ) {
498     Node *x = in(i);
499     n->_in[i] = x;
500     if (x != NULL) x->add_out(n);
501   }
502   if (is_macro())
503     C->add_macro_node(n);
504   if (is_expensive())
505     C->add_expensive_node(n);
506   if (n->is_reduction()) {
507     // Do not copy reduction information. This must be explicitly set by the calling code.
508     n->remove_flag(Node::Flag_is_reduction);
509   }
510   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
511   bs->register_potential_barrier_node(n);
512   // If the cloned node is a range check dependent CastII, add it to the list.
513   CastIINode* cast = n->isa_CastII();
514   if (cast != NULL && cast->has_range_check()) {
515     C->add_range_check_cast(cast);
516   }
517   if (n->Opcode() == Op_Opaque4) {
518     C->add_opaque4_node(n);
519   }
520 
521   n->set_idx(C->next_unique()); // Get new unique index as well
522   debug_only( n->verify_construction() );
523   NOT_PRODUCT(nodes_created++);
524   // Do not patch over the debug_idx of a clone, because it makes it
525   // impossible to break on the clone's moment of creation.
526   //debug_only( n->set_debug_idx( debug_idx() ) );
527 
528   C->copy_node_notes_to(n, (Node*) this);
529 
530   // MachNode clone
531   uint nopnds;
532   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
533     MachNode *mach  = n->as_Mach();
534     MachNode *mthis = this->as_Mach();
535     // Get address of _opnd_array.
536     // It should be the same offset since it is the clone of this node.
537     MachOper **from = mthis->_opnds;
538     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
539                     pointer_delta((const void*)from,
540                                   (const void*)(&mthis->_opnds), 1));
541     mach->_opnds = to;
542     for ( uint i = 0; i < nopnds; ++i ) {
543       to[i] = from[i]->clone();
544     }
545   }
546   // cloning CallNode may need to clone JVMState
547   if (n->is_Call()) {
548     n->as_Call()->clone_jvms(C);
549   }
550   if (n->is_SafePoint()) {
551     n->as_SafePoint()->clone_replaced_nodes();
552   }
553   return n;                     // Return the clone
554 }
555 
556 //---------------------------setup_is_top--------------------------------------
557 // Call this when changing the top node, to reassert the invariants
558 // required by Node::is_top.  See Compile::set_cached_top_node.
setup_is_top()559 void Node::setup_is_top() {
560   if (this == (Node*)Compile::current()->top()) {
561     // This node has just become top.  Kill its out array.
562     _outcnt = _outmax = 0;
563     _out = NULL;                           // marker value for top
564     assert(is_top(), "must be top");
565   } else {
566     if (_out == NULL)  _out = NO_OUT_ARRAY;
567     assert(!is_top(), "must not be top");
568   }
569 }
570 
571 
572 //------------------------------~Node------------------------------------------
573 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
destruct()574 void Node::destruct() {
575   Compile* compile = Compile::current();
576   // If this is the most recently created node, reclaim its index. Otherwise,
577   // record the node as dead to keep liveness information accurate.
578   if ((uint)_idx+1 == compile->unique()) {
579     compile->set_unique(compile->unique()-1);
580   } else {
581     compile->record_dead_node(_idx);
582   }
583   // Clear debug info:
584   Node_Notes* nn = compile->node_notes_at(_idx);
585   if (nn != NULL)  nn->clear();
586   // Walk the input array, freeing the corresponding output edges
587   _cnt = _max;  // forget req/prec distinction
588   uint i;
589   for( i = 0; i < _max; i++ ) {
590     set_req(i, NULL);
591     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
592   }
593   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
594   // See if the input array was allocated just prior to the object
595   int edge_size = _max*sizeof(void*);
596   int out_edge_size = _outmax*sizeof(void*);
597   char *edge_end = ((char*)_in) + edge_size;
598   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
599   int node_size = size_of();
600 
601   // Free the output edge array
602   if (out_edge_size > 0) {
603     compile->node_arena()->Afree(out_array, out_edge_size);
604   }
605 
606   // Free the input edge array and the node itself
607   if( edge_end == (char*)this ) {
608     // It was; free the input array and object all in one hit
609 #ifndef ASSERT
610     compile->node_arena()->Afree(_in,edge_size+node_size);
611 #endif
612   } else {
613     // Free just the input array
614     compile->node_arena()->Afree(_in,edge_size);
615 
616     // Free just the object
617 #ifndef ASSERT
618     compile->node_arena()->Afree(this,node_size);
619 #endif
620   }
621   if (is_macro()) {
622     compile->remove_macro_node(this);
623   }
624   if (is_expensive()) {
625     compile->remove_expensive_node(this);
626   }
627   CastIINode* cast = isa_CastII();
628   if (cast != NULL && cast->has_range_check()) {
629     compile->remove_range_check_cast(cast);
630   }
631   if (Opcode() == Op_Opaque4) {
632     compile->remove_opaque4_node(this);
633   }
634 
635   if (is_SafePoint()) {
636     as_SafePoint()->delete_replaced_nodes();
637   }
638   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
639   bs->unregister_potential_barrier_node(this);
640 #ifdef ASSERT
641   // We will not actually delete the storage, but we'll make the node unusable.
642   *(address*)this = badAddress;  // smash the C++ vtbl, probably
643   _in = _out = (Node**) badAddress;
644   _max = _cnt = _outmax = _outcnt = 0;
645   compile->remove_modified_node(this);
646 #endif
647 }
648 
649 //------------------------------grow-------------------------------------------
650 // Grow the input array, making space for more edges
grow(uint len)651 void Node::grow( uint len ) {
652   Arena* arena = Compile::current()->node_arena();
653   uint new_max = _max;
654   if( new_max == 0 ) {
655     _max = 4;
656     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
657     Node** to = _in;
658     to[0] = NULL;
659     to[1] = NULL;
660     to[2] = NULL;
661     to[3] = NULL;
662     return;
663   }
664   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
665   // Trimming to limit allows a uint8 to handle up to 255 edges.
666   // Previously I was using only powers-of-2 which peaked at 128 edges.
667   //if( new_max >= limit ) new_max = limit-1;
668   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
669   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
670   _max = new_max;               // Record new max length
671   // This assertion makes sure that Node::_max is wide enough to
672   // represent the numerical value of new_max.
673   assert(_max == new_max && _max > len, "int width of _max is too small");
674 }
675 
676 //-----------------------------out_grow----------------------------------------
677 // Grow the input array, making space for more edges
out_grow(uint len)678 void Node::out_grow( uint len ) {
679   assert(!is_top(), "cannot grow a top node's out array");
680   Arena* arena = Compile::current()->node_arena();
681   uint new_max = _outmax;
682   if( new_max == 0 ) {
683     _outmax = 4;
684     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
685     return;
686   }
687   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
688   // Trimming to limit allows a uint8 to handle up to 255 edges.
689   // Previously I was using only powers-of-2 which peaked at 128 edges.
690   //if( new_max >= limit ) new_max = limit-1;
691   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
692   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
693   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
694   _outmax = new_max;               // Record new max length
695   // This assertion makes sure that Node::_max is wide enough to
696   // represent the numerical value of new_max.
697   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
698 }
699 
700 #ifdef ASSERT
701 //------------------------------is_dead----------------------------------------
is_dead() const702 bool Node::is_dead() const {
703   // Mach and pinch point nodes may look like dead.
704   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
705     return false;
706   for( uint i = 0; i < _max; i++ )
707     if( _in[i] != NULL )
708       return false;
709   dump();
710   return true;
711 }
712 
is_reachable_from_root() const713 bool Node::is_reachable_from_root() const {
714   ResourceMark rm;
715   Unique_Node_List wq;
716   wq.push((Node*)this);
717   RootNode* root = Compile::current()->root();
718   for (uint i = 0; i < wq.size(); i++) {
719     Node* m = wq.at(i);
720     if (m == root) {
721       return true;
722     }
723     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
724       Node* u = m->fast_out(j);
725       wq.push(u);
726     }
727   }
728   return false;
729 }
730 #endif
731 
732 //------------------------------is_unreachable---------------------------------
is_unreachable(PhaseIterGVN & igvn) const733 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
734   assert(!is_Mach(), "doesn't work with MachNodes");
735   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
736 }
737 
738 //------------------------------add_req----------------------------------------
739 // Add a new required input at the end
add_req(Node * n)740 void Node::add_req( Node *n ) {
741   assert( is_not_dead(n), "can not use dead node");
742 
743   // Look to see if I can move precedence down one without reallocating
744   if( (_cnt >= _max) || (in(_max-1) != NULL) )
745     grow( _max+1 );
746 
747   // Find a precedence edge to move
748   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
749     uint i;
750     for( i=_cnt; i<_max; i++ )
751       if( in(i) == NULL )       // Find the NULL at end of prec edge list
752         break;                  // There must be one, since we grew the array
753     _in[i] = in(_cnt);          // Move prec over, making space for req edge
754   }
755   _in[_cnt++] = n;            // Stuff over old prec edge
756   if (n != NULL) n->add_out((Node *)this);
757 }
758 
759 //---------------------------add_req_batch-------------------------------------
760 // Add a new required input at the end
add_req_batch(Node * n,uint m)761 void Node::add_req_batch( Node *n, uint m ) {
762   assert( is_not_dead(n), "can not use dead node");
763   // check various edge cases
764   if ((int)m <= 1) {
765     assert((int)m >= 0, "oob");
766     if (m != 0)  add_req(n);
767     return;
768   }
769 
770   // Look to see if I can move precedence down one without reallocating
771   if( (_cnt+m) > _max || _in[_max-m] )
772     grow( _max+m );
773 
774   // Find a precedence edge to move
775   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
776     uint i;
777     for( i=_cnt; i<_max; i++ )
778       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
779         break;                  // There must be one, since we grew the array
780     // Slide all the precs over by m positions (assume #prec << m).
