1//
2// Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// AMD64 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
64// used as byte registers)
65
66// Previously set RBX, RSI, and RDI as save-on-entry for java code
67// Turn off SOE in java-code due to frequent use of uncommon-traps.
68// Now that allocator is better, turn on RSI and RDI as SOE registers.
69
70reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
71reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
72
73reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
74reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
75
76reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
77reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
78
79reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
80reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
81
82reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
83reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
84
85// now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
86reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
87reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
88
89#ifdef _WIN64
90
91reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
92reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
93
94reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
95reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
96
97#else
98
99reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
100reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
101
102reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
103reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
104
105#endif
106
107reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
108reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
109
110reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
111reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
112
113reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
114reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
115
116reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
117reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
118
119reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
120reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
121
122reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
123reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
124
125reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
126reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
127
128reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
129reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
130
131
132// Floating Point Registers
133
134// Specify priority of register selection within phases of register
135// allocation.  Highest priority is first.  A useful heuristic is to
136// give registers a low priority when they are required by machine
137// instructions, like EAX and EDX on I486, and choose no-save registers
138// before save-on-call, & save-on-call before save-on-entry.  Registers
139// which participate in fixed calling sequences should come last.
140// Registers which are used as pairs must fall on an even boundary.
141
142alloc_class chunk0(R10,         R10_H,
143                   R11,         R11_H,
144                   R8,          R8_H,
145                   R9,          R9_H,
146                   R12,         R12_H,
147                   RCX,         RCX_H,
148                   RBX,         RBX_H,
149                   RDI,         RDI_H,
150                   RDX,         RDX_H,
151                   RSI,         RSI_H,
152                   RAX,         RAX_H,
153                   RBP,         RBP_H,
154                   R13,         R13_H,
155                   R14,         R14_H,
156                   R15,         R15_H,
157                   RSP,         RSP_H);
158
159
160//----------Architecture Description Register Classes--------------------------
161// Several register classes are automatically defined based upon information in
162// this architecture description.
163// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
164// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
165// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
166// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
167//
168
169// Empty register class.
170reg_class no_reg();
171
172// Class for all pointer registers (including RSP and RBP)
173reg_class any_reg_with_rbp(RAX, RAX_H,
174                           RDX, RDX_H,
175                           RBP, RBP_H,
176                           RDI, RDI_H,
177                           RSI, RSI_H,
178                           RCX, RCX_H,
179                           RBX, RBX_H,
180                           RSP, RSP_H,
181                           R8,  R8_H,
182                           R9,  R9_H,
183                           R10, R10_H,
184                           R11, R11_H,
185                           R12, R12_H,
186                           R13, R13_H,
187                           R14, R14_H,
188                           R15, R15_H);
189
190// Class for all pointer registers (including RSP, but excluding RBP)
191reg_class any_reg_no_rbp(RAX, RAX_H,
192                         RDX, RDX_H,
193                         RDI, RDI_H,
194                         RSI, RSI_H,
195                         RCX, RCX_H,
196                         RBX, RBX_H,
197                         RSP, RSP_H,
198                         R8,  R8_H,
199                         R9,  R9_H,
200                         R10, R10_H,
201                         R11, R11_H,
202                         R12, R12_H,
203                         R13, R13_H,
204                         R14, R14_H,
205                         R15, R15_H);
206
207// Dynamic register class that selects at runtime between register classes
208// any_reg_no_rbp and any_reg_with_rbp (depending on the value of the flag PreserveFramePointer).
209// Equivalent to: return PreserveFramePointer ? any_reg_no_rbp : any_reg_with_rbp;
210reg_class_dynamic any_reg(any_reg_no_rbp, any_reg_with_rbp, %{ PreserveFramePointer %});
211
212// Class for all pointer registers (excluding RSP)
213reg_class ptr_reg_with_rbp(RAX, RAX_H,
214                           RDX, RDX_H,
215                           RBP, RBP_H,
216                           RDI, RDI_H,
217                           RSI, RSI_H,
218                           RCX, RCX_H,
219                           RBX, RBX_H,
220                           R8,  R8_H,
221                           R9,  R9_H,
222                           R10, R10_H,
223                           R11, R11_H,
224                           R13, R13_H,
225                           R14, R14_H);
226
227// Class for all pointer registers (excluding RSP and RBP)
228reg_class ptr_reg_no_rbp(RAX, RAX_H,
229                         RDX, RDX_H,
230                         RDI, RDI_H,
231                         RSI, RSI_H,
232                         RCX, RCX_H,
233                         RBX, RBX_H,
234                         R8,  R8_H,
235                         R9,  R9_H,
236                         R10, R10_H,
237                         R11, R11_H,
238                         R13, R13_H,
239                         R14, R14_H);
240
241// Dynamic register class that selects between ptr_reg_no_rbp and ptr_reg_with_rbp.
242reg_class_dynamic ptr_reg(ptr_reg_no_rbp, ptr_reg_with_rbp, %{ PreserveFramePointer %});
243
244// Class for all pointer registers (excluding RAX and RSP)
245reg_class ptr_no_rax_reg_with_rbp(RDX, RDX_H,
246                                  RBP, RBP_H,
247                                  RDI, RDI_H,
248                                  RSI, RSI_H,
249                                  RCX, RCX_H,
250                                  RBX, RBX_H,
251                                  R8,  R8_H,
252                                  R9,  R9_H,
253                                  R10, R10_H,
254                                  R11, R11_H,
255                                  R13, R13_H,
256                                  R14, R14_H);
257
258// Class for all pointer registers (excluding RAX, RSP, and RBP)
259reg_class ptr_no_rax_reg_no_rbp(RDX, RDX_H,
260                                RDI, RDI_H,
261                                RSI, RSI_H,
262                                RCX, RCX_H,
263                                RBX, RBX_H,
264                                R8,  R8_H,
265                                R9,  R9_H,
266                                R10, R10_H,
267                                R11, R11_H,
268                                R13, R13_H,
269                                R14, R14_H);
270
271// Dynamic register class that selects between ptr_no_rax_reg_no_rbp and ptr_no_rax_reg_with_rbp.
272reg_class_dynamic ptr_no_rax_reg(ptr_no_rax_reg_no_rbp, ptr_no_rax_reg_with_rbp, %{ PreserveFramePointer %});
273
274// Class for all pointer registers (excluding RAX, RBX, and RSP)
275reg_class ptr_no_rax_rbx_reg_with_rbp(RDX, RDX_H,
276                                      RBP, RBP_H,
277                                      RDI, RDI_H,
278                                      RSI, RSI_H,
279                                      RCX, RCX_H,
280                                      R8,  R8_H,
281                                      R9,  R9_H,
282                                      R10, R10_H,
283                                      R11, R11_H,
284                                      R13, R13_H,
285                                      R14, R14_H);
286
287// Class for all pointer registers (excluding RAX, RBX, RSP, and RBP)
288reg_class ptr_no_rax_rbx_reg_no_rbp(RDX, RDX_H,
289                                    RDI, RDI_H,
290                                    RSI, RSI_H,
291                                    RCX, RCX_H,
292                                    R8,  R8_H,
293                                    R9,  R9_H,
294                                    R10, R10_H,
295                                    R11, R11_H,
296                                    R13, R13_H,
297                                    R14, R14_H);
298
299// Dynamic register class that selects between ptr_no_rax_rbx_reg_no_rbp and ptr_no_rax_rbx_reg_with_rbp.
300reg_class_dynamic ptr_no_rax_rbx_reg(ptr_no_rax_rbx_reg_no_rbp, ptr_no_rax_rbx_reg_with_rbp, %{ PreserveFramePointer %});
301
302// Singleton class for RAX pointer register
303reg_class ptr_rax_reg(RAX, RAX_H);
304
305// Singleton class for RBX pointer register
306reg_class ptr_rbx_reg(RBX, RBX_H);
307
308// Singleton class for RSI pointer register
309reg_class ptr_rsi_reg(RSI, RSI_H);
310
311// Singleton class for RDI pointer register
312reg_class ptr_rdi_reg(RDI, RDI_H);
313
314// Singleton class for stack pointer
315reg_class ptr_rsp_reg(RSP, RSP_H);
316
317// Singleton class for TLS pointer
318reg_class ptr_r15_reg(R15, R15_H);
319
320// Class for all long registers (excluding RSP)
321reg_class long_reg_with_rbp(RAX, RAX_H,
322                            RDX, RDX_H,
323                            RBP, RBP_H,
324                            RDI, RDI_H,
325                            RSI, RSI_H,
326                            RCX, RCX_H,
327                            RBX, RBX_H,
328                            R8,  R8_H,
329                            R9,  R9_H,
330                            R10, R10_H,
331                            R11, R11_H,
332                            R13, R13_H,
333                            R14, R14_H);
334
335// Class for all long registers (excluding RSP and RBP)
336reg_class long_reg_no_rbp(RAX, RAX_H,
337                          RDX, RDX_H,
338                          RDI, RDI_H,
339                          RSI, RSI_H,
340                          RCX, RCX_H,
341                          RBX, RBX_H,
342                          R8,  R8_H,
343                          R9,  R9_H,
344                          R10, R10_H,
345                          R11, R11_H,
346                          R13, R13_H,
347                          R14, R14_H);
348
349// Dynamic register class that selects between long_reg_no_rbp and long_reg_with_rbp.
350reg_class_dynamic long_reg(long_reg_no_rbp, long_reg_with_rbp, %{ PreserveFramePointer %});
351
352// Class for all long registers (excluding RAX, RDX and RSP)
353reg_class long_no_rax_rdx_reg_with_rbp(RBP, RBP_H,
354                                       RDI, RDI_H,
355                                       RSI, RSI_H,
356                                       RCX, RCX_H,
357                                       RBX, RBX_H,
358                                       R8,  R8_H,
359                                       R9,  R9_H,
360                                       R10, R10_H,
361                                       R11, R11_H,
362                                       R13, R13_H,
363                                       R14, R14_H);
364
365// Class for all long registers (excluding RAX, RDX, RSP, and RBP)
366reg_class long_no_rax_rdx_reg_no_rbp(RDI, RDI_H,
367                                     RSI, RSI_H,
368                                     RCX, RCX_H,
369                                     RBX, RBX_H,
370                                     R8,  R8_H,
371                                     R9,  R9_H,
372                                     R10, R10_H,
373                                     R11, R11_H,
374                                     R13, R13_H,
375                                     R14, R14_H);
376
377// Dynamic register class that selects between long_no_rax_rdx_reg_no_rbp and long_no_rax_rdx_reg_with_rbp.
378reg_class_dynamic long_no_rax_rdx_reg(long_no_rax_rdx_reg_no_rbp, long_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
379
380// Class for all long registers (excluding RCX and RSP)
381reg_class long_no_rcx_reg_with_rbp(RBP, RBP_H,
382                                   RDI, RDI_H,
383                                   RSI, RSI_H,
384                                   RAX, RAX_H,
385                                   RDX, RDX_H,
386                                   RBX, RBX_H,
387                                   R8,  R8_H,
388                                   R9,  R9_H,
389                                   R10, R10_H,
390                                   R11, R11_H,
391                                   R13, R13_H,
392                                   R14, R14_H);
393
394// Class for all long registers (excluding RCX, RSP, and RBP)
395reg_class long_no_rcx_reg_no_rbp(RDI, RDI_H,
396                                 RSI, RSI_H,
397                                 RAX, RAX_H,
398                                 RDX, RDX_H,
399                                 RBX, RBX_H,
400                                 R8,  R8_H,
401                                 R9,  R9_H,
402                                 R10, R10_H,
403                                 R11, R11_H,
404                                 R13, R13_H,
405                                 R14, R14_H);
406
407// Dynamic register class that selects between long_no_rcx_reg_no_rbp and long_no_rcx_reg_with_rbp.
408reg_class_dynamic long_no_rcx_reg(long_no_rcx_reg_no_rbp, long_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
409
410// Singleton class for RAX long register
411reg_class long_rax_reg(RAX, RAX_H);
412
413// Singleton class for RCX long register
414reg_class long_rcx_reg(RCX, RCX_H);
415
416// Singleton class for RDX long register
417reg_class long_rdx_reg(RDX, RDX_H);
418
419// Class for all int registers (excluding RSP)
420reg_class int_reg_with_rbp(RAX,
421                           RDX,
422                           RBP,
423                           RDI,
424                           RSI,
425                           RCX,
426                           RBX,
427                           R8,
428                           R9,
429                           R10,
430                           R11,
431                           R13,
432                           R14);
433
434// Class for all int registers (excluding RSP and RBP)
435reg_class int_reg_no_rbp(RAX,
436                         RDX,
437                         RDI,
438                         RSI,
439                         RCX,
440                         RBX,
441                         R8,
442                         R9,
443                         R10,
444                         R11,
445                         R13,
446                         R14);
447
448// Dynamic register class that selects between int_reg_no_rbp and int_reg_with_rbp.
449reg_class_dynamic int_reg(int_reg_no_rbp, int_reg_with_rbp, %{ PreserveFramePointer %});
450
451// Class for all int registers (excluding RCX and RSP)
452reg_class int_no_rcx_reg_with_rbp(RAX,
453                                  RDX,
454                                  RBP,
455                                  RDI,
456                                  RSI,
457                                  RBX,
458                                  R8,
459                                  R9,
460                                  R10,
461                                  R11,
462                                  R13,
463                                  R14);
464
465// Class for all int registers (excluding RCX, RSP, and RBP)
466reg_class int_no_rcx_reg_no_rbp(RAX,
467                                RDX,
468                                RDI,
469                                RSI,
470                                RBX,
471                                R8,
472                                R9,
473                                R10,
474                                R11,
475                                R13,
476                                R14);
477
478// Dynamic register class that selects between int_no_rcx_reg_no_rbp and int_no_rcx_reg_with_rbp.
479reg_class_dynamic int_no_rcx_reg(int_no_rcx_reg_no_rbp, int_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
480
481// Class for all int registers (excluding RAX, RDX, and RSP)
482reg_class int_no_rax_rdx_reg_with_rbp(RBP,
483                                      RDI,
484                                      RSI,
485                                      RCX,
486                                      RBX,
487                                      R8,
488                                      R9,
489                                      R10,
490                                      R11,
491                                      R13,
492                                      R14);
493
494// Class for all int registers (excluding RAX, RDX, RSP, and RBP)
495reg_class int_no_rax_rdx_reg_no_rbp(RDI,
496                                    RSI,
497                                    RCX,
498                                    RBX,
499                                    R8,
500                                    R9,
501                                    R10,
502                                    R11,
503                                    R13,
504                                    R14);
505
506// Dynamic register class that selects between int_no_rax_rdx_reg_no_rbp and int_no_rax_rdx_reg_with_rbp.
507reg_class_dynamic int_no_rax_rdx_reg(int_no_rax_rdx_reg_no_rbp, int_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
508
509// Singleton class for RAX int register
510reg_class int_rax_reg(RAX);
511
512// Singleton class for RBX int register
513reg_class int_rbx_reg(RBX);
514
515// Singleton class for RCX int register
516reg_class int_rcx_reg(RCX);
517
518// Singleton class for RCX int register
519reg_class int_rdx_reg(RDX);
520
521// Singleton class for RCX int register
522reg_class int_rdi_reg(RDI);
523
524// Singleton class for instruction pointer
525// reg_class ip_reg(RIP);
526
527%}
528
529source_hpp %{
530#if INCLUDE_ZGC
531#include "gc/z/zBarrierSetAssembler.hpp"
532#endif
533%}
534
535//----------SOURCE BLOCK-------------------------------------------------------
536// This is a block of C++ code which provides values, functions, and
537// definitions necessary in the rest of the architecture description
538source %{
539#define   RELOC_IMM64    Assembler::imm_operand
540#define   RELOC_DISP32   Assembler::disp32_operand
541
542#define __ _masm.
543
544static bool generate_vzeroupper(Compile* C) {
545  return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
546}
547
548static int clear_avx_size() {
549  return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
550}
551
552// !!!!! Special hack to get all types of calls to specify the byte offset
553//       from the start of the call to the point where the return address
554//       will point.
555int MachCallStaticJavaNode::ret_addr_offset()
556{
557  int offset = 5; // 5 bytes from start of call to where return address points
558  offset += clear_avx_size();
559  return offset;
560}
561
562int MachCallDynamicJavaNode::ret_addr_offset()
563{
564  int offset = 15; // 15 bytes from start of call to where return address points
565  offset += clear_avx_size();
566  return offset;
567}
568
569int MachCallRuntimeNode::ret_addr_offset() {
570  int offset = 13; // movq r10,#addr; callq (r10)
571  offset += clear_avx_size();
572  return offset;
573}
574
575// Indicate if the safepoint node needs the polling page as an input,
576// it does if the polling page is more than disp32 away.
577bool SafePointNode::needs_polling_address_input()
578{
579  return SafepointMechanism::uses_thread_local_poll() || Assembler::is_polling_page_far();
580}
581
582//
583// Compute padding required for nodes which need alignment
584//
585
586// The address of the call instruction needs to be 4-byte aligned to
587// ensure that it does not span a cache line so that it can be patched.
588int CallStaticJavaDirectNode::compute_padding(int current_offset) const
589{
590  current_offset += clear_avx_size(); // skip vzeroupper
591  current_offset += 1; // skip call opcode byte
592  return align_up(current_offset, alignment_required()) - current_offset;
593}
594
595// The address of the call instruction needs to be 4-byte aligned to
596// ensure that it does not span a cache line so that it can be patched.
