1 /*
2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_Runtime1.hpp"
33 #include "c1/c1_ValueStack.hpp"
34 #include "ci/ciArray.hpp"
35 #include "ci/ciObjArrayKlass.hpp"
36 #include "ci/ciTypeArrayKlass.hpp"
37 #include "ci/ciUtilities.hpp"
38 #include "gc/shared/c1/barrierSetC1.hpp"
39 #include "gc/shared/cardTable.hpp"
40 #include "gc/shared/cardTableBarrierSet.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "vmreg_arm.inline.hpp"
44 
45 #ifdef ASSERT
46 #define __ gen()->lir(__FILE__, __LINE__)->
47 #else
48 #define __ gen()->lir()->
49 #endif
50 
load_byte_item()51 void LIRItem::load_byte_item() {
52   load_item();
53 }
54 
load_nonconstant()55 void LIRItem::load_nonconstant() {
56   LIR_Opr r = value()->operand();
57   if (_gen->can_inline_as_constant(value())) {
58     if (!r->is_constant()) {
59       r = LIR_OprFact::value_type(value()->type());
60     }
61     _result = r;
62   } else {
63     load_item();
64   }
65 }
66 
67 //--------------------------------------------------------------
68 //               LIRGenerator
69 //--------------------------------------------------------------
70 
71 
exceptionOopOpr()72 LIR_Opr LIRGenerator::exceptionOopOpr() {
73   return FrameMap::Exception_oop_opr;
74 }
75 
exceptionPcOpr()76 LIR_Opr LIRGenerator::exceptionPcOpr()  {
77   return FrameMap::Exception_pc_opr;
78 }
79 
syncLockOpr()80 LIR_Opr LIRGenerator::syncLockOpr()     {
81   return new_register(T_INT);
82 }
83 
syncTempOpr()84 LIR_Opr LIRGenerator::syncTempOpr()     {
85   return new_register(T_OBJECT);
86 }
87 
getThreadTemp()88 LIR_Opr LIRGenerator::getThreadTemp()   {
89   return LIR_OprFact::illegalOpr;
90 }
91 
atomicLockOpr()92 LIR_Opr LIRGenerator::atomicLockOpr() {
93   return LIR_OprFact::illegalOpr;
94 }
95 
result_register_for(ValueType * type,bool callee)96 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
97   LIR_Opr opr;
98   switch (type->tag()) {
99     case intTag:     opr = FrameMap::Int_result_opr;    break;
100     case objectTag:  opr = FrameMap::Object_result_opr; break;
101     case longTag:    opr = FrameMap::Long_result_opr;   break;
102     case floatTag:   opr = FrameMap::Float_result_opr;  break;
103     case doubleTag:  opr = FrameMap::Double_result_opr; break;
104     case addressTag:
105     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
106   }
107   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
108   return opr;
109 }
110 
111 
rlock_byte(BasicType type)112 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
113   return new_register(T_INT);
114 }
115 
116 
117 //--------- loading items into registers --------------------------------
118 
119 
can_store_as_constant(Value v,BasicType type) const120 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
121   return false;
122 }
123 
124 
can_inline_as_constant(Value v) const125 bool LIRGenerator::can_inline_as_constant(Value v) const {
126   if (v->type()->as_IntConstant() != NULL) {
127     return Assembler::is_arith_imm_in_range(v->type()->as_IntConstant()->value());
128   } else if (v->type()->as_ObjectConstant() != NULL) {
129     return v->type()->as_ObjectConstant()->value()->is_null_object();
130   } else if (v->type()->as_FloatConstant() != NULL) {
131     return v->type()->as_FloatConstant()->value() == 0.0f;
132   } else if (v->type()->as_DoubleConstant() != NULL) {
133     return v->type()->as_DoubleConstant()->value() == 0.0;
134   }
135   return false;
136 }
137 
138 
can_inline_as_constant(LIR_Const * c) const139 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
140   ShouldNotCallThis(); // Not used on ARM
141   return false;
142 }
143 
144 
145 
146 
safepoint_poll_register()147 LIR_Opr LIRGenerator::safepoint_poll_register() {
148   return LIR_OprFact::illegalOpr;
149 }
150 
151 
make_constant(BasicType type,jlong c)152 static LIR_Opr make_constant(BasicType type, jlong c) {
153   switch (type) {
154     case T_ADDRESS:
155     case T_OBJECT:  return LIR_OprFact::intptrConst(c);
156     case T_LONG:    return LIR_OprFact::longConst(c);
157     case T_INT:     return LIR_OprFact::intConst(c);
158     default: ShouldNotReachHere();
159     return LIR_OprFact::intConst(-1);
160   }
161 }
162 
163 
164 
add_large_constant(LIR_Opr src,int c,LIR_Opr dest)165 void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
166   assert(c != 0, "must be");
167   // Find first non-zero bit
168   int shift = 0;
169   while ((c & (3 << shift)) == 0) {
170     shift += 2;
171   }
172   // Add the least significant part of the constant
173   int mask = 0xff << shift;
174   __ add(src, LIR_OprFact::intConst(c & mask), dest);
175   // Add up to 3 other parts of the constant;
176   // each of them can be represented as rotated_imm
177   if (c & (mask << 8)) {
178     __ add(dest, LIR_OprFact::intConst(c & (mask << 8)), dest);
179   }
180   if (c & (mask << 16)) {
181     __ add(dest, LIR_OprFact::intConst(c & (mask << 16)), dest);
182   }
183   if (c & (mask << 24)) {
184     __ add(dest, LIR_OprFact::intConst(c & (mask << 24)), dest);
185   }
186 }
187 
make_address(LIR_Opr base,LIR_Opr index,LIR_Address::Scale scale,BasicType type)188 static LIR_Address* make_address(LIR_Opr base, LIR_Opr index, LIR_Address::Scale scale, BasicType type) {
189   return new LIR_Address(base, index, scale, 0, type);
190 }
191 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)192 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
193                                             int shift, int disp, BasicType type) {
194   assert(base->is_register(), "must be");
195 
196   if (index->is_constant()) {
197     disp += index->as_constant_ptr()->as_jint() << shift;
198     index = LIR_OprFact::illegalOpr;
199   }
200 
201   if (base->type() == T_LONG) {
202     LIR_Opr tmp = new_register(T_INT);
203     __ convert(Bytecodes::_l2i, base, tmp);
204     base = tmp;
205   }
206   if (index != LIR_OprFact::illegalOpr && index->type() == T_LONG) {