781     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
782   }
783 
784   // Stuff over the old prec edges
785   for(uint i=0; i<m; i++ ) {
786     _in[_cnt++] = n;
787   }
788 
789   // Insert multiple out edges on the node.
790   if (n != NULL && !n->is_top()) {
791     for(uint i=0; i<m; i++ ) {
792       n->add_out((Node *)this);
793     }
794   }
795 }
796 
797 //------------------------------del_req----------------------------------------
798 // Delete the required edge and compact the edge array
del_req(uint idx)799 void Node::del_req( uint idx ) {
800   assert( idx < _cnt, "oob");
801   assert( !VerifyHashTableKeys || _hash_lock == 0,
802           "remove node from hash table before modifying it");
803   // First remove corresponding def-use edge
804   Node *n = in(idx);
805   if (n != NULL) n->del_out((Node *)this);
806   _in[idx] = in(--_cnt); // Compact the array
807   // Avoid spec violation: Gap in prec edges.
808   close_prec_gap_at(_cnt);
809   Compile::current()->record_modified_node(this);
810 }
811 
812 //------------------------------del_req_ordered--------------------------------
813 // Delete the required edge and compact the edge array with preserved order
del_req_ordered(uint idx)814 void Node::del_req_ordered( uint idx ) {
815   assert( idx < _cnt, "oob");
816   assert( !VerifyHashTableKeys || _hash_lock == 0,
817           "remove node from hash table before modifying it");
818   // First remove corresponding def-use edge
819   Node *n = in(idx);
820   if (n != NULL) n->del_out((Node *)this);
821   if (idx < --_cnt) {    // Not last edge ?
822     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
823   }
824   // Avoid spec violation: Gap in prec edges.
825   close_prec_gap_at(_cnt);
826   Compile::current()->record_modified_node(this);
827 }
828 
829 //------------------------------ins_req----------------------------------------
830 // Insert a new required input at the end
ins_req(uint idx,Node * n)831 void Node::ins_req( uint idx, Node *n ) {
832   assert( is_not_dead(n), "can not use dead node");
833   add_req(NULL);                // Make space
834   assert( idx < _max, "Must have allocated enough space");
835   // Slide over
836   if(_cnt-idx-1 > 0) {
837     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
838   }
839   _in[idx] = n;                            // Stuff over old required edge
840   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
841 }
842 
843 //-----------------------------find_edge---------------------------------------
find_edge(Node * n)844 int Node::find_edge(Node* n) {
845   for (uint i = 0; i < len(); i++) {
846     if (_in[i] == n)  return i;
847   }
848   return -1;
849 }
850 
851 //----------------------------replace_edge-------------------------------------
replace_edge(Node * old,Node * neww)852 int Node::replace_edge(Node* old, Node* neww) {
853   if (old == neww)  return 0;  // nothing to do
854   uint nrep = 0;
855   for (uint i = 0; i < len(); i++) {
856     if (in(i) == old) {
857       if (i < req()) {
858         set_req(i, neww);
859       } else {
860         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
861         set_prec(i, neww);
862       }
863       nrep++;
864     }
865   }
866   return nrep;
867 }
868 
869 /**
870  * Replace input edges in the range pointing to 'old' node.
871  */
replace_edges_in_range(Node * old,Node * neww,int start,int end)872 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
873   if (old == neww)  return 0;  // nothing to do
874   uint nrep = 0;
875   for (int i = start; i < end; i++) {
876     if (in(i) == old) {
877       set_req(i, neww);
878       nrep++;
879     }
880   }
881   return nrep;
882 }
883 
884 //-------------------------disconnect_inputs-----------------------------------
885 // NULL out all inputs to eliminate incoming Def-Use edges.
886 // Return the number of edges between 'n' and 'this'
disconnect_inputs(Node * n,Compile * C)887 int Node::disconnect_inputs(Node *n, Compile* C) {
888   int edges_to_n = 0;
889 
890   uint cnt = req();
891   for( uint i = 0; i < cnt; ++i ) {
892     if( in(i) == 0 ) continue;
893     if( in(i) == n ) ++edges_to_n;
894     set_req(i, NULL);
895   }
896   // Remove precedence edges if any exist
897   // Note: Safepoints may have precedence edges, even during parsing
898   if( (req() != len()) && (in(req()) != NULL) ) {
899     uint max = len();
900     for( uint i = 0; i < max; ++i ) {
901       if( in(i) == 0 ) continue;
902       if( in(i) == n ) ++edges_to_n;
903       set_prec(i, NULL);
904     }
905   }
906 
907   // Node::destruct requires all out edges be deleted first
908   // debug_only(destruct();)   // no reuse benefit expected
909   if (edges_to_n == 0) {
910     C->record_dead_node(_idx);
911   }
912   return edges_to_n;
913 }
914 
915 //-----------------------------uncast---------------------------------------
916 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
917 // Strip away casting.  (It is depth-limited.)
uncast() const918 Node* Node::uncast() const {
919   // Should be inline:
920   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
921   if (is_ConstraintCast())
922     return uncast_helper(this);
923   else
924     return (Node*) this;
925 }
926 
927 // Find out of current node that matches opcode.
find_out_with(int opcode)928 Node* Node::find_out_with(int opcode) {
929   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
930     Node* use = fast_out(i);
931     if (use->Opcode() == opcode) {
932       return use;
933     }
934   }
935   return NULL;
936 }
937 
938 // Return true if the current node has an out that matches opcode.
has_out_with(int opcode)939 bool Node::has_out_with(int opcode) {
940   return (find_out_with(opcode) != NULL);
941 }
942 
943 // Return true if the current node has an out that matches any of the opcodes.
has_out_with(int opcode1,int opcode2,int opcode3,int opcode4)944 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
945   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
946       int opcode = fast_out(i)->Opcode();
947       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
948         return true;
949       }
950   }
951   return false;
952 }
953 
954 
955 //---------------------------uncast_helper-------------------------------------
uncast_helper(const Node * p)956 Node* Node::uncast_helper(const Node* p) {
957 #ifdef ASSERT
958   uint depth_count = 0;
959   const Node* orig_p = p;
960 #endif
961 
962   while (true) {
963 #ifdef ASSERT
964     if (depth_count >= K) {
965       orig_p->dump(4);
966       if (p != orig_p)
967         p->dump(1);
968     }
969     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
970 #endif
971     if (p == NULL || p->req() != 2) {
972       break;
973     } else if (p->is_ConstraintCast()) {
974       p = p->in(1);
975     } else {
976       break;
977     }
978   }
979   return (Node*) p;
980 }
981 
982 //------------------------------add_prec---------------------------------------
983 // Add a new precedence input.  Precedence inputs are unordered, with
984 // duplicates removed and NULLs packed down at the end.
add_prec(Node * n)985 void Node::add_prec( Node *n ) {
986   assert( is_not_dead(n), "can not use dead node");
987 
988   // Check for NULL at end
989   if( _cnt >= _max || in(_max-1) )
990     grow( _max+1 );
991 
992   // Find a precedence edge to move
993   uint i = _cnt;
994   while( in(i) != NULL ) {
995     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
996     i++;
997   }
998   _in[i] = n;                                // Stuff prec edge over NULL
999   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
1000 
1001 #ifdef ASSERT
1002   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
1003 #endif
1004 }
1005 
1006 //------------------------------rm_prec----------------------------------------
1007 // Remove a precedence input.  Precedence inputs are unordered, with
1008 // duplicates removed and NULLs packed down at the end.
rm_prec(uint j)1009 void Node::rm_prec( uint j ) {
1010   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1011   assert(j >= _cnt, "not a precedence edge");
1012   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
1013   _in[j]->del_out((Node *)this);
1014   close_prec_gap_at(j);
1015 }
1016 
1017 //------------------------------size_of----------------------------------------
size_of() const1018 uint Node::size_of() const { return sizeof(*this); }
1019 
1020 //------------------------------ideal_reg--------------------------------------
ideal_reg() const1021 uint Node::ideal_reg() const { return 0; }
1022 
1023 //------------------------------jvms-------------------------------------------
jvms() const1024 JVMState* Node::jvms() const { return NULL; }
1025 
1026 #ifdef ASSERT
1027 //------------------------------jvms-------------------------------------------
verify_jvms(const JVMState * using_jvms) const1028 bool Node::verify_jvms(const JVMState* using_jvms) const {
1029   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1030     if (jvms == using_jvms)  return true;
1031   }
1032   return false;
1033 }
1034 
1035 //------------------------------init_NodeProperty------------------------------
init_NodeProperty()1036 void Node::init_NodeProperty() {
1037   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1038   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1039 }
1040 #endif
1041 
1042 //------------------------------format-----------------------------------------
1043 // Print as assembly
format(PhaseRegAlloc *,outputStream * st) const1044 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1045 //------------------------------emit-------------------------------------------
1046 // Emit bytes starting at parameter 'ptr'.
