1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "interpreter/interpreter.hpp"
29 #include "interpreter/interpreterRuntime.hpp"
30 #include "interpreter/interp_masm.hpp"
31 #include "interpreter/templateTable.hpp"
32 #include "memory/universe.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/objArrayKlass.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/methodHandles.hpp"
37 #include "runtime/frame.inline.hpp"
38 #include "runtime/safepointMechanism.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/synchronizer.hpp"
42 #include "utilities/macros.hpp"
43 
44 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
45 
46 // Global Register Names
47 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
48 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
49 
50 // Platform-dependent initialization
pd_initialize()51 void TemplateTable::pd_initialize() {
52   // No x86 specific initialization
53 }
54 
55 // Address Computation: local variables
iaddress(int n)56 static inline Address iaddress(int n) {
57   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59 
laddress(int n)60 static inline Address laddress(int n) {
61   return iaddress(n + 1);
62 }
63 
64 #ifndef _LP64
haddress(int n)65 static inline Address haddress(int n) {
66   return iaddress(n + 0);
67 }
68 #endif
69 
faddress(int n)70 static inline Address faddress(int n) {
71   return iaddress(n);
72 }
73 
daddress(int n)74 static inline Address daddress(int n) {
75   return laddress(n);
76 }
77 
aaddress(int n)78 static inline Address aaddress(int n) {
79   return iaddress(n);
80 }
81 
iaddress(Register r)82 static inline Address iaddress(Register r) {
83   return Address(rlocals, r, Address::times_ptr);
84 }
85 
laddress(Register r)86 static inline Address laddress(Register r) {
87   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
88 }
89 
90 #ifndef _LP64
haddress(Register r)91 static inline Address haddress(Register r)       {
92   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
93 }
94 #endif
95 
faddress(Register r)96 static inline Address faddress(Register r) {
97   return iaddress(r);
98 }
99 
daddress(Register r)100 static inline Address daddress(Register r) {
101   return laddress(r);
102 }
103 
aaddress(Register r)104 static inline Address aaddress(Register r) {
105   return iaddress(r);
106 }
107 
108 
109 // expression stack
110 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
111 // data beyond the rsp which is potentially unsafe in an MT environment;
112 // an interrupt may overwrite that data.)
at_rsp()113 static inline Address at_rsp   () {
114   return Address(rsp, 0);
115 }
116 
117 // At top of Java expression stack which may be different than esp().  It
118 // isn't for category 1 objects.
at_tos()119 static inline Address at_tos   () {
120   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
121 }
122 
at_tos_p1()123 static inline Address at_tos_p1() {
124   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
125 }
126 
at_tos_p2()127 static inline Address at_tos_p2() {
128   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
129 }
130 
131 // Condition conversion
j_not(TemplateTable::Condition cc)132 static Assembler::Condition j_not(TemplateTable::Condition cc) {
133   switch (cc) {
134   case TemplateTable::equal        : return Assembler::notEqual;
135   case TemplateTable::not_equal    : return Assembler::equal;
136   case TemplateTable::less         : return Assembler::greaterEqual;
137   case TemplateTable::less_equal   : return Assembler::greater;
138   case TemplateTable::greater      : return Assembler::lessEqual;
139   case TemplateTable::greater_equal: return Assembler::less;
140   }
141   ShouldNotReachHere();
142   return Assembler::zero;
143 }
144 
145 
146 
147 // Miscelaneous helper routines
148 // Store an oop (or NULL) at the address described by obj.
149 // If val == noreg this means store a NULL
150 
151 
do_oop_store(InterpreterMacroAssembler * _masm,Address dst,Register val,DecoratorSet decorators=0)152 static void do_oop_store(InterpreterMacroAssembler* _masm,
153                          Address dst,
154                          Register val,
155                          DecoratorSet decorators = 0) {
156   assert(val == noreg || val == rax, "parameter is just for looks");
157   __ store_heap_oop(dst, val, rdx, rbx, decorators);
158 }
159 
do_oop_load(InterpreterMacroAssembler * _masm,Address src,Register dst,DecoratorSet decorators=0)160 static void do_oop_load(InterpreterMacroAssembler* _masm,
161                         Address src,
162                         Register dst,
163                         DecoratorSet decorators = 0) {
164   __ load_heap_oop(dst, src, rdx, rbx, decorators);
165 }
166 
at_bcp(int offset)167 Address TemplateTable::at_bcp(int offset) {
168   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
169   return Address(rbcp, offset);
170 }
171 
172 
patch_bytecode(Bytecodes::Code bc,Register bc_reg,Register temp_reg,bool load_bc_into_bc_reg,int byte_no)173 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
174                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
175                                    int byte_no) {
176   if (!RewriteBytecodes)  return;
177   Label L_patch_done;
178 
179   switch (bc) {
180   case Bytecodes::_fast_aputfield:
181   case Bytecodes::_fast_bputfield:
182   case Bytecodes::_fast_zputfield:
183   case Bytecodes::_fast_cputfield:
184   case Bytecodes::_fast_dputfield:
185   case Bytecodes::_fast_fputfield:
186   case Bytecodes::_fast_iputfield:
187   case Bytecodes::_fast_lputfield:
188   case Bytecodes::_fast_sputfield:
189     {
190       // We skip bytecode quickening for putfield instructions when
191       // the put_code written to the constant pool cache is zero.
192       // This is required so that every execution of this instruction
193       // calls out to InterpreterRuntime::resolve_get_put to do
194       // additional, required work.
195       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
196       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
197       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
198       __ movl(bc_reg, bc);
199       __ cmpl(temp_reg, (int) 0);
200       __ jcc(Assembler::zero, L_patch_done);  // don't patch
201     }
202     break;
203   default:
204     assert(byte_no == -1, "sanity");
205     // the pair bytecodes have already done the load.
206     if (load_bc_into_bc_reg) {
207       __ movl(bc_reg, bc);
208     }
209   }
210 
211   if (JvmtiExport::can_post_breakpoint()) {
212     Label L_fast_patch;
213     // if a breakpoint is present we can't rewrite the stream directly
214     __ movzbl(temp_reg, at_bcp(0));
215     __ cmpl(temp_reg, Bytecodes::_breakpoint);
216     __ jcc(Assembler::notEqual, L_fast_patch);
217     __ get_method(temp_reg);
218     // Let breakpoint table handling rewrite to quicker bytecode
219     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
220 #ifndef ASSERT
221     __ jmpb(L_patch_done);
222 #else
223     __ jmp(L_patch_done);
224 #endif
225     __ bind(L_fast_patch);
226   }
227 
228 #ifdef ASSERT
229   Label L_okay;
230   __ load_unsigned_byte(temp_reg, at_bcp(0));
231   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
232   __ jcc(Assembler::equal, L_okay);
233   __ cmpl(temp_reg, bc_reg);
234   __ jcc(Assembler::equal, L_okay);
235   __ stop("patching the wrong bytecode");
236   __ bind(L_okay);
237 #endif
238 
239   // patch bytecode
240   __ movb(at_bcp(0), bc_reg);
241   __ bind(L_patch_done);
242 }
243 // Individual instructions
244 
245 
nop()246 void TemplateTable::nop() {
247   transition(vtos, vtos);
248   // nothing to do
249 }
250 
shouldnotreachhere()251 void TemplateTable::shouldnotreachhere() {
252   transition(vtos, vtos);
253   __ stop("shouldnotreachhere bytecode");
254 }
255 
aconst_null()256 void TemplateTable::aconst_null() {
257   transition(vtos, atos);
258   __ xorl(rax, rax);
259 }
260 
iconst(int value)261 void TemplateTable::iconst(int value) {
262   transition(vtos, itos);
263   if (value == 0) {
264     __ xorl(rax, rax);
265   } else {
266     __ movl(rax, value);
267   }
268 }
269 
lconst(int value)270 void TemplateTable::lconst(int value) {
271   transition(vtos, ltos);
272   if (value == 0) {
273     __ xorl(rax, rax);
274   } else {
275     __ movl(rax, value);
276   }
277 #ifndef _LP64
278   assert(value >= 0, "check this code");
279   __ xorptr(rdx, rdx);
280 #endif
281 }
282 
283 
284 
fconst(int value)285 void TemplateTable::fconst(int value) {
286   transition(vtos, ftos);
287   if (UseSSE >= 1) {
288     static float one = 1.0f, two = 2.0f;
289     switch (value) {
290     case 0:
291       __ xorps(xmm0, xmm0);
292       break;
293     case 1:
294       __ movflt(xmm0, ExternalAddress((address) &one));
295       break;
296     case 2:
297       __ movflt(xmm0, ExternalAddress((address) &two));
298       break;
299     default:
300       ShouldNotReachHere();
301       break;
302     }
303   } else {
304 #ifdef _LP64
305     ShouldNotReachHere();
306 #else
307            if (value == 0) { __ fldz();
308     } else if (value == 1) { __ fld1();
309     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
310     } else                 { ShouldNotReachHere();
311     }
312 #endif // _LP64
313   }
314 }
315 
dconst(int value)316 void TemplateTable::dconst(int value) {
317   transition(vtos, dtos);
318   if (UseSSE >= 2) {
319     static double one = 1.0;
320     switch (value) {
321     case 0:
322       __ xorpd(xmm0, xmm0);
323       break;
324     case 1:
325       __ movdbl(xmm0, ExternalAddress((address) &one));
326       break;
327     default:
328       ShouldNotReachHere();
329       break;
330     }
331   } else {
332 #ifdef _LP64
333     ShouldNotReachHere();
334 #else
335            if (value == 0) { __ fldz();
336     } else if (value == 1) { __ fld1();
337     } else                 { ShouldNotReachHere();
338     }
339 #endif
340   }
341 }
342 
bipush()343 void TemplateTable::bipush() {
344   transition(vtos, itos);
345   __ load_signed_byte(rax, at_bcp(1));
346 }
347 
sipush()348 void TemplateTable::sipush() {
349   transition(vtos, itos);
350   __ load_unsigned_short(rax, at_bcp(1));
351   __ bswapl(rax);
352   __ sarl(rax, 16);
353 }
354 
ldc(bool wide)355 void TemplateTable::ldc(bool wide) {
356   transition(vtos, vtos);
357   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
358   Label call_ldc, notFloat, notClass, notInt, Done;
359 
360   if (wide) {
361     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
362   } else {
363     __ load_unsigned_byte(rbx, at_bcp(1));
364   }
365 
366   __ get_cpool_and_tags(rcx, rax);
367   const int base_offset = ConstantPool::header_size() * wordSize;
368   const int tags_offset = Array<u1>::base_offset_in_bytes();
369 
370   // get type
371   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
372 
373   // unresolved class - get the resolved class
374   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
375   __ jccb(Assembler::equal, call_ldc);
376 
377   // unresolved class in error state - call into runtime to throw the error
378   // from the first resolution attempt
379   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
380   __ jccb(Assembler::equal, call_ldc);
381 
382   // resolved class - need to call vm to get java mirror of the class
383   __ cmpl(rdx, JVM_CONSTANT_Class);
384   __ jcc(Assembler::notEqual, notClass);
385 
386   __ bind(call_ldc);
387 
388   __ movl(rarg, wide);
389   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
390 
391   __ push(atos);
392   __ jmp(Done);
393 
394   __ bind(notClass);
395   __ cmpl(rdx, JVM_CONSTANT_Float);
396   __ jccb(Assembler::notEqual, notFloat);
397 
398   // ftos
399   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
400   __ push(ftos);
401   __ jmp(Done);
402 
403   __ bind(notFloat);
404   __ cmpl(rdx, JVM_CONSTANT_Integer);
405   __ jccb(Assembler::notEqual, notInt);
406 
407   // itos
408   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
409   __ push(itos);
410   __ jmp(Done);
411 
412   // assume the tag is for condy; if not, the VM runtime will tell us
413   __ bind(notInt);
414   condy_helper(Done);
415 
416   __ bind(Done);
417 }
418 
419 // Fast path for caching oop constants.
fast_aldc(bool wide)420 void TemplateTable::fast_aldc(bool wide) {
421   transition(vtos, atos);
422 
423   Register result = rax;
424   Register tmp = rdx;
425   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
426   int index_size = wide ? sizeof(u2) : sizeof(u1);
427 
428   Label resolved;
429 
430   // We are resolved if the resolved reference cache entry contains a
431   // non-null object (String, MethodType, etc.)
432   assert_different_registers(result, tmp);
433   __ get_cache_index_at_bcp(tmp, 1, index_size);
434   __ load_resolved_reference_at_index(result, tmp);
435   __ testptr(result, result);
436   __ jcc(Assembler::notZero, resolved);
437 
438   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
439 
440   // first time invocation - must resolve first
441   __ movl(rarg, (int)bytecode());
442   __ call_VM(result, entry, rarg);
443   __ bind(resolved);
444 
445   { // Check for the null sentinel.
446     // If we just called the VM, it already did the mapping for us,
447     // but it's harmless to retry.
448     Label notNull;
449     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
450     __ movptr(tmp, null_sentinel);
451     __ cmpoop(tmp, result);
452     __ jccb(Assembler::notEqual, notNull);
453     __ xorptr(result, result);  // NULL object reference
454     __ bind(notNull);
455   }
456 
457   if (VerifyOops) {
458     __ verify_oop(result);
459   }
460 }
461 
ldc2_w()462 void TemplateTable::ldc2_w() {
463   transition(vtos, vtos);
464   Label notDouble, notLong, Done;
465   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
466 
467   __ get_cpool_and_tags(rcx, rax);
468   const int base_offset = ConstantPool::header_size() * wordSize;
469   const int tags_offset = Array<u1>::base_offset_in_bytes();
470 
471   // get type
472   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
473   __ cmpl(rdx, JVM_CONSTANT_Double);
474   __ jccb(Assembler::notEqual, notDouble);
475 
476   // dtos
477   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
478   __ push(dtos);
479 
480   __ jmp(Done);
481   __ bind(notDouble);
482   __ cmpl(rdx, JVM_CONSTANT_Long);
483   __ jccb(Assembler::notEqual, notLong);
484 
485   // ltos
486   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
487   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
488   __ push(ltos);
489   __ jmp(Done);
490 
491   __ bind(notLong);
492   condy_helper(Done);
493 
494   __ bind(Done);
495 }
496 
condy_helper(Label & Done)497 void TemplateTable::condy_helper(Label& Done) {
498   const Register obj = rax;
499   const Register off = rbx;
500   const Register flags = rcx;
501   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
502   __ movl(rarg, (int)bytecode());
503   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
504 #ifndef _LP64
505   // borrow rdi from locals
506   __ get_thread(rdi);
507   __ get_vm_result_2(flags, rdi);
508   __ restore_locals();
509 #else
510   __ get_vm_result_2(flags, r15_thread);
511 #endif
512   // VMr = obj = base address to find primitive value to push
513   // VMr2 = flags = (tos, off) using format of CPCE::_flags
514   __ movl(off, flags);
515   __ andl(off, ConstantPoolCacheEntry::field_index_mask);
516   const Address field(obj, off, Address::times_1, 0*wordSize);
517 
518   // What sort of thing are we loading?
519   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
520   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
521 
522   switch (bytecode()) {
523   case Bytecodes::_ldc:
524   case Bytecodes::_ldc_w:
525     {
526       // tos in (itos, ftos, stos, btos, ctos, ztos)
527       Label notInt, notFloat, notShort, notByte, notChar, notBool;
528       __ cmpl(flags, itos);
529       __ jcc(Assembler::notEqual, notInt);
530       // itos
531       __ movl(rax, field);
532       __ push(itos);
533       __ jmp(Done);
534 
535       __ bind(notInt);
536       __ cmpl(flags, ftos);
537       __ jcc(Assembler::notEqual, notFloat);
538       // ftos
539       __ load_float(field);
540       __ push(ftos);
541       __ jmp(Done);
542 
543       __ bind(notFloat);
544       __ cmpl(flags, stos);
545       __ jcc(Assembler::notEqual, notShort);
546       // stos
547       __ load_signed_short(rax, field);
548       __ push(stos);
549       __ jmp(Done);
550 
551       __ bind(notShort);
552       __ cmpl(flags, btos);
553       __ jcc(Assembler::notEqual, notByte);
554       // btos
555       __ load_signed_byte(rax, field);
556       __ push(btos);
557       __ jmp(Done);
558 
559       __ bind(notByte);
560       __ cmpl(flags, ctos);
561       __ jcc(Assembler::notEqual, notChar);
562       // ctos
563       __ load_unsigned_short(rax, field);
564       __ push(ctos);
565       __ jmp(Done);
566 
567       __ bind(notChar);
568       __ cmpl(flags, ztos);
569       __ jcc(Assembler::notEqual, notBool);
570       // ztos
571       __ load_signed_byte(rax, field);
572       __ push(ztos);
573       __ jmp(Done);
574 
575       __ bind(notBool);
576       break;
577     }
578 
579   case Bytecodes::_ldc2_w:
580     {
581       Label notLong, notDouble;
582       __ cmpl(flags, ltos);
583       __ jcc(Assembler::notEqual, notLong);
584       // ltos
585       // Loading high word first because movptr clobbers rax
586       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
587       __ movptr(rax, field);
588       __ push(ltos);
589       __ jmp(Done);
590 
591       __ bind(notLong);
592       __ cmpl(flags, dtos);
593       __ jcc(Assembler::notEqual, notDouble);
594       // dtos
595       __ load_double(field);
596       __ push(dtos);
597       __ jmp(Done);
598 
599       __ bind(notDouble);
600       break;
601     }
602 
603   default:
604     ShouldNotReachHere();
605   }
606 
607   __ stop("bad ldc/condy");
608 }
609 
locals_index(Register reg,int offset)610 void TemplateTable::locals_index(Register reg, int offset) {
611   __ load_unsigned_byte(reg, at_bcp(offset));
612   __ negptr(reg);
613 }
614 
iload()615 void TemplateTable::iload() {
616   iload_internal();
617 }
618 
nofast_iload()619 void TemplateTable::nofast_iload() {
620   iload_internal(may_not_rewrite);
621 }
622 
iload_internal(RewriteControl rc)623 void TemplateTable::iload_internal(RewriteControl rc) {
624   transition(vtos, itos);
625   if (RewriteFrequentPairs && rc == may_rewrite) {
626     Label rewrite, done;
627     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
628     LP64_ONLY(assert(rbx != bc, "register damaged"));
629 
630     // get next byte
631     __ load_unsigned_byte(rbx,
632                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
633     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
634     // last two iloads in a pair.  Comparing against fast_iload means that
635     // the next bytecode is neither an iload or a caload, and therefore
636     // an iload pair.