207     LIR_Opr tmp = new_register(T_INT);
208     __ convert(Bytecodes::_l2i, index, tmp);
209     index = tmp;
210   }
211   // At this point base and index should be all ints and not constants
212   assert(base->is_single_cpu() && !base->is_constant(), "base should be an non-constant int");
213   assert(index->is_illegal() || (index->type() == T_INT && !index->is_constant()), "index should be an non-constant int");
214 
215   int max_disp;
216   bool disp_is_in_range;
217   bool embedded_shift;
218 
219   switch (type) {
220     case T_BYTE:
221     case T_SHORT:
222     case T_CHAR:
223       max_disp = 256;          // ldrh, ldrsb encoding has 8-bit offset
224       embedded_shift = false;
225       break;
226     case T_FLOAT:
227     case T_DOUBLE:
228       max_disp = 1024;         // flds, fldd have 8-bit offset multiplied by 4
229       embedded_shift = false;
230       break;
231     case T_LONG:
232       max_disp = 4096;
233       embedded_shift = false;
234       break;
235     default:
236       max_disp = 4096;         // ldr, ldrb allow 12-bit offset
237       embedded_shift = true;
238   }
239 
240   disp_is_in_range = (-max_disp < disp && disp < max_disp);
241 
242   if (index->is_register()) {
243     LIR_Opr tmp = new_pointer_register();
244     if (!disp_is_in_range) {
245       add_large_constant(base, disp, tmp);
246       base = tmp;
247       disp = 0;
248     }
249     LIR_Address* addr = make_address(base, index, (LIR_Address::Scale)shift, type);
250     if (disp == 0 && embedded_shift) {
251       // can use ldr/str instruction with register index
252       return addr;
253     } else {
254       LIR_Opr tmp = new_pointer_register();
255       __ add(base, LIR_OprFact::address(addr), tmp); // add with shifted/extended register
256       return new LIR_Address(tmp, disp, type);
257     }
258   }
259 
260   // If the displacement is too large to be inlined into LDR instruction,
261   // generate large constant with additional sequence of ADD instructions
262   int excess_disp = disp & ~(max_disp - 1);
263   if (excess_disp != 0) {
264     LIR_Opr tmp = new_pointer_register();
265     add_large_constant(base, excess_disp, tmp);
266     base = tmp;
267   }
268   return new LIR_Address(base, disp & (max_disp - 1), type);
269 }
270 
271 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type)272 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type) {
273   int base_offset = arrayOopDesc::base_offset_in_bytes(type);
274   int elem_size = type2aelembytes(type);
275 
276   if (index_opr->is_constant()) {
277     int offset = base_offset + index_opr->as_constant_ptr()->as_jint() * elem_size;
278     return generate_address(array_opr, offset, type);
279   } else {
280     assert(index_opr->is_register(), "must be");
281     int scale = exact_log2(elem_size);
282     return generate_address(array_opr, index_opr, scale, base_offset, type);
283   }
284 }
285 
286 
load_immediate(int x,BasicType type)287 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
288   assert(type == T_LONG || type == T_INT, "should be");
289   LIR_Opr r = make_constant(type, x);
290   bool imm_in_range = AsmOperand::is_rotated_imm(x);
291   if (!imm_in_range) {
292     LIR_Opr tmp = new_register(type);
293     __ move(r, tmp);
294     return tmp;
295   }
296   return r;
297 }
298 
299 
increment_counter(address counter,BasicType type,int step)300 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
301   LIR_Opr pointer = new_pointer_register();
302   __ move(LIR_OprFact::intptrConst(counter), pointer);
303   LIR_Address* addr = new LIR_Address(pointer, type);
304   increment_counter(addr, step);
305 }
306 
307 
increment_counter(LIR_Address * addr,int step)308 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
309   LIR_Opr temp = new_register(addr->type());
310   __ move(addr, temp);
311   __ add(temp, make_constant(addr->type(), step), temp);
312   __ move(temp, addr);
313 }
314 
315 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)316 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
317   __ load(new LIR_Address(base, disp, T_INT), FrameMap::LR_opr, info);
318   __ cmp(condition, FrameMap::LR_opr, c);
319 }
320 
321 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)322 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
323   __ load(new LIR_Address(base, disp, type), FrameMap::LR_opr, info);
324   __ cmp(condition, reg, FrameMap::LR_opr);
325 }
326 
327 
strength_reduce_multiply(LIR_Opr left,int c,LIR_Opr result,LIR_Opr tmp)328 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
329   assert(left != result, "should be different registers");
330   if (is_power_of_2(c + 1)) {
331     LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c + 1);
332     LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
333     __ sub(LIR_OprFact::address(addr), left, result); // rsb with shifted register
334     return true;
335   } else if (is_power_of_2(c - 1)) {
336     LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c - 1);
337     LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
338     __ add(left, LIR_OprFact::address(addr), result); // add with shifted register
339     return true;
340   }
341   return false;
342 }
343 
344 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)345 void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
346   assert(item->type() == T_INT, "other types are not expected");
347   __ store(item, new LIR_Address(FrameMap::SP_opr, in_bytes(offset_from_sp), item->type()));
348 }
349 
set_card(LIR_Opr value,LIR_Address * card_addr)350 void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
351   assert(CardTable::dirty_card_val() == 0,
352     "Cannot use the register containing the card table base address directly");
353   if((ci_card_table_address_as<intx>() & 0xff) == 0) {
354     // If the card table base address is aligned to 256 bytes, we can use the register
355     // that contains the card_table_base_address.