emit(CodeBuffer & cbuf,PhaseRegAlloc * ra_) const1047 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1048 //------------------------------size-------------------------------------------
1049 // Size of instruction in bytes
size(PhaseRegAlloc * ra_) const1050 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1051 
1052 //------------------------------CFG Construction-------------------------------
1053 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1054 // Goto and Return.
is_block_proj() const1055 const Node *Node::is_block_proj() const { return 0; }
1056 
1057 // Minimum guaranteed type
bottom_type() const1058 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1059 
1060 
1061 //------------------------------raise_bottom_type------------------------------
1062 // Get the worst-case Type output for this Node.
raise_bottom_type(const Type * new_type)1063 void Node::raise_bottom_type(const Type* new_type) {
1064   if (is_Type()) {
1065     TypeNode *n = this->as_Type();
1066     if (VerifyAliases) {
1067       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1068     }
1069     n->set_type(new_type);
1070   } else if (is_Load()) {
1071     LoadNode *n = this->as_Load();
1072     if (VerifyAliases) {
1073       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1074     }
1075     n->set_type(new_type);
1076   }
1077 }
1078 
1079 //------------------------------Identity---------------------------------------
1080 // Return a node that the given node is equivalent to.
Identity(PhaseGVN * phase)1081 Node* Node::Identity(PhaseGVN* phase) {
1082   return this;                  // Default to no identities
1083 }
1084 
1085 //------------------------------Value------------------------------------------
1086 // Compute a new Type for a node using the Type of the inputs.
Value(PhaseGVN * phase) const1087 const Type* Node::Value(PhaseGVN* phase) const {
1088   return bottom_type();         // Default to worst-case Type
1089 }
1090 
1091 //------------------------------Ideal------------------------------------------
1092 //
1093 // 'Idealize' the graph rooted at this Node.
1094 //
1095 // In order to be efficient and flexible there are some subtle invariants
1096 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1097 // these invariants, although its too slow to have on by default.  If you are
1098 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1099 //
1100 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1101 // pointer.  If ANY change is made, it must return the root of the reshaped
1102 // graph - even if the root is the same Node.  Example: swapping the inputs
1103 // to an AddINode gives the same answer and same root, but you still have to
1104 // return the 'this' pointer instead of NULL.
1105 //
1106 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1107 // Identity call to return an old Node; basically if Identity can find
1108 // another Node have the Ideal call make no change and return NULL.
1109 // Example: AddINode::Ideal must check for add of zero; in this case it
1110 // returns NULL instead of doing any graph reshaping.
1111 //
1112 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1113 // sharing there may be other users of the old Nodes relying on their current
1114 // semantics.  Modifying them will break the other users.
1115 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1116 // "X+3" unchanged in case it is shared.
1117 //
1118 // If you modify the 'this' pointer's inputs, you should use
1119 // 'set_req'.  If you are making a new Node (either as the new root or
1120 // some new internal piece) you may use 'init_req' to set the initial
1121 // value.  You can make a new Node with either 'new' or 'clone'.  In
1122 // either case, def-use info is correctly maintained.
1123 //
1124 // Example: reshape "(X+3)+4" into "X+7":
1125 //    set_req(1, in(1)->in(1));
1126 //    set_req(2, phase->intcon(7));
1127 //    return this;
1128 // Example: reshape "X*4" into "X<<2"
1129 //    return new LShiftINode(in(1), phase->intcon(2));
1130 //
1131 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1132 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1133 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1134 //    return new AddINode(shift, in(1));
1135 //
1136 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1137 // These forms are faster than 'phase->transform(new ConNode())' and Do
1138 // The Right Thing with def-use info.
1139 //
1140 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1141 // graph uses the 'this' Node it must be the root.  If you want a Node with
1142 // the same Opcode as the 'this' pointer use 'clone'.
1143 //
Ideal(PhaseGVN * phase,bool can_reshape)1144 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1145   return NULL;                  // Default to being Ideal already
1146 }
1147 
1148 // Some nodes have specific Ideal subgraph transformations only if they are
1149 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1150 // for the transformations to happen.
has_special_unique_user() const1151 bool Node::has_special_unique_user() const {
1152   assert(outcnt() == 1, "match only for unique out");
1153   Node* n = unique_out();
1154   int op  = Opcode();
1155   if (this->is_Store()) {
1156     // Condition for back-to-back stores folding.
1157     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1158   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1159     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1160     return n->Opcode() == Op_MemBarAcquire;
1161   } else if (op == Op_AddL) {
1162     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1163     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1164   } else if (op == Op_SubI || op == Op_SubL) {
1165     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1166     return n->Opcode() == op && n->in(2) == this;
1167   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1168     // See IfProjNode::Identity()
1169     return true;
1170   }
1171   return false;
1172 };
1173 
1174 //--------------------------find_exact_control---------------------------------
1175 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
find_exact_control(Node * ctrl)1176 Node* Node::find_exact_control(Node* ctrl) {
1177   if (ctrl == NULL && this->is_Region())
1178     ctrl = this->as_Region()->is_copy();
1179 
1180   if (ctrl != NULL && ctrl->is_CatchProj()) {
1181     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1182       ctrl = ctrl->in(0);
1183     if (ctrl != NULL && !ctrl->is_top())
1184       ctrl = ctrl->in(0);
1185   }
1186 
1187   if (ctrl != NULL && ctrl->is_Proj())
1188     ctrl = ctrl->in(0);
1189 
1190   return ctrl;
1191 }
1192 
1193 //--------------------------dominates------------------------------------------
1194 // Helper function for MemNode::all_controls_dominate().
1195 // Check if 'this' control node dominates or equal to 'sub' control node.
1196 // We already know that if any path back to Root or Start reaches 'this',
1197 // then all paths so, so this is a simple search for one example,
1198 // not an exhaustive search for a counterexample.
dominates(Node * sub,Node_List & nlist)1199 bool Node::dominates(Node* sub, Node_List &nlist) {
1200   assert(this->is_CFG(), "expecting control");
1201   assert(sub != NULL && sub->is_CFG(), "expecting control");
1202 
1203   // detect dead cycle without regions
1204   int iterations_without_region_limit = DominatorSearchLimit;
1205 
1206   Node* orig_sub = sub;
1207   Node* dom      = this;
1208   bool  met_dom  = false;
1209   nlist.clear();
1210 
1211   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1212   // After seeing 'dom', continue up to Root or Start.
1213   // If we hit a region (backward split point), it may be a loop head.
1214   // Keep going through one of the region's inputs.  If we reach the
1215   // same region again, go through a different input.  Eventually we
1216   // will either exit through the loop head, or give up.
1217   // (If we get confused, break out and return a conservative 'false'.)
1218   while (sub != NULL) {
1219     if (sub->is_top())  break; // Conservative answer for dead code.
1220     if (sub == dom) {
1221       if (nlist.size() == 0) {
1222         // No Region nodes except loops were visited before and the EntryControl
1223         // path was taken for loops: it did not walk in a cycle.
1224         return true;
1225       } else if (met_dom) {
1226         break;          // already met before: walk in a cycle
1227       } else {
1228         // Region nodes were visited. Continue walk up to Start or Root
1229         // to make sure that it did not walk in a cycle.
1230         met_dom = true; // first time meet
1231         iterations_without_region_limit = DominatorSearchLimit; // Reset
1232      }
1233     }
1234     if (sub->is_Start() || sub->is_Root()) {
1235       // Success if we met 'dom' along a path to Start or Root.
1236       // We assume there are no alternative paths that avoid 'dom'.
1237       // (This assumption is up to the caller to ensure!)
1238       return met_dom;
1239     }
1240     Node* up = sub->in(0);
1241     // Normalize simple pass-through regions and projections:
1242     up = sub->find_exact_control(up);
1243     // If sub == up, we found a self-loop.  Try to push past it.
1244     if (sub == up && sub->is_Loop()) {
1245       // Take loop entry path on the way up to 'dom'.
1246       up = sub->in(1); // in(LoopNode::EntryControl);
1247     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1248       // Always take in(1) path on the way up to 'dom' for clone regions
1249       // (with only one input) or regions which merge > 2 paths
1250       // (usually used to merge fast/slow paths).
1251       up = sub->in(1);
1252     } else if (sub == up && sub->is_Region()) {
1253       // Try both paths for Regions with 2 input paths (it may be a loop head).
1254       // It could give conservative 'false' answer without information
1255       // which region's input is the entry path.
1256       iterations_without_region_limit = DominatorSearchLimit; // Reset
1257 
1258       bool region_was_visited_before = false;
1259       // Was this Region node visited before?