637     __ cmpl(rbx, Bytecodes::_iload);
638     __ jcc(Assembler::equal, done);
639 
640     __ cmpl(rbx, Bytecodes::_fast_iload);
641     __ movl(bc, Bytecodes::_fast_iload2);
642 
643     __ jccb(Assembler::equal, rewrite);
644 
645     // if _caload, rewrite to fast_icaload
646     __ cmpl(rbx, Bytecodes::_caload);
647     __ movl(bc, Bytecodes::_fast_icaload);
648     __ jccb(Assembler::equal, rewrite);
649 
650     // rewrite so iload doesn't check again.
651     __ movl(bc, Bytecodes::_fast_iload);
652 
653     // rewrite
654     // bc: fast bytecode
655     __ bind(rewrite);
656     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
657     __ bind(done);
658   }
659 
660   // Get the local value into tos
661   locals_index(rbx);
662   __ movl(rax, iaddress(rbx));
663 }
664 
fast_iload2()665 void TemplateTable::fast_iload2() {
666   transition(vtos, itos);
667   locals_index(rbx);
668   __ movl(rax, iaddress(rbx));
669   __ push(itos);
670   locals_index(rbx, 3);
671   __ movl(rax, iaddress(rbx));
672 }
673 
fast_iload()674 void TemplateTable::fast_iload() {
675   transition(vtos, itos);
676   locals_index(rbx);
677   __ movl(rax, iaddress(rbx));
678 }
679 
lload()680 void TemplateTable::lload() {
681   transition(vtos, ltos);
682   locals_index(rbx);
683   __ movptr(rax, laddress(rbx));
684   NOT_LP64(__ movl(rdx, haddress(rbx)));
685 }
686 
fload()687 void TemplateTable::fload() {
688   transition(vtos, ftos);
689   locals_index(rbx);
690   __ load_float(faddress(rbx));
691 }
692 
dload()693 void TemplateTable::dload() {
694   transition(vtos, dtos);
695   locals_index(rbx);
696   __ load_double(daddress(rbx));
697 }
698 
aload()699 void TemplateTable::aload() {
700   transition(vtos, atos);
701   locals_index(rbx);
702   __ movptr(rax, aaddress(rbx));
703 }
704 
locals_index_wide(Register reg)705 void TemplateTable::locals_index_wide(Register reg) {
706   __ load_unsigned_short(reg, at_bcp(2));
707   __ bswapl(reg);
708   __ shrl(reg, 16);
709   __ negptr(reg);
710 }
711 
wide_iload()712 void TemplateTable::wide_iload() {
713   transition(vtos, itos);
714   locals_index_wide(rbx);
715   __ movl(rax, iaddress(rbx));
716 }
717 
wide_lload()718 void TemplateTable::wide_lload() {
719   transition(vtos, ltos);
720   locals_index_wide(rbx);
721   __ movptr(rax, laddress(rbx));
722   NOT_LP64(__ movl(rdx, haddress(rbx)));
723 }
724 
wide_fload()725 void TemplateTable::wide_fload() {
726   transition(vtos, ftos);
727   locals_index_wide(rbx);
728   __ load_float(faddress(rbx));
729 }
730 
wide_dload()731 void TemplateTable::wide_dload() {
732   transition(vtos, dtos);
733   locals_index_wide(rbx);
734   __ load_double(daddress(rbx));
735 }
736 
wide_aload()737 void TemplateTable::wide_aload() {
738   transition(vtos, atos);
739   locals_index_wide(rbx);
740   __ movptr(rax, aaddress(rbx));
741 }
742 
index_check(Register array,Register index)743 void TemplateTable::index_check(Register array, Register index) {
744   // Pop ptr into array
745   __ pop_ptr(array);
746   index_check_without_pop(array, index);
747 }
748 
index_check_without_pop(Register array,Register index)749 void TemplateTable::index_check_without_pop(Register array, Register index) {
750   // destroys rbx
751   // check array
752   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
753   // sign extend index for use by indexed load
754   __ movl2ptr(index, index);
755   // check index
756   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
757   if (index != rbx) {
758     // ??? convention: move aberrant index into rbx for exception message
759     assert(rbx != array, "different registers");
760     __ movl(rbx, index);
761   }
762   Label skip;
763   __ jccb(Assembler::below, skip);
764   // Pass array to create more detailed exceptions.
765   __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array);
766   __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
767   __ bind(skip);
768 }
769 
iaload()770 void TemplateTable::iaload() {
771   transition(itos, itos);
772   // rax: index
773   // rdx: array
774   index_check(rdx, rax); // kills rbx
775   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax,
776                     Address(rdx, rax, Address::times_4,
777                             arrayOopDesc::base_offset_in_bytes(T_INT)),
778                     noreg, noreg);
779 }
780 
laload()781 void TemplateTable::laload() {
782   transition(itos, ltos);
783   // rax: index
784   // rdx: array
785   index_check(rdx, rax); // kills rbx
786   NOT_LP64(__ mov(rbx, rax));
787   // rbx,: index
788   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */,
789                     Address(rdx, rbx, Address::times_8,
790                             arrayOopDesc::base_offset_in_bytes(T_LONG)),
791                     noreg, noreg);
792 }
793 
794 
795 
faload()796 void TemplateTable::faload() {
797   transition(itos, ftos);
798   // rax: index
799   // rdx: array
800   index_check(rdx, rax); // kills rbx
801   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */,
802                     Address(rdx, rax,
803                             Address::times_4,
804                             arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
805                     noreg, noreg);
806 }
807 
daload()808 void TemplateTable::daload() {
809   transition(itos, dtos);
810   // rax: index
811   // rdx: array
812   index_check(rdx, rax); // kills rbx
813   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */,
814                     Address(rdx, rax,
815                             Address::times_8,
816                             arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
817                     noreg, noreg);
818 }
819 
aaload()820 void TemplateTable::aaload() {
821   transition(itos, atos);
822   // rax: index
823   // rdx: array
824   index_check(rdx, rax); // kills rbx
825   do_oop_load(_masm,
826               Address(rdx, rax,
827                       UseCompressedOops ? Address::times_4 : Address::times_ptr,
828                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
829               rax,
830               IS_ARRAY);
831 }
832 
baload()833 void TemplateTable::baload() {
834   transition(itos, itos);
835   // rax: index
836   // rdx: array
837   index_check(rdx, rax); // kills rbx
838   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax,
839                     Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)),
840                     noreg, noreg);
841 }
842 
caload()843 void TemplateTable::caload() {
844   transition(itos, itos);
845   // rax: index
846   // rdx: array
847   index_check(rdx, rax); // kills rbx
848   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
849                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
850                     noreg, noreg);
851 }
852 
853 // iload followed by caload frequent pair
fast_icaload()854 void TemplateTable::fast_icaload() {
855   transition(vtos, itos);
856   // load index out of locals
857   locals_index(rbx);
858   __ movl(rax, iaddress(rbx));
859 
860   // rax: index
861   // rdx: array
862   index_check(rdx, rax); // kills rbx
863   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax,
864                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)),
865                     noreg, noreg);
866 }
867 
868 
saload()869 void TemplateTable::saload() {
870   transition(itos, itos);
871   // rax: index
872   // rdx: array
873   index_check(rdx, rax); // kills rbx
874   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax,
875                     Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)),
876                     noreg, noreg);
877 }
878 
iload(int n)879 void TemplateTable::iload(int n) {
880   transition(vtos, itos);
881   __ movl(rax, iaddress(n));
882 }
883 
lload(int n)884 void TemplateTable::lload(int n) {
885   transition(vtos, ltos);
886   __ movptr(rax, laddress(n));
887   NOT_LP64(__ movptr(rdx, haddress(n)));
888 }
889 
fload(int n)890 void TemplateTable::fload(int n) {
891   transition(vtos, ftos);
892   __ load_float(faddress(n));
893 }
894 
dload(int n)895 void TemplateTable::dload(int n) {
896   transition(vtos, dtos);
897   __ load_double(daddress(n));
898 }
899 
aload(int n)900 void TemplateTable::aload(int n) {
901   transition(vtos, atos);
902   __ movptr(rax, aaddress(n));
903 }
904 
aload_0()905 void TemplateTable::aload_0() {
906   aload_0_internal();
907 }
908 
nofast_aload_0()909 void TemplateTable::nofast_aload_0() {
910   aload_0_internal(may_not_rewrite);
911 }
912 
aload_0_internal(RewriteControl rc)913 void TemplateTable::aload_0_internal(RewriteControl rc) {
914   transition(vtos, atos);
915   // According to bytecode histograms, the pairs:
916   //
917   // _aload_0, _fast_igetfield
918   // _aload_0, _fast_agetfield
919   // _aload_0, _fast_fgetfield
920   //
921   // occur frequently. If RewriteFrequentPairs is set, the (slow)
922   // _aload_0 bytecode checks if the next bytecode is either
923   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
924   // rewrites the current bytecode into a pair bytecode; otherwise it
925   // rewrites the current bytecode into _fast_aload_0 that doesn't do
926   // the pair check anymore.
927   //
928   // Note: If the next bytecode is _getfield, the rewrite must be
929   //       delayed, otherwise we may miss an opportunity for a pair.
930   //
931   // Also rewrite frequent pairs
932   //   aload_0, aload_1
933   //   aload_0, iload_1
934   // These bytecodes with a small amount of code are most profitable
935   // to rewrite
936   if (RewriteFrequentPairs && rc == may_rewrite) {
937     Label rewrite, done;
938 
939     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
940     LP64_ONLY(assert(rbx != bc, "register damaged"));
941 
942     // get next byte
943     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
944 
945     // if _getfield then wait with rewrite
946     __ cmpl(rbx, Bytecodes::_getfield);
947     __ jcc(Assembler::equal, done);
948 
949     // if _igetfield then rewrite to _fast_iaccess_0
950     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
951     __ cmpl(rbx, Bytecodes::_fast_igetfield);
952     __ movl(bc, Bytecodes::_fast_iaccess_0);
953     __ jccb(Assembler::equal, rewrite);
954 
955     // if _agetfield then rewrite to _fast_aaccess_0
956     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
957     __ cmpl(rbx, Bytecodes::_fast_agetfield);
958     __ movl(bc, Bytecodes::_fast_aaccess_0);
959     __ jccb(Assembler::equal, rewrite);
960 
961     // if _fgetfield then rewrite to _fast_faccess_0
962     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
963     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
964     __ movl(bc, Bytecodes::_fast_faccess_0);
965     __ jccb(Assembler::equal, rewrite);
966 
967     // else rewrite to _fast_aload0
968     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
969     __ movl(bc, Bytecodes::_fast_aload_0);
970 
971     // rewrite
972     // bc: fast bytecode
973     __ bind(rewrite);
974     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
975 
976     __ bind(done);
977   }
978 
979   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
980   aload(0);
981 }
982 
istore()983 void TemplateTable::istore() {
984   transition(itos, vtos);
985   locals_index(rbx);
986   __ movl(iaddress(rbx), rax);
987 }
988 
989 
lstore()990 void TemplateTable::lstore() {
991   transition(ltos, vtos);
992   locals_index(rbx);
993   __ movptr(laddress(rbx), rax);
994   NOT_LP64(__ movptr(haddress(rbx), rdx));
995 }
996 
fstore()997 void TemplateTable::fstore() {
998   transition(ftos, vtos);
999   locals_index(rbx);
1000   __ store_float(faddress(rbx));
1001 }
1002 
dstore()1003 void TemplateTable::dstore() {
1004   transition(dtos, vtos);
1005   locals_index(rbx);
1006   __ store_double(daddress(rbx));
1007 }
1008 
astore()1009 void TemplateTable::astore() {
1010   transition(vtos, vtos);
1011   __ pop_ptr(rax);
1012   locals_index(rbx);
1013   __ movptr(aaddress(rbx), rax);
1014 }
1015 
wide_istore()1016 void TemplateTable::wide_istore() {
1017   transition(vtos, vtos);
1018   __ pop_i();
1019   locals_index_wide(rbx);
1020   __ movl(iaddress(rbx), rax);
1021 }
1022 
wide_lstore()1023 void TemplateTable::wide_lstore() {
1024   transition(vtos, vtos);
1025   NOT_LP64(__ pop_l(rax, rdx));
1026   LP64_ONLY(__ pop_l());
1027   locals_index_wide(rbx);
1028   __ movptr(laddress(rbx), rax);
1029   NOT_LP64(__ movl(haddress(rbx), rdx));
1030 }
1031 
wide_fstore()1032 void TemplateTable::wide_fstore() {
1033 #ifdef _LP64
1034   transition(vtos, vtos);
1035   __ pop_f(xmm0);
1036   locals_index_wide(rbx);
1037   __ movflt(faddress(rbx), xmm0);
1038 #else
1039   wide_istore();
1040 #endif
1041 }
1042 
wide_dstore()1043 void TemplateTable::wide_dstore() {
1044 #ifdef _LP64
1045   transition(vtos, vtos);
1046   __ pop_d(xmm0);
1047   locals_index_wide(rbx);
1048   __ movdbl(daddress(rbx), xmm0);
1049 #else
1050   wide_lstore();
1051 #endif
1052 }
1053 
wide_astore()1054 void TemplateTable::wide_astore() {
1055   transition(vtos, vtos);
1056   __ pop_ptr(rax);
1057   locals_index_wide(rbx);
1058   __ movptr(aaddress(rbx), rax);
1059 }
1060 
iastore()1061 void TemplateTable::iastore() {
1062   transition(itos, vtos);
1063   __ pop_i(rbx);
1064   // rax: value
1065   // rbx: index
1066   // rdx: array
1067   index_check(rdx, rbx); // prefer index in rbx
1068   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY,
1069                      Address(rdx, rbx, Address::times_4,
1070                              arrayOopDesc::base_offset_in_bytes(T_INT)),
1071                      rax, noreg, noreg);
1072 }
1073 
lastore()1074 void TemplateTable::lastore() {
1075   transition(ltos, vtos);
1076   __ pop_i(rbx);
1077   // rax,: low(value)
1078   // rcx: array
1079   // rdx: high(value)
1080   index_check(rcx, rbx);  // prefer index in rbx,
1081   // rbx,: index
1082   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY,
1083                      Address(rcx, rbx, Address::times_8,
1084                              arrayOopDesc::base_offset_in_bytes(T_LONG)),
1085                      noreg /* ltos */, noreg, noreg);
1086 }
1087 
1088 
fastore()1089 void TemplateTable::fastore() {
1090   transition(ftos, vtos);
1091   __ pop_i(rbx);
1092   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1093   // rbx:  index
1094   // rdx:  array
1095   index_check(rdx, rbx); // prefer index in rbx
1096   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY,
1097                      Address(rdx, rbx, Address::times_4,
1098                              arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1099                      noreg /* ftos */, noreg, noreg);
1100 }
1101 
dastore()1102 void TemplateTable::dastore() {
1103   transition(dtos, vtos);
1104   __ pop_i(rbx);
1105   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1106   // rbx:  index
1107   // rdx:  array
1108   index_check(rdx, rbx); // prefer index in rbx
1109   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY,
1110                      Address(rdx, rbx, Address::times_8,
1111                              arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
1112                      noreg /* dtos */, noreg, noreg);
1113 }
1114 
aastore()1115 void TemplateTable::aastore() {
1116   Label is_null, ok_is_subtype, done;
1117   transition(vtos, vtos);
1118   // stack: ..., array, index, value
1119   __ movptr(rax, at_tos());    // value
1120   __ movl(rcx, at_tos_p1()); // index
1121   __ movptr(rdx, at_tos_p2()); // array
1122 
1123   Address element_address(rdx, rcx,
1124                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1125                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1126 
1127   index_check_without_pop(rdx, rcx);     // kills rbx
1128   __ testptr(rax, rax);
1129   __ jcc(Assembler::zero, is_null);
1130 
1131   // Move subklass into rbx
1132   __ load_klass(rbx, rax);
1133   // Move superklass into rax
1134   __ load_klass(rax, rdx);
1135   __ movptr(rax, Address(rax,
1136                          ObjArrayKlass::element_klass_offset()));
1137 
1138   // Generate subtype check.  Blows rcx, rdi
1139   // Superklass in rax.  Subklass in rbx.
1140   __ gen_subtype_check(rbx, ok_is_subtype);
1141 
1142   // Come here on failure
1143   // object is at TOS
1144   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1145 
1146   // Come here on success
1147   __ bind(ok_is_subtype);
1148 
1149   // Get the value we will store
1150   __ movptr(rax, at_tos());
1151   __ movl(rcx, at_tos_p1()); // index
1152   // Now store using the appropriate barrier
1153   do_oop_store(_masm, element_address, rax, IS_ARRAY);
1154   __ jmp(done);
1155 
1156   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1157   __ bind(is_null);
1158   __ profile_null_seen(rbx);
1159 
1160   // Store a NULL
1161   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1162 
1163   // Pop stack arguments
1164   __ bind(done);
1165   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1166 }
1167 
bastore()1168 void TemplateTable::bastore() {
1169   transition(itos, vtos);
1170   __ pop_i(rbx);
1171   // rax: value
1172   // rbx: index
1173   // rdx: array
1174   index_check(rdx, rbx); // prefer index in rbx
1175   // Need to check whether array is boolean or byte
1176   // since both types share the bastore bytecode.