597int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
598{
599  current_offset += clear_avx_size(); // skip vzeroupper
600  current_offset += 11; // skip movq instruction + call opcode byte
601  return align_up(current_offset, alignment_required()) - current_offset;
602}
603
604// EMIT_RM()
605void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
606  unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
607  cbuf.insts()->emit_int8(c);
608}
609
610// EMIT_CC()
611void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
612  unsigned char c = (unsigned char) (f1 | f2);
613  cbuf.insts()->emit_int8(c);
614}
615
616// EMIT_OPCODE()
617void emit_opcode(CodeBuffer &cbuf, int code) {
618  cbuf.insts()->emit_int8((unsigned char) code);
619}
620
621// EMIT_OPCODE() w/ relocation information
622void emit_opcode(CodeBuffer &cbuf,
623                 int code, relocInfo::relocType reloc, int offset, int format)
624{
625  cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
626  emit_opcode(cbuf, code);
627}
628
629// EMIT_D8()
630void emit_d8(CodeBuffer &cbuf, int d8) {
631  cbuf.insts()->emit_int8((unsigned char) d8);
632}
633
634// EMIT_D16()
635void emit_d16(CodeBuffer &cbuf, int d16) {
636  cbuf.insts()->emit_int16(d16);
637}
638
639// EMIT_D32()
640void emit_d32(CodeBuffer &cbuf, int d32) {
641  cbuf.insts()->emit_int32(d32);
642}
643
644// EMIT_D64()
645void emit_d64(CodeBuffer &cbuf, int64_t d64) {
646  cbuf.insts()->emit_int64(d64);
647}
648
649// emit 32 bit value and construct relocation entry from relocInfo::relocType
650void emit_d32_reloc(CodeBuffer& cbuf,
651                    int d32,
652                    relocInfo::relocType reloc,
653                    int format)
654{
655  assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
656  cbuf.relocate(cbuf.insts_mark(), reloc, format);
657  cbuf.insts()->emit_int32(d32);
658}
659
660// emit 32 bit value and construct relocation entry from RelocationHolder
661void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
662#ifdef ASSERT
663  if (rspec.reloc()->type() == relocInfo::oop_type &&
664      d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
665    assert(Universe::heap()->is_in_reserved((address)(intptr_t)d32), "should be real oop");
666    assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)) && (ScavengeRootsInCode || !Universe::heap()->is_scavengable(cast_to_oop((intptr_t)d32))), "cannot embed scavengable oops in code");
667  }
668#endif
669  cbuf.relocate(cbuf.insts_mark(), rspec, format);
670  cbuf.insts()->emit_int32(d32);
671}
672
673void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
674  address next_ip = cbuf.insts_end() + 4;
675  emit_d32_reloc(cbuf, (int) (addr - next_ip),
676                 external_word_Relocation::spec(addr),
677                 RELOC_DISP32);
678}
679
680
681// emit 64 bit value and construct relocation entry from relocInfo::relocType
682void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
683  cbuf.relocate(cbuf.insts_mark(), reloc, format);
684  cbuf.insts()->emit_int64(d64);
685}
686
687// emit 64 bit value and construct relocation entry from RelocationHolder
688void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
689#ifdef ASSERT
690  if (rspec.reloc()->type() == relocInfo::oop_type &&
691      d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
692    assert(Universe::heap()->is_in_reserved((address)d64), "should be real oop");
693    assert(oopDesc::is_oop(cast_to_oop(d64)) && (ScavengeRootsInCode || !Universe::heap()->is_scavengable(cast_to_oop(d64))),
694           "cannot embed scavengable oops in code");
695  }
696#endif
697  cbuf.relocate(cbuf.insts_mark(), rspec, format);
698  cbuf.insts()->emit_int64(d64);
699}
700
701// Access stack slot for load or store
702void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
703{
704  emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
705  if (-0x80 <= disp && disp < 0x80) {
706    emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
707    emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
708    emit_d8(cbuf, disp);     // Displacement  // R/M byte
709  } else {
710    emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
711    emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
712    emit_d32(cbuf, disp);     // Displacement // R/M byte
713  }
714}
715
716   // rRegI ereg, memory mem) %{    // emit_reg_mem
717void encode_RegMem(CodeBuffer &cbuf,
718                   int reg,
719                   int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
720{
721  assert(disp_reloc == relocInfo::none, "cannot have disp");
722  int regenc = reg & 7;
723  int baseenc = base & 7;
724  int indexenc = index & 7;
725
726  // There is no index & no scale, use form without SIB byte
727  if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
728    // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
729    if (disp == 0 && base != RBP_enc && base != R13_enc) {
730      emit_rm(cbuf, 0x0, regenc, baseenc); // *
731    } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
732      // If 8-bit displacement, mode 0x1
733      emit_rm(cbuf, 0x1, regenc, baseenc); // *
734      emit_d8(cbuf, disp);
735    } else {
736      // If 32-bit displacement
737      if (base == -1) { // Special flag for absolute address
738        emit_rm(cbuf, 0x0, regenc, 0x5); // *
739        if (disp_reloc != relocInfo::none) {
740          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
741        } else {
742          emit_d32(cbuf, disp);
743        }
744      } else {
745        // Normal base + offset
746        emit_rm(cbuf, 0x2, regenc, baseenc); // *
747        if (disp_reloc != relocInfo::none) {
748          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
749        } else {
750          emit_d32(cbuf, disp);
751        }
752      }
753    }
754  } else {
755    // Else, encode with the SIB byte
756    // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
757    if (disp == 0 && base != RBP_enc && base != R13_enc) {
758      // If no displacement
759      emit_rm(cbuf, 0x0, regenc, 0x4); // *
760      emit_rm(cbuf, scale, indexenc, baseenc);
761    } else {
762      if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
763        // If 8-bit displacement, mode 0x1
764        emit_rm(cbuf, 0x1, regenc, 0x4); // *
765        emit_rm(cbuf, scale, indexenc, baseenc);
766        emit_d8(cbuf, disp);
767      } else {
768        // If 32-bit displacement
769        if (base == 0x04 ) {
770          emit_rm(cbuf, 0x2, regenc, 0x4);
771          emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
772        } else {
773          emit_rm(cbuf, 0x2, regenc, 0x4);
774          emit_rm(cbuf, scale, indexenc, baseenc); // *
775        }
776        if (disp_reloc != relocInfo::none) {
777          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
778        } else {
779          emit_d32(cbuf, disp);
780        }
781      }
782    }
783  }
784}
785
786// This could be in MacroAssembler but it's fairly C2 specific
787void emit_cmpfp_fixup(MacroAssembler& _masm) {
788  Label exit;
789  __ jccb(Assembler::noParity, exit);
790  __ pushf();
791  //
792  // comiss/ucomiss instructions set ZF,PF,CF flags and
793  // zero OF,AF,SF for NaN values.
794  // Fixup flags by zeroing ZF,PF so that compare of NaN
795  // values returns 'less than' result (CF is set).
796  // Leave the rest of flags unchanged.
797  //
798  //    7 6 5 4 3 2 1 0
799  //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
800  //    0 0 1 0 1 0 1 1   (0x2B)
801  //
802  __ andq(Address(rsp, 0), 0xffffff2b);
803  __ popf();
804  __ bind(exit);
805}
806
807void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
808  Label done;
809  __ movl(dst, -1);
810  __ jcc(Assembler::parity, done);
811  __ jcc(Assembler::below, done);
812  __ setb(Assembler::notEqual, dst);
813  __ movzbl(dst, dst);
814  __ bind(done);
815}
816
817
818//=============================================================================
819const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
820
821int Compile::ConstantTable::calculate_table_base_offset() const {
822  return 0;  // absolute addressing, no offset
823}
824
825bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
826void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
827  ShouldNotReachHere();
828}
829
830void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
831  // Empty encoding
832}
833
834uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
835  return 0;
836}
837
838#ifndef PRODUCT
839void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
840  st->print("# MachConstantBaseNode (empty encoding)");
841}
842#endif
843
844
845//=============================================================================
846#ifndef PRODUCT
847void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
848  Compile* C = ra_->C;
849
850  int framesize = C->frame_size_in_bytes();
851  int bangsize = C->bang_size_in_bytes();
852  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
853  // Remove wordSize for return addr which is already pushed.
854  framesize -= wordSize;
855
856  if (C->need_stack_bang(bangsize)) {
857    framesize -= wordSize;
858    st->print("# stack bang (%d bytes)", bangsize);
859    st->print("\n\t");
860    st->print("pushq   rbp\t# Save rbp");
861    if (PreserveFramePointer) {
862        st->print("\n\t");
863        st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
864    }
865    if (framesize) {
866      st->print("\n\t");
867      st->print("subq    rsp, #%d\t# Create frame",framesize);
868    }
869  } else {
870    st->print("subq    rsp, #%d\t# Create frame",framesize);
871    st->print("\n\t");
872    framesize -= wordSize;
873    st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
874    if (PreserveFramePointer) {
875      st->print("\n\t");
876      st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
877      if (framesize > 0) {
878        st->print("\n\t");
879        st->print("addq    rbp, #%d", framesize);
880      }
881    }
882  }
883
884  if (VerifyStackAtCalls) {
885    st->print("\n\t");
886    framesize -= wordSize;
887    st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
888#ifdef ASSERT
889    st->print("\n\t");
890    st->print("# stack alignment check");
891#endif
892  }
893  if (C->stub_function() != NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
894    st->print("\n\t");
895    st->print("cmpl    [r15_thread + #disarmed_offset], #disarmed_value\t");
896    st->print("\n\t");
897    st->print("je      fast_entry\t");
898    st->print("\n\t");
899    st->print("call    #nmethod_entry_barrier_stub\t");
900    st->print("\n\tfast_entry:");
901  }
902  st->cr();
903}
904#endif
905
906void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
907  Compile* C = ra_->C;
908  MacroAssembler _masm(&cbuf);
909
910  int framesize = C->frame_size_in_bytes();
911  int bangsize = C->bang_size_in_bytes();
912
913  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != NULL);
914
915  C->set_frame_complete(cbuf.insts_size());
916
917  if (C->has_mach_constant_base_node()) {
918    // NOTE: We set the table base offset here because users might be
919    // emitted before MachConstantBaseNode.
920    Compile::ConstantTable& constant_table = C->constant_table();
921    constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
922  }
923}
924
925uint MachPrologNode::size(PhaseRegAlloc* ra_) const
926{
927  return MachNode::size(ra_); // too many variables; just compute it
928                              // the hard way
929}
930
931int MachPrologNode::reloc() const
932{
933  return 0; // a large enough number
934}
935
936//=============================================================================
937#ifndef PRODUCT
938void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
939{
940  Compile* C = ra_->C;
941  if (generate_vzeroupper(C)) {
942    st->print("vzeroupper");
943    st->cr(); st->print("\t");
944  }
945
946  int framesize = C->frame_size_in_bytes();
947  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
948  // Remove word for return adr already pushed
949  // and RBP
950  framesize -= 2*wordSize;
951
952  if (framesize) {
953    st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
954    st->print("\t");
955  }
956
957  st->print_cr("popq   rbp");
958  if (do_polling() && C->is_method_compilation()) {
959    st->print("\t");
960    if (SafepointMechanism::uses_thread_local_poll()) {
961      st->print_cr("movq   rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
962                   "testl  rax, [rscratch1]\t"
963                   "# Safepoint: poll for GC");
964    } else if (Assembler::is_polling_page_far()) {
965      st->print_cr("movq   rscratch1, #polling_page_address\n\t"
966                   "testl  rax, [rscratch1]\t"
967                   "# Safepoint: poll for GC");
968    } else {
969      st->print_cr("testl  rax, [rip + #offset_to_poll_page]\t"
970                   "# Safepoint: poll for GC");
971    }
972  }
973}
974#endif
975
976void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
977{
978  Compile* C = ra_->C;
979  MacroAssembler _masm(&cbuf);
980
981  if (generate_vzeroupper(C)) {
982    // Clear upper bits of YMM registers when current compiled code uses
983    // wide vectors to avoid AVX <-> SSE transition penalty during call.
984    __ vzeroupper();
985  }
986
987  int framesize = C->frame_size_in_bytes();
988  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
989  // Remove word for return adr already pushed
990  // and RBP
991  framesize -= 2*wordSize;
992
993  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
994
995  if (framesize) {
996    emit_opcode(cbuf, Assembler::REX_W);
997    if (framesize < 0x80) {
998      emit_opcode(cbuf, 0x83); // addq rsp, #framesize
999      emit_rm(cbuf, 0x3, 0x00, RSP_enc);
1000      emit_d8(cbuf, framesize);
1001    } else {
1002      emit_opcode(cbuf, 0x81); // addq rsp, #framesize
1003      emit_rm(cbuf, 0x3, 0x00, RSP_enc);
1004      emit_d32(cbuf, framesize);
1005    }
1006  }
1007
1008  // popq rbp
1009  emit_opcode(cbuf, 0x58 | RBP_enc);
1010
1011  if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1012    __ reserved_stack_check();
1013  }
1014
1015  if (do_polling() && C->is_method_compilation()) {
1016    MacroAssembler _masm(&cbuf);
1017    if (SafepointMechanism::uses_thread_local_poll()) {
1018      __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
1019      __ relocate(relocInfo::poll_return_type);
1020      __ testl(rax, Address(rscratch1, 0));
1021    } else {
1022      AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
1023      if (Assembler::is_polling_page_far()) {
1024        __ lea(rscratch1, polling_page);
1025        __ relocate(relocInfo::poll_return_type);
1026        __ testl(rax, Address(rscratch1, 0));
1027      } else {
1028        __ testl(rax, polling_page);
1029      }
1030    }
1031  }
1032}
1033
1034uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
1035{
1036  return MachNode::size(ra_); // too many variables; just compute it
1037                              // the hard way
1038}
1039
1040int MachEpilogNode::reloc() const
1041{
1042  return 2; // a large enough number
1043}
1044
1045const Pipeline* MachEpilogNode::pipeline() const
1046{
1047  return MachNode::pipeline_class();
1048}
1049
1050int MachEpilogNode::safepoint_offset() const
1051{
1052  return 0;
1053}
1054
1055//=============================================================================
1056
1057enum RC {
1058  rc_bad,
1059  rc_int,
1060  rc_float,
1061  rc_stack
1062};
1063
1064static enum RC rc_class(OptoReg::Name reg)
1065{
1066  if( !OptoReg::is_valid(reg)  ) return rc_bad;
1067
1068  if (OptoReg::is_stack(reg)) return rc_stack;
1069
1070  VMReg r = OptoReg::as_VMReg(reg);
1071
1072  if (r->is_Register()) return rc_int;
1073
1074  assert(r->is_XMMRegister(), "must be");
1075  return rc_float;
1076}
1077
1078// Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1079static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1080                          int src_hi, int dst_hi, uint ireg, outputStream* st);
1081
1082static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1083                            int stack_offset, int reg, uint ireg, outputStream* st);
1084
1085static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1086                                      int dst_offset, uint ireg, outputStream* st) {
1087  if (cbuf) {
1088    MacroAssembler _masm(cbuf);
1089    switch (ireg) {
1090    case Op_VecS:
1091      __ movq(Address(rsp, -8), rax);
1092      __ movl(rax, Address(rsp, src_offset));
1093      __ movl(Address(rsp, dst_offset), rax);
1094      __ movq(rax, Address(rsp, -8));
1095      break;
1096    case Op_VecD:
1097      __ pushq(Address(rsp, src_offset));
1098      __ popq (Address(rsp, dst_offset));
1099      break;
1100    case Op_VecX:
1101      __ pushq(Address(rsp, src_offset));
1102      __ popq (Address(rsp, dst_offset));
1103      __ pushq(Address(rsp, src_offset+8));
1104      __ popq (Address(rsp, dst_offset+8));
1105      break;
1106    case Op_VecY:
1107      __ vmovdqu(Address(rsp, -32), xmm0);
1108      __ vmovdqu(xmm0, Address(rsp, src_offset));
1109      __ vmovdqu(Address(rsp, dst_offset), xmm0);
1110      __ vmovdqu(xmm0, Address(rsp, -32));
1111      break;
1112    case Op_VecZ:
1113      __ evmovdquq(Address(rsp, -64), xmm0, 2);
1114      __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1115      __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1116      __ evmovdquq(xmm0, Address(rsp, -64), 2);
1117      break;
1118    default:
1119      ShouldNotReachHere();
1120    }
1121#ifndef PRODUCT
1122  } else {
1123    switch (ireg) {
1124    case Op_VecS:
1125      st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1126                "movl    rax, [rsp + #%d]\n\t"
1127                "movl    [rsp + #%d], rax\n\t"
1128                "movq    rax, [rsp - #8]",
1129                src_offset, dst_offset);
1130      break;
1131    case Op_VecD:
1132      st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1133                "popq    [rsp + #%d]",
1134                src_offset, dst_offset);
1135      break;
1136     case Op_VecX:
1137      st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1138                "popq    [rsp + #%d]\n\t"
1139                "pushq   [rsp + #%d]\n\t"
1140                "popq    [rsp + #%d]",
1141                src_offset, dst_offset, src_offset+8, dst_offset+8);
1142      break;
1143    case Op_VecY:
1144      st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1145                "vmovdqu xmm0, [rsp + #%d]\n\t"
1146                "vmovdqu [rsp + #%d], xmm0\n\t"
1147                "vmovdqu xmm0, [rsp - #32]",
1148                src_offset, dst_offset);
1149      break;
1150    case Op_VecZ:
1151      st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1152                "vmovdqu xmm0, [rsp + #%d]\n\t"
1153                "vmovdqu [rsp + #%d], xmm0\n\t"
1154                "vmovdqu xmm0, [rsp - #64]",
1155                src_offset, dst_offset);
1156      break;
1157    default:
1158      ShouldNotReachHere();
1159    }
1160#endif
1161  }
1162}
1163
1164uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1165                                       PhaseRegAlloc* ra_,
1166                                       bool do_size,
1167                                       outputStream* st) const {
1168  assert(cbuf != NULL || st  != NULL, "sanity");
1169  // Get registers to move
1170  OptoReg::Name src_second = ra_->get_reg_second(in(1));
1171  OptoReg::Name src_first = ra_->get_reg_first(in(1));
1172  OptoReg::Name dst_second = ra_->get_reg_second(this);
1173  OptoReg::Name dst_first = ra_->get_reg_first(this);
1174
1175  enum RC src_second_rc = rc_class(src_second);
1176  enum RC src_first_rc = rc_class(src_first);
1177  enum RC dst_second_rc = rc_class(dst_second);
1178  enum RC dst_first_rc = rc_class(dst_first);
1179
1180  assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1181         "must move at least 1 register" );
1182
1183  if (src_first == dst_first && src_second == dst_second) {
1184    // Self copy, no move
1185    return 0;
1186  }
1187  if (bottom_type()->isa_vect() != NULL) {
1188    uint ireg = ideal_reg();
1189    assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1190    assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1191    if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1192      // mem -> mem