1260       // If so, we have reached it because we accidentally took a
1261       // loop-back edge from 'sub' back into the body of the loop,
1262       // and worked our way up again to the loop header 'sub'.
1263       // So, take the first unexplored path on the way up to 'dom'.
1264       for (int j = nlist.size() - 1; j >= 0; j--) {
1265         intptr_t ni = (intptr_t)nlist.at(j);
1266         Node* visited = (Node*)(ni & ~1);
1267         bool  visited_twice_already = ((ni & 1) != 0);
1268         if (visited == sub) {
1269           if (visited_twice_already) {
1270             // Visited 2 paths, but still stuck in loop body.  Give up.
1271             return false;
1272           }
1273           // The Region node was visited before only once.
1274           // (We will repush with the low bit set, below.)
1275           nlist.remove(j);
1276           // We will find a new edge and re-insert.
1277           region_was_visited_before = true;
1278           break;
1279         }
1280       }
1281 
1282       // Find an incoming edge which has not been seen yet; walk through it.
1283       assert(up == sub, "");
1284       uint skip = region_was_visited_before ? 1 : 0;
1285       for (uint i = 1; i < sub->req(); i++) {
1286         Node* in = sub->in(i);
1287         if (in != NULL && !in->is_top() && in != sub) {
1288           if (skip == 0) {
1289             up = in;
1290             break;
1291           }
1292           --skip;               // skip this nontrivial input
1293         }
1294       }
1295 
1296       // Set 0 bit to indicate that both paths were taken.
1297       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1298     }
1299 
1300     if (up == sub) {
1301       break;    // some kind of tight cycle
1302     }
1303     if (up == orig_sub && met_dom) {
1304       // returned back after visiting 'dom'
1305       break;    // some kind of cycle
1306     }
1307     if (--iterations_without_region_limit < 0) {
1308       break;    // dead cycle
1309     }
1310     sub = up;
1311   }
1312 
1313   // Did not meet Root or Start node in pred. chain.
1314   // Conservative answer for dead code.
1315   return false;
1316 }
1317 
1318 //------------------------------remove_dead_region-----------------------------
1319 // This control node is dead.  Follow the subgraph below it making everything
1320 // using it dead as well.  This will happen normally via the usual IterGVN
1321 // worklist but this call is more efficient.  Do not update use-def info
1322 // inside the dead region, just at the borders.
kill_dead_code(Node * dead,PhaseIterGVN * igvn)1323 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1324   // Con's are a popular node to re-hit in the hash table again.
1325   if( dead->is_Con() ) return;
1326 
1327   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1328   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1329   Node_List  nstack(Thread::current()->resource_area());
1330 
1331   Node *top = igvn->C->top();
1332   nstack.push(dead);
1333   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1334 
1335   while (nstack.size() > 0) {
1336     dead = nstack.pop();
1337     if (dead->Opcode() == Op_SafePoint) {
1338       dead->as_SafePoint()->disconnect_from_root(igvn);
1339     }
1340     if (dead->outcnt() > 0) {
1341       // Keep dead node on stack until all uses are processed.
1342       nstack.push(dead);
1343       // For all Users of the Dead...    ;-)
1344       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1345         Node* use = dead->last_out(k);
1346         igvn->hash_delete(use);       // Yank from hash table prior to mod
1347         if (use->in(0) == dead) {     // Found another dead node
1348           assert (!use->is_Con(), "Control for Con node should be Root node.");
1349           use->set_req(0, top);       // Cut dead edge to prevent processing
1350           nstack.push(use);           // the dead node again.
1351         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1352                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1353                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1354           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1355           use->set_req(0, top);       // Cut self edge
1356           nstack.push(use);
1357         } else {                      // Else found a not-dead user
1358           // Dead if all inputs are top or null
1359           bool dead_use = !use->is_Root(); // Keep empty graph alive
1360           for (uint j = 1; j < use->req(); j++) {
1361             Node* in = use->in(j);
1362             if (in == dead) {         // Turn all dead inputs into TOP
1363               use->set_req(j, top);
1364             } else if (in != NULL && !in->is_top()) {
1365               dead_use = false;
1366             }
1367           }
1368           if (dead_use) {
1369             if (use->is_Region()) {
1370               use->set_req(0, top);   // Cut self edge
1371             }
1372             nstack.push(use);
1373           } else {
1374             igvn->_worklist.push(use);
1375           }
1376         }
1377         // Refresh the iterator, since any number of kills might have happened.
1378         k = dead->last_outs(kmin);
1379       }
1380     } else { // (dead->outcnt() == 0)
1381       // Done with outputs.
1382       igvn->hash_delete(dead);
1383       igvn->_worklist.remove(dead);
1384       igvn->C->remove_modified_node(dead);
1385       igvn->set_type(dead, Type::TOP);
1386       if (dead->is_macro()) {
1387         igvn->C->remove_macro_node(dead);
1388       }
1389       if (dead->is_expensive()) {
1390         igvn->C->remove_expensive_node(dead);
1391       }
1392       CastIINode* cast = dead->isa_CastII();
1393       if (cast != NULL && cast->has_range_check()) {
1394         igvn->C->remove_range_check_cast(cast);
1395       }
1396       if (dead->Opcode() == Op_Opaque4) {
1397         igvn->C->remove_opaque4_node(dead);
1398       }
1399       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1400       bs->unregister_potential_barrier_node(dead);
1401       igvn->C->record_dead_node(dead->_idx);
1402       // Kill all inputs to the dead guy
1403       for (uint i=0; i < dead->req(); i++) {
1404         Node *n = dead->in(i);      // Get input to dead guy
1405         if (n != NULL && !n->is_top()) { // Input is valid?
1406           dead->set_req(i, top);    // Smash input away
1407           if (n->outcnt() == 0) {   // Input also goes dead?
1408             if (!n->is_Con())
1409               nstack.push(n);       // Clear it out as well
1410           } else if (n->outcnt() == 1 &&
1411                      n->has_special_unique_user()) {
1412             igvn->add_users_to_worklist( n );
1413           } else if (n->outcnt() <= 2 && n->is_Store()) {
1414             // Push store's uses on worklist to enable folding optimization for
1415             // store/store and store/load to the same address.
1416             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1417             // and remove_globally_dead_node().
1418             igvn->add_users_to_worklist( n );
1419           } else {
1420             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn->_worklist, n);
1421           }
1422         }
1423       }
1424     } // (dead->outcnt() == 0)
1425   }   // while (nstack.size() > 0) for outputs
1426   return;
1427 }
1428 
1429 //------------------------------remove_dead_region-----------------------------
remove_dead_region(PhaseGVN * phase,bool can_reshape)1430 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1431   Node *n = in(0);
1432   if( !n ) return false;
1433   // Lost control into this guy?  I.e., it became unreachable?
1434   // Aggressively kill all unreachable code.
1435   if (can_reshape && n->is_top()) {
1436     kill_dead_code(this, phase->is_IterGVN());
1437     return false; // Node is dead.
1438   }
1439 
1440   if( n->is_Region() && n->as_Region()->is_copy() ) {
1441     Node *m = n->nonnull_req();
1442     set_req(0, m);
1443     return true;
1444   }
1445   return false;
1446 }
1447 
1448 //------------------------------hash-------------------------------------------
1449 // Hash function over Nodes.
hash() const1450 uint Node::hash() const {
1451   uint sum = 0;
1452   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1453     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1454   return (sum>>2) + _cnt + Opcode();
1455 }
1456 
1457 //------------------------------cmp--------------------------------------------
1458 // Compare special parts of simple Nodes
cmp(const Node & n) const1459 uint Node::cmp( const Node &n ) const {
1460   return 1;                     // Must be same
1461 }
1462 
1463 //------------------------------rematerialize-----------------------------------
1464 // Should we clone rather than spill this instruction?
rematerialize() const1465 bool Node::rematerialize() const {
1466   if ( is_Mach() )
1467     return this->as_Mach()->rematerialize();
1468   else
1469     return (_flags & Flag_rematerialize) != 0;
1470 }
1471 
1472 //------------------------------needs_anti_dependence_check---------------------
1473 // Nodes which use memory without consuming it, hence need antidependences.
needs_anti_dependence_check() const1474 bool Node::needs_anti_dependence_check() const {
1475   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1476     return false;
1477   else
1478     return in(1)->bottom_type()->has_memory();
1479 }
1480 
1481 
1482 // Get an integer constant from a ConNode (or CastIINode).
1483 // Return a default value if there is no apparent constant here.
find_int_type() const1484 const TypeInt* Node::find_int_type() const {
1485   if (this->is_Type()) {
1486     return this->as_Type()->type()->isa_int();
1487   } else if (this->is_Con()) {
1488     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1489     return this->bottom_type()->isa_int();
1490   }
1491   return NULL;
1492 }
1493 
1494 // Get a pointer constant from a ConstNode.