1177   __ load_klass(rcx, rdx);
1178   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1179   int diffbit = Klass::layout_helper_boolean_diffbit();
1180   __ testl(rcx, diffbit);
1181   Label L_skip;
1182   __ jccb(Assembler::zero, L_skip);
1183   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1184   __ bind(L_skip);
1185   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY,
1186                      Address(rdx, rbx,Address::times_1,
1187                              arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1188                      rax, noreg, noreg);
1189 }
1190 
castore()1191 void TemplateTable::castore() {
1192   transition(itos, vtos);
1193   __ pop_i(rbx);
1194   // rax: value
1195   // rbx: index
1196   // rdx: array
1197   index_check(rdx, rbx);  // prefer index in rbx
1198   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY,
1199                      Address(rdx, rbx, Address::times_2,
1200                              arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1201                      rax, noreg, noreg);
1202 }
1203 
1204 
sastore()1205 void TemplateTable::sastore() {
1206   castore();
1207 }
1208 
istore(int n)1209 void TemplateTable::istore(int n) {
1210   transition(itos, vtos);
1211   __ movl(iaddress(n), rax);
1212 }
1213 
lstore(int n)1214 void TemplateTable::lstore(int n) {
1215   transition(ltos, vtos);
1216   __ movptr(laddress(n), rax);
1217   NOT_LP64(__ movptr(haddress(n), rdx));
1218 }
1219 
fstore(int n)1220 void TemplateTable::fstore(int n) {
1221   transition(ftos, vtos);
1222   __ store_float(faddress(n));
1223 }
1224 
dstore(int n)1225 void TemplateTable::dstore(int n) {
1226   transition(dtos, vtos);
1227   __ store_double(daddress(n));
1228 }
1229 
1230 
astore(int n)1231 void TemplateTable::astore(int n) {
1232   transition(vtos, vtos);
1233   __ pop_ptr(rax);
1234   __ movptr(aaddress(n), rax);
1235 }
1236 
pop()1237 void TemplateTable::pop() {
1238   transition(vtos, vtos);
1239   __ addptr(rsp, Interpreter::stackElementSize);
1240 }
1241 
pop2()1242 void TemplateTable::pop2() {
1243   transition(vtos, vtos);
1244   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1245 }
1246 
1247 
dup()1248 void TemplateTable::dup() {
1249   transition(vtos, vtos);
1250   __ load_ptr(0, rax);
1251   __ push_ptr(rax);
1252   // stack: ..., a, a
1253 }
1254 
dup_x1()1255 void TemplateTable::dup_x1() {
1256   transition(vtos, vtos);
1257   // stack: ..., a, b
1258   __ load_ptr( 0, rax);  // load b
1259   __ load_ptr( 1, rcx);  // load a
1260   __ store_ptr(1, rax);  // store b
1261   __ store_ptr(0, rcx);  // store a
1262   __ push_ptr(rax);      // push b
1263   // stack: ..., b, a, b
1264 }
1265 
dup_x2()1266 void TemplateTable::dup_x2() {
1267   transition(vtos, vtos);
1268   // stack: ..., a, b, c
1269   __ load_ptr( 0, rax);  // load c
1270   __ load_ptr( 2, rcx);  // load a
1271   __ store_ptr(2, rax);  // store c in a
1272   __ push_ptr(rax);      // push c
1273   // stack: ..., c, b, c, c
1274   __ load_ptr( 2, rax);  // load b
1275   __ store_ptr(2, rcx);  // store a in b
1276   // stack: ..., c, a, c, c
1277   __ store_ptr(1, rax);  // store b in c
1278   // stack: ..., c, a, b, c
1279 }
1280 
dup2()1281 void TemplateTable::dup2() {
1282   transition(vtos, vtos);
1283   // stack: ..., a, b
1284   __ load_ptr(1, rax);  // load a
1285   __ push_ptr(rax);     // push a
1286   __ load_ptr(1, rax);  // load b
1287   __ push_ptr(rax);     // push b
1288   // stack: ..., a, b, a, b
1289 }
1290 
1291 
dup2_x1()1292 void TemplateTable::dup2_x1() {
1293   transition(vtos, vtos);
1294   // stack: ..., a, b, c
1295   __ load_ptr( 0, rcx);  // load c
1296   __ load_ptr( 1, rax);  // load b
1297   __ push_ptr(rax);      // push b
1298   __ push_ptr(rcx);      // push c
1299   // stack: ..., a, b, c, b, c
1300   __ store_ptr(3, rcx);  // store c in b
1301   // stack: ..., a, c, c, b, c
1302   __ load_ptr( 4, rcx);  // load a
1303   __ store_ptr(2, rcx);  // store a in 2nd c
1304   // stack: ..., a, c, a, b, c
1305   __ store_ptr(4, rax);  // store b in a
1306   // stack: ..., b, c, a, b, c
1307 }
1308 
dup2_x2()1309 void TemplateTable::dup2_x2() {
1310   transition(vtos, vtos);
1311   // stack: ..., a, b, c, d
1312   __ load_ptr( 0, rcx);  // load d
1313   __ load_ptr( 1, rax);  // load c
1314   __ push_ptr(rax);      // push c
1315   __ push_ptr(rcx);      // push d
1316   // stack: ..., a, b, c, d, c, d
1317   __ load_ptr( 4, rax);  // load b
1318   __ store_ptr(2, rax);  // store b in d
1319   __ store_ptr(4, rcx);  // store d in b
1320   // stack: ..., a, d, c, b, c, d
1321   __ load_ptr( 5, rcx);  // load a
1322   __ load_ptr( 3, rax);  // load c
1323   __ store_ptr(3, rcx);  // store a in c
1324   __ store_ptr(5, rax);  // store c in a
1325   // stack: ..., c, d, a, b, c, d
1326 }
1327 
swap()1328 void TemplateTable::swap() {
1329   transition(vtos, vtos);
1330   // stack: ..., a, b
1331   __ load_ptr( 1, rcx);  // load a
1332   __ load_ptr( 0, rax);  // load b
1333   __ store_ptr(0, rcx);  // store a in b
1334   __ store_ptr(1, rax);  // store b in a
1335   // stack: ..., b, a
1336 }
1337 
iop2(Operation op)1338 void TemplateTable::iop2(Operation op) {
1339   transition(itos, itos);
1340   switch (op) {
1341   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1342   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1343   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1344   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1345   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1346   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1347   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1348   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1349   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1350   default   : ShouldNotReachHere();
1351   }
1352 }
1353 
lop2(Operation op)1354 void TemplateTable::lop2(Operation op) {
1355   transition(ltos, ltos);
1356 #ifdef _LP64
1357   switch (op) {
1358   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1359   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1360   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1361   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1362   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1363   default   : ShouldNotReachHere();
1364   }
1365 #else
1366   __ pop_l(rbx, rcx);
1367   switch (op) {
1368     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1369     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1370                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1371     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1372     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1373     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1374     default   : ShouldNotReachHere();
1375   }
1376 #endif
1377 }
1378 
idiv()1379 void TemplateTable::idiv() {
1380   transition(itos, itos);
1381   __ movl(rcx, rax);
1382   __ pop_i(rax);
1383   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1384   //       they are not equal, one could do a normal division (no correction
1385   //       needed), which may speed up this implementation for the common case.
1386   //       (see also JVM spec., p.243 & p.271)
1387   __ corrected_idivl(rcx);
1388 }
1389 
irem()1390 void TemplateTable::irem() {
1391   transition(itos, itos);
1392   __ movl(rcx, rax);
1393   __ pop_i(rax);
1394   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1395   //       they are not equal, one could do a normal division (no correction
1396   //       needed), which may speed up this implementation for the common case.
1397   //       (see also JVM spec., p.243 & p.271)
1398   __ corrected_idivl(rcx);
1399   __ movl(rax, rdx);
1400 }
1401 
lmul()1402 void TemplateTable::lmul() {
1403   transition(ltos, ltos);
1404 #ifdef _LP64
1405   __ pop_l(rdx);
1406   __ imulq(rax, rdx);
1407 #else
1408   __ pop_l(rbx, rcx);
1409   __ push(rcx); __ push(rbx);
1410   __ push(rdx); __ push(rax);
1411   __ lmul(2 * wordSize, 0);
1412   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1413 #endif
1414 }
1415 
ldiv()1416 void TemplateTable::ldiv() {
1417   transition(ltos, ltos);
1418 #ifdef _LP64
1419   __ mov(rcx, rax);
1420   __ pop_l(rax);
1421   // generate explicit div0 check
1422   __ testq(rcx, rcx);
1423   __ jump_cc(Assembler::zero,
1424              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1425   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1426   //       they are not equal, one could do a normal division (no correction
1427   //       needed), which may speed up this implementation for the common case.
1428   //       (see also JVM spec., p.243 & p.271)
1429   __ corrected_idivq(rcx); // kills rbx
1430 #else
1431   __ pop_l(rbx, rcx);
1432   __ push(rcx); __ push(rbx);
1433   __ push(rdx); __ push(rax);
1434   // check if y = 0
1435   __ orl(rax, rdx);
1436   __ jump_cc(Assembler::zero,
1437              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1438   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1439   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1440 #endif
1441 }
1442 
lrem()1443 void TemplateTable::lrem() {
1444   transition(ltos, ltos);
1445 #ifdef _LP64
1446   __ mov(rcx, rax);
1447   __ pop_l(rax);
1448   __ testq(rcx, rcx);
1449   __ jump_cc(Assembler::zero,
1450              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1451   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1452   //       they are not equal, one could do a normal division (no correction
1453   //       needed), which may speed up this implementation for the common case.
1454   //       (see also JVM spec., p.243 & p.271)
1455   __ corrected_idivq(rcx); // kills rbx
1456   __ mov(rax, rdx);
1457 #else
1458   __ pop_l(rbx, rcx);
1459   __ push(rcx); __ push(rbx);
1460   __ push(rdx); __ push(rax);
1461   // check if y = 0
1462   __ orl(rax, rdx);
1463   __ jump_cc(Assembler::zero,
1464              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1465   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1466   __ addptr(rsp, 4 * wordSize);
1467 #endif
1468 }
1469 
lshl()1470 void TemplateTable::lshl() {
1471   transition(itos, ltos);
1472   __ movl(rcx, rax);                             // get shift count
1473   #ifdef _LP64
1474   __ pop_l(rax);                                 // get shift value
1475   __ shlq(rax);
1476 #else
1477   __ pop_l(rax, rdx);                            // get shift value
1478   __ lshl(rdx, rax);
1479 #endif
1480 }
1481 
lshr()1482 void TemplateTable::lshr() {
1483 #ifdef _LP64
1484   transition(itos, ltos);
1485   __ movl(rcx, rax);                             // get shift count
1486   __ pop_l(rax);                                 // get shift value
1487   __ sarq(rax);
1488 #else
1489   transition(itos, ltos);
1490   __ mov(rcx, rax);                              // get shift count
1491   __ pop_l(rax, rdx);                            // get shift value
1492   __ lshr(rdx, rax, true);
1493 #endif
1494 }
1495 
lushr()1496 void TemplateTable::lushr() {
1497   transition(itos, ltos);
1498 #ifdef _LP64
1499   __ movl(rcx, rax);                             // get shift count
1500   __ pop_l(rax);                                 // get shift value
1501   __ shrq(rax);
1502 #else
1503   __ mov(rcx, rax);                              // get shift count
1504   __ pop_l(rax, rdx);                            // get shift value
1505   __ lshr(rdx, rax);
1506 #endif
1507 }
1508 
fop2(Operation op)1509 void TemplateTable::fop2(Operation op) {
1510   transition(ftos, ftos);
1511 
1512   if (UseSSE >= 1) {
1513     switch (op) {
1514     case add:
1515       __ addss(xmm0, at_rsp());
1516       __ addptr(rsp, Interpreter::stackElementSize);
1517       break;
1518     case sub:
1519       __ movflt(xmm1, xmm0);
1520       __ pop_f(xmm0);
1521       __ subss(xmm0, xmm1);
1522       break;
1523     case mul:
1524       __ mulss(xmm0, at_rsp());
1525       __ addptr(rsp, Interpreter::stackElementSize);
1526       break;
1527     case div:
1528       __ movflt(xmm1, xmm0);
1529       __ pop_f(xmm0);
1530       __ divss(xmm0, xmm1);
1531       break;
1532     case rem:
1533       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1534       // modulo operation. The frem method calls the function
1535       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1536       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1537       // (signalling or quiet) is returned.
1538       //
1539       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1540       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1541       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1542       // The fprem instruction used on x86_32 is functionally equivalent to
1543       // SharedRuntime::frem in that it returns a NaN.
1544 #ifdef _LP64
1545       __ movflt(xmm1, xmm0);
1546       __ pop_f(xmm0);
1547       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1548 #else
1549       __ push_f(xmm0);
1550       __ pop_f();
1551       __ fld_s(at_rsp());
1552       __ fremr(rax);
1553       __ f2ieee();
1554       __ pop(rax);  // pop second operand off the stack
1555       __ push_f();
1556       __ pop_f(xmm0);
1557 #endif
1558       break;
1559     default:
1560       ShouldNotReachHere();
1561       break;
1562     }
1563   } else {
1564 #ifdef _LP64
1565     ShouldNotReachHere();
1566 #else
1567     switch (op) {
1568     case add: __ fadd_s (at_rsp());                break;
1569     case sub: __ fsubr_s(at_rsp());                break;
1570     case mul: __ fmul_s (at_rsp());                break;
1571     case div: __ fdivr_s(at_rsp());                break;
1572     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1573     default : ShouldNotReachHere();
1574     }
1575     __ f2ieee();
1576     __ pop(rax);  // pop second operand off the stack
1577 #endif // _LP64
1578   }
1579 }
1580 
dop2(Operation op)1581 void TemplateTable::dop2(Operation op) {
1582   transition(dtos, dtos);
1583   if (UseSSE >= 2) {
1584     switch (op) {
1585     case add:
1586       __ addsd(xmm0, at_rsp());
1587       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1588       break;
1589     case sub:
1590       __ movdbl(xmm1, xmm0);
1591       __ pop_d(xmm0);
1592       __ subsd(xmm0, xmm1);
1593       break;
1594     case mul:
1595       __ mulsd(xmm0, at_rsp());
1596       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1597       break;
1598     case div:
1599       __ movdbl(xmm1, xmm0);
1600       __ pop_d(xmm0);
1601       __ divsd(xmm0, xmm1);
1602       break;
1603     case rem:
1604       // Similar to fop2(), the modulo operation is performed using the
1605       // SharedRuntime::drem method (on x86_64 platforms) or using the
1606       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1607 #ifdef _LP64
1608       __ movdbl(xmm1, xmm0);
1609       __ pop_d(xmm0);
1610       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1611 #else
1612       __ push_d(xmm0);
1613       __ pop_d();
1614       __ fld_d(at_rsp());
1615       __ fremr(rax);
1616       __ d2ieee();
1617       __ pop(rax);
1618       __ pop(rdx);
1619       __ push_d();
1620       __ pop_d(xmm0);
1621 #endif
1622       break;
1623     default:
1624       ShouldNotReachHere();
1625       break;
1626     }
1627   } else {
1628 #ifdef _LP64
1629     ShouldNotReachHere();
1630 #else
1631     switch (op) {
1632     case add: __ fadd_d (at_rsp());                break;
1633     case sub: __ fsubr_d(at_rsp());                break;
1634     case mul: {
1635       Label L_strict;
1636       Label L_join;
1637       const Address access_flags      (rcx, Method::access_flags_offset());
1638       __ get_method(rcx);
1639       __ movl(rcx, access_flags);
1640       __ testl(rcx, JVM_ACC_STRICT);
1641       __ jccb(Assembler::notZero, L_strict);
1642       __ fmul_d (at_rsp());
1643       __ jmpb(L_join);
1644       __ bind(L_strict);
1645       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1646       __ fmulp();
1647       __ fmul_d (at_rsp());
1648       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1649       __ fmulp();
1650       __ bind(L_join);
1651       break;
1652     }
1653     case div: {
1654       Label L_strict;
1655       Label L_join;
1656       const Address access_flags      (rcx, Method::access_flags_offset());
1657       __ get_method(rcx);
1658       __ movl(rcx, access_flags);
1659       __ testl(rcx, JVM_ACC_STRICT);
1660       __ jccb(Assembler::notZero, L_strict);
1661       __ fdivr_d(at_rsp());
1662       __ jmp(L_join);
1663       __ bind(L_strict);
1664       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1665       __ fmul_d (at_rsp());
1666       __ fdivrp();
1667       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1668       __ fmulp();
1669       __ bind(L_join);
1670       break;
1671     }
1672     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1673     default : ShouldNotReachHere();
1674     }
1675     __ d2ieee();
1676     // Pop double precision number from rsp.
1677     __ pop(rax);
1678     __ pop(rdx);
1679 #endif
1680   }
1681 }
1682 
ineg()1683 void TemplateTable::ineg() {
1684   transition(itos, itos);
1685   __ negl(rax);
1686 }
1687 
lneg()1688 void TemplateTable::lneg() {
1689   transition(ltos, ltos);
1690   LP64_ONLY(__ negq(rax));
1691   NOT_LP64(__ lneg(rdx, rax));
1692 }
1693 
1694 // Note: 'double' and 'long long' have 32-bits alignment on x86.
double_quadword(jlong * adr,jlong lo,jlong hi)1695 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1696   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1697   // of 128-bits operands for SSE instructions.
1698   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1699   // Store the value to a 128-bits operand.
1700   operand[0] = lo;
1701   operand[1] = hi;
1702   return operand;
1703 }
1704 
1705 // Buffer for 128-bits masks used by SSE instructions.