1193      int src_offset = ra_->reg2offset(src_first);
1194      int dst_offset = ra_->reg2offset(dst_first);
1195      vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1196    } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1197      vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1198    } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1199      int stack_offset = ra_->reg2offset(dst_first);
1200      vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1201    } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1202      int stack_offset = ra_->reg2offset(src_first);
1203      vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1204    } else {
1205      ShouldNotReachHere();
1206    }
1207    return 0;
1208  }
1209  if (src_first_rc == rc_stack) {
1210    // mem ->
1211    if (dst_first_rc == rc_stack) {
1212      // mem -> mem
1213      assert(src_second != dst_first, "overlap");
1214      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1215          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1216        // 64-bit
1217        int src_offset = ra_->reg2offset(src_first);
1218        int dst_offset = ra_->reg2offset(dst_first);
1219        if (cbuf) {
1220          MacroAssembler _masm(cbuf);
1221          __ pushq(Address(rsp, src_offset));
1222          __ popq (Address(rsp, dst_offset));
1223#ifndef PRODUCT
1224        } else {
1225          st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1226                    "popq    [rsp + #%d]",
1227                     src_offset, dst_offset);
1228#endif
1229        }
1230      } else {
1231        // 32-bit
1232        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1233        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1234        // No pushl/popl, so:
1235        int src_offset = ra_->reg2offset(src_first);
1236        int dst_offset = ra_->reg2offset(dst_first);
1237        if (cbuf) {
1238          MacroAssembler _masm(cbuf);
1239          __ movq(Address(rsp, -8), rax);
1240          __ movl(rax, Address(rsp, src_offset));
1241          __ movl(Address(rsp, dst_offset), rax);
1242          __ movq(rax, Address(rsp, -8));
1243#ifndef PRODUCT
1244        } else {
1245          st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1246                    "movl    rax, [rsp + #%d]\n\t"
1247                    "movl    [rsp + #%d], rax\n\t"
1248                    "movq    rax, [rsp - #8]",
1249                     src_offset, dst_offset);
1250#endif
1251        }
1252      }
1253      return 0;
1254    } else if (dst_first_rc == rc_int) {
1255      // mem -> gpr
1256      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1257          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1258        // 64-bit
1259        int offset = ra_->reg2offset(src_first);
1260        if (cbuf) {
1261          MacroAssembler _masm(cbuf);
1262          __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1263#ifndef PRODUCT
1264        } else {
1265          st->print("movq    %s, [rsp + #%d]\t# spill",
1266                     Matcher::regName[dst_first],
1267                     offset);
1268#endif
1269        }
1270      } else {
1271        // 32-bit
1272        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1273        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1274        int offset = ra_->reg2offset(src_first);
1275        if (cbuf) {
1276          MacroAssembler _masm(cbuf);
1277          __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1278#ifndef PRODUCT
1279        } else {
1280          st->print("movl    %s, [rsp + #%d]\t# spill",
1281                     Matcher::regName[dst_first],
1282                     offset);
1283#endif
1284        }
1285      }
1286      return 0;
1287    } else if (dst_first_rc == rc_float) {
1288      // mem-> xmm
1289      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1290          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1291        // 64-bit
1292        int offset = ra_->reg2offset(src_first);
1293        if (cbuf) {
1294          MacroAssembler _masm(cbuf);
1295          __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1296#ifndef PRODUCT
1297        } else {
1298          st->print("%s  %s, [rsp + #%d]\t# spill",
1299                     UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1300                     Matcher::regName[dst_first],
1301                     offset);
1302#endif
1303        }
1304      } else {
1305        // 32-bit
1306        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1307        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1308        int offset = ra_->reg2offset(src_first);
1309        if (cbuf) {
1310          MacroAssembler _masm(cbuf);
1311          __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1312#ifndef PRODUCT
1313        } else {
1314          st->print("movss   %s, [rsp + #%d]\t# spill",
1315                     Matcher::regName[dst_first],
1316                     offset);
1317#endif
1318        }
1319      }
1320      return 0;
1321    }
1322  } else if (src_first_rc == rc_int) {
1323    // gpr ->
1324    if (dst_first_rc == rc_stack) {
1325      // gpr -> mem
1326      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1327          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1328        // 64-bit
1329        int offset = ra_->reg2offset(dst_first);
1330        if (cbuf) {
1331          MacroAssembler _masm(cbuf);
1332          __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1333#ifndef PRODUCT
1334        } else {
1335          st->print("movq    [rsp + #%d], %s\t# spill",
1336                     offset,
1337                     Matcher::regName[src_first]);
1338#endif
1339        }
1340      } else {
1341        // 32-bit
1342        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1343        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1344        int offset = ra_->reg2offset(dst_first);
1345        if (cbuf) {
1346          MacroAssembler _masm(cbuf);
1347          __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1348#ifndef PRODUCT
1349        } else {
1350          st->print("movl    [rsp + #%d], %s\t# spill",
1351                     offset,
1352                     Matcher::regName[src_first]);
1353#endif
1354        }
1355      }
1356      return 0;
1357    } else if (dst_first_rc == rc_int) {
1358      // gpr -> gpr
1359      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1360          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1361        // 64-bit
1362        if (cbuf) {
1363          MacroAssembler _masm(cbuf);
1364          __ movq(as_Register(Matcher::_regEncode[dst_first]),
1365                  as_Register(Matcher::_regEncode[src_first]));
1366#ifndef PRODUCT
1367        } else {
1368          st->print("movq    %s, %s\t# spill",
1369                     Matcher::regName[dst_first],
1370                     Matcher::regName[src_first]);
1371#endif
1372        }
1373        return 0;
1374      } else {
1375        // 32-bit
1376        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1377        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1378        if (cbuf) {
1379          MacroAssembler _masm(cbuf);
1380          __ movl(as_Register(Matcher::_regEncode[dst_first]),
1381                  as_Register(Matcher::_regEncode[src_first]));
1382#ifndef PRODUCT
1383        } else {
1384          st->print("movl    %s, %s\t# spill",
1385                     Matcher::regName[dst_first],
1386                     Matcher::regName[src_first]);
1387#endif
1388        }
1389        return 0;
1390      }
1391    } else if (dst_first_rc == rc_float) {
1392      // gpr -> xmm
1393      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1394          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1395        // 64-bit
1396        if (cbuf) {
1397          MacroAssembler _masm(cbuf);
1398          __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1399#ifndef PRODUCT
1400        } else {
1401          st->print("movdq   %s, %s\t# spill",
1402                     Matcher::regName[dst_first],
1403                     Matcher::regName[src_first]);
1404#endif
1405        }
1406      } else {
1407        // 32-bit
1408        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1409        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1410        if (cbuf) {
1411          MacroAssembler _masm(cbuf);
1412          __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1413#ifndef PRODUCT
1414        } else {
1415          st->print("movdl   %s, %s\t# spill",
1416                     Matcher::regName[dst_first],
1417                     Matcher::regName[src_first]);
1418#endif
1419        }
1420      }
1421      return 0;
1422    }
1423  } else if (src_first_rc == rc_float) {
1424    // xmm ->
1425    if (dst_first_rc == rc_stack) {
1426      // xmm -> mem
1427      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1428          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1429        // 64-bit
1430        int offset = ra_->reg2offset(dst_first);
1431        if (cbuf) {
1432          MacroAssembler _masm(cbuf);
1433          __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1434#ifndef PRODUCT
1435        } else {
1436          st->print("movsd   [rsp + #%d], %s\t# spill",
1437                     offset,
1438                     Matcher::regName[src_first]);
1439#endif
1440        }
1441      } else {
1442        // 32-bit
1443        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1444        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1445        int offset = ra_->reg2offset(dst_first);
1446        if (cbuf) {
1447          MacroAssembler _masm(cbuf);
1448          __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1449#ifndef PRODUCT
1450        } else {
1451          st->print("movss   [rsp + #%d], %s\t# spill",
1452                     offset,
1453                     Matcher::regName[src_first]);
1454#endif
1455        }
1456      }
1457      return 0;
1458    } else if (dst_first_rc == rc_int) {
1459      // xmm -> gpr
1460      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1461          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1462        // 64-bit
1463        if (cbuf) {
1464          MacroAssembler _masm(cbuf);
1465          __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1466#ifndef PRODUCT
1467        } else {
1468          st->print("movdq   %s, %s\t# spill",
1469                     Matcher::regName[dst_first],
1470                     Matcher::regName[src_first]);
1471#endif
1472        }
1473      } else {
1474        // 32-bit
1475        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1476        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1477        if (cbuf) {
1478          MacroAssembler _masm(cbuf);
1479          __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1480#ifndef PRODUCT
1481        } else {
1482          st->print("movdl   %s, %s\t# spill",
1483                     Matcher::regName[dst_first],
1484                     Matcher::regName[src_first]);
1485#endif
1486        }
1487      }
1488      return 0;
1489    } else if (dst_first_rc == rc_float) {
1490      // xmm -> xmm
1491      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1492          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1493        // 64-bit
1494        if (cbuf) {
1495          MacroAssembler _masm(cbuf);
1496          __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1497#ifndef PRODUCT
1498        } else {
1499          st->print("%s  %s, %s\t# spill",
1500                     UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1501                     Matcher::regName[dst_first],
1502                     Matcher::regName[src_first]);
1503#endif
1504        }
1505      } else {
1506        // 32-bit
1507        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1508        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1509        if (cbuf) {
1510          MacroAssembler _masm(cbuf);
1511          __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1512#ifndef PRODUCT
1513        } else {
1514          st->print("%s  %s, %s\t# spill",
1515                     UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1516                     Matcher::regName[dst_first],
1517                     Matcher::regName[src_first]);
1518#endif
1519        }
1520      }
1521      return 0;
1522    }
1523  }
1524
1525  assert(0," foo ");
1526  Unimplemented();
1527  return 0;
1528}
1529
1530#ifndef PRODUCT
1531void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1532  implementation(NULL, ra_, false, st);
1533}
1534#endif
1535
1536void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1537  implementation(&cbuf, ra_, false, NULL);
1538}
1539
1540uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1541  return MachNode::size(ra_);
1542}
1543
1544//=============================================================================
1545#ifndef PRODUCT
1546void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1547{
1548  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1549  int reg = ra_->get_reg_first(this);
1550  st->print("leaq    %s, [rsp + #%d]\t# box lock",
1551            Matcher::regName[reg], offset);
1552}
1553#endif
1554
1555void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1556{
1557  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1558  int reg = ra_->get_encode(this);
1559  if (offset >= 0x80) {
1560    emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1561    emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1562    emit_rm(cbuf, 0x2, reg & 7, 0x04);
1563    emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1564    emit_d32(cbuf, offset);
1565  } else {
1566    emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1567    emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1568    emit_rm(cbuf, 0x1, reg & 7, 0x04);
1569    emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1570    emit_d8(cbuf, offset);
1571  }
1572}
1573
1574uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1575{
1576  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1577  return (offset < 0x80) ? 5 : 8; // REX
1578}
1579
1580//=============================================================================
1581#ifndef PRODUCT
1582void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1583{
1584  if (UseCompressedClassPointers) {
1585    st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1586    st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1587    st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1588  } else {
1589    st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1590                 "# Inline cache check");
1591  }
1592  st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1593  st->print_cr("\tnop\t# nops to align entry point");
1594}
1595#endif
1596
1597void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1598{
1599  MacroAssembler masm(&cbuf);
1600  uint insts_size = cbuf.insts_size();
1601  if (UseCompressedClassPointers) {
1602    masm.load_klass(rscratch1, j_rarg0);
1603    masm.cmpptr(rax, rscratch1);
1604  } else {
1605    masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1606  }
1607
1608  masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1609
1610  /* WARNING these NOPs are critical so that verified entry point is properly
1611     4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1612  int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1613  if (OptoBreakpoint) {
1614    // Leave space for int3
1615    nops_cnt -= 1;
1616  }
1617  nops_cnt &= 0x3; // Do not add nops if code is aligned.
1618  if (nops_cnt > 0)
1619    masm.nop(nops_cnt);
1620}
1621
1622uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1623{
1624  return MachNode::size(ra_); // too many variables; just compute it
1625                              // the hard way
1626}
1627
1628
1629//=============================================================================
1630
1631int Matcher::regnum_to_fpu_offset(int regnum)
1632{
1633  return regnum - 32; // The FP registers are in the second chunk
1634}
1635
1636// This is UltraSparc specific, true just means we have fast l2f conversion
1637const bool Matcher::convL2FSupported(void) {
1638  return true;
1639}
1640
1641// Is this branch offset short enough that a short branch can be used?
1642//
1643// NOTE: If the platform does not provide any short branch variants, then
1644//       this method should return false for offset 0.
1645bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1646  // The passed offset is relative to address of the branch.
1647  // On 86 a branch displacement is calculated relative to address
1648  // of a next instruction.
1649  offset -= br_size;
1650
1651  // the short version of jmpConUCF2 contains multiple branches,
1652  // making the reach slightly less
1653  if (rule == jmpConUCF2_rule)
1654    return (-126 <= offset && offset <= 125);
1655  return (-128 <= offset && offset <= 127);
1656}
1657
1658const bool Matcher::isSimpleConstant64(jlong value) {
1659  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1660  //return value == (int) value;  // Cf. storeImmL and immL32.
1661
1662  // Probably always true, even if a temp register is required.
1663  return true;
1664}
1665
1666// The ecx parameter to rep stosq for the ClearArray node is in words.
1667const bool Matcher::init_array_count_is_in_bytes = false;
1668
1669// No additional cost for CMOVL.
1670const int Matcher::long_cmove_cost() { return 0; }
1671
1672// No CMOVF/CMOVD with SSE2
1673const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1674
1675// Does the CPU require late expand (see block.cpp for description of late expand)?
1676const bool Matcher::require_postalloc_expand = false;
1677
1678// Do we need to mask the count passed to shift instructions or does
1679// the cpu only look at the lower 5/6 bits anyway?
1680const bool Matcher::need_masked_shift_count = false;
1681
1682bool Matcher::narrow_oop_use_complex_address() {
1683  assert(UseCompressedOops, "only for compressed oops code");
1684  return (LogMinObjAlignmentInBytes <= 3);
1685}
1686
1687bool Matcher::narrow_klass_use_complex_address() {
1688  assert(UseCompressedClassPointers, "only for compressed klass code");
1689  return (LogKlassAlignmentInBytes <= 3);
1690}
1691
1692bool Matcher::const_oop_prefer_decode() {
1693  // Prefer ConN+DecodeN over ConP.
1694  return true;
1695}
1696
1697bool Matcher::const_klass_prefer_decode() {
1698  // TODO: Either support matching DecodeNKlass (heap-based) in operand
1699  //       or condisider the following:
1700  // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1701  //return Universe::narrow_klass_base() == NULL;
1702  return true;
1703}
1704
1705// Is it better to copy float constants, or load them directly from
1706// memory?  Intel can load a float constant from a direct address,
1707// requiring no extra registers.  Most RISCs will have to materialize
1708// an address into a register first, so they would do better to copy
1709// the constant from stack.
1710const bool Matcher::rematerialize_float_constants = true; // XXX
1711
1712// If CPU can load and store mis-aligned doubles directly then no
1713// fixup is needed.  Else we split the double into 2 integer pieces
1714// and move it piece-by-piece.  Only happens when passing doubles into
1715// C code as the Java calling convention forces doubles to be aligned.
1716const bool Matcher::misaligned_doubles_ok = true;
1717
1718// No-op on amd64
1719void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1720
1721// Advertise here if the CPU requires explicit rounding operations to
1722// implement the UseStrictFP mode.
1723const bool Matcher::strict_fp_requires_explicit_rounding = true;
1724
1725// Are floats conerted to double when stored to stack during deoptimization?
1726// On x64 it is stored without convertion so we can use normal access.
1727bool Matcher::float_in_double() { return false; }
1728
1729// Do ints take an entire long register or just half?
1730const bool Matcher::int_in_long = true;
1731
1732// Return whether or not this register is ever used as an argument.
1733// This function is used on startup to build the trampoline stubs in
1734// generateOptoStub.  Registers not mentioned will be killed by the VM
1735// call in the trampoline, and arguments in those registers not be
1736// available to the callee.