1495 // Returns the constant if it is a pointer ConstNode
get_ptr() const1496 intptr_t Node::get_ptr() const {
1497   assert( Opcode() == Op_ConP, "" );
1498   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1499 }
1500 
1501 // Get a narrow oop constant from a ConNNode.
get_narrowcon() const1502 intptr_t Node::get_narrowcon() const {
1503   assert( Opcode() == Op_ConN, "" );
1504   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1505 }
1506 
1507 // Get a long constant from a ConNode.
1508 // Return a default value if there is no apparent constant here.
find_long_type() const1509 const TypeLong* Node::find_long_type() const {
1510   if (this->is_Type()) {
1511     return this->as_Type()->type()->isa_long();
1512   } else if (this->is_Con()) {
1513     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1514     return this->bottom_type()->isa_long();
1515   }
1516   return NULL;
1517 }
1518 
1519 
1520 /**
1521  * Return a ptr type for nodes which should have it.
1522  */
get_ptr_type() const1523 const TypePtr* Node::get_ptr_type() const {
1524   const TypePtr* tp = this->bottom_type()->make_ptr();
1525 #ifdef ASSERT
1526   if (tp == NULL) {
1527     this->dump(1);
1528     assert((tp != NULL), "unexpected node type");
1529   }
1530 #endif
1531   return tp;
1532 }
1533 
1534 // Get a double constant from a ConstNode.
1535 // Returns the constant if it is a double ConstNode
getd() const1536 jdouble Node::getd() const {
1537   assert( Opcode() == Op_ConD, "" );
1538   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1539 }
1540 
1541 // Get a float constant from a ConstNode.
1542 // Returns the constant if it is a float ConstNode
getf() const1543 jfloat Node::getf() const {
1544   assert( Opcode() == Op_ConF, "" );
1545   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1546 }
1547 
1548 #ifndef PRODUCT
1549 
1550 //------------------------------find------------------------------------------
1551 // Find a neighbor of this Node with the given _idx
1552 // If idx is negative, find its absolute value, following both _in and _out.
find_recur(Compile * C,Node * & result,Node * n,int idx,bool only_ctrl,VectorSet * old_space,VectorSet * new_space)1553 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1554                         VectorSet* old_space, VectorSet* new_space ) {
1555   int node_idx = (idx >= 0) ? idx : -idx;
1556   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1557   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1558   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1559   if( v->test(n->_idx) ) return;
1560   if( (int)n->_idx == node_idx
1561       debug_only(|| n->debug_idx() == node_idx) ) {
1562     if (result != NULL)
1563       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1564                  (uintptr_t)result, (uintptr_t)n, node_idx);
1565     result = n;
1566   }
1567   v->set(n->_idx);
1568   for( uint i=0; i<n->len(); i++ ) {
1569     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1570     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1571   }
1572   // Search along forward edges also:
1573   if (idx < 0 && !only_ctrl) {
1574     for( uint j=0; j<n->outcnt(); j++ ) {
1575       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1576     }
1577   }
1578 #ifdef ASSERT
1579   // Search along debug_orig edges last, checking for cycles
1580   Node* orig = n->debug_orig();
1581   if (orig != NULL) {
1582     do {
1583       if (NotANode(orig))  break;
1584       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1585       orig = orig->debug_orig();
1586     } while (orig != NULL && orig != n->debug_orig());
1587   }
1588 #endif //ASSERT
1589 }
1590 
1591 // call this from debugger:
find_node(Node * n,int idx)1592 Node* find_node(Node* n, int idx) {
1593   return n->find(idx);
1594 }
1595 
1596 //------------------------------find-------------------------------------------
find(int idx) const1597 Node* Node::find(int idx) const {
1598   ResourceArea *area = Thread::current()->resource_area();
1599   VectorSet old_space(area), new_space(area);
1600   Node* result = NULL;
1601   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1602   return result;
1603 }
1604 
1605 //------------------------------find_ctrl--------------------------------------
1606 // Find an ancestor to this node in the control history with given _idx
find_ctrl(int idx) const1607 Node* Node::find_ctrl(int idx) const {
1608   ResourceArea *area = Thread::current()->resource_area();
1609   VectorSet old_space(area), new_space(area);
1610   Node* result = NULL;
1611   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1612   return result;
1613 }
1614 #endif
1615 
1616 
1617 
1618 #ifndef PRODUCT
1619 
1620 // -----------------------------Name-------------------------------------------
1621 extern const char *NodeClassNames[];
Name() const1622 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1623 
is_disconnected(const Node * n)1624 static bool is_disconnected(const Node* n) {
1625   for (uint i = 0; i < n->req(); i++) {
1626     if (n->in(i) != NULL)  return false;
1627   }
1628   return true;
1629 }
1630 
1631 #ifdef ASSERT
dump_orig(Node * orig,outputStream * st)1632 static void dump_orig(Node* orig, outputStream *st) {
1633   Compile* C = Compile::current();
1634   if (NotANode(orig)) orig = NULL;
1635   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1636   if (orig == NULL) return;
1637   st->print(" !orig=");
1638   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1639   if (NotANode(fast)) fast = NULL;
1640   while (orig != NULL) {
1641     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1642     if (discon) st->print("[");
1643     if (!Compile::current()->node_arena()->contains(orig))
1644       st->print("o");
1645     st->print("%d", orig->_idx);
1646     if (discon) st->print("]");
1647     orig = orig->debug_orig();
1648     if (NotANode(orig)) orig = NULL;
1649     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1650     if (orig != NULL) st->print(",");
1651     if (fast != NULL) {
1652       // Step fast twice for each single step of orig:
1653       fast = fast->debug_orig();
1654       if (NotANode(fast)) fast = NULL;
1655       if (fast != NULL && fast != orig) {
1656         fast = fast->debug_orig();
1657         if (NotANode(fast)) fast = NULL;
1658       }
1659       if (fast == orig) {
1660         st->print("...");
1661         break;
1662       }
1663     }
1664   }
1665 }
1666 
set_debug_orig(Node * orig)1667 void Node::set_debug_orig(Node* orig) {
1668   _debug_orig = orig;
1669   if (BreakAtNode == 0)  return;
1670   if (NotANode(orig))  orig = NULL;
1671   int trip = 10;
1672   while (orig != NULL) {
1673     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1674       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1675                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1676       BREAKPOINT;
1677     }
1678     orig = orig->debug_orig();
1679     if (NotANode(orig))  orig = NULL;
1680     if (trip-- <= 0)  break;
1681   }
1682 }
1683 #endif //ASSERT
1684 
1685 //------------------------------dump------------------------------------------
1686 // Dump a Node
dump(const char * suffix,bool mark,outputStream * st) const1687 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1688   Compile* C = Compile::current();
1689   bool is_new = C->node_arena()->contains(this);
1690   C->_in_dump_cnt++;
1691   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1692 
1693   // Dump the required and precedence inputs
1694   dump_req(st);
1695   dump_prec(st);
1696   // Dump the outputs
1697   dump_out(st);
1698 
1699   if (is_disconnected(this)) {
1700 #ifdef ASSERT
1701     st->print("  [%d]",debug_idx());
1702     dump_orig(debug_orig(), st);
1703 #endif
1704     st->cr();
1705     C->_in_dump_cnt--;
1706     return;                     // don't process dead nodes
1707   }
1708 
1709   if (C->clone_map().value(_idx) != 0) {
1710     C->clone_map().dump(_idx);
1711   }
1712   // Dump node-specific info
1713   dump_spec(st);
1714 #ifdef ASSERT
1715   // Dump the non-reset _debug_idx
1716   if (Verbose && WizardMode) {
1717     st->print("  [%d]",debug_idx());
1718   }
1719 #endif
1720 
1721   const Type *t = bottom_type();
1722 
1723   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1724     const TypeInstPtr  *toop = t->isa_instptr();
1725     const TypeKlassPtr *tkls = t->isa_klassptr();
1726     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1727     if (klass && klass->is_loaded() && klass->is_interface()) {
1728       st->print("  Interface:");
1729     } else if (toop) {
1730       st->print("  Oop:");
1731     } else if (tkls) {
1732       st->print("  Klass:");
1733     }
1734     t->dump_on(st);
1735   } else if (t == Type::MEMORY) {
1736     st->print("  Memory:");
1737     MemNode::dump_adr_type(this, adr_type(), st);
1738   } else if (Verbose || WizardMode) {
1739     st->print("  Type:");
1740     if (t) {
1741       t->dump_on(st);
1742     } else {
1743       st->print("no type");
1744     }
1745   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1746     // Dump MachSpillcopy vector type.