1706 static jlong float_signflip_pool[2*2];
1707 static jlong double_signflip_pool[2*2];
1708 
fneg()1709 void TemplateTable::fneg() {
1710   transition(ftos, ftos);
1711   if (UseSSE >= 1) {
1712     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1713     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1714   } else {
1715     LP64_ONLY(ShouldNotReachHere());
1716     NOT_LP64(__ fchs());
1717   }
1718 }
1719 
dneg()1720 void TemplateTable::dneg() {
1721   transition(dtos, dtos);
1722   if (UseSSE >= 2) {
1723     static jlong *double_signflip =
1724       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1725     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1726   } else {
1727 #ifdef _LP64
1728     ShouldNotReachHere();
1729 #else
1730     __ fchs();
1731 #endif
1732   }
1733 }
1734 
iinc()1735 void TemplateTable::iinc() {
1736   transition(vtos, vtos);
1737   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1738   locals_index(rbx);
1739   __ addl(iaddress(rbx), rdx);
1740 }
1741 
wide_iinc()1742 void TemplateTable::wide_iinc() {
1743   transition(vtos, vtos);
1744   __ movl(rdx, at_bcp(4)); // get constant
1745   locals_index_wide(rbx);
1746   __ bswapl(rdx); // swap bytes & sign-extend constant
1747   __ sarl(rdx, 16);
1748   __ addl(iaddress(rbx), rdx);
1749   // Note: should probably use only one movl to get both
1750   //       the index and the constant -> fix this
1751 }
1752 
convert()1753 void TemplateTable::convert() {
1754 #ifdef _LP64
1755   // Checking
1756 #ifdef ASSERT
1757   {
1758     TosState tos_in  = ilgl;
1759     TosState tos_out = ilgl;
1760     switch (bytecode()) {
1761     case Bytecodes::_i2l: // fall through
1762     case Bytecodes::_i2f: // fall through
1763     case Bytecodes::_i2d: // fall through
1764     case Bytecodes::_i2b: // fall through
1765     case Bytecodes::_i2c: // fall through
1766     case Bytecodes::_i2s: tos_in = itos; break;
1767     case Bytecodes::_l2i: // fall through
1768     case Bytecodes::_l2f: // fall through
1769     case Bytecodes::_l2d: tos_in = ltos; break;
1770     case Bytecodes::_f2i: // fall through
1771     case Bytecodes::_f2l: // fall through
1772     case Bytecodes::_f2d: tos_in = ftos; break;
1773     case Bytecodes::_d2i: // fall through
1774     case Bytecodes::_d2l: // fall through
1775     case Bytecodes::_d2f: tos_in = dtos; break;
1776     default             : ShouldNotReachHere();
1777     }
1778     switch (bytecode()) {
1779     case Bytecodes::_l2i: // fall through
1780     case Bytecodes::_f2i: // fall through
1781     case Bytecodes::_d2i: // fall through
1782     case Bytecodes::_i2b: // fall through
1783     case Bytecodes::_i2c: // fall through
1784     case Bytecodes::_i2s: tos_out = itos; break;
1785     case Bytecodes::_i2l: // fall through
1786     case Bytecodes::_f2l: // fall through
1787     case Bytecodes::_d2l: tos_out = ltos; break;
1788     case Bytecodes::_i2f: // fall through
1789     case Bytecodes::_l2f: // fall through
1790     case Bytecodes::_d2f: tos_out = ftos; break;
1791     case Bytecodes::_i2d: // fall through
1792     case Bytecodes::_l2d: // fall through
1793     case Bytecodes::_f2d: tos_out = dtos; break;
1794     default             : ShouldNotReachHere();
1795     }
1796     transition(tos_in, tos_out);
1797   }
1798 #endif // ASSERT
1799 
1800   static const int64_t is_nan = 0x8000000000000000L;
1801 
1802   // Conversion
1803   switch (bytecode()) {
1804   case Bytecodes::_i2l:
1805     __ movslq(rax, rax);
1806     break;
1807   case Bytecodes::_i2f:
1808     __ cvtsi2ssl(xmm0, rax);
1809     break;
1810   case Bytecodes::_i2d:
1811     __ cvtsi2sdl(xmm0, rax);
1812     break;
1813   case Bytecodes::_i2b:
1814     __ movsbl(rax, rax);
1815     break;
1816   case Bytecodes::_i2c:
1817     __ movzwl(rax, rax);
1818     break;
1819   case Bytecodes::_i2s:
1820     __ movswl(rax, rax);
1821     break;
1822   case Bytecodes::_l2i:
1823     __ movl(rax, rax);
1824     break;
1825   case Bytecodes::_l2f:
1826     __ cvtsi2ssq(xmm0, rax);
1827     break;
1828   case Bytecodes::_l2d:
1829     __ cvtsi2sdq(xmm0, rax);
1830     break;
1831   case Bytecodes::_f2i:
1832   {
1833     Label L;
1834     __ cvttss2sil(rax, xmm0);
1835     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1836     __ jcc(Assembler::notEqual, L);
1837     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1838     __ bind(L);
1839   }
1840     break;
1841   case Bytecodes::_f2l:
1842   {
1843     Label L;
1844     __ cvttss2siq(rax, xmm0);
1845     // NaN or overflow/underflow?
1846     __ cmp64(rax, ExternalAddress((address) &is_nan));
1847     __ jcc(Assembler::notEqual, L);
1848     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1849     __ bind(L);
1850   }
1851     break;
1852   case Bytecodes::_f2d:
1853     __ cvtss2sd(xmm0, xmm0);
1854     break;
1855   case Bytecodes::_d2i:
1856   {
1857     Label L;
1858     __ cvttsd2sil(rax, xmm0);
1859     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1860     __ jcc(Assembler::notEqual, L);
1861     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1862     __ bind(L);
1863   }
1864     break;
1865   case Bytecodes::_d2l:
1866   {
1867     Label L;
1868     __ cvttsd2siq(rax, xmm0);
1869     // NaN or overflow/underflow?
1870     __ cmp64(rax, ExternalAddress((address) &is_nan));
1871     __ jcc(Assembler::notEqual, L);
1872     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1873     __ bind(L);
1874   }
1875     break;
1876   case Bytecodes::_d2f:
1877     __ cvtsd2ss(xmm0, xmm0);
1878     break;
1879   default:
1880     ShouldNotReachHere();
1881   }
1882 #else
1883   // Checking
1884 #ifdef ASSERT
1885   { TosState tos_in  = ilgl;
1886     TosState tos_out = ilgl;
1887     switch (bytecode()) {
1888       case Bytecodes::_i2l: // fall through
1889       case Bytecodes::_i2f: // fall through
1890       case Bytecodes::_i2d: // fall through
1891       case Bytecodes::_i2b: // fall through
1892       case Bytecodes::_i2c: // fall through
1893       case Bytecodes::_i2s: tos_in = itos; break;
1894       case Bytecodes::_l2i: // fall through
1895       case Bytecodes::_l2f: // fall through
1896       case Bytecodes::_l2d: tos_in = ltos; break;
1897       case Bytecodes::_f2i: // fall through
1898       case Bytecodes::_f2l: // fall through
1899       case Bytecodes::_f2d: tos_in = ftos; break;
1900       case Bytecodes::_d2i: // fall through
1901       case Bytecodes::_d2l: // fall through
1902       case Bytecodes::_d2f: tos_in = dtos; break;
1903       default             : ShouldNotReachHere();
1904     }
1905     switch (bytecode()) {
1906       case Bytecodes::_l2i: // fall through
1907       case Bytecodes::_f2i: // fall through
1908       case Bytecodes::_d2i: // fall through
1909       case Bytecodes::_i2b: // fall through
1910       case Bytecodes::_i2c: // fall through
1911       case Bytecodes::_i2s: tos_out = itos; break;
1912       case Bytecodes::_i2l: // fall through
1913       case Bytecodes::_f2l: // fall through
1914       case Bytecodes::_d2l: tos_out = ltos; break;
1915       case Bytecodes::_i2f: // fall through
1916       case Bytecodes::_l2f: // fall through
1917       case Bytecodes::_d2f: tos_out = ftos; break;
1918       case Bytecodes::_i2d: // fall through
1919       case Bytecodes::_l2d: // fall through
1920       case Bytecodes::_f2d: tos_out = dtos; break;
1921       default             : ShouldNotReachHere();
1922     }
1923     transition(tos_in, tos_out);
1924   }
1925 #endif // ASSERT
1926 
1927   // Conversion
1928   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1929   switch (bytecode()) {
1930     case Bytecodes::_i2l:
1931       __ extend_sign(rdx, rax);
1932       break;
1933     case Bytecodes::_i2f:
1934       if (UseSSE >= 1) {
1935         __ cvtsi2ssl(xmm0, rax);
1936       } else {
1937         __ push(rax);          // store int on tos
1938         __ fild_s(at_rsp());   // load int to ST0
1939         __ f2ieee();           // truncate to float size
1940         __ pop(rcx);           // adjust rsp
1941       }
1942       break;
1943     case Bytecodes::_i2d:
1944       if (UseSSE >= 2) {
1945         __ cvtsi2sdl(xmm0, rax);
1946       } else {
1947       __ push(rax);          // add one slot for d2ieee()
1948       __ push(rax);          // store int on tos
1949       __ fild_s(at_rsp());   // load int to ST0
1950       __ d2ieee();           // truncate to double size
1951       __ pop(rcx);           // adjust rsp
1952       __ pop(rcx);
1953       }
1954       break;
1955     case Bytecodes::_i2b:
1956       __ shll(rax, 24);      // truncate upper 24 bits
1957       __ sarl(rax, 24);      // and sign-extend byte
1958       LP64_ONLY(__ movsbl(rax, rax));
1959       break;
1960     case Bytecodes::_i2c:
1961       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1962       LP64_ONLY(__ movzwl(rax, rax));
1963       break;
1964     case Bytecodes::_i2s:
1965       __ shll(rax, 16);      // truncate upper 16 bits
1966       __ sarl(rax, 16);      // and sign-extend short
1967       LP64_ONLY(__ movswl(rax, rax));
1968       break;
1969     case Bytecodes::_l2i:
1970       /* nothing to do */
1971       break;
1972     case Bytecodes::_l2f:
1973       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1974       // 64-bit long values to floats. On 32-bit platforms it is not possible
1975       // to use that instruction with 64-bit operands, therefore the FPU is
1976       // used to perform the conversion.
1977       __ push(rdx);          // store long on tos
1978       __ push(rax);
1979       __ fild_d(at_rsp());   // load long to ST0
1980       __ f2ieee();           // truncate to float size
1981       __ pop(rcx);           // adjust rsp
1982       __ pop(rcx);
1983       if (UseSSE >= 1) {
1984         __ push_f();
1985         __ pop_f(xmm0);
1986       }
1987       break;
1988     case Bytecodes::_l2d:
1989       // On 32-bit platforms the FPU is used for conversion because on
1990       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1991       // instruction with 64-bit operands.
1992       __ push(rdx);          // store long on tos
1993       __ push(rax);
1994       __ fild_d(at_rsp());   // load long to ST0
1995       __ d2ieee();           // truncate to double size
1996       __ pop(rcx);           // adjust rsp
1997       __ pop(rcx);
1998       if (UseSSE >= 2) {
1999         __ push_d();
2000         __ pop_d(xmm0);
2001       }
2002       break;
2003     case Bytecodes::_f2i:
2004       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
2005       // as it returns 0 for any NaN.
2006       if (UseSSE >= 1) {
2007         __ push_f(xmm0);
2008       } else {
2009         __ push(rcx);          // reserve space for argument
2010         __ fstp_s(at_rsp());   // pass float argument on stack
2011       }
2012       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
2013       break;
2014     case Bytecodes::_f2l:
2015       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
2016       // as it returns 0 for any NaN.
2017       if (UseSSE >= 1) {
2018        __ push_f(xmm0);
2019       } else {
2020         __ push(rcx);          // reserve space for argument
2021         __ fstp_s(at_rsp());   // pass float argument on stack
2022       }
2023       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2024       break;
2025     case Bytecodes::_f2d:
2026       if (UseSSE < 1) {
2027         /* nothing to do */
2028       } else if (UseSSE == 1) {
2029         __ push_f(xmm0);
2030         __ pop_f();
2031       } else { // UseSSE >= 2
2032         __ cvtss2sd(xmm0, xmm0);
2033       }
2034       break;
2035     case Bytecodes::_d2i:
2036       if (UseSSE >= 2) {
2037         __ push_d(xmm0);
2038       } else {
2039         __ push(rcx);          // reserve space for argument
2040         __ push(rcx);
2041         __ fstp_d(at_rsp());   // pass double argument on stack
2042       }
2043       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2044       break;
2045     case Bytecodes::_d2l:
2046       if (UseSSE >= 2) {
2047         __ push_d(xmm0);
2048       } else {
2049         __ push(rcx);          // reserve space for argument
2050         __ push(rcx);
2051         __ fstp_d(at_rsp());   // pass double argument on stack
2052       }
2053       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2054       break;
2055     case Bytecodes::_d2f:
2056       if (UseSSE <= 1) {
2057         __ push(rcx);          // reserve space for f2ieee()
2058         __ f2ieee();           // truncate to float size
2059         __ pop(rcx);           // adjust rsp
2060         if (UseSSE == 1) {
2061           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2062           // the conversion is performed using the FPU in this case.
2063           __ push_f();
2064           __ pop_f(xmm0);
2065         }
2066       } else { // UseSSE >= 2
2067         __ cvtsd2ss(xmm0, xmm0);
2068       }
2069       break;
2070     default             :
2071       ShouldNotReachHere();
2072   }
2073 #endif
2074 }
2075 
lcmp()2076 void TemplateTable::lcmp() {
2077   transition(ltos, itos);
2078 #ifdef _LP64
2079   Label done;
2080   __ pop_l(rdx);
2081   __ cmpq(rdx, rax);
2082   __ movl(rax, -1);
2083   __ jccb(Assembler::less, done);
2084   __ setb(Assembler::notEqual, rax);
2085   __ movzbl(rax, rax);
2086   __ bind(done);
2087 #else
2088 
2089   // y = rdx:rax
2090   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2091   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2092   __ mov(rax, rcx);
2093 #endif
2094 }
2095 
float_cmp(bool is_float,int unordered_result)2096 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2097   if ((is_float && UseSSE >= 1) ||
2098       (!is_float && UseSSE >= 2)) {
2099     Label done;
2100     if (is_float) {
2101       // XXX get rid of pop here, use ... reg, mem32
2102       __ pop_f(xmm1);
2103       __ ucomiss(xmm1, xmm0);
2104     } else {
2105       // XXX get rid of pop here, use ... reg, mem64
2106       __ pop_d(xmm1);
2107       __ ucomisd(xmm1, xmm0);
2108     }
2109     if (unordered_result < 0) {
2110       __ movl(rax, -1);
2111       __ jccb(Assembler::parity, done);
2112       __ jccb(Assembler::below, done);
2113       __ setb(Assembler::notEqual, rdx);
2114       __ movzbl(rax, rdx);
2115     } else {
2116       __ movl(rax, 1);
2117       __ jccb(Assembler::parity, done);
2118       __ jccb(Assembler::above, done);
2119       __ movl(rax, 0);
2120       __ jccb(Assembler::equal, done);
2121       __ decrementl(rax);
2122     }
2123     __ bind(done);
2124   } else {
2125 #ifdef _LP64
2126     ShouldNotReachHere();
2127 #else
2128     if (is_float) {
2129       __ fld_s(at_rsp());
2130     } else {
2131       __ fld_d(at_rsp());
2132       __ pop(rdx);
2133     }
2134     __ pop(rcx);
2135     __ fcmp2int(rax, unordered_result < 0);
2136 #endif // _LP64
2137   }
2138 }
2139 
branch(bool is_jsr,bool is_wide)2140 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2141   __ get_method(rcx); // rcx holds method
2142   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2143                                      // holds bumped taken count
2144 
2145   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2146                              InvocationCounter::counter_offset();
2147   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2148                               InvocationCounter::counter_offset();
2149 
2150   // Load up edx with the branch displacement
2151   if (is_wide) {
2152     __ movl(rdx, at_bcp(1));
2153   } else {
2154     __ load_signed_short(rdx, at_bcp(1));
2155   }
2156   __ bswapl(rdx);
2157 
2158   if (!is_wide) {
2159     __ sarl(rdx, 16);
2160   }
2161   LP64_ONLY(__ movl2ptr(rdx, rdx));
2162 
2163   // Handle all the JSR stuff here, then exit.
2164   // It's much shorter and cleaner than intermingling with the non-JSR
2165   // normal-branch stuff occurring below.
2166   if (is_jsr) {
2167     // Pre-load the next target bytecode into rbx
2168     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2169 
2170     // compute return address as bci in rax
2171     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2172                         in_bytes(ConstMethod::codes_offset())));
2173     __ subptr(rax, Address(rcx, Method::const_offset()));
2174     // Adjust the bcp in r13 by the displacement in rdx
2175     __ addptr(rbcp, rdx);
2176     // jsr returns atos that is not an oop
2177     __ push_i(rax);
2178     __ dispatch_only(vtos, true);
2179     return;
2180   }
2181 
2182   // Normal (non-jsr) branch handling
2183 
2184   // Adjust the bcp in r13 by the displacement in rdx
2185   __ addptr(rbcp, rdx);
2186 
2187   assert(UseLoopCounter || !UseOnStackReplacement,
2188          "on-stack-replacement requires loop counters");
2189   Label backedge_counter_overflow;
2190   Label profile_method;
2191   Label dispatch;
2192   if (UseLoopCounter) {
2193     // increment backedge counter for backward branches
2194     // rax: MDO
2195     // rbx: MDO bumped taken-count
2196     // rcx: method
2197     // rdx: target offset
2198     // r13: target bcp
2199     // r14: locals pointer
2200     __ testl(rdx, rdx);             // check if forward or backward branch
2201     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2202 
2203     // check if MethodCounters exists
2204     Label has_counters;
2205     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2206     __ testptr(rax, rax);
2207     __ jcc(Assembler::notZero, has_counters);
2208     __ push(rdx);
2209     __ push(rcx);
2210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2211                rcx);
2212     __ pop(rcx);
2213     __ pop(rdx);
2214     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2215     __ testptr(rax, rax);
2216     __ jcc(Assembler::zero, dispatch);
2217     __ bind(has_counters);
2218 
2219     if (TieredCompilation) {
2220       Label no_mdo;
2221       int increment = InvocationCounter::count_increment;
2222       if (ProfileInterpreter) {
2223         // Are we profiling?
2224         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2225         __ testptr(rbx, rbx);
2226         __ jccb(Assembler::zero, no_mdo);
2227         // Increment the MDO backedge counter
2228         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2229                                            in_bytes(InvocationCounter::counter_offset()));
2230         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2231         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero,
2232                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2233         __ jmp(dispatch);
2234       }
2235       __ bind(no_mdo);
2236       // Increment backedge counter in MethodCounters*
2237       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2238       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2239       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2240                                  rax, false, Assembler::zero,
2241                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
2242     } else { // not TieredCompilation
2243       // increment counter
2244       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2245       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2246       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2247       __ movl(Address(rcx, be_offset), rax);        // store counter
2248 
2249       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2250 
2251       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2252       __ addl(rax, Address(rcx, be_offset));        // add both counters
2253 
2254       if (ProfileInterpreter) {
2255         // Test to see if we should create a method data oop
2256         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2257         __ jcc(Assembler::less, dispatch);
2258 
2259         // if no method data exists, go to profile method
2260         __ test_method_data_pointer(rax, profile_method);
2261 
2262         if (UseOnStackReplacement) {
2263           // check for overflow against rbx which is the MDO taken count
2264           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2265           __ jcc(Assembler::below, dispatch);
2266 
2267           // When ProfileInterpreter is on, the backedge_count comes
2268           // from the MethodData*, which value does not get reset on
2269           // the call to frequency_counter_overflow().  To avoid
2270           // excessive calls to the overflow routine while the method is
2271           // being compiled, add a second test to make sure the overflow
2272           // function is called only once every overflow_frequency.