1737bool Matcher::can_be_java_arg(int reg)
1738{
1739  return
1740    reg ==  RDI_num || reg == RDI_H_num ||
1741    reg ==  RSI_num || reg == RSI_H_num ||
1742    reg ==  RDX_num || reg == RDX_H_num ||
1743    reg ==  RCX_num || reg == RCX_H_num ||
1744    reg ==   R8_num || reg ==  R8_H_num ||
1745    reg ==   R9_num || reg ==  R9_H_num ||
1746    reg ==  R12_num || reg == R12_H_num ||
1747    reg == XMM0_num || reg == XMM0b_num ||
1748    reg == XMM1_num || reg == XMM1b_num ||
1749    reg == XMM2_num || reg == XMM2b_num ||
1750    reg == XMM3_num || reg == XMM3b_num ||
1751    reg == XMM4_num || reg == XMM4b_num ||
1752    reg == XMM5_num || reg == XMM5b_num ||
1753    reg == XMM6_num || reg == XMM6b_num ||
1754    reg == XMM7_num || reg == XMM7b_num;
1755}
1756
1757bool Matcher::is_spillable_arg(int reg)
1758{
1759  return can_be_java_arg(reg);
1760}
1761
1762bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1763  // In 64 bit mode a code which use multiply when
1764  // devisor is constant is faster than hardware
1765  // DIV instruction (it uses MulHiL).
1766  return false;
1767}
1768
1769// Register for DIVI projection of divmodI
1770RegMask Matcher::divI_proj_mask() {
1771  return INT_RAX_REG_mask();
1772}
1773
1774// Register for MODI projection of divmodI
1775RegMask Matcher::modI_proj_mask() {
1776  return INT_RDX_REG_mask();
1777}
1778
1779// Register for DIVL projection of divmodL
1780RegMask Matcher::divL_proj_mask() {
1781  return LONG_RAX_REG_mask();
1782}
1783
1784// Register for MODL projection of divmodL
1785RegMask Matcher::modL_proj_mask() {
1786  return LONG_RDX_REG_mask();
1787}
1788
1789// Register for saving SP into on method handle invokes. Not used on x86_64.
1790const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1791    return NO_REG_mask();
1792}
1793
1794%}
1795
1796//----------ENCODING BLOCK-----------------------------------------------------
1797// This block specifies the encoding classes used by the compiler to
1798// output byte streams.  Encoding classes are parameterized macros
1799// used by Machine Instruction Nodes in order to generate the bit
1800// encoding of the instruction.  Operands specify their base encoding
1801// interface with the interface keyword.  There are currently
1802// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1803// COND_INTER.  REG_INTER causes an operand to generate a function
1804// which returns its register number when queried.  CONST_INTER causes
1805// an operand to generate a function which returns the value of the
1806// constant when queried.  MEMORY_INTER causes an operand to generate
1807// four functions which return the Base Register, the Index Register,
1808// the Scale Value, and the Offset Value of the operand when queried.
1809// COND_INTER causes an operand to generate six functions which return
1810// the encoding code (ie - encoding bits for the instruction)
1811// associated with each basic boolean condition for a conditional
1812// instruction.
1813//
1814// Instructions specify two basic values for encoding.  Again, a
1815// function is available to check if the constant displacement is an
1816// oop. They use the ins_encode keyword to specify their encoding
1817// classes (which must be a sequence of enc_class names, and their
1818// parameters, specified in the encoding block), and they use the
1819// opcode keyword to specify, in order, their primary, secondary, and
1820// tertiary opcode.  Only the opcode sections which a particular
1821// instruction needs for encoding need to be specified.
1822encode %{
1823  // Build emit functions for each basic byte or larger field in the
1824  // intel encoding scheme (opcode, rm, sib, immediate), and call them
1825  // from C++ code in the enc_class source block.  Emit functions will
1826  // live in the main source block for now.  In future, we can
1827  // generalize this by adding a syntax that specifies the sizes of
1828  // fields in an order, so that the adlc can build the emit functions
1829  // automagically
1830
1831  // Emit primary opcode
1832  enc_class OpcP
1833  %{
1834    emit_opcode(cbuf, $primary);
1835  %}
1836
1837  // Emit secondary opcode
1838  enc_class OpcS
1839  %{
1840    emit_opcode(cbuf, $secondary);
1841  %}
1842
1843  // Emit tertiary opcode
1844  enc_class OpcT
1845  %{
1846    emit_opcode(cbuf, $tertiary);
1847  %}
1848
1849  // Emit opcode directly
1850  enc_class Opcode(immI d8)
1851  %{
1852    emit_opcode(cbuf, $d8$$constant);
1853  %}
1854
1855  // Emit size prefix
1856  enc_class SizePrefix
1857  %{
1858    emit_opcode(cbuf, 0x66);
1859  %}
1860
1861  enc_class reg(rRegI reg)
1862  %{
1863    emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1864  %}
1865
1866  enc_class reg_reg(rRegI dst, rRegI src)
1867  %{
1868    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1869  %}
1870
1871  enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1872  %{
1873    emit_opcode(cbuf, $opcode$$constant);
1874    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1875  %}
1876
1877  enc_class cdql_enc(no_rax_rdx_RegI div)
1878  %{
1879    // Full implementation of Java idiv and irem; checks for
1880    // special case as described in JVM spec., p.243 & p.271.
1881    //
1882    //         normal case                           special case
1883    //
1884    // input : rax: dividend                         min_int
1885    //         reg: divisor                          -1
1886    //
1887    // output: rax: quotient  (= rax idiv reg)       min_int
1888    //         rdx: remainder (= rax irem reg)       0
1889    //
1890    //  Code sequnce:
1891    //
1892    //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1893    //    5:   75 07/08                jne    e <normal>
1894    //    7:   33 d2                   xor    %edx,%edx
1895    //  [div >= 8 -> offset + 1]
1896    //  [REX_B]
1897    //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1898    //    c:   74 03/04                je     11 <done>
1899    // 000000000000000e <normal>:
1900    //    e:   99                      cltd
1901    //  [div >= 8 -> offset + 1]
1902    //  [REX_B]
1903    //    f:   f7 f9                   idiv   $div
1904    // 0000000000000011 <done>:
1905
1906    // cmp    $0x80000000,%eax
1907    emit_opcode(cbuf, 0x3d);
1908    emit_d8(cbuf, 0x00);
1909    emit_d8(cbuf, 0x00);
1910    emit_d8(cbuf, 0x00);
1911    emit_d8(cbuf, 0x80);
1912
1913    // jne    e <normal>
1914    emit_opcode(cbuf, 0x75);
1915    emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1916
1917    // xor    %edx,%edx
1918    emit_opcode(cbuf, 0x33);
1919    emit_d8(cbuf, 0xD2);
1920
1921    // cmp    $0xffffffffffffffff,%ecx
1922    if ($div$$reg >= 8) {
1923      emit_opcode(cbuf, Assembler::REX_B);
1924    }
1925    emit_opcode(cbuf, 0x83);
1926    emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1927    emit_d8(cbuf, 0xFF);
1928
1929    // je     11 <done>
1930    emit_opcode(cbuf, 0x74);
1931    emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1932
1933    // <normal>
1934    // cltd
1935    emit_opcode(cbuf, 0x99);
1936
1937    // idivl (note: must be emitted by the user of this rule)
1938    // <done>
1939  %}
1940
1941  enc_class cdqq_enc(no_rax_rdx_RegL div)
1942  %{
1943    // Full implementation of Java ldiv and lrem; checks for
1944    // special case as described in JVM spec., p.243 & p.271.
1945    //
1946    //         normal case                           special case
1947    //
1948    // input : rax: dividend                         min_long
1949    //         reg: divisor                          -1
1950    //
1951    // output: rax: quotient  (= rax idiv reg)       min_long
1952    //         rdx: remainder (= rax irem reg)       0
1953    //
1954    //  Code sequnce:
1955    //
1956    //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1957    //    7:   00 00 80
1958    //    a:   48 39 d0                cmp    %rdx,%rax
1959    //    d:   75 08                   jne    17 <normal>
1960    //    f:   33 d2                   xor    %edx,%edx
1961    //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1962    //   15:   74 05                   je     1c <done>
1963    // 0000000000000017 <normal>:
1964    //   17:   48 99                   cqto
1965    //   19:   48 f7 f9                idiv   $div
1966    // 000000000000001c <done>:
1967
1968    // mov    $0x8000000000000000,%rdx
1969    emit_opcode(cbuf, Assembler::REX_W);
1970    emit_opcode(cbuf, 0xBA);
1971    emit_d8(cbuf, 0x00);
1972    emit_d8(cbuf, 0x00);
1973    emit_d8(cbuf, 0x00);
1974    emit_d8(cbuf, 0x00);
1975    emit_d8(cbuf, 0x00);
1976    emit_d8(cbuf, 0x00);
1977    emit_d8(cbuf, 0x00);
1978    emit_d8(cbuf, 0x80);
1979
1980    // cmp    %rdx,%rax
1981    emit_opcode(cbuf, Assembler::REX_W);
1982    emit_opcode(cbuf, 0x39);
1983    emit_d8(cbuf, 0xD0);
1984
1985    // jne    17 <normal>
1986    emit_opcode(cbuf, 0x75);
1987    emit_d8(cbuf, 0x08);
1988
1989    // xor    %edx,%edx
1990    emit_opcode(cbuf, 0x33);
1991    emit_d8(cbuf, 0xD2);
1992
1993    // cmp    $0xffffffffffffffff,$div
1994    emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1995    emit_opcode(cbuf, 0x83);
1996    emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1997    emit_d8(cbuf, 0xFF);
1998
1999    // je     1e <done>
2000    emit_opcode(cbuf, 0x74);
2001    emit_d8(cbuf, 0x05);
2002
2003    // <normal>
2004    // cqto
2005    emit_opcode(cbuf, Assembler::REX_W);
2006    emit_opcode(cbuf, 0x99);
2007
2008    // idivq (note: must be emitted by the user of this rule)
2009    // <done>
2010  %}
2011
2012  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
2013  enc_class OpcSE(immI imm)
2014  %{
2015    // Emit primary opcode and set sign-extend bit
2016    // Check for 8-bit immediate, and set sign extend bit in opcode
2017    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2018      emit_opcode(cbuf, $primary | 0x02);
2019    } else {
2020      // 32-bit immediate
2021      emit_opcode(cbuf, $primary);
2022    }
2023  %}
2024
2025  enc_class OpcSErm(rRegI dst, immI imm)
2026  %{
2027    // OpcSEr/m
2028    int dstenc = $dst$$reg;
2029    if (dstenc >= 8) {
2030      emit_opcode(cbuf, Assembler::REX_B);
2031      dstenc -= 8;
2032    }
2033    // Emit primary opcode and set sign-extend bit
2034    // Check for 8-bit immediate, and set sign extend bit in opcode
2035    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2036      emit_opcode(cbuf, $primary | 0x02);
2037    } else {
2038      // 32-bit immediate
2039      emit_opcode(cbuf, $primary);
2040    }
2041    // Emit r/m byte with secondary opcode, after primary opcode.
2042    emit_rm(cbuf, 0x3, $secondary, dstenc);
2043  %}
2044
2045  enc_class OpcSErm_wide(rRegL dst, immI imm)
2046  %{
2047    // OpcSEr/m
2048    int dstenc = $dst$$reg;
2049    if (dstenc < 8) {
2050      emit_opcode(cbuf, Assembler::REX_W);
2051    } else {
2052      emit_opcode(cbuf, Assembler::REX_WB);
2053      dstenc -= 8;
2054    }
2055    // Emit primary opcode and set sign-extend bit
2056    // Check for 8-bit immediate, and set sign extend bit in opcode
2057    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2058      emit_opcode(cbuf, $primary | 0x02);
2059    } else {
2060      // 32-bit immediate
2061      emit_opcode(cbuf, $primary);
2062    }
2063    // Emit r/m byte with secondary opcode, after primary opcode.
2064    emit_rm(cbuf, 0x3, $secondary, dstenc);
2065  %}
2066
2067  enc_class Con8or32(immI imm)
2068  %{
2069    // Check for 8-bit immediate, and set sign extend bit in opcode
2070    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2071      $$$emit8$imm$$constant;
2072    } else {
2073      // 32-bit immediate
2074      $$$emit32$imm$$constant;
2075    }
2076  %}
2077
2078  enc_class opc2_reg(rRegI dst)
2079  %{
2080    // BSWAP
2081    emit_cc(cbuf, $secondary, $dst$$reg);
2082  %}
2083
2084  enc_class opc3_reg(rRegI dst)
2085  %{
2086    // BSWAP
2087    emit_cc(cbuf, $tertiary, $dst$$reg);
2088  %}
2089
2090  enc_class reg_opc(rRegI div)
2091  %{
2092    // INC, DEC, IDIV, IMOD, JMP indirect, ...
2093    emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2094  %}
2095
2096  enc_class enc_cmov(cmpOp cop)
2097  %{
2098    // CMOV
2099    $$$emit8$primary;
2100    emit_cc(cbuf, $secondary, $cop$$cmpcode);
2101  %}
2102
2103  enc_class enc_PartialSubtypeCheck()
2104  %{
2105    Register Rrdi = as_Register(RDI_enc); // result register
2106    Register Rrax = as_Register(RAX_enc); // super class
2107    Register Rrcx = as_Register(RCX_enc); // killed
2108    Register Rrsi = as_Register(RSI_enc); // sub class
2109    Label miss;
2110    const bool set_cond_codes = true;
2111
2112    MacroAssembler _masm(&cbuf);
2113    __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2114                                     NULL, &miss,
2115                                     /*set_cond_codes:*/ true);
2116    if ($primary) {
2117      __ xorptr(Rrdi, Rrdi);
2118    }
2119    __ bind(miss);
2120  %}
2121
2122  enc_class clear_avx %{
2123    debug_only(int off0 = cbuf.insts_size());
2124    if (generate_vzeroupper(Compile::current())) {
2125      // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2126      // Clear upper bits of YMM registers when current compiled code uses
2127      // wide vectors to avoid AVX <-> SSE transition penalty during call.
2128      MacroAssembler _masm(&cbuf);
2129      __ vzeroupper();
2130    }
2131    debug_only(int off1 = cbuf.insts_size());
2132    assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2133  %}
2134
2135  enc_class Java_To_Runtime(method meth) %{
2136    // No relocation needed
2137    MacroAssembler _masm(&cbuf);
2138    __ mov64(r10, (int64_t) $meth$$method);
2139    __ call(r10);
2140  %}
2141
2142  enc_class Java_To_Interpreter(method meth)
2143  %{
2144    // CALL Java_To_Interpreter
2145    // This is the instruction starting address for relocation info.
2146    cbuf.set_insts_mark();
2147    $$$emit8$primary;
2148    // CALL directly to the runtime
2149    emit_d32_reloc(cbuf,
2150                   (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2151                   runtime_call_Relocation::spec(),
2152                   RELOC_DISP32);
2153  %}
2154
2155  enc_class Java_Static_Call(method meth)
2156  %{
2157    // JAVA STATIC CALL
2158    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2159    // determine who we intended to call.
2160    cbuf.set_insts_mark();
2161    $$$emit8$primary;
2162
2163    if (!_method) {
2164      emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2165                     runtime_call_Relocation::spec(),
2166                     RELOC_DISP32);
2167    } else {
2168      int method_index = resolved_method_index(cbuf);
2169      RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2170                                                  : static_call_Relocation::spec(method_index);
2171      emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2172                     rspec, RELOC_DISP32);
2173      // Emit stubs for static call.