1747     t->dump_on(st);
1748   }
1749   if (is_new) {
1750     debug_only(dump_orig(debug_orig(), st));
1751     Node_Notes* nn = C->node_notes_at(_idx);
1752     if (nn != NULL && !nn->is_clear()) {
1753       if (nn->jvms() != NULL) {
1754         st->print(" !jvms:");
1755         nn->jvms()->dump_spec(st);
1756       }
1757     }
1758   }
1759   if (suffix) st->print("%s", suffix);
1760   C->_in_dump_cnt--;
1761 }
1762 
1763 //------------------------------dump_req--------------------------------------
dump_req(outputStream * st) const1764 void Node::dump_req(outputStream *st) const {
1765   // Dump the required input edges
1766   for (uint i = 0; i < req(); i++) {    // For all required inputs
1767     Node* d = in(i);
1768     if (d == NULL) {
1769       st->print("_ ");
1770     } else if (NotANode(d)) {
1771       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1772     } else {
1773       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1774     }
1775   }
1776 }
1777 
1778 
1779 //------------------------------dump_prec-------------------------------------
dump_prec(outputStream * st) const1780 void Node::dump_prec(outputStream *st) const {
1781   // Dump the precedence edges
1782   int any_prec = 0;
1783   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1784     Node* p = in(i);
1785     if (p != NULL) {
1786       if (!any_prec++) st->print(" |");
1787       if (NotANode(p)) { st->print("NotANode "); continue; }
1788       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1789     }
1790   }
1791 }
1792 
1793 //------------------------------dump_out--------------------------------------
dump_out(outputStream * st) const1794 void Node::dump_out(outputStream *st) const {
1795   // Delimit the output edges
1796   st->print(" [[");
1797   // Dump the output edges
1798   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1799     Node* u = _out[i];
1800     if (u == NULL) {
1801       st->print("_ ");
1802     } else if (NotANode(u)) {
1803       st->print("NotANode ");
1804     } else {
1805       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1806     }
1807   }
1808   st->print("]] ");
1809 }
1810 
1811 //----------------------------collect_nodes_i----------------------------------
1812 // Collects nodes from an Ideal graph, starting from a given start node and
1813 // moving in a given direction until a certain depth (distance from the start
1814 // node) is reached. Duplicates are ignored.
1815 // Arguments:
1816 //   nstack:        the nodes are collected into this array.
1817 //   start:         the node at which to start collecting.
1818 //   direction:     if this is a positive number, collect input nodes; if it is
1819 //                  a negative number, collect output nodes.
1820 //   depth:         collect nodes up to this distance from the start node.
1821 //   include_start: whether to include the start node in the result collection.
1822 //   only_ctrl:     whether to regard control edges only during traversal.
1823 //   only_data:     whether to regard data edges only during traversal.
collect_nodes_i(GrowableArray<Node * > * nstack,const Node * start,int direction,uint depth,bool include_start,bool only_ctrl,bool only_data)1824 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1825   Node* s = (Node*) start; // remove const
1826   nstack->append(s);
1827   int begin = 0;
1828   int end = 0;
1829   for(uint i = 0; i < depth; i++) {
1830     end = nstack->length();
1831     for(int j = begin; j < end; j++) {
1832       Node* tp  = nstack->at(j);
1833       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1834       for(uint k = 0; k < limit; k++) {
1835         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1836 
1837         if (NotANode(n))  continue;
1838         // do not recurse through top or the root (would reach unrelated stuff)
1839         if (n->is_Root() || n->is_top()) continue;
1840         if (only_ctrl && !n->is_CFG()) continue;
1841         if (only_data && n->is_CFG()) continue;
1842 
1843         bool on_stack = nstack->contains(n);
1844         if (!on_stack) {
1845           nstack->append(n);
1846         }
1847       }
1848     }
1849     begin = end;
1850   }
1851   if (!include_start) {
1852     nstack->remove(s);
1853   }
1854 }
1855 
1856 //------------------------------dump_nodes-------------------------------------
dump_nodes(const Node * start,int d,bool only_ctrl)1857 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1858   if (NotANode(start)) return;
1859 
1860   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1861   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1862 
1863   int end = nstack.length();
1864   if (d > 0) {
1865     for(int j = end-1; j >= 0; j--) {
1866       nstack.at(j)->dump();
1867     }
1868   } else {
1869     for(int j = 0; j < end; j++) {
1870       nstack.at(j)->dump();
1871     }
1872   }
1873 }
1874 
1875 //------------------------------dump-------------------------------------------
dump(int d) const1876 void Node::dump(int d) const {
1877   dump_nodes(this, d, false);
1878 }
1879 
1880 //------------------------------dump_ctrl--------------------------------------
1881 // Dump a Node's control history to depth
dump_ctrl(int d) const1882 void Node::dump_ctrl(int d) const {
1883   dump_nodes(this, d, true);
1884 }
1885 
1886 //-----------------------------dump_compact------------------------------------
dump_comp() const1887 void Node::dump_comp() const {
1888   this->dump_comp("\n");
1889 }
1890 
1891 //-----------------------------dump_compact------------------------------------
1892 // Dump a Node in compact representation, i.e., just print its name and index.
1893 // Nodes can specify additional specifics to print in compact representation by
1894 // implementing dump_compact_spec.
dump_comp(const char * suffix,outputStream * st) const1895 void Node::dump_comp(const char* suffix, outputStream *st) const {
1896   Compile* C = Compile::current();
1897   C->_in_dump_cnt++;
1898   st->print("%s(%d)", Name(), _idx);
1899   this->dump_compact_spec(st);
1900   if (suffix) {
1901     st->print("%s", suffix);
1902   }
1903   C->_in_dump_cnt--;
1904 }
1905 
1906 //----------------------------dump_related-------------------------------------
1907 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1908 // hand and is determined by the implementation of the virtual method rel.
dump_related() const1909 void Node::dump_related() const {
1910   Compile* C = Compile::current();
1911   GrowableArray <Node *> in_rel(C->unique());
1912   GrowableArray <Node *> out_rel(C->unique());
1913   this->related(&in_rel, &out_rel, false);
1914   for (int i = in_rel.length() - 1; i >= 0; i--) {
1915     in_rel.at(i)->dump();
1916   }
1917   this->dump("\n", true);
1918   for (int i = 0; i < out_rel.length(); i++) {
1919     out_rel.at(i)->dump();
1920   }
1921 }
1922 
1923 //----------------------------dump_related-------------------------------------
1924 // Dump a Node's related nodes up to a given depth (distance from the start
1925 // node).
1926 // Arguments:
1927 //   d_in:  depth for input nodes.
1928 //   d_out: depth for output nodes (note: this also is a positive number).
dump_related(uint d_in,uint d_out) const1929 void Node::dump_related(uint d_in, uint d_out) const {
1930   Compile* C = Compile::current();
1931   GrowableArray <Node *> in_rel(C->unique());
1932   GrowableArray <Node *> out_rel(C->unique());
1933 
1934   // call collect_nodes_i directly
1935   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1936   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1937 
1938   for (int i = in_rel.length() - 1; i >= 0; i--) {
1939     in_rel.at(i)->dump();
1940   }
1941   this->dump("\n", true);
1942   for (int i = 0; i < out_rel.length(); i++) {
1943     out_rel.at(i)->dump();
1944   }
1945 }
1946 
1947 //------------------------dump_related_compact---------------------------------
1948 // Dump a Node's related nodes in compact representation. The notion of
1949 // "related" depends on the Node at hand and is determined by the implementation
1950 // of the virtual method rel.
dump_related_compact() const1951 void Node::dump_related_compact() const {
1952   Compile* C = Compile::current();
1953   GrowableArray <Node *> in_rel(C->unique());
1954   GrowableArray <Node *> out_rel(C->unique());
1955   this->related(&in_rel, &out_rel, true);
1956   int n_in = in_rel.length();
1957   int n_out = out_rel.length();
1958 
1959   this->dump_comp(n_in == 0 ? "\n" : "  ");
1960   for (int i = 0; i < n_in; i++) {
1961     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1962   }
1963   for (int i = 0; i < n_out; i++) {
1964     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1965   }
1966 }
1967 
1968 //------------------------------related----------------------------------------
1969 // Collect a Node's related nodes. The default behaviour just collects the
1970 // inputs and outputs at depth 1, including both control and data flow edges,
1971 // regardless of whether the presentation is compact or not. For data nodes,
1972 // the default is to collect all data inputs (till level 1 if compact), and
1973 // outputs till level 1.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const1974 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1975   if (this->is_CFG()) {
1976     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1977     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1978   } else {
1979     if (compact) {
1980       this->collect_nodes(in_rel, 1, false, true);
1981     } else {
1982       this->collect_nodes_in_all_data(in_rel, false);
1983     }
1984     this->collect_nodes(out_rel, -1, false, false);
1985   }
1986 }
1987 
1988 //---------------------------collect_nodes-------------------------------------
1989 // An entry point to the low-level node collection facility, to start from a
1990 // given node in the graph. The start node is by default not included in the
1991 // result.
1992 // Arguments:
1993 //   ns:   collect the nodes into this data structure.
1994 //   d:    the depth (distance from start node) to which nodes should be
1995 //         collected. A value >0 indicates input nodes, a value <0, output
1996 //         nodes.
1997 //   ctrl: include only control nodes.
1998 //   data: include only data nodes.
collect_nodes(GrowableArray<Node * > * ns,int d,bool ctrl,bool data) const1999 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
2000   if (ctrl && data) {
2001     // ignore nonsensical combination
2002     return;
2003   }
2004   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
2005 }
2006 
2007 //--------------------------collect_nodes_in-----------------------------------
collect_nodes_in(Node * start,GrowableArray<Node * > * ns,bool primary_is_data,bool collect_secondary)2008 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
2009   // The maximum depth is determined using a BFS that visits all primary (data
2010   // or control) inputs and increments the depth at each level.