356     __ move(value, card_addr);
357   } else {
358     // Otherwise we need to create a register containing that value.
359     LIR_Opr tmp_zero = new_register(T_INT);
360     __ move(LIR_OprFact::intConst(CardTable::dirty_card_val()), tmp_zero);
361     __ move(tmp_zero, card_addr);
362   }
363 }
364 
CardTableBarrierSet_post_barrier_helper(LIR_OprDesc * addr,LIR_Const * card_table_base)365 void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base) {
366   assert(addr->is_register(), "must be a register at this point");
367 
368   CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
369   CardTable* ct = ctbs->card_table();
370 
371   LIR_Opr tmp = FrameMap::LR_ptr_opr;
372 
373   bool load_card_table_base_const = VM_Version::supports_movw();
374   if (load_card_table_base_const) {
375     __ move((LIR_Opr)card_table_base, tmp);
376   } else {
377     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
378   }
379 
380   // Use unsigned type T_BOOLEAN here rather than (signed) T_BYTE since signed load
381   // byte instruction does not support the addressing mode we need.
382   LIR_Address* card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BOOLEAN);
383   if (UseCondCardMark) {
384     if (ct->scanned_concurrently()) {
385       __ membar_storeload();
386     }
387     LIR_Opr cur_value = new_register(T_INT);
388     __ move(card_addr, cur_value);
389 
390     LabelObj* L_already_dirty = new LabelObj();
391     __ cmp(lir_cond_equal, cur_value, LIR_OprFact::intConst(CardTable::dirty_card_val()));
392     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
393     set_card(tmp, card_addr);
394     __ branch_destination(L_already_dirty->label());
395   } else {
396     if (ct->scanned_concurrently()) {
397       __ membar_storestore();
398     }
399     set_card(tmp, card_addr);
400   }
401 }
402 
array_store_check(LIR_Opr value,LIR_Opr array,CodeEmitInfo * store_check_info,ciMethod * profiled_method,int profiled_bci)403 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
404   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
405   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
406   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
407   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
408 }
409 
410 //----------------------------------------------------------------------
411 //             visitor functions
412 //----------------------------------------------------------------------
413 
do_MonitorEnter(MonitorEnter * x)414 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
415   assert(x->is_pinned(),"");
416   LIRItem obj(x->obj(), this);
417   obj.load_item();
418   set_no_result(x);
419 
420   LIR_Opr lock = new_pointer_register();
421   LIR_Opr hdr  = new_pointer_register();
422 
423   // Need a scratch register for biased locking on arm
424   LIR_Opr scratch = LIR_OprFact::illegalOpr;
425   if(UseBiasedLocking) {
426     scratch = new_pointer_register();
427   } else {
428     scratch = atomicLockOpr();
429   }
430 
431   CodeEmitInfo* info_for_exception = NULL;
432   if (x->needs_null_check()) {
433     info_for_exception = state_for(x);
434   }
435 
436   CodeEmitInfo* info = state_for(x, x->state(), true);
437   monitor_enter(obj.result(), lock, hdr, scratch,
438                 x->monitor_no(), info_for_exception, info);
439 }
440 
441 
do_MonitorExit(MonitorExit * x)442 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
443   assert(x->is_pinned(),"");
444   LIRItem obj(x->obj(), this);
445   obj.dont_load_item();
446   set_no_result(x);
447 
448   LIR_Opr obj_temp = new_pointer_register();
449   LIR_Opr lock     = new_pointer_register();
450   LIR_Opr hdr      = new_pointer_register();
451 
452   monitor_exit(obj_temp, lock, hdr, atomicLockOpr(), x->monitor_no());
453 }
454 
455 
456 // _ineg, _lneg, _fneg, _dneg
do_NegateOp(NegateOp * x)457 void LIRGenerator::do_NegateOp(NegateOp* x) {
458 #ifdef __SOFTFP__
459   address runtime_func = NULL;
460   ValueTag tag = x->type()->tag();
461   if (tag == floatTag) {
462     runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fneg);
463   } else if (tag == doubleTag) {
464     runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dneg);
465   }
466   if (runtime_func != NULL) {
467     set_result(x, call_runtime(x->x(), runtime_func, x->type(), NULL));
468     return;
469   }
470 #endif // __SOFTFP__
471   LIRItem value(x->x(), this);
472   value.load_item();
473   LIR_Opr reg = rlock_result(x);
474   __ negate(value.result(), reg);
475 }
476 
477 
478 // for  _fadd, _fmul, _fsub, _fdiv, _frem
479 //      _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)480 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
481   address runtime_func;
482   switch (x->op()) {
483     case Bytecodes::_frem:
484       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
485       break;
486     case Bytecodes::_drem:
487       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
488       break;
489 #ifdef __SOFTFP__
490     // Call function compiled with -msoft-float.