2174      address mark = cbuf.insts_mark();
2175      address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2176      if (stub == NULL) {
2177        ciEnv::current()->record_failure("CodeCache is full");
2178        return;
2179      }
2180#if INCLUDE_AOT
2181      CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2182#endif
2183    }
2184  %}
2185
2186  enc_class Java_Dynamic_Call(method meth) %{
2187    MacroAssembler _masm(&cbuf);
2188    __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2189  %}
2190
2191  enc_class Java_Compiled_Call(method meth)
2192  %{
2193    // JAVA COMPILED CALL
2194    int disp = in_bytes(Method:: from_compiled_offset());
2195
2196    // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2197    // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2198
2199    // callq *disp(%rax)
2200    cbuf.set_insts_mark();
2201    $$$emit8$primary;
2202    if (disp < 0x80) {
2203      emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2204      emit_d8(cbuf, disp); // Displacement
2205    } else {
2206      emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2207      emit_d32(cbuf, disp); // Displacement
2208    }
2209  %}
2210
2211  enc_class reg_opc_imm(rRegI dst, immI8 shift)
2212  %{
2213    // SAL, SAR, SHR
2214    int dstenc = $dst$$reg;
2215    if (dstenc >= 8) {
2216      emit_opcode(cbuf, Assembler::REX_B);
2217      dstenc -= 8;
2218    }
2219    $$$emit8$primary;
2220    emit_rm(cbuf, 0x3, $secondary, dstenc);
2221    $$$emit8$shift$$constant;
2222  %}
2223
2224  enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2225  %{
2226    // SAL, SAR, SHR
2227    int dstenc = $dst$$reg;
2228    if (dstenc < 8) {
2229      emit_opcode(cbuf, Assembler::REX_W);
2230    } else {
2231      emit_opcode(cbuf, Assembler::REX_WB);
2232      dstenc -= 8;
2233    }
2234    $$$emit8$primary;
2235    emit_rm(cbuf, 0x3, $secondary, dstenc);
2236    $$$emit8$shift$$constant;
2237  %}
2238
2239  enc_class load_immI(rRegI dst, immI src)
2240  %{
2241    int dstenc = $dst$$reg;
2242    if (dstenc >= 8) {
2243      emit_opcode(cbuf, Assembler::REX_B);
2244      dstenc -= 8;
2245    }
2246    emit_opcode(cbuf, 0xB8 | dstenc);
2247    $$$emit32$src$$constant;
2248  %}
2249
2250  enc_class load_immL(rRegL dst, immL src)
2251  %{
2252    int dstenc = $dst$$reg;
2253    if (dstenc < 8) {
2254      emit_opcode(cbuf, Assembler::REX_W);
2255    } else {
2256      emit_opcode(cbuf, Assembler::REX_WB);
2257      dstenc -= 8;
2258    }
2259    emit_opcode(cbuf, 0xB8 | dstenc);
2260    emit_d64(cbuf, $src$$constant);
2261  %}
2262
2263  enc_class load_immUL32(rRegL dst, immUL32 src)
2264  %{
2265    // same as load_immI, but this time we care about zeroes in the high word
2266    int dstenc = $dst$$reg;
2267    if (dstenc >= 8) {
2268      emit_opcode(cbuf, Assembler::REX_B);
2269      dstenc -= 8;
2270    }
2271    emit_opcode(cbuf, 0xB8 | dstenc);
2272    $$$emit32$src$$constant;
2273  %}
2274
2275  enc_class load_immL32(rRegL dst, immL32 src)
2276  %{
2277    int dstenc = $dst$$reg;
2278    if (dstenc < 8) {
2279      emit_opcode(cbuf, Assembler::REX_W);
2280    } else {
2281      emit_opcode(cbuf, Assembler::REX_WB);
2282      dstenc -= 8;
2283    }
2284    emit_opcode(cbuf, 0xC7);
2285    emit_rm(cbuf, 0x03, 0x00, dstenc);
2286    $$$emit32$src$$constant;
2287  %}
2288
2289  enc_class load_immP31(rRegP dst, immP32 src)
2290  %{
2291    // same as load_immI, but this time we care about zeroes in the high word
2292    int dstenc = $dst$$reg;
2293    if (dstenc >= 8) {
2294      emit_opcode(cbuf, Assembler::REX_B);
2295      dstenc -= 8;
2296    }
2297    emit_opcode(cbuf, 0xB8 | dstenc);
2298    $$$emit32$src$$constant;
2299  %}
2300
2301  enc_class load_immP(rRegP dst, immP src)
2302  %{
2303    int dstenc = $dst$$reg;
2304    if (dstenc < 8) {
2305      emit_opcode(cbuf, Assembler::REX_W);
2306    } else {
2307      emit_opcode(cbuf, Assembler::REX_WB);
2308      dstenc -= 8;
2309    }
2310    emit_opcode(cbuf, 0xB8 | dstenc);
2311    // This next line should be generated from ADLC
2312    if ($src->constant_reloc() != relocInfo::none) {
2313      emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2314    } else {
2315      emit_d64(cbuf, $src$$constant);
2316    }
2317  %}
2318
2319  enc_class Con32(immI src)
2320  %{
2321    // Output immediate
2322    $$$emit32$src$$constant;
2323  %}
2324
2325  enc_class Con32F_as_bits(immF src)
2326  %{
2327    // Output Float immediate bits
2328    jfloat jf = $src$$constant;
2329    jint jf_as_bits = jint_cast(jf);
2330    emit_d32(cbuf, jf_as_bits);
2331  %}
2332
2333  enc_class Con16(immI src)
2334  %{
2335    // Output immediate
2336    $$$emit16$src$$constant;
2337  %}
2338
2339  // How is this different from Con32??? XXX
2340  enc_class Con_d32(immI src)
2341  %{
2342    emit_d32(cbuf,$src$$constant);
2343  %}
2344
2345  enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2346    // Output immediate memory reference
2347    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2348    emit_d32(cbuf, 0x00);
2349  %}
2350
2351  enc_class lock_prefix()
2352  %{
2353    emit_opcode(cbuf, 0xF0); // lock
2354  %}
2355
2356  enc_class REX_mem(memory mem)
2357  %{
2358    if ($mem$$base >= 8) {
2359      if ($mem$$index < 8) {
2360        emit_opcode(cbuf, Assembler::REX_B);
2361      } else {
2362        emit_opcode(cbuf, Assembler::REX_XB);
2363      }
2364    } else {
2365      if ($mem$$index >= 8) {
2366        emit_opcode(cbuf, Assembler::REX_X);
2367      }
2368    }
2369  %}
2370
2371  enc_class REX_mem_wide(memory mem)
2372  %{
2373    if ($mem$$base >= 8) {
2374      if ($mem$$index < 8) {
2375        emit_opcode(cbuf, Assembler::REX_WB);
2376      } else {
2377        emit_opcode(cbuf, Assembler::REX_WXB);
2378      }
2379    } else {
2380      if ($mem$$index < 8) {
2381        emit_opcode(cbuf, Assembler::REX_W);
2382      } else {
2383        emit_opcode(cbuf, Assembler::REX_WX);
2384      }
2385    }
2386  %}
2387
2388  // for byte regs
2389  enc_class REX_breg(rRegI reg)
2390  %{
2391    if ($reg$$reg >= 4) {
2392      emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2393    }
2394  %}
2395
2396  // for byte regs
2397  enc_class REX_reg_breg(rRegI dst, rRegI src)
2398  %{
2399    if ($dst$$reg < 8) {
2400      if ($src$$reg >= 4) {
2401        emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2402      }
2403    } else {
2404      if ($src$$reg < 8) {
2405        emit_opcode(cbuf, Assembler::REX_R);
2406      } else {
2407        emit_opcode(cbuf, Assembler::REX_RB);
2408      }
2409    }
2410  %}
2411
2412  // for byte regs
2413  enc_class REX_breg_mem(rRegI reg, memory mem)
2414  %{
2415    if ($reg$$reg < 8) {
2416      if ($mem$$base < 8) {
2417        if ($mem$$index >= 8) {
2418          emit_opcode(cbuf, Assembler::REX_X);
2419        } else if ($reg$$reg >= 4) {
2420          emit_opcode(cbuf, Assembler::REX);
2421        }
2422      } else {
2423        if ($mem$$index < 8) {
2424          emit_opcode(cbuf, Assembler::REX_B);
2425        } else {
2426          emit_opcode(cbuf, Assembler::REX_XB);
2427        }
2428      }
2429    } else {
2430      if ($mem$$base < 8) {
2431        if ($mem$$index < 8) {
2432          emit_opcode(cbuf, Assembler::REX_R);
2433        } else {
2434          emit_opcode(cbuf, Assembler::REX_RX);
2435        }
2436      } else {
2437        if ($mem$$index < 8) {
2438          emit_opcode(cbuf, Assembler::REX_RB);
2439        } else {
2440          emit_opcode(cbuf, Assembler::REX_RXB);
2441        }
2442      }
2443    }
2444  %}
2445
2446  enc_class REX_reg(rRegI reg)
2447  %{
2448    if ($reg$$reg >= 8) {
2449      emit_opcode(cbuf, Assembler::REX_B);
2450    }
2451  %}
2452
2453  enc_class REX_reg_wide(rRegI reg)
2454  %{
2455    if ($reg$$reg < 8) {
2456      emit_opcode(cbuf, Assembler::REX_W);
2457    } else {
2458      emit_opcode(cbuf, Assembler::REX_WB);
2459    }
2460  %}
2461
2462  enc_class REX_reg_reg(rRegI dst, rRegI src)
2463  %{
2464    if ($dst$$reg < 8) {
2465      if ($src$$reg >= 8) {
2466        emit_opcode(cbuf, Assembler::REX_B);
2467      }
2468    } else {
2469      if ($src$$reg < 8) {
2470        emit_opcode(cbuf, Assembler::REX_R);
2471      } else {
2472        emit_opcode(cbuf, Assembler::REX_RB);
2473      }
2474    }
2475  %}
2476
2477  enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2478  %{
2479    if ($dst$$reg < 8) {
2480      if ($src$$reg < 8) {
2481        emit_opcode(cbuf, Assembler::REX_W);
2482      } else {
2483        emit_opcode(cbuf, Assembler::REX_WB);
2484      }
2485    } else {
2486      if ($src$$reg < 8) {
2487        emit_opcode(cbuf, Assembler::REX_WR);
2488      } else {
2489        emit_opcode(cbuf, Assembler::REX_WRB);
2490      }
2491    }
2492  %}
2493
2494  enc_class REX_reg_mem(rRegI reg, memory mem)
2495  %{
2496    if ($reg$$reg < 8) {
2497      if ($mem$$base < 8) {
2498        if ($mem$$index >= 8) {
2499          emit_opcode(cbuf, Assembler::REX_X);
2500        }
2501      } else {
2502        if ($mem$$index < 8) {
2503          emit_opcode(cbuf, Assembler::REX_B);
2504        } else {
2505          emit_opcode(cbuf, Assembler::REX_XB);
2506        }
2507      }
2508    } else {
2509      if ($mem$$base < 8) {
2510        if ($mem$$index < 8) {
2511          emit_opcode(cbuf, Assembler::REX_R);
2512        } else {
2513          emit_opcode(cbuf, Assembler::REX_RX);
2514        }
2515      } else {
2516        if ($mem$$index < 8) {
2517          emit_opcode(cbuf, Assembler::REX_RB);
2518        } else {
2519          emit_opcode(cbuf, Assembler::REX_RXB);
2520        }
2521      }
2522    }
2523  %}
2524
2525  enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2526  %{
2527    if ($reg$$reg < 8) {
2528      if ($mem$$base < 8) {
2529        if ($mem$$index < 8) {
2530          emit_opcode(cbuf, Assembler::REX_W);
2531        } else {
2532          emit_opcode(cbuf, Assembler::REX_WX);
2533        }
2534      } else {
2535        if ($mem$$index < 8) {
2536          emit_opcode(cbuf, Assembler::REX_WB);
2537        } else {
2538          emit_opcode(cbuf, Assembler::REX_WXB);
2539        }
2540      }
2541    } else {
2542      if ($mem$$base < 8) {
2543        if ($mem$$index < 8) {
2544          emit_opcode(cbuf, Assembler::REX_WR);
2545        } else {
2546          emit_opcode(cbuf, Assembler::REX_WRX);
2547        }
2548      } else {
2549        if ($mem$$index < 8) {
2550          emit_opcode(cbuf, Assembler::REX_WRB);
2551        } else {
2552          emit_opcode(cbuf, Assembler::REX_WRXB);
2553        }
2554      }
2555    }
2556  %}
2557
2558  enc_class reg_mem(rRegI ereg, memory mem)
2559  %{
2560    // High registers handle in encode_RegMem
2561    int reg = $ereg$$reg;
2562    int base = $mem$$base;
2563    int index = $mem$$index;
2564    int scale = $mem$$scale;
2565    int disp = $mem$$disp;
2566    relocInfo::relocType disp_reloc = $mem->disp_reloc();
2567
2568    encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2569  %}
2570
2571  enc_class RM_opc_mem(immI rm_opcode, memory mem)
2572  %{
2573    int rm_byte_opcode = $rm_opcode$$constant;
2574
2575    // High registers handle in encode_RegMem
2576    int base = $mem$$base;
2577    int index = $mem$$index;
2578    int scale = $mem$$scale;
2579    int displace = $mem$$disp;
2580
2581    relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2582                                            // working with static
2583                                            // globals
2584    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2585                  disp_reloc);
2586  %}
2587
2588  enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2589  %{
2590    int reg_encoding = $dst$$reg;
2591    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2592    int index        = 0x04;            // 0x04 indicates no index
2593    int scale        = 0x00;            // 0x00 indicates no scale
2594    int displace     = $src1$$constant; // 0x00 indicates no displacement
2595    relocInfo::relocType disp_reloc = relocInfo::none;
2596    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2597                  disp_reloc);
2598  %}
2599
2600  enc_class neg_reg(rRegI dst)
2601  %{
2602    int dstenc = $dst$$reg;
2603    if (dstenc >= 8) {
2604      emit_opcode(cbuf, Assembler::REX_B);
2605      dstenc -= 8;
2606    }
2607    // NEG $dst
2608    emit_opcode(cbuf, 0xF7);
2609    emit_rm(cbuf, 0x3, 0x03, dstenc);
2610  %}
2611
2612  enc_class neg_reg_wide(rRegI dst)
2613  %{
2614    int dstenc = $dst$$reg;
2615    if (dstenc < 8) {
2616      emit_opcode(cbuf, Assembler::REX_W);
2617    } else {
2618      emit_opcode(cbuf, Assembler::REX_WB);
2619      dstenc -= 8;
2620    }
2621    // NEG $dst
2622    emit_opcode(cbuf, 0xF7);
2623    emit_rm(cbuf, 0x3, 0x03, dstenc);
2624  %}
2625
2626  enc_class setLT_reg(rRegI dst)
2627  %{
2628    int dstenc = $dst$$reg;
2629    if (dstenc >= 8) {
2630      emit_opcode(cbuf, Assembler::REX_B);
2631      dstenc -= 8;
2632    } else if (dstenc >= 4) {
2633      emit_opcode(cbuf, Assembler::REX);
2634    }
2635    // SETLT $dst
2636    emit_opcode(cbuf, 0x0F);
2637    emit_opcode(cbuf, 0x9C);
2638    emit_rm(cbuf, 0x3, 0x0, dstenc);
2639  %}
2640
2641  enc_class setNZ_reg(rRegI dst)
2642  %{
2643    int dstenc = $dst$$reg;
2644    if (dstenc >= 8) {
2645      emit_opcode(cbuf, Assembler::REX_B);
2646      dstenc -= 8;
2647    } else if (dstenc >= 4) {
2648      emit_opcode(cbuf, Assembler::REX);
2649    }
2650    // SETNZ $dst
2651    emit_opcode(cbuf, 0x0F);
2652    emit_opcode(cbuf, 0x95);
2653    emit_rm(cbuf, 0x3, 0x0, dstenc);
2654  %}
2655
2656
2657  // Compare the lonogs and set -1, 0, or 1 into dst
2658  enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2659  %{
2660    int src1enc = $src1$$reg;
2661    int src2enc = $src2$$reg;
2662    int dstenc = $dst$$reg;
2663
2664    // cmpq $src1, $src2
2665    if (src1enc < 8) {
2666      if (src2enc < 8) {
2667        emit_opcode(cbuf, Assembler::REX_W);
2668      } else {
2669        emit_opcode(cbuf, Assembler::REX_WB);
2670      }
2671    } else {
2672      if (src2enc < 8) {
2673        emit_opcode(cbuf, Assembler::REX_WR);
2674      } else {
2675        emit_opcode(cbuf, Assembler::REX_WRB);
2676      }
2677    }
2678    emit_opcode(cbuf, 0x3B);
2679    emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2680
2681    // movl $dst, -1
2682    if (dstenc >= 8) {
2683      emit_opcode(cbuf, Assembler::REX_B);
2684    }
2685    emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2686    emit_d32(cbuf, -1);
2687
2688    // jl,s done
2689    emit_opcode(cbuf, 0x7C);
2690    emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2691
2692    // setne $dst
2693    if (dstenc >= 4) {
2694      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2695    }
2696    emit_opcode(cbuf, 0x0F);
2697    emit_opcode(cbuf, 0x95);
2698    emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2699
2700    // movzbl $dst, $dst
2701    if (dstenc >= 4) {
2702      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2703    }
2704    emit_opcode(cbuf, 0x0F);
2705    emit_opcode(cbuf, 0xB6);
2706    emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2707  %}
2708
2709  enc_class Push_ResultXD(regD dst) %{
2710    MacroAssembler _masm(&cbuf);
2711    __ fstp_d(Address(rsp, 0));
2712    __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2713    __ addptr(rsp, 8);
2714  %}
2715
2716  enc_class Push_SrcXD(regD src) %{
2717    MacroAssembler _masm(&cbuf);
2718    __ subptr(rsp, 8);
2719    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2720    __ fld_d(Address(rsp, 0));
2721  %}
2722
2723
2724  enc_class enc_rethrow()
2725  %{
2726    cbuf.set_insts_mark();
2727    emit_opcode(cbuf, 0xE9); // jmp entry
2728    emit_d32_reloc(cbuf,
2729                   (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2730                   runtime_call_Relocation::spec(),
2731                   RELOC_DISP32);
2732  %}
2733
2734%}
2735
2736
2737
2738//----------FRAME--------------------------------------------------------------
2739// Definition of frame structure and management information.
2740//
2741//  S T A C K   L A Y O U T    Allocators stack-slot number
2742//                             |   (to get allocators register number
2743//  G  Owned by    |        |  v    add OptoReg::stack0())
2744//  r   CALLER     |        |
2745//  o     |        +--------+      pad to even-align allocators stack-slot
2746//  w     V        |  pad0  |        numbers; owned by CALLER
2747//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2748//  h     ^        |   in   |  5
2749//        |        |  args  |  4   Holes in incoming args owned by SELF
2750//  |     |        |        |  3
2751//  |     |        +--------+
2752//  V     |        | old out|      Empty on Intel, window on Sparc
2753//        |    old |preserve|      Must be even aligned.
2754//        |     SP-+--------+----> Matcher::_old_SP, even aligned
2755//        |        |   in   |  3   area for Intel ret address
2756//     Owned by    |preserve|      Empty on Sparc.
2757//       SELF      +--------+
2758//        |        |  pad2  |  2   pad to align old SP
2759//        |        +--------+  1
2760//        |        | locks  |  0
2761//        |        +--------+----> OptoReg::stack0(), even aligned
2762//        |        |  pad1  | 11   pad to align new SP
2763//        |        +--------+
2764//        |        |        | 10
2765//        |        | spills |  9   spills
2766//        V        |        |  8   (pad0 slot for callee)
2767//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2768//        ^        |  out   |  7
2769//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2770//     Owned by    +--------+
2771//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2772//        |    new |preserve|      Must be even-aligned.