2273           const int overflow_frequency = 1024;
2274           __ andl(rbx, overflow_frequency - 1);
2275           __ jcc(Assembler::zero, backedge_counter_overflow);
2276 
2277         }
2278       } else {
2279         if (UseOnStackReplacement) {
2280           // check for overflow against rax, which is the sum of the
2281           // counters
2282           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2283           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2284 
2285         }
2286       }
2287     }
2288     __ bind(dispatch);
2289   }
2290 
2291   // Pre-load the next target bytecode into rbx
2292   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2293 
2294   // continue with the bytecode @ target
2295   // rax: return bci for jsr's, unused otherwise
2296   // rbx: target bytecode
2297   // r13: target bcp
2298   __ dispatch_only(vtos, true);
2299 
2300   if (UseLoopCounter) {
2301     if (ProfileInterpreter) {
2302       // Out-of-line code to allocate method data oop.
2303       __ bind(profile_method);
2304       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2305       __ set_method_data_pointer_for_bcp();
2306       __ jmp(dispatch);
2307     }
2308 
2309     if (UseOnStackReplacement) {
2310       // invocation counter overflow
2311       __ bind(backedge_counter_overflow);
2312       __ negptr(rdx);
2313       __ addptr(rdx, rbcp); // branch bcp
2314       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2315       __ call_VM(noreg,
2316                  CAST_FROM_FN_PTR(address,
2317                                   InterpreterRuntime::frequency_counter_overflow),
2318                  rdx);
2319 
2320       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2321       // rdx: scratch
2322       // r14: locals pointer
2323       // r13: bcp
2324       __ testptr(rax, rax);                        // test result
2325       __ jcc(Assembler::zero, dispatch);         // no osr if null
2326       // nmethod may have been invalidated (VM may block upon call_VM return)
2327       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2328       __ jcc(Assembler::notEqual, dispatch);
2329 
2330       // We have the address of an on stack replacement routine in rax.
2331       // In preparation of invoking it, first we must migrate the locals
2332       // and monitors from off the interpreter frame on the stack.
2333       // Ensure to save the osr nmethod over the migration call,
2334       // it will be preserved in rbx.
2335       __ mov(rbx, rax);
2336 
2337       NOT_LP64(__ get_thread(rcx));
2338 
2339       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2340 
2341       // rax is OSR buffer, move it to expected parameter location
2342       LP64_ONLY(__ mov(j_rarg0, rax));
2343       NOT_LP64(__ mov(rcx, rax));
2344       // We use j_rarg definitions here so that registers don't conflict as parameter
2345       // registers change across platforms as we are in the midst of a calling
2346       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2347 
2348       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2349       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2350 
2351       // pop the interpreter frame
2352       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2353       __ leave();                                // remove frame anchor
2354       __ pop(retaddr);                           // get return address
2355       __ mov(rsp, sender_sp);                   // set sp to sender sp
2356       // Ensure compiled code always sees stack at proper alignment
2357       __ andptr(rsp, -(StackAlignmentInBytes));
2358 
2359       // unlike x86 we need no specialized return from compiled code
2360       // to the interpreter or the call stub.
2361 
2362       // push the return address
2363       __ push(retaddr);
2364 
2365       // and begin the OSR nmethod
2366       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2367     }
2368   }
2369 }
2370 
if_0cmp(Condition cc)2371 void TemplateTable::if_0cmp(Condition cc) {
2372   transition(itos, vtos);
2373   // assume branch is more often taken than not (loops use backward branches)
2374   Label not_taken;
2375   __ testl(rax, rax);
2376   __ jcc(j_not(cc), not_taken);
2377   branch(false, false);
2378   __ bind(not_taken);
2379   __ profile_not_taken_branch(rax);
2380 }
2381 
if_icmp(Condition cc)2382 void TemplateTable::if_icmp(Condition cc) {
2383   transition(itos, vtos);
2384   // assume branch is more often taken than not (loops use backward branches)
2385   Label not_taken;
2386   __ pop_i(rdx);
2387   __ cmpl(rdx, rax);
2388   __ jcc(j_not(cc), not_taken);
2389   branch(false, false);
2390   __ bind(not_taken);
2391   __ profile_not_taken_branch(rax);
2392 }
2393 
if_nullcmp(Condition cc)2394 void TemplateTable::if_nullcmp(Condition cc) {
2395   transition(atos, vtos);
2396   // assume branch is more often taken than not (loops use backward branches)
2397   Label not_taken;
2398   __ testptr(rax, rax);
2399   __ jcc(j_not(cc), not_taken);
2400   branch(false, false);
2401   __ bind(not_taken);
2402   __ profile_not_taken_branch(rax);
2403 }
2404 
if_acmp(Condition cc)2405 void TemplateTable::if_acmp(Condition cc) {
2406   transition(atos, vtos);
2407   // assume branch is more often taken than not (loops use backward branches)
2408   Label not_taken;
2409   __ pop_ptr(rdx);
2410   __ cmpoop(rdx, rax);
2411   __ jcc(j_not(cc), not_taken);
2412   branch(false, false);
2413   __ bind(not_taken);
2414   __ profile_not_taken_branch(rax);
2415 }
2416 
ret()2417 void TemplateTable::ret() {
2418   transition(vtos, vtos);
2419   locals_index(rbx);
2420   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2421   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2422   __ profile_ret(rbx, rcx);
2423   __ get_method(rax);
2424   __ movptr(rbcp, Address(rax, Method::const_offset()));
2425   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2426                       ConstMethod::codes_offset()));
2427   __ dispatch_next(vtos, 0, true);
2428 }
2429 
wide_ret()2430 void TemplateTable::wide_ret() {
2431   transition(vtos, vtos);
2432   locals_index_wide(rbx);
2433   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2434   __ profile_ret(rbx, rcx);
2435   __ get_method(rax);
2436   __ movptr(rbcp, Address(rax, Method::const_offset()));
2437   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2438   __ dispatch_next(vtos, 0, true);
2439 }
2440 
tableswitch()2441 void TemplateTable::tableswitch() {
2442   Label default_case, continue_execution;
2443   transition(itos, vtos);
2444 
2445   // align r13/rsi
2446   __ lea(rbx, at_bcp(BytesPerInt));
2447   __ andptr(rbx, -BytesPerInt);
2448   // load lo & hi
2449   __ movl(rcx, Address(rbx, BytesPerInt));
2450   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2451   __ bswapl(rcx);
2452   __ bswapl(rdx);
2453   // check against lo & hi
2454   __ cmpl(rax, rcx);
2455   __ jcc(Assembler::less, default_case);
2456   __ cmpl(rax, rdx);
2457   __ jcc(Assembler::greater, default_case);
2458   // lookup dispatch offset
2459   __ subl(rax, rcx);
2460   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2461   __ profile_switch_case(rax, rbx, rcx);
2462   // continue execution
2463   __ bind(continue_execution);
2464   __ bswapl(rdx);
2465   LP64_ONLY(__ movl2ptr(rdx, rdx));
2466   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2467   __ addptr(rbcp, rdx);
2468   __ dispatch_only(vtos, true);
2469   // handle default
2470   __ bind(default_case);
2471   __ profile_switch_default(rax);
2472   __ movl(rdx, Address(rbx, 0));
2473   __ jmp(continue_execution);
2474 }
2475 
lookupswitch()2476 void TemplateTable::lookupswitch() {
2477   transition(itos, itos);
2478   __ stop("lookupswitch bytecode should have been rewritten");
2479 }
2480 
fast_linearswitch()2481 void TemplateTable::fast_linearswitch() {
2482   transition(itos, vtos);
2483   Label loop_entry, loop, found, continue_execution;
2484   // bswap rax so we can avoid bswapping the table entries
2485   __ bswapl(rax);
2486   // align r13
2487   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2488                                     // this instruction (change offsets
2489                                     // below)
2490   __ andptr(rbx, -BytesPerInt);
2491   // set counter
2492   __ movl(rcx, Address(rbx, BytesPerInt));
2493   __ bswapl(rcx);
2494   __ jmpb(loop_entry);
2495   // table search
2496   __ bind(loop);
2497   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2498   __ jcc(Assembler::equal, found);
2499   __ bind(loop_entry);
2500   __ decrementl(rcx);
2501   __ jcc(Assembler::greaterEqual, loop);
2502   // default case
2503   __ profile_switch_default(rax);
2504   __ movl(rdx, Address(rbx, 0));
2505   __ jmp(continue_execution);
2506   // entry found -> get offset
2507   __ bind(found);
2508   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2509   __ profile_switch_case(rcx, rax, rbx);
2510   // continue execution
2511   __ bind(continue_execution);
2512   __ bswapl(rdx);
2513   __ movl2ptr(rdx, rdx);
2514   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2515   __ addptr(rbcp, rdx);
2516   __ dispatch_only(vtos, true);
2517 }
2518 
fast_binaryswitch()2519 void TemplateTable::fast_binaryswitch() {
2520   transition(itos, vtos);
2521   // Implementation using the following core algorithm:
2522   //
2523   // int binary_search(int key, LookupswitchPair* array, int n) {
2524   //   // Binary search according to "Methodik des Programmierens" by
2525   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2526   //   int i = 0;
2527   //   int j = n;
2528   //   while (i+1 < j) {
2529   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2530   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2531   //     // where a stands for the array and assuming that the (inexisting)
2532   //     // element a[n] is infinitely big.
2533   //     int h = (i + j) >> 1;
2534   //     // i < h < j
2535   //     if (key < array[h].fast_match()) {
2536   //       j = h;
2537   //     } else {
2538   //       i = h;
2539   //     }
2540   //   }
2541   //   // R: a[i] <= key < a[i+1] or Q
2542   //   // (i.e., if key is within array, i is the correct index)
2543   //   return i;
2544   // }
2545 
2546   // Register allocation
2547   const Register key   = rax; // already set (tosca)
2548   const Register array = rbx;
2549   const Register i     = rcx;
2550   const Register j     = rdx;
2551   const Register h     = rdi;
2552   const Register temp  = rsi;
2553 
2554   // Find array start
2555   NOT_LP64(__ save_bcp());
2556 
2557   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2558                                           // get rid of this
2559                                           // instruction (change
2560                                           // offsets below)
2561   __ andptr(array, -BytesPerInt);
2562 
2563   // Initialize i & j
2564   __ xorl(i, i);                            // i = 0;
2565   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2566 
2567   // Convert j into native byteordering
2568   __ bswapl(j);
2569 
2570   // And start
2571   Label entry;
2572   __ jmp(entry);
2573 
2574   // binary search loop
2575   {
2576     Label loop;
2577     __ bind(loop);
2578     // int h = (i + j) >> 1;
2579     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2580     __ sarl(h, 1);                               // h = (i + j) >> 1;
2581     // if (key < array[h].fast_match()) {
2582     //   j = h;
2583     // } else {
2584     //   i = h;
2585     // }
2586     // Convert array[h].match to native byte-ordering before compare
2587     __ movl(temp, Address(array, h, Address::times_8));
2588     __ bswapl(temp);
2589     __ cmpl(key, temp);
2590     // j = h if (key <  array[h].fast_match())
2591     __ cmov32(Assembler::less, j, h);
2592     // i = h if (key >= array[h].fast_match())
2593     __ cmov32(Assembler::greaterEqual, i, h);
2594     // while (i+1 < j)
2595     __ bind(entry);
2596     __ leal(h, Address(i, 1)); // i+1
2597     __ cmpl(h, j);             // i+1 < j
2598     __ jcc(Assembler::less, loop);
2599   }
2600 
2601   // end of binary search, result index is i (must check again!)
2602   Label default_case;
2603   // Convert array[i].match to native byte-ordering before compare
2604   __ movl(temp, Address(array, i, Address::times_8));
2605   __ bswapl(temp);
2606   __ cmpl(key, temp);
2607   __ jcc(Assembler::notEqual, default_case);
2608 
2609   // entry found -> j = offset
2610   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2611   __ profile_switch_case(i, key, array);
2612   __ bswapl(j);
2613   LP64_ONLY(__ movslq(j, j));
2614 
2615   NOT_LP64(__ restore_bcp());
2616   NOT_LP64(__ restore_locals());                           // restore rdi
2617 
2618   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2619   __ addptr(rbcp, j);
2620   __ dispatch_only(vtos, true);
2621 
2622   // default case -> j = default offset
2623   __ bind(default_case);
2624   __ profile_switch_default(i);
2625   __ movl(j, Address(array, -2 * BytesPerInt));
2626   __ bswapl(j);
2627   LP64_ONLY(__ movslq(j, j));
2628 
2629   NOT_LP64(__ restore_bcp());
2630   NOT_LP64(__ restore_locals());
2631 
2632   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2633   __ addptr(rbcp, j);
2634   __ dispatch_only(vtos, true);
2635 }
2636 
_return(TosState state)2637 void TemplateTable::_return(TosState state) {
2638   transition(state, state);
2639 
2640   assert(_desc->calls_vm(),
2641          "inconsistent calls_vm information"); // call in remove_activation
2642 
2643   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2644     assert(state == vtos, "only valid state");
2645     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2646     __ movptr(robj, aaddress(0));
2647     __ load_klass(rdi, robj);
2648     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2649     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2650     Label skip_register_finalizer;
2651     __ jcc(Assembler::zero, skip_register_finalizer);
2652 
2653     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2654 
2655     __ bind(skip_register_finalizer);
2656   }
2657 
2658   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2659     Label no_safepoint;
2660     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2661 #ifdef _LP64
2662     __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2663 #else
2664     const Register thread = rdi;
2665     __ get_thread(thread);
2666     __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2667 #endif
2668     __ jcc(Assembler::zero, no_safepoint);
2669     __ push(state);
2670     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2671                                     InterpreterRuntime::at_safepoint));
2672     __ pop(state);
2673     __ bind(no_safepoint);
2674   }
2675 
2676   // Narrow result if state is itos but result type is smaller.
2677   // Need to narrow in the return bytecode rather than in generate_return_entry
2678   // since compiled code callers expect the result to already be narrowed.
2679   if (state == itos) {
2680     __ narrow(rax);
2681   }
2682   __ remove_activation(state, rbcp);
2683 
2684   __ jmp(rbcp);
2685 }
2686 
2687 // ----------------------------------------------------------------------------
2688 // Volatile variables demand their effects be made known to all CPU's
2689 // in order.  Store buffers on most chips allow reads & writes to
2690 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2691 // without some kind of memory barrier (i.e., it's not sufficient that
2692 // the interpreter does not reorder volatile references, the hardware
2693 // also must not reorder them).
2694 //
2695 // According to the new Java Memory Model (JMM):
2696 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2697 //     writes act as aquire & release, so:
2698 // (2) A read cannot let unrelated NON-volatile memory refs that
2699 //     happen after the read float up to before the read.  It's OK for
2700 //     non-volatile memory refs that happen before the volatile read to
2701 //     float down below it.
2702 // (3) Similar a volatile write cannot let unrelated NON-volatile
2703 //     memory refs that happen BEFORE the write float down to after the
2704 //     write.  It's OK for non-volatile memory refs that happen after the
2705 //     volatile write to float up before it.
2706 //
2707 // We only put in barriers around volatile refs (they are expensive),
2708 // not _between_ memory refs (that would require us to track the
2709 // flavor of the previous memory refs).  Requirements (2) and (3)
2710 // require some barriers before volatile stores and after volatile
2711 // loads.  These nearly cover requirement (1) but miss the
2712 // volatile-store-volatile-load case.  This final case is placed after
2713 // volatile-stores although it could just as well go before
2714 // volatile-loads.
2715 
volatile_barrier(Assembler::Membar_mask_bits order_constraint)2716 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2717   // Helper function to insert a is-volatile test and memory barrier
2718   __ membar(order_constraint);
2719 }
2720 
resolve_cache_and_index(int byte_no,Register Rcache,Register index,size_t index_size)2721 void TemplateTable::resolve_cache_and_index(int byte_no,
2722                                             Register Rcache,
2723                                             Register index,
2724                                             size_t index_size) {
2725   const Register temp = rbx;
2726   assert_different_registers(Rcache, index, temp);
2727 
2728   Label resolved;
2729 
2730   Bytecodes::Code code = bytecode();
2731   switch (code) {
2732   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2733   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2734   default: break;
2735   }
2736 
2737   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2738   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2739   __ cmpl(temp, code);  // have we resolved this bytecode?
2740   __ jcc(Assembler::equal, resolved);
2741 
2742   // resolve first time through
2743   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2744   __ movl(temp, code);
2745   __ call_VM(noreg, entry, temp);
2746   // Update registers with resolved info
2747   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2748   __ bind(resolved);
2749 }
2750 
2751 // The cache and index registers must be set before call
load_field_cp_cache_entry(Register obj,Register cache,Register index,Register off,Register flags,bool is_static=false)2752 void TemplateTable::load_field_cp_cache_entry(Register obj,
2753                                               Register cache,
2754                                               Register index,
2755                                               Register off,
2756                                               Register flags,
2757                                               bool is_static = false) {
2758   assert_different_registers(cache, index, flags, off);
2759 
2760   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2761   // Field offset
2762   __ movptr(off, Address(cache, index, Address::times_ptr,
2763                          in_bytes(cp_base_offset +
2764                                   ConstantPoolCacheEntry::f2_offset())));
2765   // Flags
2766   __ movl(flags, Address(cache, index, Address::times_ptr,
2767                          in_bytes(cp_base_offset +
2768                                   ConstantPoolCacheEntry::flags_offset())));
2769 
2770   // klass overwrite register
2771   if (is_static) {
2772     __ movptr(obj, Address(cache, index, Address::times_ptr,
2773                            in_bytes(cp_base_offset +
2774                                     ConstantPoolCacheEntry::f1_offset())));
2775     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2776     __ movptr(obj, Address(obj, mirror_offset));
2777     __ resolve_oop_handle(obj);
2778   }
2779 }
2780 
load_invoke_cp_cache_entry(int byte_no,Register method,Register itable_index,Register flags,bool is_invokevirtual,bool is_invokevfinal,bool is_invokedynamic)2781 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2782                                                Register method,
2783                                                Register itable_index,
2784                                                Register flags,
2785                                                bool is_invokevirtual,
2786                                                bool is_invokevfinal, /*unused*/
2787                                                bool is_invokedynamic) {
2788   // setup registers
2789   const Register cache = rcx;
2790   const Register index = rdx;
2791   assert_different_registers(method, flags);
2792   assert_different_registers(method, cache, index);
2793   assert_different_registers(itable_index, flags);
2794   assert_different_registers(itable_index, cache, index);
2795   // determine constant pool cache field offsets
2796   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2797   const int method_offset = in_bytes(
2798     ConstantPoolCache::base_offset() +
2799       ((byte_no == f2_byte)
2800        ? ConstantPoolCacheEntry::f2_offset()
2801        : ConstantPoolCacheEntry::f1_offset()));
2802   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2803                                     ConstantPoolCacheEntry::flags_offset());
2804   // access constant pool cache fields
2805   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2806                                     ConstantPoolCacheEntry::f2_offset());
2807 
2808   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2809   resolve_cache_and_index(byte_no, cache, index, index_size);
2810     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2811 
2812   if (itable_index != noreg) {
2813     // pick up itable or appendix index from f2 also:
2814     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2815   }
2816   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2817 }
2818 
2819 // The registers cache and index expected to be set before call.