491 
492       // __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
493 
494     case Bytecodes::_fadd:
495       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc);
496       break;
497     case Bytecodes::_fmul:
498       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fmul);
499       break;
500     case Bytecodes::_fsub:
501       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc);
502       break;
503     case Bytecodes::_fdiv:
504       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fdiv);
505       break;
506     case Bytecodes::_dadd:
507       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc);
508       break;
509     case Bytecodes::_dmul:
510       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dmul);
511       break;
512     case Bytecodes::_dsub:
513       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc);
514       break;
515     case Bytecodes::_ddiv:
516       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_ddiv);
517       break;
518     default:
519       ShouldNotReachHere();
520 #else // __SOFTFP__
521     default: {
522       LIRItem left(x->x(), this);
523       LIRItem right(x->y(), this);
524       left.load_item();
525       right.load_item();
526       rlock_result(x);
527       arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
528       return;
529     }
530 #endif // __SOFTFP__
531   }
532 
533   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
534   set_result(x, result);
535 }
536 
537 
make_div_by_zero_check(LIR_Opr right_arg,BasicType type,CodeEmitInfo * info)538 void LIRGenerator::make_div_by_zero_check(LIR_Opr right_arg, BasicType type, CodeEmitInfo* info) {
539   assert(right_arg->is_register(), "must be");
540   __ cmp(lir_cond_equal, right_arg, make_constant(type, 0));
541   __ branch(lir_cond_equal, type, new DivByZeroStub(info));
542 }
543 
544 
545 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)546 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
547   CodeEmitInfo* info = NULL;
548   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
549     info = state_for(x);
550   }
551 
552   switch (x->op()) {
553     case Bytecodes::_ldiv:
554     case Bytecodes::_lrem: {
555       LIRItem right(x->y(), this);
556       right.load_item();
557       make_div_by_zero_check(right.result(), T_LONG, info);
558     }
559     // Fall through
560     case Bytecodes::_lmul: {
561       address entry;
562       switch (x->op()) {
563       case Bytecodes::_lrem:
564         entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
565         break;
566       case Bytecodes::_ldiv:
567         entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
568         break;
569       case Bytecodes::_lmul:
570         entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
571         break;
572       default:
573         ShouldNotReachHere();
574         return;
575       }
576       LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
577       set_result(x, result);
578       break;
579     }
580     case Bytecodes::_ladd:
581     case Bytecodes::_lsub: {
582       LIRItem left(x->x(), this);
583       LIRItem right(x->y(), this);
584       left.load_item();
585       right.load_item();
586       rlock_result(x);
587       arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
588       break;
589     }
590     default:
591       ShouldNotReachHere();
592   }
593 }
594 
595 
596 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)597 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
598   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
599   LIRItem left(x->x(), this);
600   LIRItem right(x->y(), this);
601   LIRItem* left_arg = &left;
602   LIRItem* right_arg = &right;
603 
604   // Test if instr is commutative and if we should swap
605   if (x->is_commutative() && left.is_constant()) {
606     left_arg = &right;
607     right_arg = &left;
608   }
609 
610   if (is_div_rem) {
611     CodeEmitInfo* info = state_for(x);
612     if (x->op() == Bytecodes::_idiv && right_arg->is_constant() && is_power_of_2(right_arg->get_jint_constant())) {
613       left_arg->load_item();
614       right_arg->dont_load_item();
615       LIR_Opr tmp = LIR_OprFact::illegalOpr;
616       LIR_Opr result = rlock_result(x);
617       __ idiv(left_arg->result(), right_arg->result(), result, tmp, info);
618     } else {
619       left_arg->load_item_force(FrameMap::R0_opr);
620       right_arg->load_item_force(FrameMap::R2_opr);
621       LIR_Opr tmp = FrameMap::R1_opr;
622       LIR_Opr result = rlock_result(x);
623       LIR_Opr out_reg;
624       if (x->op() == Bytecodes::_irem) {
625         out_reg = FrameMap::R0_opr;
626         __ irem(left_arg->result(), right_arg->result(), out_reg, tmp, info);
627       } else { // (x->op() == Bytecodes::_idiv)
628         out_reg = FrameMap::R1_opr;
629         __ idiv(left_arg->result(), right_arg->result(), out_reg, tmp, info);
630       }
631       __ move(out_reg, result);
632     }
633 
634 
635   } else {
636     left_arg->load_item();
637     if (x->op() == Bytecodes::_imul && right_arg->is_constant()) {
638       jint c = right_arg->get_jint_constant();
639       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
640         right_arg->dont_load_item();
641       } else {
642         right_arg->load_item();
643       }
644     } else {
645       right_arg->load_nonconstant();
646     }
647     rlock_result(x);
648     assert(right_arg->is_constant() || right_arg->is_register(), "wrong state of right");
649     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), NULL);
650   }
651 }
652 
653 
do_ArithmeticOp(ArithmeticOp * x)654 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
655   ValueTag tag = x->type()->tag();
656   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
657   switch (tag) {
658     case floatTag:
659     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
660     case longTag:    do_ArithmeticOp_Long(x); return;
661     case intTag:     do_ArithmeticOp_Int(x);  return;
662     default:         ShouldNotReachHere();    return;
663   }
664 }
665 
666 
667 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)668 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
669   LIRItem value(x->x(), this);
670   LIRItem count(x->y(), this);
671 
672   if (value.type()->is_long()) {
673     count.set_destroys_register();
674   }
675 
676   if (count.is_constant()) {
677     assert(count.type()->as_IntConstant() != NULL, "should be");
678     count.dont_load_item();
679   } else {
680     count.load_item();
681   }
682   value.load_item();
683 
684   LIR_Opr res = rlock_result(x);
685   shift_op(x->op(), res, value.result(), count.result(), LIR_OprFact::illegalOpr);
686 }
687 
688 