2773//        |     SP-+--------+----> Matcher::_new_SP, even aligned
2774//        |        |        |
2775//
2776// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2777//         known from SELF's arguments and the Java calling convention.
2778//         Region 6-7 is determined per call site.
2779// Note 2: If the calling convention leaves holes in the incoming argument
2780//         area, those holes are owned by SELF.  Holes in the outgoing area
2781//         are owned by the CALLEE.  Holes should not be nessecary in the
2782//         incoming area, as the Java calling convention is completely under
2783//         the control of the AD file.  Doubles can be sorted and packed to
2784//         avoid holes.  Holes in the outgoing arguments may be nessecary for
2785//         varargs C calling conventions.
2786// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2787//         even aligned with pad0 as needed.
2788//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2789//         region 6-11 is even aligned; it may be padded out more so that
2790//         the region from SP to FP meets the minimum stack alignment.
2791// Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2792//         alignment.  Region 11, pad1, may be dynamically extended so that
2793//         SP meets the minimum alignment.
2794
2795frame
2796%{
2797  // What direction does stack grow in (assumed to be same for C & Java)
2798  stack_direction(TOWARDS_LOW);
2799
2800  // These three registers define part of the calling convention
2801  // between compiled code and the interpreter.
2802  inline_cache_reg(RAX);                // Inline Cache Register
2803  interpreter_method_oop_reg(RBX);      // Method Oop Register when
2804                                        // calling interpreter
2805
2806  // Optional: name the operand used by cisc-spilling to access
2807  // [stack_pointer + offset]
2808  cisc_spilling_operand_name(indOffset32);
2809
2810  // Number of stack slots consumed by locking an object
2811  sync_stack_slots(2);
2812
2813  // Compiled code's Frame Pointer
2814  frame_pointer(RSP);
2815
2816  // Interpreter stores its frame pointer in a register which is
2817  // stored to the stack by I2CAdaptors.
2818  // I2CAdaptors convert from interpreted java to compiled java.
2819  interpreter_frame_pointer(RBP);
2820
2821  // Stack alignment requirement
2822  stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2823
2824  // Number of stack slots between incoming argument block and the start of
2825  // a new frame.  The PROLOG must add this many slots to the stack.  The
2826  // EPILOG must remove this many slots.  amd64 needs two slots for
2827  // return address.
2828  in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2829
2830  // Number of outgoing stack slots killed above the out_preserve_stack_slots
2831  // for calls to C.  Supports the var-args backing area for register parms.
2832  varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2833
2834  // The after-PROLOG location of the return address.  Location of
2835  // return address specifies a type (REG or STACK) and a number
2836  // representing the register number (i.e. - use a register name) or
2837  // stack slot.
2838  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2839  // Otherwise, it is above the locks and verification slot and alignment word
2840  return_addr(STACK - 2 +
2841              align_up((Compile::current()->in_preserve_stack_slots() +
2842                        Compile::current()->fixed_slots()),
2843                       stack_alignment_in_slots()));
2844
2845  // Body of function which returns an integer array locating
2846  // arguments either in registers or in stack slots.  Passed an array
2847  // of ideal registers called "sig" and a "length" count.  Stack-slot
2848  // offsets are based on outgoing arguments, i.e. a CALLER setting up
2849  // arguments for a CALLEE.  Incoming stack arguments are
2850  // automatically biased by the preserve_stack_slots field above.
2851
2852  calling_convention
2853  %{
2854    // No difference between ingoing/outgoing just pass false
2855    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2856  %}
2857
2858  c_calling_convention
2859  %{
2860    // This is obviously always outgoing
2861    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2862  %}
2863
2864  // Location of compiled Java return values.  Same as C for now.
2865  return_value
2866  %{
2867    assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2868           "only return normal values");
2869
2870    static const int lo[Op_RegL + 1] = {
2871      0,
2872      0,
2873      RAX_num,  // Op_RegN
2874      RAX_num,  // Op_RegI
2875      RAX_num,  // Op_RegP
2876      XMM0_num, // Op_RegF
2877      XMM0_num, // Op_RegD
2878      RAX_num   // Op_RegL
2879    };
2880    static const int hi[Op_RegL + 1] = {
2881      0,
2882      0,
2883      OptoReg::Bad, // Op_RegN
2884      OptoReg::Bad, // Op_RegI
2885      RAX_H_num,    // Op_RegP
2886      OptoReg::Bad, // Op_RegF
2887      XMM0b_num,    // Op_RegD
2888      RAX_H_num     // Op_RegL
2889    };
2890    // Excluded flags and vector registers.
2891    assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2892    return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2893  %}
2894%}
2895
2896//----------ATTRIBUTES---------------------------------------------------------
2897//----------Operand Attributes-------------------------------------------------
2898op_attrib op_cost(0);        // Required cost attribute
2899
2900//----------Instruction Attributes---------------------------------------------
2901ins_attrib ins_cost(100);       // Required cost attribute
2902ins_attrib ins_size(8);         // Required size attribute (in bits)
2903ins_attrib ins_short_branch(0); // Required flag: is this instruction
2904                                // a non-matching short branch variant
2905                                // of some long branch?
2906ins_attrib ins_alignment(1);    // Required alignment attribute (must
2907                                // be a power of 2) specifies the
2908                                // alignment that some part of the
2909                                // instruction (not necessarily the
2910                                // start) requires.  If > 1, a
2911                                // compute_padding() function must be
2912                                // provided for the instruction
2913
2914//----------OPERANDS-----------------------------------------------------------
2915// Operand definitions must precede instruction definitions for correct parsing
2916// in the ADLC because operands constitute user defined types which are used in
2917// instruction definitions.
2918
2919//----------Simple Operands----------------------------------------------------
2920// Immediate Operands
2921// Integer Immediate
2922operand immI()
2923%{
2924  match(ConI);
2925
2926  op_cost(10);
2927  format %{ %}
2928  interface(CONST_INTER);
2929%}
2930
2931// Constant for test vs zero
2932operand immI0()
2933%{
2934  predicate(n->get_int() == 0);
2935  match(ConI);
2936
2937  op_cost(0);
2938  format %{ %}
2939  interface(CONST_INTER);
2940%}
2941
2942// Constant for increment
2943operand immI1()
2944%{
2945  predicate(n->get_int() == 1);
2946  match(ConI);
2947
2948  op_cost(0);
2949  format %{ %}
2950  interface(CONST_INTER);
2951%}
2952
2953// Constant for decrement
2954operand immI_M1()
2955%{
2956  predicate(n->get_int() == -1);
2957  match(ConI);
2958
2959  op_cost(0);
2960  format %{ %}
2961  interface(CONST_INTER);
2962%}
2963
2964// Valid scale values for addressing modes
2965operand immI2()
2966%{
2967  predicate(0 <= n->get_int() && (n->get_int() <= 3));
2968  match(ConI);
2969
2970  format %{ %}
2971  interface(CONST_INTER);
2972%}
2973
2974operand immI8()
2975%{
2976  predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2977  match(ConI);
2978
2979  op_cost(5);
2980  format %{ %}
2981  interface(CONST_INTER);
2982%}
2983
2984operand immU8()
2985%{
2986  predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2987  match(ConI);
2988
2989  op_cost(5);
2990  format %{ %}
2991  interface(CONST_INTER);
2992%}
2993
2994operand immI16()
2995%{
2996  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2997  match(ConI);
2998
2999  op_cost(10);
3000  format %{ %}
3001  interface(CONST_INTER);
3002%}
3003
3004// Int Immediate non-negative
3005operand immU31()
3006%{
3007  predicate(n->get_int() >= 0);
3008  match(ConI);
3009
3010  op_cost(0);
3011  format %{ %}
3012  interface(CONST_INTER);
3013%}
3014
3015// Constant for long shifts
3016operand immI_32()
3017%{
3018  predicate( n->get_int() == 32 );
3019  match(ConI);
3020
3021  op_cost(0);
3022  format %{ %}
3023  interface(CONST_INTER);
3024%}
3025
3026// Constant for long shifts
3027operand immI_64()
3028%{
3029  predicate( n->get_int() == 64 );
3030  match(ConI);
3031
3032  op_cost(0);
3033  format %{ %}
3034  interface(CONST_INTER);
3035%}
3036
3037// Pointer Immediate
3038operand immP()
3039%{
3040  match(ConP);
3041
3042  op_cost(10);
3043  format %{ %}
3044  interface(CONST_INTER);
3045%}
3046
3047// NULL Pointer Immediate
3048operand immP0()
3049%{
3050  predicate(n->get_ptr() == 0);
3051  match(ConP);
3052
3053  op_cost(5);
3054  format %{ %}
3055  interface(CONST_INTER);
3056%}
3057
3058// Pointer Immediate
3059operand immN() %{
3060  match(ConN);
3061
3062  op_cost(10);
3063  format %{ %}
3064  interface(CONST_INTER);
3065%}
3066
3067operand immNKlass() %{
3068  match(ConNKlass);
3069
3070  op_cost(10);
3071  format %{ %}
3072  interface(CONST_INTER);
3073%}
3074
3075// NULL Pointer Immediate
3076operand immN0() %{
3077  predicate(n->get_narrowcon() == 0);
3078  match(ConN);
3079
3080  op_cost(5);
3081  format %{ %}
3082  interface(CONST_INTER);
3083%}
3084
3085operand immP31()
3086%{
3087  predicate(n->as_Type()->type()->reloc() == relocInfo::none
3088            && (n->get_ptr() >> 31) == 0);
3089  match(ConP);
3090
3091  op_cost(5);
3092  format %{ %}
3093  interface(CONST_INTER);
3094%}
3095
3096
3097// Long Immediate
3098operand immL()
3099%{
3100  match(ConL);
3101
3102  op_cost(20);
3103  format %{ %}
3104  interface(CONST_INTER);
3105%}
3106
3107// Long Immediate 8-bit
3108operand immL8()
3109%{
3110  predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3111  match(ConL);
3112
3113  op_cost(5);
3114  format %{ %}
3115  interface(CONST_INTER);
3116%}
3117
3118// Long Immediate 32-bit unsigned
3119operand immUL32()
3120%{
3121  predicate(n->get_long() == (unsigned int) (n->get_long()));
3122  match(ConL);
3123
3124  op_cost(10);
3125  format %{ %}
3126  interface(CONST_INTER);
3127%}
3128
3129// Long Immediate 32-bit signed
3130operand immL32()
3131%{
3132  predicate(n->get_long() == (int) (n->get_long()));
3133  match(ConL);
3134
3135  op_cost(15);
3136  format %{ %}
3137  interface(CONST_INTER);
3138%}
3139
3140// Long Immediate zero
3141operand immL0()
3142%{
3143  predicate(n->get_long() == 0L);
3144  match(ConL);
3145
3146  op_cost(10);
3147  format %{ %}
3148  interface(CONST_INTER);
3149%}
3150
3151// Constant for increment
3152operand immL1()
3153%{
3154  predicate(n->get_long() == 1);
3155  match(ConL);
3156
3157  format %{ %}
3158  interface(CONST_INTER);
3159%}
3160
3161// Constant for decrement
3162operand immL_M1()
3163%{
3164  predicate(n->get_long() == -1);
3165  match(ConL);
3166
3167  format %{ %}
3168  interface(CONST_INTER);
3169%}
3170
3171// Long Immediate: the value 10
3172operand immL10()
3173%{
3174  predicate(n->get_long() == 10);
3175  match(ConL);
3176
3177  format %{ %}
3178  interface(CONST_INTER);
3179%}
3180
3181// Long immediate from 0 to 127.
3182// Used for a shorter form of long mul by 10.
3183operand immL_127()
3184%{
3185  predicate(0 <= n->get_long() && n->get_long() < 0x80);
3186  match(ConL);
3187
3188  op_cost(10);
3189  format %{ %}
3190  interface(CONST_INTER);
3191%}
3192
3193// Long Immediate: low 32-bit mask
3194operand immL_32bits()
3195%{
3196  predicate(n->get_long() == 0xFFFFFFFFL);
3197  match(ConL);
3198  op_cost(20);
3199
3200  format %{ %}
3201  interface(CONST_INTER);
3202%}
3203
3204// Float Immediate zero
3205operand immF0()
3206%{
3207  predicate(jint_cast(n->getf()) == 0);
3208  match(ConF);
3209
3210  op_cost(5);
3211  format %{ %}
3212  interface(CONST_INTER);
3213%}
3214
3215// Float Immediate
3216operand immF()
3217%{
3218  match(ConF);
3219
3220  op_cost(15);
3221  format %{ %}
3222  interface(CONST_INTER);
3223%}
3224
3225// Double Immediate zero
3226operand immD0()
3227%{
3228  predicate(jlong_cast(n->getd()) == 0);
3229  match(ConD);
3230
3231  op_cost(5);
3232  format %{ %}
3233  interface(CONST_INTER);
3234%}
3235
3236// Double Immediate
3237operand immD()
3238%{
3239  match(ConD);
3240
3241  op_cost(15);
3242  format %{ %}
3243  interface(CONST_INTER);
3244%}
3245
3246// Immediates for special shifts (sign extend)
3247
3248// Constants for increment
3249operand immI_16()
3250%{
3251  predicate(n->get_int() == 16);
3252  match(ConI);
3253
3254  format %{ %}
3255  interface(CONST_INTER);
3256%}
3257
3258operand immI_24()
3259%{
3260  predicate(n->get_int() == 24);
3261  match(ConI);
3262
3263  format %{ %}
3264  interface(CONST_INTER);
3265%}
3266
3267// Constant for byte-wide masking
3268operand immI_255()
3269%{
3270  predicate(n->get_int() == 255);
3271  match(ConI);
3272
3273  format %{ %}
3274  interface(CONST_INTER);
3275%}
3276
3277// Constant for short-wide masking
3278operand immI_65535()
3279%{
3280  predicate(n->get_int() == 65535);
3281  match(ConI);
3282
3283  format %{ %}
3284  interface(CONST_INTER);
3285%}
3286
3287// Constant for byte-wide masking
3288operand immL_255()
3289%{
3290  predicate(n->get_long() == 255);
3291  match(ConL);
3292
3293  format %{ %}
3294  interface(CONST_INTER);
3295%}
3296
3297// Constant for short-wide masking
3298operand immL_65535()
3299%{
3300  predicate(n->get_long() == 65535);
3301  match(ConL);
3302
3303  format %{ %}
3304  interface(CONST_INTER);
3305%}
3306
3307// Register Operands
3308// Integer Register
3309operand rRegI()
3310%{
3311  constraint(ALLOC_IN_RC(int_reg));
3312  match(RegI);
3313
3314  match(rax_RegI);
3315  match(rbx_RegI);
3316  match(rcx_RegI);
3317  match(rdx_RegI);
3318  match(rdi_RegI);
3319
3320  format %{ %}
3321  interface(REG_INTER);
3322%}
3323
3324// Special Registers
3325operand rax_RegI()
3326%{
3327  constraint(ALLOC_IN_RC(int_rax_reg));
3328  match(RegI);
3329  match(rRegI);
3330
3331  format %{ "RAX" %}
3332  interface(REG_INTER);
3333%}
3334
3335// Special Registers
3336operand rbx_RegI()
3337%{
3338  constraint(ALLOC_IN_RC(int_rbx_reg));
3339  match(RegI);
3340  match(rRegI);
3341
3342  format %{ "RBX" %}
3343  interface(REG_INTER);
3344%}
3345
3346operand rcx_RegI()
3347%{
3348  constraint(ALLOC_IN_RC(int_rcx_reg));
3349  match(RegI);
3350  match(rRegI);
3351
3352  format %{ "RCX" %}
3353  interface(REG_INTER);
3354%}
3355
3356operand rdx_RegI()
3357%{
3358  constraint(ALLOC_IN_RC(int_rdx_reg));
3359  match(RegI);
3360  match(rRegI);
3361
3362  format %{ "RDX" %}
3363  interface(REG_INTER);
3364%}
3365
3366operand rdi_RegI()
3367%{
3368  constraint(ALLOC_IN_RC(int_rdi_reg));
3369  match(RegI);
3370  match(rRegI);
3371
3372  format %{ "RDI" %}
3373  interface(REG_INTER);
3374%}
3375
3376operand no_rcx_RegI()
3377%{
3378  constraint(ALLOC_IN_RC(int_no_rcx_reg));
3379  match(RegI);
3380  match(rax_RegI);
3381  match(rbx_RegI);
3382  match(rdx_RegI);
3383  match(rdi_RegI);
3384
3385  format %{ %}
3386  interface(REG_INTER);
3387%}
3388
3389operand no_rax_rdx_RegI()
3390%{
3391  constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3392  match(RegI);
3393  match(rbx_RegI);
3394  match(rcx_RegI);
3395  match(rdi_RegI);
3396
3397  format %{ %}
3398  interface(REG_INTER);
3399%}
3400
3401// Pointer Register
3402operand any_RegP()
3403%{
3404  constraint(ALLOC_IN_RC(any_reg));
3405  match(RegP);
3406  match(rax_RegP);
3407  match(rbx_RegP);
3408  match(rdi_RegP);
3409  match(rsi_RegP);
3410  match(rbp_RegP);
3411  match(r15_RegP);
3412  match(rRegP);
3413
3414  format %{ %}
3415  interface(REG_INTER);
3416%}
3417
3418operand rRegP()
3419%{
3420  constraint(ALLOC_IN_RC(ptr_reg));
3421  match(RegP);
3422  match(rax_RegP);
3423  match(rbx_RegP);
3424  match(rdi_RegP);
3425  match(rsi_RegP);
3426  match(rbp_RegP);  // See Q&A below about
3427  match(r15_RegP);  // r15_RegP and rbp_RegP.