2820 // Correct values of the cache and index registers are preserved.
jvmti_post_field_access(Register cache,Register index,bool is_static,bool has_tos)2821 void TemplateTable::jvmti_post_field_access(Register cache,
2822                                             Register index,
2823                                             bool is_static,
2824                                             bool has_tos) {
2825   if (JvmtiExport::can_post_field_access()) {
2826     // Check to see if a field access watch has been set before we take
2827     // the time to call into the VM.
2828     Label L1;
2829     assert_different_registers(cache, index, rax);
2830     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2831     __ testl(rax,rax);
2832     __ jcc(Assembler::zero, L1);
2833 
2834     // cache entry pointer
2835     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2836     __ shll(index, LogBytesPerWord);
2837     __ addptr(cache, index);
2838     if (is_static) {
2839       __ xorptr(rax, rax);      // NULL object reference
2840     } else {
2841       __ pop(atos);         // Get the object
2842       __ verify_oop(rax);
2843       __ push(atos);        // Restore stack state
2844     }
2845     // rax,:   object pointer or NULL
2846     // cache: cache entry pointer
2847     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2848                rax, cache);
2849     __ get_cache_and_index_at_bcp(cache, index, 1);
2850     __ bind(L1);
2851   }
2852 }
2853 
pop_and_check_object(Register r)2854 void TemplateTable::pop_and_check_object(Register r) {
2855   __ pop_ptr(r);
2856   __ null_check(r);  // for field access must check obj.
2857   __ verify_oop(r);
2858 }
2859 
getfield_or_static(int byte_no,bool is_static,RewriteControl rc)2860 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2861   transition(vtos, vtos);
2862 
2863   const Register cache = rcx;
2864   const Register index = rdx;
2865   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2866   const Register off   = rbx;
2867   const Register flags = rax;
2868   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2869 
2870   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2871   jvmti_post_field_access(cache, index, is_static, false);
2872   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2873 
2874   if (!is_static) pop_and_check_object(obj);
2875 
2876   const Address field(obj, off, Address::times_1, 0*wordSize);
2877 
2878   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj;
2879 
2880   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2881   // Make sure we don't need to mask edx after the above shift
2882   assert(btos == 0, "change code, btos != 0");
2883 
2884   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2885 
2886   __ jcc(Assembler::notZero, notByte);
2887   // btos
2888   __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
2889   __ push(btos);
2890   // Rewrite bytecode to be faster
2891   if (!is_static && rc == may_rewrite) {
2892     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2893   }
2894   __ jmp(Done);
2895 
2896   __ bind(notByte);
2897   __ cmpl(flags, ztos);
2898   __ jcc(Assembler::notEqual, notBool);
2899 
2900   // ztos (same code as btos)
2901   __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg);
2902   __ push(ztos);
2903   // Rewrite bytecode to be faster
2904   if (!is_static && rc == may_rewrite) {
2905     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2906     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2907   }
2908   __ jmp(Done);
2909 
2910   __ bind(notBool);
2911   __ cmpl(flags, atos);
2912   __ jcc(Assembler::notEqual, notObj);
2913   // atos
2914   do_oop_load(_masm, field, rax);
2915   __ push(atos);
2916   if (!is_static && rc == may_rewrite) {
2917     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2918   }
2919   __ jmp(Done);
2920 
2921   __ bind(notObj);
2922   __ cmpl(flags, itos);
2923   __ jcc(Assembler::notEqual, notInt);
2924   // itos
2925   __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
2926   __ push(itos);
2927   // Rewrite bytecode to be faster
2928   if (!is_static && rc == may_rewrite) {
2929     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2930   }
2931   __ jmp(Done);
2932 
2933   __ bind(notInt);
2934   __ cmpl(flags, ctos);
2935   __ jcc(Assembler::notEqual, notChar);
2936   // ctos
2937   __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
2938   __ push(ctos);
2939   // Rewrite bytecode to be faster
2940   if (!is_static && rc == may_rewrite) {
2941     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2942   }
2943   __ jmp(Done);
2944 
2945   __ bind(notChar);
2946   __ cmpl(flags, stos);
2947   __ jcc(Assembler::notEqual, notShort);
2948   // stos
2949   __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
2950   __ push(stos);
2951   // Rewrite bytecode to be faster
2952   if (!is_static && rc == may_rewrite) {
2953     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2954   }
2955   __ jmp(Done);
2956 
2957   __ bind(notShort);
2958   __ cmpl(flags, ltos);
2959   __ jcc(Assembler::notEqual, notLong);
2960   // ltos
2961     // Generate code as if volatile (x86_32).  There just aren't enough registers to
2962     // save that information and this code is faster than the test.
2963   __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg);
2964   __ push(ltos);
2965   // Rewrite bytecode to be faster
2966   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2967   __ jmp(Done);
2968 
2969   __ bind(notLong);
2970   __ cmpl(flags, ftos);
2971   __ jcc(Assembler::notEqual, notFloat);
2972   // ftos
2973 
2974   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2975   __ push(ftos);
2976   // Rewrite bytecode to be faster
2977   if (!is_static && rc == may_rewrite) {
2978     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2979   }
2980   __ jmp(Done);
2981 
2982   __ bind(notFloat);
2983 #ifdef ASSERT
2984   Label notDouble;
2985   __ cmpl(flags, dtos);
2986   __ jcc(Assembler::notEqual, notDouble);
2987 #endif
2988   // dtos
2989   // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
2990   __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg);
2991   __ push(dtos);
2992   // Rewrite bytecode to be faster
2993   if (!is_static && rc == may_rewrite) {
2994     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2995   }
2996 #ifdef ASSERT
2997   __ jmp(Done);
2998 
2999   __ bind(notDouble);
3000   __ stop("Bad state");
3001 #endif
3002 
3003   __ bind(Done);
3004   // [jk] not needed currently
3005   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3006   //                                              Assembler::LoadStore));
3007 }
3008 
getfield(int byte_no)3009 void TemplateTable::getfield(int byte_no) {
3010   getfield_or_static(byte_no, false);
3011 }
3012 
nofast_getfield(int byte_no)3013 void TemplateTable::nofast_getfield(int byte_no) {
3014   getfield_or_static(byte_no, false, may_not_rewrite);
3015 }
3016 
getstatic(int byte_no)3017 void TemplateTable::getstatic(int byte_no) {
3018   getfield_or_static(byte_no, true);
3019 }
3020 
3021 
3022 // The registers cache and index expected to be set before call.
3023 // The function may destroy various registers, just not the cache and index registers.
jvmti_post_field_mod(Register cache,Register index,bool is_static)3024 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3025 
3026   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
3027   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
3028   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
3029   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3030 
3031   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3032 
3033   if (JvmtiExport::can_post_field_modification()) {
3034     // Check to see if a field modification watch has been set before
3035     // we take the time to call into the VM.
3036     Label L1;
3037     assert_different_registers(cache, index, rax);
3038     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3039     __ testl(rax, rax);
3040     __ jcc(Assembler::zero, L1);
3041 
3042     __ get_cache_and_index_at_bcp(robj, RDX, 1);
3043 
3044 
3045     if (is_static) {
3046       // Life is simple.  Null out the object pointer.
3047       __ xorl(RBX, RBX);
3048 
3049     } else {
3050       // Life is harder. The stack holds the value on top, followed by
3051       // the object.  We don't know the size of the value, though; it
3052       // could be one or two words depending on its type. As a result,
3053       // we must find the type to determine where the object is.
3054 #ifndef _LP64
3055       Label two_word, valsize_known;
3056 #endif
3057       __ movl(RCX, Address(robj, RDX,
3058                            Address::times_ptr,
3059                            in_bytes(cp_base_offset +
3060                                      ConstantPoolCacheEntry::flags_offset())));
3061       NOT_LP64(__ mov(rbx, rsp));
3062       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3063 
3064       // Make sure we don't need to mask rcx after the above shift
3065       ConstantPoolCacheEntry::verify_tos_state_shift();
3066 #ifdef _LP64
3067       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
3068       __ cmpl(c_rarg3, ltos);
3069       __ cmovptr(Assembler::equal,
3070                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3071       __ cmpl(c_rarg3, dtos);
3072       __ cmovptr(Assembler::equal,
3073                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3074 #else
3075       __ cmpl(rcx, ltos);
3076       __ jccb(Assembler::equal, two_word);
3077       __ cmpl(rcx, dtos);
3078       __ jccb(Assembler::equal, two_word);
3079       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3080       __ jmpb(valsize_known);
3081 
3082       __ bind(two_word);
3083       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3084 
3085       __ bind(valsize_known);
3086       // setup object pointer
3087       __ movptr(rbx, Address(rbx, 0));
3088 #endif
3089     }
3090     // cache entry pointer
3091     __ addptr(robj, in_bytes(cp_base_offset));
3092     __ shll(RDX, LogBytesPerWord);
3093     __ addptr(robj, RDX);
3094     // object (tos)
3095     __ mov(RCX, rsp);
3096     // c_rarg1: object pointer set up above (NULL if static)
3097     // c_rarg2: cache entry pointer
3098     // c_rarg3: jvalue object on the stack
3099     __ call_VM(noreg,
3100                CAST_FROM_FN_PTR(address,
3101                                 InterpreterRuntime::post_field_modification),
3102                RBX, robj, RCX);
3103     __ get_cache_and_index_at_bcp(cache, index, 1);
3104     __ bind(L1);
3105   }
3106 }
3107 
putfield_or_static(int byte_no,bool is_static,RewriteControl rc)3108 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3109   transition(vtos, vtos);
3110 
3111   const Register cache = rcx;
3112   const Register index = rdx;
3113   const Register obj   = rcx;
3114   const Register off   = rbx;
3115   const Register flags = rax;
3116 
3117   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3118   jvmti_post_field_mod(cache, index, is_static);
3119   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3120 
3121   // [jk] not needed currently
3122   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3123   //                                              Assembler::StoreStore));
3124 
3125   Label notVolatile, Done;
3126   __ movl(rdx, flags);
3127   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3128   __ andl(rdx, 0x1);
3129 
3130   // Check for volatile store
3131   __ testl(rdx, rdx);
3132   __ jcc(Assembler::zero, notVolatile);
3133 
3134   putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3135   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3136                                                Assembler::StoreStore));
3137   __ jmp(Done);
3138   __ bind(notVolatile);
3139 
3140   putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags);
3141 
3142   __ bind(Done);
3143 }
3144 
putfield_or_static_helper(int byte_no,bool is_static,RewriteControl rc,Register obj,Register off,Register flags)3145 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc,
3146                                               Register obj, Register off, Register flags) {
3147 
3148   // field addresses
3149   const Address field(obj, off, Address::times_1, 0*wordSize);
3150   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3151 
3152   Label notByte, notBool, notInt, notShort, notChar,
3153         notLong, notFloat, notObj;
3154   Label Done;
3155 
3156   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3157 
3158   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3159 
3160   assert(btos == 0, "change code, btos != 0");
3161   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3162   __ jcc(Assembler::notZero, notByte);
3163 
3164   // btos
3165   {
3166     __ pop(btos);
3167     if (!is_static) pop_and_check_object(obj);
3168     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg);
3169     if (!is_static && rc == may_rewrite) {
3170       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3171     }
3172     __ jmp(Done);
3173   }
3174 
3175   __ bind(notByte);
3176   __ cmpl(flags, ztos);
3177   __ jcc(Assembler::notEqual, notBool);
3178 
3179   // ztos
3180   {
3181     __ pop(ztos);
3182     if (!is_static) pop_and_check_object(obj);
3183     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg);
3184     if (!is_static && rc == may_rewrite) {
3185       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3186     }
3187     __ jmp(Done);
3188   }
3189 
3190   __ bind(notBool);
3191   __ cmpl(flags, atos);
3192   __ jcc(Assembler::notEqual, notObj);
3193 
3194   // atos
3195   {
3196     __ pop(atos);
3197     if (!is_static) pop_and_check_object(obj);
3198     // Store into the field
3199     do_oop_store(_masm, field, rax);
3200     if (!is_static && rc == may_rewrite) {
3201       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3202     }
3203     __ jmp(Done);
3204   }
3205 
3206   __ bind(notObj);
3207   __ cmpl(flags, itos);
3208   __ jcc(Assembler::notEqual, notInt);
3209 
3210   // itos
3211   {
3212     __ pop(itos);
3213     if (!is_static) pop_and_check_object(obj);
3214     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg);
3215     if (!is_static && rc == may_rewrite) {
3216       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3217     }
3218     __ jmp(Done);
3219   }
3220 
3221   __ bind(notInt);
3222   __ cmpl(flags, ctos);
3223   __ jcc(Assembler::notEqual, notChar);
3224 
3225   // ctos
3226   {
3227     __ pop(ctos);
3228     if (!is_static) pop_and_check_object(obj);
3229     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg);
3230     if (!is_static && rc == may_rewrite) {
3231       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3232     }
3233     __ jmp(Done);
3234   }
3235 
3236   __ bind(notChar);
3237   __ cmpl(flags, stos);
3238   __ jcc(Assembler::notEqual, notShort);
3239 
3240   // stos
3241   {
3242     __ pop(stos);
3243     if (!is_static) pop_and_check_object(obj);
3244     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg);
3245     if (!is_static && rc == may_rewrite) {
3246       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3247     }
3248     __ jmp(Done);
3249   }
3250 
3251   __ bind(notShort);
3252   __ cmpl(flags, ltos);
3253   __ jcc(Assembler::notEqual, notLong);
3254 
3255   // ltos
3256   {
3257     __ pop(ltos);
3258     if (!is_static) pop_and_check_object(obj);
3259     // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32)
3260     __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg);
3261 #ifdef _LP64
3262     if (!is_static && rc == may_rewrite) {
3263       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3264     }
3265 #endif // _LP64
3266     __ jmp(Done);
3267   }
3268 
3269   __ bind(notLong);
3270   __ cmpl(flags, ftos);
3271   __ jcc(Assembler::notEqual, notFloat);
3272 
3273   // ftos
3274   {
3275     __ pop(ftos);
3276     if (!is_static) pop_and_check_object(obj);
3277     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg);
3278     if (!is_static && rc == may_rewrite) {
3279       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3280     }
3281     __ jmp(Done);
3282   }
3283 
3284   __ bind(notFloat);
3285 #ifdef ASSERT
3286   Label notDouble;
3287   __ cmpl(flags, dtos);
3288   __ jcc(Assembler::notEqual, notDouble);
3289 #endif
3290 
3291   // dtos
3292   {
3293     __ pop(dtos);
3294     if (!is_static) pop_and_check_object(obj);
3295     // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation
3296     __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg);
3297     if (!is_static && rc == may_rewrite) {
3298       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3299     }
3300   }
3301 
3302 #ifdef ASSERT
3303   __ jmp(Done);
3304 
3305   __ bind(notDouble);
3306   __ stop("Bad state");
3307 #endif
3308 
3309   __ bind(Done);
3310 }
3311 
putfield(int byte_no)3312 void TemplateTable::putfield(int byte_no) {
3313   putfield_or_static(byte_no, false);
3314 }
3315 
nofast_putfield(int byte_no)3316 void TemplateTable::nofast_putfield(int byte_no) {
3317   putfield_or_static(byte_no, false, may_not_rewrite);
3318 }
3319 
putstatic(int byte_no)3320 void TemplateTable::putstatic(int byte_no) {
3321   putfield_or_static(byte_no, true);
3322 }
3323 
jvmti_post_fast_field_mod()3324 void TemplateTable::jvmti_post_fast_field_mod() {
3325 
3326   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3327 
3328   if (JvmtiExport::can_post_field_modification()) {
3329     // Check to see if a field modification watch has been set before
3330     // we take the time to call into the VM.
3331     Label L2;
3332     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3333     __ testl(scratch, scratch);
3334     __ jcc(Assembler::zero, L2);
3335     __ pop_ptr(rbx);                  // copy the object pointer from tos
3336     __ verify_oop(rbx);
3337     __ push_ptr(rbx);                 // put the object pointer back on tos
3338     // Save tos values before call_VM() clobbers them. Since we have
3339     // to do it for every data type, we use the saved values as the
3340     // jvalue object.
3341     switch (bytecode()) {          // load values into the jvalue object
3342     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3343     case Bytecodes::_fast_bputfield: // fall through
3344     case Bytecodes::_fast_zputfield: // fall through
3345     case Bytecodes::_fast_sputfield: // fall through
3346     case Bytecodes::_fast_cputfield: // fall through
3347     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3348     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3349     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3350     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3351 
3352     default:
3353       ShouldNotReachHere();
3354     }
3355     __ mov(scratch, rsp);             // points to jvalue on the stack
3356     // access constant pool cache entry
3357     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3358     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3359     __ verify_oop(rbx);
3360     // rbx: object pointer copied above
3361     // c_rarg2: cache entry pointer
3362     // c_rarg3: jvalue object on the stack
3363     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3364     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3365 
3366     switch (bytecode()) {             // restore tos values
3367     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3368     case Bytecodes::_fast_bputfield: // fall through
3369     case Bytecodes::_fast_zputfield: // fall through
3370     case Bytecodes::_fast_sputfield: // fall through
3371     case Bytecodes::_fast_cputfield: // fall through
3372     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3373     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3374     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3375     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3376     default: break;
3377     }
3378     __ bind(L2);
3379   }
3380 }
3381 
fast_storefield(TosState state)3382 void TemplateTable::fast_storefield(TosState state) {
3383   transition(state, vtos);
3384 
3385   ByteSize base = ConstantPoolCache::base_offset();
3386 
3387   jvmti_post_fast_field_mod();
3388 
3389   // access constant pool cache
3390   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3391 
3392   // test for volatile with rdx but rdx is tos register for lputfield.