689 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)690 void LIRGenerator::do_LogicOp(LogicOp* x) {
691   LIRItem left(x->x(), this);
692   LIRItem right(x->y(), this);
693 
694   left.load_item();
695 
696   right.load_nonconstant();
697 
698   logic_op(x->op(), rlock_result(x), left.result(), right.result());
699 }
700 
701 
702 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)703 void LIRGenerator::do_CompareOp(CompareOp* x) {
704 #ifdef __SOFTFP__
705   address runtime_func;
706   switch (x->op()) {
707     case Bytecodes::_fcmpl:
708       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl);
709       break;
710     case Bytecodes::_fcmpg:
711       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg);
712       break;
713     case Bytecodes::_dcmpl:
714       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl);
715       break;
716     case Bytecodes::_dcmpg:
717       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg);
718       break;
719     case Bytecodes::_lcmp: {
720         LIRItem left(x->x(), this);
721         LIRItem right(x->y(), this);
722         left.load_item();
723         right.load_nonconstant();
724         LIR_Opr reg = rlock_result(x);
725          __ lcmp2int(left.result(), right.result(), reg);
726         return;
727       }
728     default:
729       ShouldNotReachHere();
730   }
731   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
732   set_result(x, result);
733 #else // __SOFTFP__
734   LIRItem left(x->x(), this);
735   LIRItem right(x->y(), this);
736   left.load_item();
737 
738   right.load_nonconstant();
739 
740   LIR_Opr reg = rlock_result(x);
741 
742   if (x->x()->type()->is_float_kind()) {
743     Bytecodes::Code code = x->op();
744     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
745   } else if (x->x()->type()->tag() == longTag) {
746     __ lcmp2int(left.result(), right.result(), reg);
747   } else {
748     ShouldNotReachHere();
749   }
750 #endif // __SOFTFP__
751 }
752 
atomic_cmpxchg(BasicType type,LIR_Opr addr,LIRItem & cmp_value,LIRItem & new_value)753 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
754   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
755   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
756   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
757   new_value.load_item();
758   cmp_value.load_item();
759   LIR_Opr result = new_register(T_INT);
760   if (type == T_OBJECT || type == T_ARRAY) {
761     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
762   } else if (type == T_INT) {
763     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp1, result);
764   } else if (type == T_LONG) {
765     tmp1 = new_register(T_LONG);
766     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp2, result);
767   } else {
768     ShouldNotReachHere();
769   }
770   return result;
771 }
772 
atomic_xchg(BasicType type,LIR_Opr addr,LIRItem & value)773 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
774   bool is_oop = type == T_OBJECT || type == T_ARRAY;
775   LIR_Opr result = new_register(type);
776   value.load_item();
777   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
778   LIR_Opr tmp = (UseCompressedOops && is_oop) ? new_pointer_register() : LIR_OprFact::illegalOpr;
779   __ xchg(addr, value.result(), result, tmp);
780   return result;
781 }
782 
atomic_add(BasicType type,LIR_Opr addr,LIRItem & value)783 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
784   LIR_Opr result = new_register(type);
785   value.load_item();
786   assert(type == T_INT LP64_ONLY( || type == T_LONG), "unexpected type");
787   LIR_Opr tmp = new_register(type);
788   __ xadd(addr, value.result(), result, tmp);
789   return result;
790 }
791 
do_MathIntrinsic(Intrinsic * x)792 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
793   address runtime_func;
794   switch (x->id()) {
795     case vmIntrinsics::_dabs: {
796 #ifdef __SOFTFP__
797       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dabs);
798       break;
799 #else
800       assert(x->number_of_arguments() == 1, "wrong type");
801       LIRItem value(x->argument_at(0), this);
802       value.load_item();
803       __ abs(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
804       return;
805 #endif // __SOFTFP__
806     }
807     case vmIntrinsics::_dsqrt: {
808 #ifdef __SOFTFP__
809       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
810       break;
811 #else
812       assert(x->number_of_arguments() == 1, "wrong type");
813       LIRItem value(x->argument_at(0), this);
814       value.load_item();
815       __ sqrt(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
816       return;
817 #endif // __SOFTFP__
818     }
819     case vmIntrinsics::_dsin:
820       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
821       break;
822     case vmIntrinsics::_dcos:
823       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
824       break;
825     case vmIntrinsics::_dtan:
826       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
827       break;
828     case vmIntrinsics::_dlog:
829       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
830       break;
831     case vmIntrinsics::_dlog10:
832       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
833       break;
834     case vmIntrinsics::_dexp:
835       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
836       break;
837     case vmIntrinsics::_dpow:
838       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
839       break;
840     default:
841       ShouldNotReachHere();
842       return;
843   }
844 
845   LIR_Opr result;
846   if (x->number_of_arguments() == 1) {
847     result = call_runtime(x->argument_at(0), runtime_func, x->type(), NULL);
848   } else {
849     assert(x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow, "unexpected intrinsic");
850     result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_func, x->type(), NULL);
851   }
852   set_result(x, result);
853 }
854 
do_FmaIntrinsic(Intrinsic * x)855 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
856   fatal("FMA intrinsic is not implemented on this platform");
857 }
858 
do_vectorizedMismatch(Intrinsic * x)859 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
860   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
861 }
862 
do_ArrayCopy(Intrinsic * x)863 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
864   CodeEmitInfo* info = state_for(x, x->state());
865   assert(x->number_of_arguments() == 5, "wrong type");
866   LIRItem src(x->argument_at(0), this);
867   LIRItem src_pos(x->argument_at(1), this);
868   LIRItem dst(x->argument_at(2), this);
869   LIRItem dst_pos(x->argument_at(3), this);
870   LIRItem length(x->argument_at(4), this);
871 
872   // We put arguments into the same registers which are used for a Java call.