3428
3429  format %{ %}
3430  interface(REG_INTER);
3431%}
3432
3433operand rRegN() %{
3434  constraint(ALLOC_IN_RC(int_reg));
3435  match(RegN);
3436
3437  format %{ %}
3438  interface(REG_INTER);
3439%}
3440
3441// Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3442// Answer: Operand match rules govern the DFA as it processes instruction inputs.
3443// It's fine for an instruction input that expects rRegP to match a r15_RegP.
3444// The output of an instruction is controlled by the allocator, which respects
3445// register class masks, not match rules.  Unless an instruction mentions
3446// r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3447// by the allocator as an input.
3448// The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3449// the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3450// result, RBP is not included in the output of the instruction either.
3451
3452operand no_rax_RegP()
3453%{
3454  constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3455  match(RegP);
3456  match(rbx_RegP);
3457  match(rsi_RegP);
3458  match(rdi_RegP);
3459
3460  format %{ %}
3461  interface(REG_INTER);
3462%}
3463
3464// This operand is not allowed to use RBP even if
3465// RBP is not used to hold the frame pointer.
3466operand no_rbp_RegP()
3467%{
3468  constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3469  match(RegP);
3470  match(rbx_RegP);
3471  match(rsi_RegP);
3472  match(rdi_RegP);
3473
3474  format %{ %}
3475  interface(REG_INTER);
3476%}
3477
3478operand no_rax_rbx_RegP()
3479%{
3480  constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3481  match(RegP);
3482  match(rsi_RegP);
3483  match(rdi_RegP);
3484
3485  format %{ %}
3486  interface(REG_INTER);
3487%}
3488
3489// Special Registers
3490// Return a pointer value
3491operand rax_RegP()
3492%{
3493  constraint(ALLOC_IN_RC(ptr_rax_reg));
3494  match(RegP);
3495  match(rRegP);
3496
3497  format %{ %}
3498  interface(REG_INTER);
3499%}
3500
3501// Special Registers
3502// Return a compressed pointer value
3503operand rax_RegN()
3504%{
3505  constraint(ALLOC_IN_RC(int_rax_reg));
3506  match(RegN);
3507  match(rRegN);
3508
3509  format %{ %}
3510  interface(REG_INTER);
3511%}
3512
3513// Used in AtomicAdd
3514operand rbx_RegP()
3515%{
3516  constraint(ALLOC_IN_RC(ptr_rbx_reg));
3517  match(RegP);
3518  match(rRegP);
3519
3520  format %{ %}
3521  interface(REG_INTER);
3522%}
3523
3524operand rsi_RegP()
3525%{
3526  constraint(ALLOC_IN_RC(ptr_rsi_reg));
3527  match(RegP);
3528  match(rRegP);
3529
3530  format %{ %}
3531  interface(REG_INTER);
3532%}
3533
3534// Used in rep stosq
3535operand rdi_RegP()
3536%{
3537  constraint(ALLOC_IN_RC(ptr_rdi_reg));
3538  match(RegP);
3539  match(rRegP);
3540
3541  format %{ %}
3542  interface(REG_INTER);
3543%}
3544
3545operand r15_RegP()
3546%{
3547  constraint(ALLOC_IN_RC(ptr_r15_reg));
3548  match(RegP);
3549  match(rRegP);
3550
3551  format %{ %}
3552  interface(REG_INTER);
3553%}
3554
3555operand rRegL()
3556%{
3557  constraint(ALLOC_IN_RC(long_reg));
3558  match(RegL);
3559  match(rax_RegL);
3560  match(rdx_RegL);
3561
3562  format %{ %}
3563  interface(REG_INTER);
3564%}
3565
3566// Special Registers
3567operand no_rax_rdx_RegL()
3568%{
3569  constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3570  match(RegL);
3571  match(rRegL);
3572
3573  format %{ %}
3574  interface(REG_INTER);
3575%}
3576
3577operand no_rax_RegL()
3578%{
3579  constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3580  match(RegL);
3581  match(rRegL);
3582  match(rdx_RegL);
3583
3584  format %{ %}
3585  interface(REG_INTER);
3586%}
3587
3588operand no_rcx_RegL()
3589%{
3590  constraint(ALLOC_IN_RC(long_no_rcx_reg));
3591  match(RegL);
3592  match(rRegL);
3593
3594  format %{ %}
3595  interface(REG_INTER);
3596%}
3597
3598operand rax_RegL()
3599%{
3600  constraint(ALLOC_IN_RC(long_rax_reg));
3601  match(RegL);
3602  match(rRegL);
3603
3604  format %{ "RAX" %}
3605  interface(REG_INTER);
3606%}
3607
3608operand rcx_RegL()
3609%{
3610  constraint(ALLOC_IN_RC(long_rcx_reg));
3611  match(RegL);
3612  match(rRegL);
3613
3614  format %{ %}
3615  interface(REG_INTER);
3616%}
3617
3618operand rdx_RegL()
3619%{
3620  constraint(ALLOC_IN_RC(long_rdx_reg));
3621  match(RegL);
3622  match(rRegL);
3623
3624  format %{ %}
3625  interface(REG_INTER);
3626%}
3627
3628// Flags register, used as output of compare instructions
3629operand rFlagsReg()
3630%{
3631  constraint(ALLOC_IN_RC(int_flags));
3632  match(RegFlags);
3633
3634  format %{ "RFLAGS" %}
3635  interface(REG_INTER);
3636%}
3637
3638// Flags register, used as output of FLOATING POINT compare instructions
3639operand rFlagsRegU()
3640%{
3641  constraint(ALLOC_IN_RC(int_flags));
3642  match(RegFlags);
3643
3644  format %{ "RFLAGS_U" %}
3645  interface(REG_INTER);
3646%}
3647
3648operand rFlagsRegUCF() %{
3649  constraint(ALLOC_IN_RC(int_flags));
3650  match(RegFlags);
3651  predicate(false);
3652
3653  format %{ "RFLAGS_U_CF" %}
3654  interface(REG_INTER);
3655%}
3656
3657// Float register operands
3658operand regF() %{
3659   constraint(ALLOC_IN_RC(float_reg));
3660   match(RegF);
3661
3662   format %{ %}
3663   interface(REG_INTER);
3664%}
3665
3666// Float register operands
3667operand vlRegF() %{
3668   constraint(ALLOC_IN_RC(float_reg_vl));
3669   match(RegF);
3670
3671   format %{ %}
3672   interface(REG_INTER);
3673%}
3674
3675// Double register operands
3676operand regD() %{
3677   constraint(ALLOC_IN_RC(double_reg));
3678   match(RegD);
3679
3680   format %{ %}
3681   interface(REG_INTER);
3682%}
3683
3684// Double register operands
3685operand vlRegD() %{
3686   constraint(ALLOC_IN_RC(double_reg_vl));
3687   match(RegD);
3688
3689   format %{ %}
3690   interface(REG_INTER);
3691%}
3692
3693// Vectors
3694operand vecS() %{
3695  constraint(ALLOC_IN_RC(vectors_reg_vlbwdq));
3696  match(VecS);
3697
3698  format %{ %}
3699  interface(REG_INTER);
3700%}
3701
3702// Vectors
3703operand legVecS() %{
3704  constraint(ALLOC_IN_RC(vectors_reg_legacy));
3705  match(VecS);
3706
3707  format %{ %}
3708  interface(REG_INTER);
3709%}
3710
3711operand vecD() %{
3712  constraint(ALLOC_IN_RC(vectord_reg_vlbwdq));
3713  match(VecD);
3714
3715  format %{ %}
3716  interface(REG_INTER);
3717%}
3718
3719operand legVecD() %{
3720  constraint(ALLOC_IN_RC(vectord_reg_legacy));
3721  match(VecD);
3722
3723  format %{ %}
3724  interface(REG_INTER);
3725%}
3726
3727operand vecX() %{
3728  constraint(ALLOC_IN_RC(vectorx_reg_vlbwdq));
3729  match(VecX);
3730
3731  format %{ %}
3732  interface(REG_INTER);
3733%}
3734
3735operand legVecX() %{
3736  constraint(ALLOC_IN_RC(vectorx_reg_legacy));
3737  match(VecX);
3738
3739  format %{ %}
3740  interface(REG_INTER);
3741%}
3742
3743operand vecY() %{
3744  constraint(ALLOC_IN_RC(vectory_reg_vlbwdq));
3745  match(VecY);
3746
3747  format %{ %}
3748  interface(REG_INTER);
3749%}
3750
3751operand legVecY() %{
3752  constraint(ALLOC_IN_RC(vectory_reg_legacy));
3753  match(VecY);
3754
3755  format %{ %}
3756  interface(REG_INTER);
3757%}
3758
3759//----------Memory Operands----------------------------------------------------
3760// Direct Memory Operand
3761// operand direct(immP addr)
3762// %{
3763//   match(addr);
3764
3765//   format %{ "[$addr]" %}
3766//   interface(MEMORY_INTER) %{
3767//     base(0xFFFFFFFF);
3768//     index(0x4);
3769//     scale(0x0);
3770//     disp($addr);
3771//   %}
3772// %}
3773
3774// Indirect Memory Operand
3775operand indirect(any_RegP reg)
3776%{
3777  constraint(ALLOC_IN_RC(ptr_reg));
3778  match(reg);
3779
3780  format %{ "[$reg]" %}
3781  interface(MEMORY_INTER) %{
3782    base($reg);
3783    index(0x4);
3784    scale(0x0);
3785    disp(0x0);
3786  %}
3787%}
3788
3789// Indirect Memory Plus Short Offset Operand
3790operand indOffset8(any_RegP reg, immL8 off)
3791%{
3792  constraint(ALLOC_IN_RC(ptr_reg));
3793  match(AddP reg off);
3794
3795  format %{ "[$reg + $off (8-bit)]" %}
3796  interface(MEMORY_INTER) %{
3797    base($reg);
3798    index(0x4);
3799    scale(0x0);
3800    disp($off);
3801  %}
3802%}
3803
3804// Indirect Memory Plus Long Offset Operand
3805operand indOffset32(any_RegP reg, immL32 off)
3806%{
3807  constraint(ALLOC_IN_RC(ptr_reg));
3808  match(AddP reg off);
3809
3810  format %{ "[$reg + $off (32-bit)]" %}
3811  interface(MEMORY_INTER) %{
3812    base($reg);
3813    index(0x4);
3814    scale(0x0);
3815    disp($off);
3816  %}
3817%}
3818
3819// Indirect Memory Plus Index Register Plus Offset Operand
3820operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3821%{
3822  constraint(ALLOC_IN_RC(ptr_reg));
3823  match(AddP (AddP reg lreg) off);
3824
3825  op_cost(10);
3826  format %{"[$reg + $off + $lreg]" %}
3827  interface(MEMORY_INTER) %{
3828    base($reg);
3829    index($lreg);
3830    scale(0x0);
3831    disp($off);
3832  %}
3833%}
3834
3835// Indirect Memory Plus Index Register Plus Offset Operand
3836operand indIndex(any_RegP reg, rRegL lreg)
3837%{
3838  constraint(ALLOC_IN_RC(ptr_reg));
3839  match(AddP reg lreg);
3840
3841  op_cost(10);
3842  format %{"[$reg + $lreg]" %}
3843  interface(MEMORY_INTER) %{
3844    base($reg);
3845    index($lreg);
3846    scale(0x0);
3847    disp(0x0);
3848  %}
3849%}
3850
3851// Indirect Memory Times Scale Plus Index Register
3852operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3853%{
3854  constraint(ALLOC_IN_RC(ptr_reg));
3855  match(AddP reg (LShiftL lreg scale));
3856
3857  op_cost(10);
3858  format %{"[$reg + $lreg << $scale]" %}
3859  interface(MEMORY_INTER) %{
3860    base($reg);
3861    index($lreg);
3862    scale($scale);
3863    disp(0x0);
3864  %}
3865%}
3866
3867operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3868%{
3869  constraint(ALLOC_IN_RC(ptr_reg));
3870  predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3871  match(AddP reg (LShiftL (ConvI2L idx) scale));
3872
3873  op_cost(10);
3874  format %{"[$reg + pos $idx << $scale]" %}
3875  interface(MEMORY_INTER) %{
3876    base($reg);
3877    index($idx);
3878    scale($scale);
3879    disp(0x0);
3880  %}
3881%}
3882
3883// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3884operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3885%{
3886  constraint(ALLOC_IN_RC(ptr_reg));
3887  match(AddP (AddP reg (LShiftL lreg scale)) off);
3888
3889  op_cost(10);
3890  format %{"[$reg + $off + $lreg << $scale]" %}
3891  interface(MEMORY_INTER) %{
3892    base($reg);
3893    index($lreg);
3894    scale($scale);
3895    disp($off);
3896  %}
3897%}
3898
3899// Indirect Memory Plus Positive Index Register Plus Offset Operand
3900operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3901%{
3902  constraint(ALLOC_IN_RC(ptr_reg));
3903  predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3904  match(AddP (AddP reg (ConvI2L idx)) off);
3905
3906  op_cost(10);
3907  format %{"[$reg + $off + $idx]" %}
3908  interface(MEMORY_INTER) %{
3909    base($reg);
3910    index($idx);
3911    scale(0x0);
3912    disp($off);
3913  %}
3914%}
3915
3916// Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3917operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3918%{
3919  constraint(ALLOC_IN_RC(ptr_reg));
3920  predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3921  match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3922
3923  op_cost(10);
3924  format %{"[$reg + $off + $idx << $scale]" %}
3925  interface(MEMORY_INTER) %{
3926    base($reg);
3927    index($idx);
3928    scale($scale);
3929    disp($off);
3930  %}
3931%}
3932
3933// Indirect Narrow Oop Plus Offset Operand
3934// Note: x86 architecture doesn't support "scale * index + offset" without a base
3935// we can't free r12 even with Universe::narrow_oop_base() == NULL.
3936operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3937  predicate(UseCompressedOops && (Universe::narrow_oop_shift() == Address::times_8));
3938  constraint(ALLOC_IN_RC(ptr_reg));
3939  match(AddP (DecodeN reg) off);
3940
3941  op_cost(10);
3942  format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3943  interface(MEMORY_INTER) %{
3944    base(0xc); // R12
3945    index($reg);
3946    scale(0x3);
3947    disp($off);
3948  %}
3949%}
3950
3951// Indirect Memory Operand
3952operand indirectNarrow(rRegN reg)
3953%{
3954  predicate(Universe::narrow_oop_shift() == 0);
3955  constraint(ALLOC_IN_RC(ptr_reg));
3956  match(DecodeN reg);
3957
3958  format %{ "[$reg]" %}
3959  interface(MEMORY_INTER) %{
3960    base($reg);
3961    index(0x4);
3962    scale(0x0);
3963    disp(0x0);
3964  %}
3965%}
3966
3967// Indirect Memory Plus Short Offset Operand
3968operand indOffset8Narrow(rRegN reg, immL8 off)
3969%{
3970  predicate(Universe::narrow_oop_shift() == 0);
3971  constraint(ALLOC_IN_RC(ptr_reg));
3972  match(AddP (DecodeN reg) off);
3973
3974  format %{ "[$reg + $off (8-bit)]" %}
3975  interface(MEMORY_INTER) %{
3976    base($reg);
3977    index(0x4);
3978    scale(0x0);
3979    disp($off);
3980  %}
3981%}
3982
3983// Indirect Memory Plus Long Offset Operand
3984operand indOffset32Narrow(rRegN reg, immL32 off)
3985%{
3986  predicate(Universe::narrow_oop_shift() == 0);
3987  constraint(ALLOC_IN_RC(ptr_reg));
3988  match(AddP (DecodeN reg) off);
3989
3990  format %{ "[$reg + $off (32-bit)]" %}
3991  interface(MEMORY_INTER) %{
3992    base($reg);
3993    index(0x4);
3994    scale(0x0);
3995    disp($off);
3996  %}
3997%}
3998
3999// Indirect Memory Plus Index Register Plus Offset Operand
4000operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
4001%{
4002  predicate(Universe::narrow_oop_shift() == 0);
4003  constraint(ALLOC_IN_RC(ptr_reg));
4004  match(AddP (AddP (DecodeN reg) lreg) off);
4005
4006  op_cost(10);
4007  format %{"[$reg + $off + $lreg]" %}
4008  interface(MEMORY_INTER) %{
4009    base($reg);
4010    index($lreg);
4011    scale(0x0);
4012    disp($off);
4013  %}
4014%}
4015
4016// Indirect Memory Plus Index Register Plus Offset Operand
4017operand indIndexNarrow(rRegN reg, rRegL lreg)
4018%{
4019  predicate(Universe::narrow_oop_shift() == 0);
4020  constraint(ALLOC_IN_RC(ptr_reg));
4021  match(AddP (DecodeN reg) lreg);
4022
4023  op_cost(10);
4024  format %{"[$reg + $lreg]" %}
4025  interface(MEMORY_INTER) %{
4026    base($reg);
4027    index($lreg);
4028    scale(0x0);
4029    disp(0x0);
4030  %}
4031%}
4032
4033// Indirect Memory Times Scale Plus Index Register
4034operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
4035%{
4036  predicate(Universe::narrow_oop_shift() == 0);
4037  constraint(ALLOC_IN_RC(ptr_reg));
4038  match(AddP (DecodeN reg) (LShiftL lreg scale));
4039
4040  op_cost(10);
4041  format %{"[$reg + $lreg << $scale]" %}
4042  interface(MEMORY_INTER) %{
4043    base($reg);
4044    index($lreg);
4045    scale($scale);
4046    disp(0x0);
4047  %}
4048%}
4049
4050// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4051operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
4052%{
4053  predicate(Universe::narrow_oop_shift() == 0);
4054  constraint(ALLOC_IN_RC(ptr_reg));
4055  match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
4056
4057  op_cost(10);
4058  format %{"[$reg + $off + $lreg << $scale]" %}
4059  interface(MEMORY_INTER) %{
4060    base($reg);
4061    index($lreg);
4062    scale($scale);
4063    disp($off);
4064  %}
4065%}
4066
4067// Indirect Memory Times Plus Positive Index Register Plus Offset Operand
4068operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
4069%{
4070  constraint(ALLOC_IN_RC(ptr_reg));
4071  predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
4072  match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
4073
4074  op_cost(10);
4075  format %{"[$reg + $off + $idx]" %}
4076  interface(MEMORY_INTER) %{
4077    base($reg);
4078    index($idx);
4079    scale(0x0);
4080    disp($off);
4081  %}
4082%}
4083
4084// Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4085operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4086%{
4087  constraint(ALLOC_IN_RC(ptr_reg));
4088  predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4089  match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4090
4091  op_cost(10);
4092  format %{"[$reg + $off + $idx << $scale]" %}
4093  interface(MEMORY_INTER) %{
4094    base($reg);
4095    index($idx);
4096    scale($scale);
4097    disp($off);
4098  %}
4099%}
4100
4101//----------Special Memory Operands--------------------------------------------
4102// Stack Slot Operand - This operand is used for loading and storing temporary
4103//                      values on the stack where a match requires a value to
4104//                      flow through memory.