2011   uint d_in = 0;
2012   GrowableArray<Node*> nodes(Compile::current()->unique());
2013   nodes.push(start);
2014   int nodes_at_current_level = 1;
2015   int n_idx = 0;
2016   while (nodes_at_current_level > 0) {
2017     // Add all primary inputs reachable from the current level to the list, and
2018     // increase the depth if there were any.
2019     int nodes_at_next_level = 0;
2020     bool nodes_added = false;
2021     while (nodes_at_current_level > 0) {
2022       nodes_at_current_level--;
2023       Node* current = nodes.at(n_idx++);
2024       for (uint i = 0; i < current->len(); i++) {
2025         Node* n = current->in(i);
2026         if (NotANode(n)) {
2027           continue;
2028         }
2029         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2030           continue;
2031         }
2032         if (!nodes.contains(n)) {
2033           nodes.push(n);
2034           nodes_added = true;
2035           nodes_at_next_level++;
2036         }
2037       }
2038     }
2039     if (nodes_added) {
2040       d_in++;
2041     }
2042     nodes_at_current_level = nodes_at_next_level;
2043   }
2044   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2045   if (collect_secondary) {
2046     // Now, iterate over the secondary nodes in ns and add the respective
2047     // boundary reachable from them.
2048     GrowableArray<Node*> sns(Compile::current()->unique());
2049     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2050       Node* n = *it;
2051       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2052       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2053         ns->append_if_missing(*d);
2054       }
2055       sns.clear();
2056     }
2057   }
2058 }
2059 
2060 //---------------------collect_nodes_in_all_data-------------------------------
2061 // Collect the entire data input graph. Include the control boundary if
2062 // requested.
2063 // Arguments:
2064 //   ns:   collect the nodes into this data structure.
2065 //   ctrl: if true, include the control boundary.
collect_nodes_in_all_data(GrowableArray<Node * > * ns,bool ctrl) const2066 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2067   collect_nodes_in((Node*) this, ns, true, ctrl);
2068 }
2069 
2070 //--------------------------collect_nodes_in_all_ctrl--------------------------
2071 // Collect the entire control input graph. Include the data boundary if
2072 // requested.
2073 //   ns:   collect the nodes into this data structure.
2074 //   data: if true, include the control boundary.
collect_nodes_in_all_ctrl(GrowableArray<Node * > * ns,bool data) const2075 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2076   collect_nodes_in((Node*) this, ns, false, data);
2077 }
2078 
2079 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2080 // Collect the entire output graph until hitting control node boundaries, and
2081 // include those.
collect_nodes_out_all_ctrl_boundary(GrowableArray<Node * > * ns) const2082 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2083   // Perform a BFS and stop at control nodes.
2084   GrowableArray<Node*> nodes(Compile::current()->unique());
2085   nodes.push((Node*) this);
2086   while (nodes.length() > 0) {
2087     Node* current = nodes.pop();
2088     if (NotANode(current)) {
2089       continue;
2090     }
2091     ns->append_if_missing(current);
2092     if (!current->is_CFG()) {
2093       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2094         nodes.push(current->out(i));
2095       }
2096     }
2097   }
2098   ns->remove((Node*) this);
2099 }
2100 
2101 // VERIFICATION CODE
2102 // For each input edge to a node (ie - for each Use-Def edge), verify that
2103 // there is a corresponding Def-Use edge.
2104 //------------------------------verify_edges-----------------------------------
verify_edges(Unique_Node_List & visited)2105 void Node::verify_edges(Unique_Node_List &visited) {
2106   uint i, j, idx;
2107   int  cnt;
2108   Node *n;
2109 
2110   // Recursive termination test
2111   if (visited.member(this))  return;
2112   visited.push(this);
2113 
2114   // Walk over all input edges, checking for correspondence
2115   for( i = 0; i < len(); i++ ) {
2116     n = in(i);
2117     if (n != NULL && !n->is_top()) {
2118       // Count instances of (Node *)this
2119       cnt = 0;
2120       for (idx = 0; idx < n->_outcnt; idx++ ) {
2121         if (n->_out[idx] == (Node *)this)  cnt++;
2122       }
2123       assert( cnt > 0,"Failed to find Def-Use edge." );
2124       // Check for duplicate edges
2125       // walk the input array downcounting the input edges to n
2126       for( j = 0; j < len(); j++ ) {
2127         if( in(j) == n ) cnt--;
2128       }
2129       assert( cnt == 0,"Mismatched edge count.");
2130     } else if (n == NULL) {
2131       assert(i >= req() || i == 0 || is_Region() || is_Phi() || is_ArrayCopy()
2132               || (is_Unlock() && i == req()-1), "only region, phi, arraycopy or unlock nodes have null data edges");
2133     } else {
2134       assert(n->is_top(), "sanity");
2135       // Nothing to check.
2136     }
2137   }
2138   // Recursive walk over all input edges
2139   for( i = 0; i < len(); i++ ) {
2140     n = in(i);
2141     if( n != NULL )
2142       in(i)->verify_edges(visited);
2143   }
2144 }
2145 
2146 // Verify all nodes if verify_depth is negative
verify(Node * n,int verify_depth)2147 void Node::verify(Node* n, int verify_depth) {
2148   assert(verify_depth != 0, "depth should not be 0");
2149   ResourceMark rm;
2150   ResourceArea* area = Thread::current()->resource_area();
2151   VectorSet old_space(area);
2152   VectorSet new_space(area);
2153   Node_List worklist(area);
2154   worklist.push(n);
2155   Compile* C = Compile::current();
2156   uint last_index_on_current_depth = 0;
2157   verify_depth--; // Visiting the first node on depth 1
2158   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2159   bool add_to_worklist = verify_depth != 0;
2160 
2161 
2162   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2163     n = worklist[list_index];
2164 
2165     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2166       if (C->cached_top_node() == NULL) {
2167         C->set_cached_top_node((Node*)n);
2168       }
2169       assert(C->cached_top_node() == n, "TOP node must be unique");
2170     }
2171 
2172     for (uint i = 0; i < n->len(); i++) {
2173       Node* x = n->in(i);
2174       if (!x || x->is_top()) {
2175         continue;
2176       }
2177 
2178       // Verify my input has a def-use edge to me
2179       // Count use-def edges from n to x
2180       int cnt = 0;
2181       for (uint j = 0; j < n->len(); j++) {
2182         if (n->in(j) == x) {
2183           cnt++;
2184         }
2185       }
2186 
2187       // Count def-use edges from x to n
2188       uint max = x->_outcnt;
2189       for (uint k = 0; k < max; k++) {
2190         if (x->_out[k] == n) {
2191           cnt--;
2192         }
2193       }
2194       assert(cnt == 0, "mismatched def-use edge counts");
2195 
2196       // Contained in new_space or old_space?
2197       VectorSet* v = C->node_arena()->contains(x) ? &new_space : &old_space;
2198       // Check for visited in the proper space. Numberings are not unique
2199       // across spaces so we need a separate VectorSet for each space.
2200       if (add_to_worklist && !v->test_set(x->_idx)) {
2201         worklist.push(x);
2202       }
2203     }
2204 
2205     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2206       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2207       // store the current last list index which is the last node in the list with the new depth. All nodes
2208       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2209       verify_depth--;
2210       if (verify_depth == 0) {
2211         add_to_worklist = false;
2212       }
2213       last_index_on_current_depth = worklist.size() - 1;
2214     }
2215   }
2216 }
2217 #endif
2218 
2219 //------------------------------walk-------------------------------------------
2220 // Graph walk, with both pre-order and post-order functions
walk(NFunc pre,NFunc post,void * env)2221 void Node::walk(NFunc pre, NFunc post, void *env) {
2222   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2223   walk_(pre, post, env, visited);
2224 }
2225 
walk_(NFunc pre,NFunc post,void * env,VectorSet & visited)2226 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2227   if( visited.test_set(_idx) ) return;
2228   pre(*this,env);               // Call the pre-order walk function
2229   for( uint i=0; i<_max; i++ )
2230     if( in(i) )                 // Input exists and is not walked?