3393   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3394                        in_bytes(base +
3395                                 ConstantPoolCacheEntry::flags_offset())));
3396 
3397   // replace index with field offset from cache entry
3398   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3399                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3400 
3401   // [jk] not needed currently
3402   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3403   //                                              Assembler::StoreStore));
3404 
3405   Label notVolatile, Done;
3406   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3407   __ andl(rdx, 0x1);
3408 
3409   // Get object from stack
3410   pop_and_check_object(rcx);
3411 
3412   // field address
3413   const Address field(rcx, rbx, Address::times_1);
3414 
3415   // Check for volatile store
3416   __ testl(rdx, rdx);
3417   __ jcc(Assembler::zero, notVolatile);
3418 
3419   fast_storefield_helper(field, rax);
3420   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3421                                                Assembler::StoreStore));
3422   __ jmp(Done);
3423   __ bind(notVolatile);
3424 
3425   fast_storefield_helper(field, rax);
3426 
3427   __ bind(Done);
3428 }
3429 
fast_storefield_helper(Address field,Register rax)3430 void TemplateTable::fast_storefield_helper(Address field, Register rax) {
3431 
3432   // access field
3433   switch (bytecode()) {
3434   case Bytecodes::_fast_aputfield:
3435     do_oop_store(_masm, field, rax);
3436     break;
3437   case Bytecodes::_fast_lputfield:
3438 #ifdef _LP64
3439     __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg);
3440 #else
3441   __ stop("should not be rewritten");
3442 #endif
3443     break;
3444   case Bytecodes::_fast_iputfield:
3445     __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg);
3446     break;
3447   case Bytecodes::_fast_zputfield:
3448     __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg);
3449     break;
3450   case Bytecodes::_fast_bputfield:
3451     __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg);
3452     break;
3453   case Bytecodes::_fast_sputfield:
3454     __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg);
3455     break;
3456   case Bytecodes::_fast_cputfield:
3457     __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg);
3458     break;
3459   case Bytecodes::_fast_fputfield:
3460     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg);
3461     break;
3462   case Bytecodes::_fast_dputfield:
3463     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg);
3464     break;
3465   default:
3466     ShouldNotReachHere();
3467   }
3468 }
3469 
fast_accessfield(TosState state)3470 void TemplateTable::fast_accessfield(TosState state) {
3471   transition(atos, state);
3472 
3473   // Do the JVMTI work here to avoid disturbing the register state below
3474   if (JvmtiExport::can_post_field_access()) {
3475     // Check to see if a field access watch has been set before we
3476     // take the time to call into the VM.
3477     Label L1;
3478     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3479     __ testl(rcx, rcx);
3480     __ jcc(Assembler::zero, L1);
3481     // access constant pool cache entry
3482     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3483     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3484     __ verify_oop(rax);
3485     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3486     LP64_ONLY(__ mov(c_rarg1, rax));
3487     // c_rarg1: object pointer copied above
3488     // c_rarg2: cache entry pointer
3489     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3490     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3491     __ pop_ptr(rax); // restore object pointer
3492     __ bind(L1);
3493   }
3494 
3495   // access constant pool cache
3496   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3497   // replace index with field offset from cache entry
3498   // [jk] not needed currently
3499   // __ movl(rdx, Address(rcx, rbx, Address::times_8,
3500   //                      in_bytes(ConstantPoolCache::base_offset() +
3501   //                               ConstantPoolCacheEntry::flags_offset())));
3502   // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3503   // __ andl(rdx, 0x1);
3504   //
3505   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3506                          in_bytes(ConstantPoolCache::base_offset() +
3507                                   ConstantPoolCacheEntry::f2_offset())));
3508 
3509   // rax: object
3510   __ verify_oop(rax);
3511   __ null_check(rax);
3512   Address field(rax, rbx, Address::times_1);
3513 
3514   // access field
3515   switch (bytecode()) {
3516   case Bytecodes::_fast_agetfield:
3517     do_oop_load(_masm, field, rax);
3518     __ verify_oop(rax);
3519     break;
3520   case Bytecodes::_fast_lgetfield:
3521 #ifdef _LP64
3522     __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg);
3523 #else
3524   __ stop("should not be rewritten");
3525 #endif
3526     break;
3527   case Bytecodes::_fast_igetfield:
3528     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3529     break;
3530   case Bytecodes::_fast_bgetfield:
3531     __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg);
3532     break;
3533   case Bytecodes::_fast_sgetfield:
3534     __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg);
3535     break;
3536   case Bytecodes::_fast_cgetfield:
3537     __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg);
3538     break;
3539   case Bytecodes::_fast_fgetfield:
3540     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3541     break;
3542   case Bytecodes::_fast_dgetfield:
3543     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3544     break;
3545   default:
3546     ShouldNotReachHere();
3547   }
3548   // [jk] not needed currently
3549   //   Label notVolatile;
3550   //   __ testl(rdx, rdx);
3551   //   __ jcc(Assembler::zero, notVolatile);
3552   //   __ membar(Assembler::LoadLoad);
3553   //   __ bind(notVolatile);
3554 }
3555 
fast_xaccess(TosState state)3556 void TemplateTable::fast_xaccess(TosState state) {
3557   transition(vtos, state);
3558 
3559   // get receiver
3560   __ movptr(rax, aaddress(0));
3561   // access constant pool cache
3562   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3563   __ movptr(rbx,
3564             Address(rcx, rdx, Address::times_ptr,
3565                     in_bytes(ConstantPoolCache::base_offset() +
3566                              ConstantPoolCacheEntry::f2_offset())));
3567   // make sure exception is reported in correct bcp range (getfield is
3568   // next instruction)
3569   __ increment(rbcp);
3570   __ null_check(rax);
3571   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3572   switch (state) {
3573   case itos:
3574     __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg);
3575     break;
3576   case atos:
3577     do_oop_load(_masm, field, rax);
3578     __ verify_oop(rax);
3579     break;
3580   case ftos:
3581     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3582     break;
3583   default:
3584     ShouldNotReachHere();
3585   }
3586 
3587   // [jk] not needed currently
3588   // Label notVolatile;
3589   // __ movl(rdx, Address(rcx, rdx, Address::times_8,
3590   //                      in_bytes(ConstantPoolCache::base_offset() +
3591   //                               ConstantPoolCacheEntry::flags_offset())));
3592   // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3593   // __ testl(rdx, 0x1);
3594   // __ jcc(Assembler::zero, notVolatile);
3595   // __ membar(Assembler::LoadLoad);
3596   // __ bind(notVolatile);
3597 
3598   __ decrement(rbcp);
3599 }
3600 
3601 //-----------------------------------------------------------------------------
3602 // Calls
3603 
count_calls(Register method,Register temp)3604 void TemplateTable::count_calls(Register method, Register temp) {
3605   // implemented elsewhere
3606   ShouldNotReachHere();
3607 }
3608 
prepare_invoke(int byte_no,Register method,Register index,Register recv,Register flags)3609 void TemplateTable::prepare_invoke(int byte_no,
3610                                    Register method,  // linked method (or i-klass)
3611                                    Register index,   // itable index, MethodType, etc.
3612                                    Register recv,    // if caller wants to see it
3613                                    Register flags    // if caller wants to test it
3614                                    ) {
3615   // determine flags
3616   const Bytecodes::Code code = bytecode();
3617   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3618   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3619   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3620   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3621   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3622   const bool load_receiver       = (recv  != noreg);
3623   const bool save_flags          = (flags != noreg);
3624   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3625   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3626   assert(flags == noreg || flags == rdx, "");
3627   assert(recv  == noreg || recv  == rcx, "");
3628 
3629   // setup registers & access constant pool cache
3630   if (recv  == noreg)  recv  = rcx;
3631   if (flags == noreg)  flags = rdx;
3632   assert_different_registers(method, index, recv, flags);
3633 
3634   // save 'interpreter return address'
3635   __ save_bcp();
3636 
3637   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3638 
3639   // maybe push appendix to arguments (just before return address)
3640   if (is_invokedynamic || is_invokehandle) {
3641     Label L_no_push;
3642     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3643     __ jcc(Assembler::zero, L_no_push);
3644     // Push the appendix as a trailing parameter.
3645     // This must be done before we get the receiver,
3646     // since the parameter_size includes it.
3647     __ push(rbx);
3648     __ mov(rbx, index);
3649     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3650     __ load_resolved_reference_at_index(index, rbx);
3651     __ pop(rbx);
3652     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3653     __ bind(L_no_push);
3654   }
3655 
3656   // load receiver if needed (after appendix is pushed so parameter size is correct)
3657   // Note: no return address pushed yet
3658   if (load_receiver) {
3659     __ movl(recv, flags);
3660     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3661     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3662     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3663     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3664     __ movptr(recv, recv_addr);
3665     __ verify_oop(recv);
3666   }
3667 
3668   if (save_flags) {
3669     __ movl(rbcp, flags);
3670   }
3671 
3672   // compute return type
3673   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3674   // Make sure we don't need to mask flags after the above shift
3675   ConstantPoolCacheEntry::verify_tos_state_shift();
3676   // load return address
3677   {
3678     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3679     ExternalAddress table(table_addr);
3680     LP64_ONLY(__ lea(rscratch1, table));
3681     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3682     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3683   }
3684 
3685   // push return address
3686   __ push(flags);
3687 
3688   // Restore flags value from the constant pool cache, and restore rsi
3689   // for later null checks.  r13 is the bytecode pointer
3690   if (save_flags) {
3691     __ movl(flags, rbcp);
3692     __ restore_bcp();
3693   }
3694 }
3695 
invokevirtual_helper(Register index,Register recv,Register flags)3696 void TemplateTable::invokevirtual_helper(Register index,
3697                                          Register recv,
3698                                          Register flags) {
3699   // Uses temporary registers rax, rdx
3700   assert_different_registers(index, recv, rax, rdx);
3701   assert(index == rbx, "");
3702   assert(recv  == rcx, "");
3703 
3704   // Test for an invoke of a final method
3705   Label notFinal;
3706   __ movl(rax, flags);
3707   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3708   __ jcc(Assembler::zero, notFinal);
3709 
3710   const Register method = index;  // method must be rbx
3711   assert(method == rbx,
3712          "Method* must be rbx for interpreter calling convention");
3713 
3714   // do the call - the index is actually the method to call
3715   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3716 
3717   // It's final, need a null check here!
3718   __ null_check(recv);
3719 
3720   // profile this call
3721   __ profile_final_call(rax);
3722   __ profile_arguments_type(rax, method, rbcp, true);
3723 
3724   __ jump_from_interpreted(method, rax);
3725 
3726   __ bind(notFinal);
3727 
3728   // get receiver klass
3729   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3730   __ load_klass(rax, recv);
3731 
3732   // profile this call
3733   __ profile_virtual_call(rax, rlocals, rdx);
3734   // get target Method* & entry point
3735   __ lookup_virtual_method(rax, index, method);
3736   __ profile_called_method(method, rdx, rbcp);
3737 
3738   __ profile_arguments_type(rdx, method, rbcp, true);
3739   __ jump_from_interpreted(method, rdx);
3740 }
3741 
invokevirtual(int byte_no)3742 void TemplateTable::invokevirtual(int byte_no) {
3743   transition(vtos, vtos);
3744   assert(byte_no == f2_byte, "use this argument");
3745   prepare_invoke(byte_no,
3746                  rbx,    // method or vtable index
3747                  noreg,  // unused itable index
3748                  rcx, rdx); // recv, flags
3749 
3750   // rbx: index
3751   // rcx: receiver
3752   // rdx: flags
3753 
3754   invokevirtual_helper(rbx, rcx, rdx);
3755 }
3756 
invokespecial(int byte_no)3757 void TemplateTable::invokespecial(int byte_no) {
3758   transition(vtos, vtos);
3759   assert(byte_no == f1_byte, "use this argument");
3760   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3761                  rcx);  // get receiver also for null check
3762   __ verify_oop(rcx);
3763   __ null_check(rcx);
3764   // do the call
3765   __ profile_call(rax);
3766   __ profile_arguments_type(rax, rbx, rbcp, false);
3767   __ jump_from_interpreted(rbx, rax);
3768 }
3769 
invokestatic(int byte_no)3770 void TemplateTable::invokestatic(int byte_no) {
3771   transition(vtos, vtos);
3772   assert(byte_no == f1_byte, "use this argument");
3773   prepare_invoke(byte_no, rbx);  // get f1 Method*
3774   // do the call
3775   __ profile_call(rax);
3776   __ profile_arguments_type(rax, rbx, rbcp, false);
3777   __ jump_from_interpreted(rbx, rax);
3778 }
3779 
3780 
fast_invokevfinal(int byte_no)3781 void TemplateTable::fast_invokevfinal(int byte_no) {
3782   transition(vtos, vtos);
3783   assert(byte_no == f2_byte, "use this argument");
3784   __ stop("fast_invokevfinal not used on x86");
3785 }
3786 
3787 
invokeinterface(int byte_no)3788 void TemplateTable::invokeinterface(int byte_no) {
3789   transition(vtos, vtos);
3790   assert(byte_no == f1_byte, "use this argument");
3791   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3792                  rcx, rdx); // recv, flags
3793 
3794   // rax: reference klass (from f1) if interface method
3795   // rbx: method (from f2)
3796   // rcx: receiver
3797   // rdx: flags
3798 
3799   // First check for Object case, then private interface method,
3800   // then regular interface method.
3801 
3802   // Special case of invokeinterface called for virtual method of
3803   // java.lang.Object.  See cpCache.cpp for details.
3804   Label notObjectMethod;
3805   __ movl(rlocals, rdx);
3806   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3807   __ jcc(Assembler::zero, notObjectMethod);
3808   invokevirtual_helper(rbx, rcx, rdx);
3809   // no return from above
3810   __ bind(notObjectMethod);
3811 
3812   Label no_such_interface; // for receiver subtype check
3813   Register recvKlass; // used for exception processing
3814 
3815   // Check for private method invocation - indicated by vfinal
3816   Label notVFinal;
3817   __ movl(rlocals, rdx);
3818   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3819   __ jcc(Assembler::zero, notVFinal);
3820 
3821   // Get receiver klass into rlocals - also a null check
3822   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3823   __ load_klass(rlocals, rcx);
3824 
3825   Label subtype;
3826   __ check_klass_subtype(rlocals, rax, rbcp, subtype);
3827   // If we get here the typecheck failed
3828   recvKlass = rdx;
3829   __ mov(recvKlass, rlocals); // shuffle receiver class for exception use
3830   __ jmp(no_such_interface);
3831 
3832   __ bind(subtype);
3833 
3834   // do the call - rbx is actually the method to call
3835 
3836   __ profile_final_call(rdx);
3837   __ profile_arguments_type(rdx, rbx, rbcp, true);
3838 
3839   __ jump_from_interpreted(rbx, rdx);
3840   // no return from above
3841   __ bind(notVFinal);
3842 
3843   // Get receiver klass into rdx - also a null check
3844   __ restore_locals();  // restore r14
3845   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3846   __ load_klass(rdx, rcx);
3847 
3848   Label no_such_method;
3849 
3850   // Preserve method for throw_AbstractMethodErrorVerbose.
3851   __ mov(rcx, rbx);
3852   // Receiver subtype check against REFC.
3853   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3854   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3855                              rdx, rax, noreg,
3856                              // outputs: scan temp. reg, scan temp. reg
3857                              rbcp, rlocals,
3858                              no_such_interface,
3859                              /*return_method=*/false);
3860 
3861   // profile this call
3862   __ restore_bcp(); // rbcp was destroyed by receiver type check
3863   __ profile_virtual_call(rdx, rbcp, rlocals);
3864 
3865   // Get declaring interface class from method, and itable index
3866   __ movptr(rax, Address(rbx, Method::const_offset()));
3867   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3868   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3869   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3870   __ subl(rbx, Method::itable_index_max);
3871   __ negl(rbx);
3872 
3873   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3874   __ mov(rlocals, rdx);
3875   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3876                              rlocals, rax, rbx,
3877                              // outputs: method, scan temp. reg
3878                              rbx, rbcp,
3879                              no_such_interface);
3880 
3881   // rbx: Method* to call
3882   // rcx: receiver
3883   // Check for abstract method error
3884   // Note: This should be done more efficiently via a throw_abstract_method_error
3885   //       interpreter entry point and a conditional jump to it in case of a null
3886   //       method.
3887   __ testptr(rbx, rbx);
3888   __ jcc(Assembler::zero, no_such_method);
3889 
3890   __ profile_called_method(rbx, rbcp, rdx);
3891   __ profile_arguments_type(rdx, rbx, rbcp, true);
3892 
3893   // do the call
3894   // rcx: receiver
3895   // rbx,: Method*
3896   __ jump_from_interpreted(rbx, rdx);
3897   __ should_not_reach_here();
3898 
3899   // exception handling code follows...
3900   // note: must restore interpreter registers to canonical
3901   //       state for exception handling to work correctly!
3902 
3903   __ bind(no_such_method);
3904   // throw exception
3905   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3906   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3907   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3908   // Pass arguments for generating a verbose error message.
3909 #ifdef _LP64
3910   recvKlass = c_rarg1;
3911   Register method    = c_rarg2;
3912   if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3913   if (method != rcx)    { __ movq(method, rcx);    }
3914 #else
3915   recvKlass = rdx;
3916   Register method    = rcx;
3917 #endif
3918   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3919              recvKlass, method);
3920   // The call_VM checks for exception, so we should never return here.
3921   __ should_not_reach_here();
3922 
3923   __ bind(no_such_interface);
3924   // throw exception
3925   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3926   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3927   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3928   // Pass arguments for generating a verbose error message.
3929   LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
3930   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3931              recvKlass, rax);
3932   // the call_VM checks for exception, so we should never return here.