873   // Note: we used fixed registers for all arguments because all registers
874   // are caller-saved, so register allocator treats them all as used.
875   src.load_item_force    (FrameMap::R0_oop_opr);
876   src_pos.load_item_force(FrameMap::R1_opr);
877   dst.load_item_force    (FrameMap::R2_oop_opr);
878   dst_pos.load_item_force(FrameMap::R3_opr);
879   length.load_item_force (FrameMap::R4_opr);
880   LIR_Opr tmp =          (FrameMap::R5_opr);
881   set_no_result(x);
882 
883   int flags;
884   ciArrayKlass* expected_type;
885   arraycopy_helper(x, &flags, &expected_type);
886   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(),
887                tmp, expected_type, flags, info);
888 }
889 
do_update_CRC32(Intrinsic * x)890 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
891   fatal("CRC32 intrinsic is not implemented on this platform");
892 }
893 
do_update_CRC32C(Intrinsic * x)894 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
895   Unimplemented();
896 }
897 
do_Convert(Convert * x)898 void LIRGenerator::do_Convert(Convert* x) {
899   address runtime_func;
900   switch (x->op()) {
901     case Bytecodes::_l2f:
902       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
903       break;
904     case Bytecodes::_l2d:
905       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
906       break;
907     case Bytecodes::_f2l:
908       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
909       break;
910     case Bytecodes::_d2l:
911       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
912       break;
913 #ifdef __SOFTFP__
914     case Bytecodes::_f2d:
915       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2d);
916       break;
917     case Bytecodes::_d2f:
918       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_d2f);
919       break;
920     case Bytecodes::_i2f:
921       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2f);
922       break;
923     case Bytecodes::_i2d:
924       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2d);
925       break;
926     case Bytecodes::_f2i:
927       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2iz);
928       break;
929     case Bytecodes::_d2i:
930       // This is implemented in hard float in assembler on arm but a call
931       // on other platforms.
932       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
933       break;
934 #endif // __SOFTFP__
935     default: {
936       LIRItem value(x->value(), this);
937       value.load_item();
938       LIR_Opr reg = rlock_result(x);
939       __ convert(x->op(), value.result(), reg, NULL);
940       return;
941     }
942   }
943 
944   LIR_Opr result = call_runtime(x->value(), runtime_func, x->type(), NULL);
945   set_result(x, result);
946 }
947 
948 
do_NewInstance(NewInstance * x)949 void LIRGenerator::do_NewInstance(NewInstance* x) {
950   print_if_not_loaded(x);
951 
952   CodeEmitInfo* info = state_for(x, x->state());
953   LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewInstanceStub::emit_code
954   LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewInstanceStub::emit_code
955   LIR_Opr tmp1 = new_register(objectType);
956   LIR_Opr tmp2 = new_register(objectType);
957   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
958 
959   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3,
960                LIR_OprFact::illegalOpr, klass_reg, info);
961 
962   LIR_Opr result = rlock_result(x);
963   __ move(reg, result);
964 }
965 
966 
do_NewTypeArray(NewTypeArray * x)967 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
968   // Evaluate state_for() first, because it can emit code
969   // with the same fixed registers that are used here (R1, R2)
970   CodeEmitInfo* info = state_for(x, x->state());
971   LIRItem length(x->length(), this);
972 
973   length.load_item_force(FrameMap::R2_opr);      // R2 is required by runtime call in NewTypeArrayStub::emit_code
974   LIR_Opr len = length.result();
975 
976   LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewTypeArrayStub::emit_code
977   LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewTypeArrayStub::emit_code
978 
979   LIR_Opr tmp1 = new_register(objectType);
980   LIR_Opr tmp2 = new_register(objectType);
981   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
982   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
983 
984   BasicType elem_type = x->elt_type();
985   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
986 
987   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
988   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
989 
990   LIR_Opr result = rlock_result(x);
991   __ move(reg, result);
992 }
993 
994 
do_NewObjectArray(NewObjectArray * x)995 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
996   // Evaluate state_for() first, because it can emit code
997   // with the same fixed registers that are used here (R1, R2)
998   CodeEmitInfo* info = state_for(x, x->state());
999   LIRItem length(x->length(), this);
1000 
1001   length.load_item_force(FrameMap::R2_opr);           // R2 is required by runtime call in NewObjectArrayStub::emit_code
1002   LIR_Opr len = length.result();
1003 
1004   CodeEmitInfo* patching_info = NULL;
1005   if (!x->klass()->is_loaded() || PatchALot) {
1006     patching_info = state_for(x, x->state_before());
1007   }
1008 
1009   LIR_Opr reg = result_register_for(x->type());       // R0 is required by runtime call in NewObjectArrayStub::emit_code
1010   LIR_Opr klass_reg = FrameMap::R1_metadata_opr;      // R1 is required by runtime call in NewObjectArrayStub::emit_code
1011 
1012   LIR_Opr tmp1 = new_register(objectType);
1013   LIR_Opr tmp2 = new_register(objectType);
1014   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1015   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
1016 
1017   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1018   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1019   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1020     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1021   }
1022   klass2reg_with_patching(klass_reg, obj, patching_info);
1023   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1024 
1025   LIR_Opr result = rlock_result(x);
1026   __ move(reg, result);
1027 }
1028 
1029 
do_NewMultiArray(NewMultiArray * x)1030 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1031   Values* dims = x->dims();
1032   int i = dims->length();
1033   LIRItemList* items = new LIRItemList(i, i, NULL);
1034   while (i-- > 0) {
1035     LIRItem* size = new LIRItem(dims->at(i), this);
1036     items->at_put(i, size);
1037   }
1038 
1039   // Need to get the info before, as the items may become invalid through item_free
1040   CodeEmitInfo* patching_info = NULL;
1041   if (!x->klass()->is_loaded() || PatchALot) {
1042     patching_info = state_for(x, x->state_before());
1043 
1044     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1045     // clone all handlers (NOTE: Usually this is handled transparently
1046     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1047     // is done explicitly here because a stub isn't being used).