2231       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2232   post(*this,env);              // Call the post-order walk function
2233 }
2234 
nop(Node &,void *)2235 void Node::nop(Node &, void*) {}
2236 
2237 //------------------------------Registers--------------------------------------
2238 // Do we Match on this edge index or not?  Generally false for Control
2239 // and true for everything else.  Weird for calls & returns.
match_edge(uint idx) const2240 uint Node::match_edge(uint idx) const {
2241   return idx;                   // True for other than index 0 (control)
2242 }
2243 
2244 static RegMask _not_used_at_all;
2245 // Register classes are defined for specific machines
out_RegMask() const2246 const RegMask &Node::out_RegMask() const {
2247   ShouldNotCallThis();
2248   return _not_used_at_all;
2249 }
2250 
in_RegMask(uint) const2251 const RegMask &Node::in_RegMask(uint) const {
2252   ShouldNotCallThis();
2253   return _not_used_at_all;
2254 }
2255 
2256 //=============================================================================
2257 //-----------------------------------------------------------------------------
reset(Arena * new_arena)2258 void Node_Array::reset( Arena *new_arena ) {
2259   _a->Afree(_nodes,_max*sizeof(Node*));
2260   _max   = 0;
2261   _nodes = NULL;
2262   _a     = new_arena;
2263 }
2264 
2265 //------------------------------clear------------------------------------------
2266 // Clear all entries in _nodes to NULL but keep storage
clear()2267 void Node_Array::clear() {
2268   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2269 }
2270 
2271 //-----------------------------------------------------------------------------
grow(uint i)2272 void Node_Array::grow( uint i ) {
2273   if( !_max ) {
2274     _max = 1;
2275     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2276     _nodes[0] = NULL;
2277   }
2278   uint old = _max;
2279   while( i >= _max ) _max <<= 1;        // Double to fit
2280   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2281   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2282 }
2283 
2284 //-----------------------------------------------------------------------------
insert(uint i,Node * n)2285 void Node_Array::insert( uint i, Node *n ) {
2286   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2287   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2288   _nodes[i] = n;
2289 }
2290 
2291 //-----------------------------------------------------------------------------
remove(uint i)2292 void Node_Array::remove( uint i ) {
2293   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2294   _nodes[_max-1] = NULL;
2295 }
2296 
2297 //-----------------------------------------------------------------------------
sort(C_sort_func_t func)2298 void Node_Array::sort( C_sort_func_t func) {
2299   qsort( _nodes, _max, sizeof( Node* ), func );
2300 }
2301 
2302 //-----------------------------------------------------------------------------
dump() const2303 void Node_Array::dump() const {
2304 #ifndef PRODUCT
2305   for( uint i = 0; i < _max; i++ ) {
2306     Node *nn = _nodes[i];
2307     if( nn != NULL ) {
2308       tty->print("%5d--> ",i); nn->dump();
2309     }
2310   }
2311 #endif
2312 }
2313 
2314 //--------------------------is_iteratively_computed------------------------------
2315 // Operation appears to be iteratively computed (such as an induction variable)
2316 // It is possible for this operation to return false for a loop-varying
2317 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
is_iteratively_computed()2318 bool Node::is_iteratively_computed() {
2319   if (ideal_reg()) { // does operation have a result register?
2320     for (uint i = 1; i < req(); i++) {
2321       Node* n = in(i);
2322       if (n != NULL && n->is_Phi()) {
2323         for (uint j = 1; j < n->req(); j++) {
2324           if (n->in(j) == this) {
2325             return true;
2326           }
2327         }
2328       }
2329     }
2330   }
2331   return false;
2332 }
2333 
2334 //--------------------------find_similar------------------------------
2335 // Return a node with opcode "opc" and same inputs as "this" if one can
2336 // be found; Otherwise return NULL;
find_similar(int opc)2337 Node* Node::find_similar(int opc) {
2338   if (req() >= 2) {
2339     Node* def = in(1);
2340     if (def && def->outcnt() >= 2) {
2341       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2342         Node* use = def->fast_out(i);
2343         if (use != this &&
2344             use->Opcode() == opc &&
2345             use->req() == req()) {
2346           uint j;
2347           for (j = 0; j < use->req(); j++) {
2348             if (use->in(j) != in(j)) {
2349               break;
2350             }
2351           }
2352           if (j == use->req()) {
2353             return use;
2354           }
2355         }
2356       }
2357     }
2358   }
2359   return NULL;
2360 }
2361 
2362 
2363 //--------------------------unique_ctrl_out------------------------------
2364 // Return the unique control out if only one. Null if none or more than one.
unique_ctrl_out() const2365 Node* Node::unique_ctrl_out() const {
2366   Node* found = NULL;
2367   for (uint i = 0; i < outcnt(); i++) {
2368     Node* use = raw_out(i);
2369     if (use->is_CFG() && use != this) {
2370       if (found != NULL) return NULL;
2371       found = use;
2372     }
2373   }
2374   return found;
2375 }
2376 
ensure_control_or_add_prec(Node * c)2377 void Node::ensure_control_or_add_prec(Node* c) {
2378   if (in(0) == NULL) {
2379     set_req(0, c);
2380   } else if (in(0) != c) {
2381     add_prec(c);
2382   }
2383 }
2384 
is_dead_loop_safe() const2385 bool Node::is_dead_loop_safe() const {
2386   if (is_Phi()) {
2387     return true;
2388   }
2389   if (is_Proj() && in(0) == NULL)  {
2390     return true;
2391   }
2392   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2393     if (!is_Proj()) {
2394       return true;
2395     }
2396     if (in(0)->is_Allocate()) {
2397       return false;
2398     }
2399     // MemNode::can_see_stored_value() peeks through the boxing call
2400     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2401       return false;
2402     }
2403     return true;
2404   }
2405   return false;
2406 }
2407 
2408 //=============================================================================
2409 //------------------------------yank-------------------------------------------
2410 // Find and remove
yank(Node * n)2411 void Node_List::yank( Node *n ) {
2412   uint i;
2413   for( i = 0; i < _cnt; i++ )
2414     if( _nodes[i] == n )
2415       break;
2416 
2417   if( i < _cnt )
2418     _nodes[i] = _nodes[--_cnt];
2419 }
2420 
2421 //------------------------------dump-------------------------------------------
dump() const2422 void Node_List::dump() const {
2423 #ifndef PRODUCT
2424   for( uint i = 0; i < _cnt; i++ )
2425     if( _nodes[i] ) {
2426       tty->print("%5d--> ",i);
2427       _nodes[i]->dump();
2428     }
2429 #endif
2430 }
2431 
dump_simple() const2432 void Node_List::dump_simple() const {
2433 #ifndef PRODUCT
2434   for( uint i = 0; i < _cnt; i++ )
2435     if( _nodes[i] ) {
2436       tty->print(" %d", _nodes[i]->_idx);
2437     } else {
2438       tty->print(" NULL");
2439     }
2440 #endif
2441 }
2442 
2443 //=============================================================================
2444 //------------------------------remove-----------------------------------------
remove(Node * n)2445 void Unique_Node_List::remove( Node *n ) {
2446   if( _in_worklist[n->_idx] ) {
2447     for( uint i = 0; i < size(); i++ )
2448       if( _nodes[i] == n ) {
2449         map(i,Node_List::pop());
2450         _in_worklist >>= n->_idx;
2451         return;
2452       }
2453     ShouldNotReachHere();
2454   }
2455 }
2456 
2457 //-----------------------remove_useless_nodes----------------------------------
2458 // Remove useless nodes from worklist
remove_useless_nodes(VectorSet & useful)2459 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2460 
2461   for( uint i = 0; i < size(); ++i ) {
2462     Node *n = at(i);
2463     assert( n != NULL, "Did not expect null entries in worklist");
2464     if( ! useful.test(n->_idx) ) {
2465       _in_worklist >>= n->_idx;
2466       map(i,Node_List::pop());
2467       // Node *replacement = Node_List::pop();
2468       // if( i != size() ) { // Check if removing last entry
2469       //   _nodes[i] = replacement;
2470       // }
2471       --i;  // Visit popped node
2472       // If it was last entry, loop terminates since size() was also reduced
2473     }
2474   }
2475 }
2476 
2477 //=============================================================================
grow()2478 void Node_Stack::grow() {
2479   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2480   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2481   size_t max = old_max << 1;             // max * 2
2482   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2483   _inode_max = _inodes + max;
2484   _inode_top = _inodes + old_top;        // restore _top
2485 }
2486 
2487 // Node_Stack is used to map nodes.
find(uint idx) const2488 Node* Node_Stack::find(uint idx) const {
2489   uint sz = size();
2490   for (uint i=0; i < sz; i++) {
2491     if (idx == index_at(i) )
2492       return node_at(i);
2493   }
2494   return NULL;
2495 }
2496 
2497 //=============================================================================
size_of() const2498 uint TypeNode::size_of() const { return sizeof(*this); }
2499 #ifndef PRODUCT
dump_spec(outputStream * st) const2500 void TypeNode::dump_spec(outputStream *st) const {
2501   if( !Verbose && !WizardMode ) {
2502     // standard dump does this in Verbose and WizardMode
2503     st->print(" #"); _type->dump_on(st);
2504   }
2505 }
2506 
dump_compact_spec(outputStream * st) const2507 void TypeNode::dump_compact_spec(outputStream *st) const {
2508   st->print("#");
2509   _type->dump_on(st);
2510 }
2511 #endif
hash() const2512 uint TypeNode::hash() const {
2513   return Node::hash() + _type->hash();
2514 }
cmp(const Node & n) const2515 uint TypeNode::cmp( const Node &n ) const
2516 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
bottom_type() const2517 const Type *TypeNode::bottom_type() const { return _type; }
Value(PhaseGVN * phase) const2518 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2519 
2520 //------------------------------ideal_reg--------------------------------------
ideal_reg() const2521 uint TypeNode::ideal_reg() const {
2522   return _type->ideal_reg();
2523 }
2524