3933   __ should_not_reach_here();
3934 }
3935 
invokehandle(int byte_no)3936 void TemplateTable::invokehandle(int byte_no) {
3937   transition(vtos, vtos);
3938   assert(byte_no == f1_byte, "use this argument");
3939   const Register rbx_method = rbx;
3940   const Register rax_mtype  = rax;
3941   const Register rcx_recv   = rcx;
3942   const Register rdx_flags  = rdx;
3943 
3944   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3945   __ verify_method_ptr(rbx_method);
3946   __ verify_oop(rcx_recv);
3947   __ null_check(rcx_recv);
3948 
3949   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3950   // rbx: MH.invokeExact_MT method (from f2)
3951 
3952   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3953 
3954   // FIXME: profile the LambdaForm also
3955   __ profile_final_call(rax);
3956   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3957 
3958   __ jump_from_interpreted(rbx_method, rdx);
3959 }
3960 
invokedynamic(int byte_no)3961 void TemplateTable::invokedynamic(int byte_no) {
3962   transition(vtos, vtos);
3963   assert(byte_no == f1_byte, "use this argument");
3964 
3965   const Register rbx_method   = rbx;
3966   const Register rax_callsite = rax;
3967 
3968   prepare_invoke(byte_no, rbx_method, rax_callsite);
3969 
3970   // rax: CallSite object (from cpool->resolved_references[f1])
3971   // rbx: MH.linkToCallSite method (from f2)
3972 
3973   // Note:  rax_callsite is already pushed by prepare_invoke
3974 
3975   // %%% should make a type profile for any invokedynamic that takes a ref argument
3976   // profile this call
3977   __ profile_call(rbcp);
3978   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3979 
3980   __ verify_oop(rax_callsite);
3981 
3982   __ jump_from_interpreted(rbx_method, rdx);
3983 }
3984 
3985 //-----------------------------------------------------------------------------
3986 // Allocation
3987 
_new()3988 void TemplateTable::_new() {
3989   transition(vtos, atos);
3990   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3991   Label slow_case;
3992   Label slow_case_no_pop;
3993   Label done;
3994   Label initialize_header;
3995   Label initialize_object;  // including clearing the fields
3996 
3997   __ get_cpool_and_tags(rcx, rax);
3998 
3999   // Make sure the class we're about to instantiate has been resolved.
4000   // This is done before loading InstanceKlass to be consistent with the order
4001   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4002   const int tags_offset = Array<u1>::base_offset_in_bytes();
4003   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
4004   __ jcc(Assembler::notEqual, slow_case_no_pop);
4005 
4006   // get InstanceKlass
4007   __ load_resolved_klass_at_index(rcx, rdx, rcx);
4008   __ push(rcx);  // save the contexts of klass for initializing the header
4009 
4010   // make sure klass is initialized & doesn't have finalizer
4011   // make sure klass is fully initialized
4012   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4013   __ jcc(Assembler::notEqual, slow_case);
4014 
4015   // get instance_size in InstanceKlass (scaled to a count of bytes)
4016   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
4017   // test to see if it has a finalizer or is malformed in some way
4018   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
4019   __ jcc(Assembler::notZero, slow_case);
4020 
4021   // Allocate the instance:
4022   //  If TLAB is enabled:
4023   //    Try to allocate in the TLAB.
4024   //    If fails, go to the slow path.
4025   //  Else If inline contiguous allocations are enabled:
4026   //    Try to allocate in eden.
4027   //    If fails due to heap end, go to slow path.
4028   //
4029   //  If TLAB is enabled OR inline contiguous is enabled:
4030   //    Initialize the allocation.
4031   //    Exit.
4032   //
4033   //  Go to slow path.
4034 
4035   const bool allow_shared_alloc =
4036     Universe::heap()->supports_inline_contig_alloc();
4037 
4038   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4039 #ifndef _LP64
4040   if (UseTLAB || allow_shared_alloc) {
4041     __ get_thread(thread);
4042   }
4043 #endif // _LP64
4044 
4045   if (UseTLAB) {
4046     __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case);
4047     if (ZeroTLAB) {
4048       // the fields have been already cleared
4049       __ jmp(initialize_header);
4050     } else {
4051       // initialize both the header and fields
4052       __ jmp(initialize_object);
4053     }
4054   } else {
4055     // Allocation in the shared Eden, if allowed.
4056     //
4057     // rdx: instance size in bytes
4058     __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case);
4059   }
4060 
4061   // If UseTLAB or allow_shared_alloc are true, the object is created above and
4062   // there is an initialize need. Otherwise, skip and go to the slow path.
4063   if (UseTLAB || allow_shared_alloc) {
4064     // The object is initialized before the header.  If the object size is
4065     // zero, go directly to the header initialization.
4066     __ bind(initialize_object);
4067     __ decrement(rdx, sizeof(oopDesc));
4068     __ jcc(Assembler::zero, initialize_header);
4069 
4070     // Initialize topmost object field, divide rdx by 8, check if odd and
4071     // test if zero.
4072     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
4073     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4074 
4075     // rdx must have been multiple of 8
4076 #ifdef ASSERT
4077     // make sure rdx was multiple of 8
4078     Label L;
4079     // Ignore partial flag stall after shrl() since it is debug VM
4080     __ jcc(Assembler::carryClear, L);
4081     __ stop("object size is not multiple of 2 - adjust this code");
4082     __ bind(L);
4083     // rdx must be > 0, no extra check needed here
4084 #endif
4085 
4086     // initialize remaining object fields: rdx was a multiple of 8
4087     { Label loop;
4088     __ bind(loop);
4089     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4090     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4091     __ decrement(rdx);
4092     __ jcc(Assembler::notZero, loop);
4093     }
4094 
4095     // initialize object header only.
4096     __ bind(initialize_header);
4097     if (UseBiasedLocking) {
4098       __ pop(rcx);   // get saved klass back in the register.
4099       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
4100       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
4101     } else {
4102       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
4103                 (intptr_t)markOopDesc::prototype()); // header
4104       __ pop(rcx);   // get saved klass back in the register.
4105     }
4106 #ifdef _LP64
4107     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4108     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
4109 #endif
4110     __ store_klass(rax, rcx);  // klass
4111 
4112     {
4113       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
4114       // Trigger dtrace event for fastpath
4115       __ push(atos);
4116       __ call_VM_leaf(
4117            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
4118       __ pop(atos);
4119     }
4120 
4121     __ jmp(done);
4122   }
4123 
4124   // slow case
4125   __ bind(slow_case);
4126   __ pop(rcx);   // restore stack pointer to what it was when we came in.
4127   __ bind(slow_case_no_pop);
4128 
4129   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4130   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4131 
4132   __ get_constant_pool(rarg1);
4133   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4134   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4135    __ verify_oop(rax);
4136 
4137   // continue
4138   __ bind(done);
4139 }
4140 
newarray()4141 void TemplateTable::newarray() {
4142   transition(itos, atos);
4143   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4144   __ load_unsigned_byte(rarg1, at_bcp(1));
4145   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4146           rarg1, rax);
4147 }
4148 
anewarray()4149 void TemplateTable::anewarray() {
4150   transition(itos, atos);
4151 
4152   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4153   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4154 
4155   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4156   __ get_constant_pool(rarg1);
4157   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4158           rarg1, rarg2, rax);
4159 }
4160 
arraylength()4161 void TemplateTable::arraylength() {
4162   transition(atos, itos);
4163   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4164   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4165 }
4166 
checkcast()4167 void TemplateTable::checkcast() {
4168   transition(atos, atos);
4169   Label done, is_null, ok_is_subtype, quicked, resolved;
4170   __ testptr(rax, rax); // object is in rax
4171   __ jcc(Assembler::zero, is_null);
4172 
4173   // Get cpool & tags index
4174   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4175   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4176   // See if bytecode has already been quicked
4177   __ cmpb(Address(rdx, rbx,
4178                   Address::times_1,
4179                   Array<u1>::base_offset_in_bytes()),
4180           JVM_CONSTANT_Class);
4181   __ jcc(Assembler::equal, quicked);
4182   __ push(atos); // save receiver for result, and for GC
4183   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4184 
4185   // vm_result_2 has metadata result
4186 #ifndef _LP64
4187   // borrow rdi from locals
4188   __ get_thread(rdi);
4189   __ get_vm_result_2(rax, rdi);
4190   __ restore_locals();
4191 #else
4192   __ get_vm_result_2(rax, r15_thread);
4193 #endif
4194 
4195   __ pop_ptr(rdx); // restore receiver
4196   __ jmpb(resolved);
4197 
4198   // Get superklass in rax and subklass in rbx
4199   __ bind(quicked);
4200   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4201   __ load_resolved_klass_at_index(rcx, rbx, rax);
4202 
4203   __ bind(resolved);
4204   __ load_klass(rbx, rdx);
4205 
4206   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4207   // Superklass in rax.  Subklass in rbx.
4208   __ gen_subtype_check(rbx, ok_is_subtype);
4209 
4210   // Come here on failure
4211   __ push_ptr(rdx);
4212   // object is at TOS
4213   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4214 
4215   // Come here on success
4216   __ bind(ok_is_subtype);
4217   __ mov(rax, rdx); // Restore object in rdx
4218 
4219   // Collect counts on whether this check-cast sees NULLs a lot or not.
4220   if (ProfileInterpreter) {
4221     __ jmp(done);
4222     __ bind(is_null);
4223     __ profile_null_seen(rcx);
4224   } else {
4225     __ bind(is_null);   // same as 'done'
4226   }
4227   __ bind(done);
4228 }
4229 
instanceof()4230 void TemplateTable::instanceof() {
4231   transition(atos, itos);
4232   Label done, is_null, ok_is_subtype, quicked, resolved;
4233   __ testptr(rax, rax);
4234   __ jcc(Assembler::zero, is_null);
4235 
4236   // Get cpool & tags index
4237   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4238   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4239   // See if bytecode has already been quicked
4240   __ cmpb(Address(rdx, rbx,
4241                   Address::times_1,
4242                   Array<u1>::base_offset_in_bytes()),
4243           JVM_CONSTANT_Class);
4244   __ jcc(Assembler::equal, quicked);
4245 
4246   __ push(atos); // save receiver for result, and for GC
4247   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4248   // vm_result_2 has metadata result
4249 
4250 #ifndef _LP64
4251   // borrow rdi from locals
4252   __ get_thread(rdi);
4253   __ get_vm_result_2(rax, rdi);
4254   __ restore_locals();
4255 #else
4256   __ get_vm_result_2(rax, r15_thread);
4257 #endif
4258 
4259   __ pop_ptr(rdx); // restore receiver
4260   __ verify_oop(rdx);
4261   __ load_klass(rdx, rdx);
4262   __ jmpb(resolved);
4263 
4264   // Get superklass in rax and subklass in rdx
4265   __ bind(quicked);
4266   __ load_klass(rdx, rax);
4267   __ load_resolved_klass_at_index(rcx, rbx, rax);
4268 
4269   __ bind(resolved);
4270 
4271   // Generate subtype check.  Blows rcx, rdi
4272   // Superklass in rax.  Subklass in rdx.
4273   __ gen_subtype_check(rdx, ok_is_subtype);
4274 
4275   // Come here on failure
4276   __ xorl(rax, rax);
4277   __ jmpb(done);
4278   // Come here on success
4279   __ bind(ok_is_subtype);
4280   __ movl(rax, 1);
4281 
4282   // Collect counts on whether this test sees NULLs a lot or not.
4283   if (ProfileInterpreter) {
4284     __ jmp(done);
4285     __ bind(is_null);
4286     __ profile_null_seen(rcx);
4287   } else {
4288     __ bind(is_null);   // same as 'done'
4289   }
4290   __ bind(done);
4291   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4292   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4293 }
4294 
4295 
4296 //----------------------------------------------------------------------------------------------------
4297 // Breakpoints
_breakpoint()4298 void TemplateTable::_breakpoint() {
4299   // Note: We get here even if we are single stepping..
4300   // jbug insists on setting breakpoints at every bytecode
4301   // even if we are in single step mode.
4302 
4303   transition(vtos, vtos);
4304 
4305   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4306 
4307   // get the unpatched byte code
4308   __ get_method(rarg);
4309   __ call_VM(noreg,
4310              CAST_FROM_FN_PTR(address,
4311                               InterpreterRuntime::get_original_bytecode_at),
4312              rarg, rbcp);
4313   __ mov(rbx, rax);  // why?
4314 
4315   // post the breakpoint event
4316   __ get_method(rarg);
4317   __ call_VM(noreg,
4318              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4319              rarg, rbcp);
4320 
4321   // complete the execution of original bytecode
4322   __ dispatch_only_normal(vtos);
4323 }
4324 
4325 //-----------------------------------------------------------------------------
4326 // Exceptions
4327 
athrow()4328 void TemplateTable::athrow() {
4329   transition(atos, vtos);
4330   __ null_check(rax);
4331   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4332 }
4333 
4334 //-----------------------------------------------------------------------------
4335 // Synchronization
4336 //
4337 // Note: monitorenter & exit are symmetric routines; which is reflected
4338 //       in the assembly code structure as well
4339 //
4340 // Stack layout:
4341 //
4342 // [expressions  ] <--- rsp               = expression stack top
4343 // ..
4344 // [expressions  ]
4345 // [monitor entry] <--- monitor block top = expression stack bot
4346 // ..
4347 // [monitor entry]
4348 // [frame data   ] <--- monitor block bot
4349 // ...
4350 // [saved rbp    ] <--- rbp
monitorenter()4351 void TemplateTable::monitorenter() {
4352   transition(atos, vtos);
4353 
4354   // check for NULL object
4355   __ null_check(rax);
4356 
4357   __ resolve(IS_NOT_NULL, rax);
4358 
4359   const Address monitor_block_top(
4360         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4361   const Address monitor_block_bot(
4362         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4363   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4364 
4365   Label allocated;
4366 
4367   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4368   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4369   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4370 
4371   // initialize entry pointer
4372   __ xorl(rmon, rmon); // points to free slot or NULL
4373 
4374   // find a free slot in the monitor block (result in rmon)
4375   {
4376     Label entry, loop, exit;
4377     __ movptr(rtop, monitor_block_top); // points to current entry,
4378                                         // starting with top-most entry
4379     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4380                                         // of monitor block
4381     __ jmpb(entry);
4382 
4383     __ bind(loop);
4384     // check if current entry is used
4385     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4386     // if not used then remember entry in rmon
4387     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4388     // check if current entry is for same object
4389     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4390     // if same object then stop searching
4391     __ jccb(Assembler::equal, exit);
4392     // otherwise advance to next entry
4393     __ addptr(rtop, entry_size);
4394     __ bind(entry);
4395     // check if bottom reached
4396     __ cmpptr(rtop, rbot);
4397     // if not at bottom then check this entry
4398     __ jcc(Assembler::notEqual, loop);
4399     __ bind(exit);
4400   }
4401 
4402   __ testptr(rmon, rmon); // check if a slot has been found
4403   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4404 
4405   // allocate one if there's no free slot
4406   {
4407     Label entry, loop;
4408     // 1. compute new pointers          // rsp: old expression stack top
4409     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4410     __ subptr(rsp, entry_size);         // move expression stack top
4411     __ subptr(rmon, entry_size);        // move expression stack bottom
4412     __ mov(rtop, rsp);                  // set start value for copy loop
4413     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4414     __ jmp(entry);
4415     // 2. move expression stack contents
4416     __ bind(loop);
4417     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4418                                                 // word from old location
4419     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4420     __ addptr(rtop, wordSize);                  // advance to next word
4421     __ bind(entry);
4422     __ cmpptr(rtop, rmon);                      // check if bottom reached
4423     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4424                                                 // copy next word
4425   }
4426 
4427   // call run-time routine
4428   // rmon: points to monitor entry
4429   __ bind(allocated);
4430 
4431   // Increment bcp to point to the next bytecode, so exception
4432   // handling for async. exceptions work correctly.
4433   // The object has already been poped from the stack, so the
4434   // expression stack looks correct.
4435   __ increment(rbcp);
4436 
4437   // store object
4438   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4439   __ lock_object(rmon);
4440 
4441   // check to make sure this monitor doesn't cause stack overflow after locking
4442   __ save_bcp();  // in case of exception
4443   __ generate_stack_overflow_check(0);
4444 
4445   // The bcp has already been incremented. Just need to dispatch to
4446   // next instruction.
4447   __ dispatch_next(vtos);
4448 }
4449 
monitorexit()4450 void TemplateTable::monitorexit() {
4451   transition(atos, vtos);
4452 
4453   // check for NULL object
4454   __ null_check(rax);
4455 
4456   __ resolve(IS_NOT_NULL, rax);
4457 
4458   const Address monitor_block_top(
4459         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4460   const Address monitor_block_bot(
4461         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4462   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4463 
4464   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4465   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4466 
4467   Label found;
4468 
4469   // find matching slot
4470   {
4471     Label entry, loop;
4472     __ movptr(rtop, monitor_block_top); // points to current entry,
4473                                         // starting with top-most entry
4474     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4475                                         // of monitor block
4476     __ jmpb(entry);
4477 
4478     __ bind(loop);
4479     // check if current entry is for same object
4480     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4481     // if same object then stop searching
4482     __ jcc(Assembler::equal, found);
4483     // otherwise advance to next entry
4484     __ addptr(rtop, entry_size);
4485     __ bind(entry);
4486     // check if bottom reached
4487     __ cmpptr(rtop, rbot);
4488     // if not at bottom then check this entry
4489     __ jcc(Assembler::notEqual, loop);
4490   }
4491 
4492   // error handling. Unlocking was not block-structured
4493   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4494                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4495   __ should_not_reach_here();
4496 
4497   // call run-time routine
4498   __ bind(found);
4499   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4500   __ unlock_object(rtop);
4501   __ pop_ptr(rax); // discard object
4502 }
4503 
4504 // Wide instructions
wide()4505 void TemplateTable::wide() {
4506   transition(vtos, vtos);
4507   __ load_unsigned_byte(rbx, at_bcp(1));
4508   ExternalAddress wtable((address)Interpreter::_wentry_point);
4509   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4510   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4511 }
4512 
4513 // Multi arrays
multianewarray()4514 void TemplateTable::multianewarray() {
4515   transition(vtos, atos);
4516 
4517   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4518   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4519   // last dim is on top of stack; we want address of first one:
4520   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4521   // the latter wordSize to point to the beginning of the array.
4522   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4523   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4524   __ load_unsigned_byte(rbx, at_bcp(3));
4525   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4526 }
4527