1048     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1049   }
1050 
1051   i = dims->length();
1052   while (i-- > 0) {
1053     LIRItem* size = items->at(i);
1054     size->load_item();
1055     LIR_Opr sz = size->result();
1056     assert(sz->type() == T_INT, "should be");
1057     store_stack_parameter(sz, in_ByteSize(i * BytesPerInt));
1058   }
1059 
1060   CodeEmitInfo* info = state_for(x, x->state());
1061   LIR_Opr klass_reg = FrameMap::R0_metadata_opr;
1062   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1063 
1064   LIR_Opr rank = FrameMap::R2_opr;
1065   __ move(LIR_OprFact::intConst(x->rank()), rank);
1066   LIR_Opr varargs = FrameMap::SP_opr;
1067   LIR_OprList* args = new LIR_OprList(3);
1068   args->append(klass_reg);
1069   args->append(rank);
1070   args->append(varargs);
1071   LIR_Opr reg = result_register_for(x->type());
1072   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1073                   LIR_OprFact::illegalOpr, reg, args, info);
1074 
1075   LIR_Opr result = rlock_result(x);
1076   __ move(reg, result);
1077 }
1078 
1079 
do_BlockBegin(BlockBegin * x)1080 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1081   // nothing to do for now
1082 }
1083 
1084 
do_CheckCast(CheckCast * x)1085 void LIRGenerator::do_CheckCast(CheckCast* x) {
1086   LIRItem obj(x->obj(), this);
1087   CodeEmitInfo* patching_info = NULL;
1088   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1089     patching_info = state_for(x, x->state_before());
1090   }
1091 
1092   obj.load_item();
1093 
1094   CodeEmitInfo* info_for_exception =
1095     (x->needs_exception_state() ? state_for(x) :
1096                                   state_for(x, x->state_before(), true /*ignore_xhandler*/));
1097 
1098   CodeStub* stub;
1099   if (x->is_incompatible_class_change_check()) {
1100     assert(patching_info == NULL, "can't patch this");
1101     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
1102                                    LIR_OprFact::illegalOpr, info_for_exception);
1103   } else if (x->is_invokespecial_receiver_check()) {
1104     assert(patching_info == NULL, "can't patch this");
1105     stub = new DeoptimizeStub(info_for_exception,
1106                               Deoptimization::Reason_class_check,
1107                               Deoptimization::Action_none);
1108   } else {
1109     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id,
1110                                    LIR_OprFact::illegalOpr, info_for_exception);
1111   }
1112 
1113   LIR_Opr out_reg = rlock_result(x);
1114   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1115   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1116   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1117 
1118   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(),
1119                info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci());
1120 }
1121 
1122 
do_InstanceOf(InstanceOf * x)1123 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1124   LIRItem obj(x->obj(), this);
1125   CodeEmitInfo* patching_info = NULL;
1126   if (!x->klass()->is_loaded() || PatchALot) {
1127     patching_info = state_for(x, x->state_before());
1128   }
1129 
1130   obj.load_item();
1131   LIR_Opr out_reg = rlock_result(x);
1132   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1133   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1134   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1135 
1136   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1137                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1138 }
1139 
1140 
1141 #ifdef __SOFTFP__
1142 // Turn operator if (f <op> g) into runtime call:
1143 //     call _aeabi_fcmp<op>(f, g)
1144 //     cmp(eq, 1)
1145 //     branch(eq, true path).
do_soft_float_compare(If * x)1146 void LIRGenerator::do_soft_float_compare(If* x) {
1147   assert(x->number_of_sux() == 2, "inconsistency");
1148   ValueTag tag = x->x()->type()->tag();
1149   If::Condition cond = x->cond();
1150   address runtime_func;
1151   // unordered comparison gets the wrong answer because aeabi functions
1152   //  return false.
1153   bool unordered_is_true = x->unordered_is_true();
1154   // reverse of condition for ne
1155   bool compare_to_zero = false;
1156   switch (lir_cond(cond)) {
1157     case lir_cond_notEqual:
1158       compare_to_zero = true;  // fall through
1159     case lir_cond_equal:
1160       runtime_func = tag == floatTag ?
1161           CAST_FROM_FN_PTR(address, __aeabi_fcmpeq):
1162           CAST_FROM_FN_PTR(address, __aeabi_dcmpeq);
1163       break;
1164     case lir_cond_less:
1165       if (unordered_is_true) {
1166         runtime_func = tag == floatTag ?
1167           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmplt):
1168           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmplt);
1169       } else {
1170         runtime_func = tag == floatTag ?
1171           CAST_FROM_FN_PTR(address, __aeabi_fcmplt):
1172           CAST_FROM_FN_PTR(address, __aeabi_dcmplt);
1173       }
1174       break;
1175     case lir_cond_lessEqual:
1176       if (unordered_is_true) {
1177         runtime_func = tag == floatTag ?
1178           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmple):
1179           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmple);
1180       } else {
1181         runtime_func = tag == floatTag ?
1182           CAST_FROM_FN_PTR(address, __aeabi_fcmple):
1183           CAST_FROM_FN_PTR(address, __aeabi_dcmple);
1184       }
1185       break;
1186     case lir_cond_greaterEqual:
1187       if (unordered_is_true) {
1188         runtime_func = tag == floatTag ?
1189           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpge):
1190           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpge);
1191       } else {
1192         runtime_func = tag == floatTag ?
1193           CAST_FROM_FN_PTR(address, __aeabi_fcmpge):
1194           CAST_FROM_FN_PTR(address, __aeabi_dcmpge);
1195       }
1196       break;
1197     case lir_cond_greater:
1198       if (unordered_is_true) {
1199         runtime_func = tag == floatTag ?
1200           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpgt):
1201           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpgt);
1202       } else {
1203         runtime_func = tag == floatTag ?
1204           CAST_FROM_FN_PTR(address, __aeabi_fcmpgt):
1205           CAST_FROM_FN_PTR(address, __aeabi_dcmpgt);
1206       }
1207       break;
1208     case lir_cond_aboveEqual:
1209     case lir_cond_belowEqual:
1210       ShouldNotReachHere();  // We're not going to get these.
1211     default:
1212       assert(lir_cond(cond) == lir_cond_always, "must be");
1213       ShouldNotReachHere();
1214   }
1215   set_no_result(x);
1216 
1217   // add safepoint before generating condition code so it can be recomputed
1218   if (x->is_safepoint()) {
1219     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1220     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1221   }
1222   // Call float compare function, returns (1,0) if true or false.
1223   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, intType, NULL);
1224   __ cmp(lir_cond_equal, result,
1225          compare_to_zero ?
1226            LIR_OprFact::intConst(0) : LIR_OprFact::intConst(1));
1227   profile_branch(x, cond);
1228   move_to_phi(x->state());
1229   __ branch(lir_cond_equal, T_INT, x->tsux());
1230 }
1231 #endif // __SOFTFP__
1232 
do_If(If * x)1233 void LIRGenerator::do_If(If* x) {
1234   assert(x->number_of_sux() == 2, "inconsistency");
1235   ValueTag tag = x->x()->type()->tag();
1236 
1237 #ifdef __SOFTFP__
1238   if (tag == floatTag || tag == doubleTag) {
1239     do_soft_float_compare(x);
1240     assert(x->default_sux() == x->fsux(), "wrong destination above");
1241     __ jump(x->default_sux());
1242     return;
1243   }
1244 #endif // __SOFTFP__
1245 
1246   LIRItem xitem(x->x(), this);
1247   LIRItem yitem(x->y(), this);
1248   LIRItem* xin = &xitem;
1249   LIRItem* yin = &yitem;
1250   If::Condition cond = x->cond();
1251 
1252   if (tag == longTag) {
1253     if (cond == If::gtr || cond == If::leq) {
1254       cond = Instruction::mirror(cond);
1255       xin = &yitem;
1256       yin = &xitem;
1257     }
1258     xin->set_destroys_register();
1259   }
1260 
1261   xin->load_item();
1262   LIR_Opr left = xin->result();
1263   LIR_Opr right;
1264 
1265   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1266       (cond == If::eql || cond == If::neq)) {
1267     // inline long zero
1268     right = LIR_OprFact::value_type(yin->value()->type());
1269   } else {
1270     yin->load_nonconstant();
1271     right = yin->result();
1272   }
1273 
1274   set_no_result(x);
1275 
1276   // add safepoint before generating condition code so it can be recomputed
1277   if (x->is_safepoint()) {
1278     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1279         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1280     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1281   }
1282 
1283   __ cmp(lir_cond(cond), left, right);
1284   profile_branch(x, cond);
1285   move_to_phi(x->state());
1286   if (x->x()->type()->is_float_kind()) {
1287     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1288   } else {
1289     __ branch(lir_cond(cond), right->type(), x->tsux());
1290   }
1291   assert(x->default_sux() == x->fsux(), "wrong destination above");
1292   __ jump(x->default_sux());
1293 }
1294 
1295 
getThreadPointer()1296 LIR_Opr LIRGenerator::getThreadPointer() {
1297   return FrameMap::Rthread_opr;
1298 }
1299 
trace_block_entry(BlockBegin * block)1300 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1301   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::R0_opr);
1302   LIR_OprList* args = new LIR_OprList(1);
1303   args->append(FrameMap::R0_opr);
1304   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1305   __ call_runtime_leaf(func, getThreadTemp(), LIR_OprFact::illegalOpr, args);
1306 }
1307 
1308 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1309 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1310                                         CodeEmitInfo* info) {
1311   if (value->is_double_cpu()) {
1312     assert(address->index()->is_illegal(), "should have a constant displacement");
1313     LIR_Opr tmp = new_pointer_register();
1314     add_large_constant(address->base(), address->disp(), tmp);
1315     __ volatile_store_mem_reg(value, new LIR_Address(tmp, (intx)0, address->type()), info);
1316     return;
1317   }
1318   __ store(value, address, info, lir_patch_none);
1319 }
1320 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1321 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1322                                        CodeEmitInfo* info) {
1323   if (result->is_double_cpu()) {
1324     assert(address->index()->is_illegal(), "should have a constant displacement");
1325     LIR_Opr tmp = new_pointer_register();
1326     add_large_constant(address->base(), address->disp(), tmp);
1327     __ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, address->type()), result, info);
1328     return;
1329   }
1330   __ load(address, result, info, lir_patch_none);
1331 }
1332