4105operand stackSlotP(sRegP reg)
4106%{
4107  constraint(ALLOC_IN_RC(stack_slots));
4108  // No match rule because this operand is only generated in matching
4109
4110  format %{ "[$reg]" %}
4111  interface(MEMORY_INTER) %{
4112    base(0x4);   // RSP
4113    index(0x4);  // No Index
4114    scale(0x0);  // No Scale
4115    disp($reg);  // Stack Offset
4116  %}
4117%}
4118
4119operand stackSlotI(sRegI reg)
4120%{
4121  constraint(ALLOC_IN_RC(stack_slots));
4122  // No match rule because this operand is only generated in matching
4123
4124  format %{ "[$reg]" %}
4125  interface(MEMORY_INTER) %{
4126    base(0x4);   // RSP
4127    index(0x4);  // No Index
4128    scale(0x0);  // No Scale
4129    disp($reg);  // Stack Offset
4130  %}
4131%}
4132
4133operand stackSlotF(sRegF reg)
4134%{
4135  constraint(ALLOC_IN_RC(stack_slots));
4136  // No match rule because this operand is only generated in matching
4137
4138  format %{ "[$reg]" %}
4139  interface(MEMORY_INTER) %{
4140    base(0x4);   // RSP
4141    index(0x4);  // No Index
4142    scale(0x0);  // No Scale
4143    disp($reg);  // Stack Offset
4144  %}
4145%}
4146
4147operand stackSlotD(sRegD reg)
4148%{
4149  constraint(ALLOC_IN_RC(stack_slots));
4150  // No match rule because this operand is only generated in matching
4151
4152  format %{ "[$reg]" %}
4153  interface(MEMORY_INTER) %{
4154    base(0x4);   // RSP
4155    index(0x4);  // No Index
4156    scale(0x0);  // No Scale
4157    disp($reg);  // Stack Offset
4158  %}
4159%}
4160operand stackSlotL(sRegL reg)
4161%{
4162  constraint(ALLOC_IN_RC(stack_slots));
4163  // No match rule because this operand is only generated in matching
4164
4165  format %{ "[$reg]" %}
4166  interface(MEMORY_INTER) %{
4167    base(0x4);   // RSP
4168    index(0x4);  // No Index
4169    scale(0x0);  // No Scale
4170    disp($reg);  // Stack Offset
4171  %}
4172%}
4173
4174//----------Conditional Branch Operands----------------------------------------
4175// Comparison Op  - This is the operation of the comparison, and is limited to
4176//                  the following set of codes:
4177//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4178//
4179// Other attributes of the comparison, such as unsignedness, are specified
4180// by the comparison instruction that sets a condition code flags register.
4181// That result is represented by a flags operand whose subtype is appropriate
4182// to the unsignedness (etc.) of the comparison.
4183//
4184// Later, the instruction which matches both the Comparison Op (a Bool) and
4185// the flags (produced by the Cmp) specifies the coding of the comparison op
4186// by matching a specific subtype of Bool operand below, such as cmpOpU.
4187
4188// Comparision Code
4189operand cmpOp()
4190%{
4191  match(Bool);
4192
4193  format %{ "" %}
4194  interface(COND_INTER) %{
4195    equal(0x4, "e");
4196    not_equal(0x5, "ne");
4197    less(0xC, "l");
4198    greater_equal(0xD, "ge");
4199    less_equal(0xE, "le");
4200    greater(0xF, "g");
4201    overflow(0x0, "o");
4202    no_overflow(0x1, "no");
4203  %}
4204%}
4205
4206// Comparison Code, unsigned compare.  Used by FP also, with
4207// C2 (unordered) turned into GT or LT already.  The other bits
4208// C0 and C3 are turned into Carry & Zero flags.
4209operand cmpOpU()
4210%{
4211  match(Bool);
4212
4213  format %{ "" %}
4214  interface(COND_INTER) %{
4215    equal(0x4, "e");
4216    not_equal(0x5, "ne");
4217    less(0x2, "b");
4218    greater_equal(0x3, "nb");
4219    less_equal(0x6, "be");
4220    greater(0x7, "nbe");
4221    overflow(0x0, "o");
4222    no_overflow(0x1, "no");
4223  %}
4224%}
4225
4226
4227// Floating comparisons that don't require any fixup for the unordered case
4228operand cmpOpUCF() %{
4229  match(Bool);
4230  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4231            n->as_Bool()->_test._test == BoolTest::ge ||
4232            n->as_Bool()->_test._test == BoolTest::le ||
4233            n->as_Bool()->_test._test == BoolTest::gt);
4234  format %{ "" %}
4235  interface(COND_INTER) %{
4236    equal(0x4, "e");
4237    not_equal(0x5, "ne");
4238    less(0x2, "b");
4239    greater_equal(0x3, "nb");
4240    less_equal(0x6, "be");
4241    greater(0x7, "nbe");
4242    overflow(0x0, "o");
4243    no_overflow(0x1, "no");
4244  %}
4245%}
4246
4247
4248// Floating comparisons that can be fixed up with extra conditional jumps
4249operand cmpOpUCF2() %{
4250  match(Bool);
4251  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4252            n->as_Bool()->_test._test == BoolTest::eq);
4253  format %{ "" %}
4254  interface(COND_INTER) %{
4255    equal(0x4, "e");
4256    not_equal(0x5, "ne");
4257    less(0x2, "b");
4258    greater_equal(0x3, "nb");
4259    less_equal(0x6, "be");
4260    greater(0x7, "nbe");
4261    overflow(0x0, "o");
4262    no_overflow(0x1, "no");
4263  %}
4264%}
4265
4266// Operands for bound floating pointer register arguments
4267operand rxmm0() %{
4268  constraint(ALLOC_IN_RC(xmm0_reg));
4269  match(VecX);
4270  format%{%}
4271  interface(REG_INTER);
4272%}
4273operand rxmm1() %{
4274  constraint(ALLOC_IN_RC(xmm1_reg));
4275  match(VecX);
4276  format%{%}
4277  interface(REG_INTER);
4278%}
4279operand rxmm2() %{
4280  constraint(ALLOC_IN_RC(xmm2_reg));
4281  match(VecX);
4282  format%{%}
4283  interface(REG_INTER);
4284%}
4285operand rxmm3() %{
4286  constraint(ALLOC_IN_RC(xmm3_reg));
4287  match(VecX);
4288  format%{%}
4289  interface(REG_INTER);
4290%}
4291operand rxmm4() %{
4292  constraint(ALLOC_IN_RC(xmm4_reg));
4293  match(VecX);
4294  format%{%}
4295  interface(REG_INTER);
4296%}
4297operand rxmm5() %{
4298  constraint(ALLOC_IN_RC(xmm5_reg));
4299  match(VecX);
4300  format%{%}
4301  interface(REG_INTER);
4302%}
4303operand rxmm6() %{
4304  constraint(ALLOC_IN_RC(xmm6_reg));
4305  match(VecX);
4306  format%{%}
4307  interface(REG_INTER);
4308%}
4309operand rxmm7() %{
4310  constraint(ALLOC_IN_RC(xmm7_reg));
4311  match(VecX);
4312  format%{%}
4313  interface(REG_INTER);
4314%}
4315operand rxmm8() %{
4316  constraint(ALLOC_IN_RC(xmm8_reg));
4317  match(VecX);
4318  format%{%}
4319  interface(REG_INTER);
4320%}
4321operand rxmm9() %{
4322  constraint(ALLOC_IN_RC(xmm9_reg));
4323  match(VecX);
4324  format%{%}
4325  interface(REG_INTER);
4326%}
4327operand rxmm10() %{
4328  constraint(ALLOC_IN_RC(xmm10_reg));
4329  match(VecX);
4330  format%{%}
4331  interface(REG_INTER);
4332%}
4333operand rxmm11() %{
4334  constraint(ALLOC_IN_RC(xmm11_reg));
4335  match(VecX);
4336  format%{%}
4337  interface(REG_INTER);
4338%}
4339operand rxmm12() %{
4340  constraint(ALLOC_IN_RC(xmm12_reg));
4341  match(VecX);
4342  format%{%}
4343  interface(REG_INTER);
4344%}
4345operand rxmm13() %{
4346  constraint(ALLOC_IN_RC(xmm13_reg));
4347  match(VecX);
4348  format%{%}
4349  interface(REG_INTER);
4350%}
4351operand rxmm14() %{
4352  constraint(ALLOC_IN_RC(xmm14_reg));
4353  match(VecX);
4354  format%{%}
4355  interface(REG_INTER);
4356%}
4357operand rxmm15() %{
4358  constraint(ALLOC_IN_RC(xmm15_reg));
4359  match(VecX);
4360  format%{%}
4361  interface(REG_INTER);
4362%}
4363operand rxmm16() %{
4364  constraint(ALLOC_IN_RC(xmm16_reg));
4365  match(VecX);
4366  format%{%}
4367  interface(REG_INTER);
4368%}
4369operand rxmm17() %{
4370  constraint(ALLOC_IN_RC(xmm17_reg));
4371  match(VecX);
4372  format%{%}
4373  interface(REG_INTER);
4374%}
4375operand rxmm18() %{
4376  constraint(ALLOC_IN_RC(xmm18_reg));
4377  match(VecX);
4378  format%{%}
4379  interface(REG_INTER);
4380%}
4381operand rxmm19() %{
4382  constraint(ALLOC_IN_RC(xmm19_reg));
4383  match(VecX);
4384  format%{%}
4385  interface(REG_INTER);
4386%}
4387operand rxmm20() %{
4388  constraint(ALLOC_IN_RC(xmm20_reg));
4389  match(VecX);
4390  format%{%}
4391  interface(REG_INTER);
4392%}
4393operand rxmm21() %{
4394  constraint(ALLOC_IN_RC(xmm21_reg));
4395  match(VecX);
4396  format%{%}
4397  interface(REG_INTER);
4398%}
4399operand rxmm22() %{
4400  constraint(ALLOC_IN_RC(xmm22_reg));
4401  match(VecX);
4402  format%{%}
4403  interface(REG_INTER);
4404%}
4405operand rxmm23() %{
4406  constraint(ALLOC_IN_RC(xmm23_reg));
4407  match(VecX);
4408  format%{%}
4409  interface(REG_INTER);
4410%}
4411operand rxmm24() %{
4412  constraint(ALLOC_IN_RC(xmm24_reg));
4413  match(VecX);
4414  format%{%}
4415  interface(REG_INTER);
4416%}
4417operand rxmm25() %{
4418  constraint(ALLOC_IN_RC(xmm25_reg));
4419  match(VecX);
4420  format%{%}
4421  interface(REG_INTER);
4422%}
4423operand rxmm26() %{
4424  constraint(ALLOC_IN_RC(xmm26_reg));
4425  match(VecX);
4426  format%{%}
4427  interface(REG_INTER);
4428%}
4429operand rxmm27() %{
4430  constraint(ALLOC_IN_RC(xmm27_reg));
4431  match(VecX);
4432  format%{%}
4433  interface(REG_INTER);
4434%}
4435operand rxmm28() %{
4436  constraint(ALLOC_IN_RC(xmm28_reg));
4437  match(VecX);
4438  format%{%}
4439  interface(REG_INTER);
4440%}
4441operand rxmm29() %{
4442  constraint(ALLOC_IN_RC(xmm29_reg));
4443  match(VecX);
4444  format%{%}
4445  interface(REG_INTER);
4446%}
4447operand rxmm30() %{
4448  constraint(ALLOC_IN_RC(xmm30_reg));
4449  match(VecX);
4450  format%{%}
4451  interface(REG_INTER);
4452%}
4453operand rxmm31() %{
4454  constraint(ALLOC_IN_RC(xmm31_reg));
4455  match(VecX);
4456  format%{%}
4457  interface(REG_INTER);
4458%}
4459
4460//----------OPERAND CLASSES----------------------------------------------------
4461// Operand Classes are groups of operands that are used as to simplify
4462// instruction definitions by not requiring the AD writer to specify separate
4463// instructions for every form of operand when the instruction accepts
4464// multiple operand types with the same basic encoding and format.  The classic
4465// case of this is memory operands.
4466
4467opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4468               indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4469               indCompressedOopOffset,
4470               indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4471               indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4472               indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4473
4474//----------PIPELINE-----------------------------------------------------------
4475// Rules which define the behavior of the target architectures pipeline.
4476pipeline %{
4477
4478//----------ATTRIBUTES---------------------------------------------------------
4479attributes %{
4480  variable_size_instructions;        // Fixed size instructions
4481  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4482  instruction_unit_size = 1;         // An instruction is 1 bytes long
4483  instruction_fetch_unit_size = 16;  // The processor fetches one line
4484  instruction_fetch_units = 1;       // of 16 bytes
4485
4486  // List of nop instructions
4487  nops( MachNop );
4488%}
4489
4490//----------RESOURCES----------------------------------------------------------
4491// Resources are the functional units available to the machine
4492
4493// Generic P2/P3 pipeline
4494// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4495// 3 instructions decoded per cycle.
4496// 2 load/store ops per cycle, 1 branch, 1 FPU,
4497// 3 ALU op, only ALU0 handles mul instructions.
4498resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4499           MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4500           BR, FPU,
4501           ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4502
4503//----------PIPELINE DESCRIPTION-----------------------------------------------
4504// Pipeline Description specifies the stages in the machine's pipeline
4505
4506// Generic P2/P3 pipeline
4507pipe_desc(S0, S1, S2, S3, S4, S5);
4508
4509//----------PIPELINE CLASSES---------------------------------------------------
4510// Pipeline Classes describe the stages in which input and output are
4511// referenced by the hardware pipeline.
4512
4513// Naming convention: ialu or fpu
4514// Then: _reg
4515// Then: _reg if there is a 2nd register
4516// Then: _long if it's a pair of instructions implementing a long
4517// Then: _fat if it requires the big decoder
4518//   Or: _mem if it requires the big decoder and a memory unit.
4519
4520// Integer ALU reg operation
4521pipe_class ialu_reg(rRegI dst)
4522%{
4523    single_instruction;
4524    dst    : S4(write);
4525    dst    : S3(read);
4526    DECODE : S0;        // any decoder
4527    ALU    : S3;        // any alu
4528%}
4529
4530// Long ALU reg operation
4531pipe_class ialu_reg_long(rRegL dst)
4532%{
4533    instruction_count(2);
4534    dst    : S4(write);
4535    dst    : S3(read);
4536    DECODE : S0(2);     // any 2 decoders
4537    ALU    : S3(2);     // both alus
4538%}
4539
4540// Integer ALU reg operation using big decoder
4541pipe_class ialu_reg_fat(rRegI dst)
4542%{
4543    single_instruction;
4544    dst    : S4(write);
4545    dst    : S3(read);
4546    D0     : S0;        // big decoder only
4547    ALU    : S3;        // any alu
4548%}
4549
4550// Long ALU reg operation using big decoder
4551pipe_class ialu_reg_long_fat(rRegL dst)
4552%{
4553    instruction_count(2);
4554    dst    : S4(write);
4555    dst    : S3(read);
4556    D0     : S0(2);     // big decoder only; twice
4557    ALU    : S3(2);     // any 2 alus
4558%}
4559
4560// Integer ALU reg-reg operation
4561pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4562%{
4563    single_instruction;
4564    dst    : S4(write);
4565    src    : S3(read);
4566    DECODE : S0;        // any decoder
4567    ALU    : S3;        // any alu
4568%}
4569
4570// Long ALU reg-reg operation
4571pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4572%{
4573    instruction_count(2);
4574    dst    : S4(write);
4575    src    : S3(read);
4576    DECODE : S0(2);     // any 2 decoders
4577    ALU    : S3(2);     // both alus
4578%}
4579
4580// Integer ALU reg-reg operation
4581pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4582%{
4583    single_instruction;
4584    dst    : S4(write);
4585    src    : S3(read);
4586    D0     : S0;        // big decoder only
4587    ALU    : S3;        // any alu
4588%}
4589
4590// Long ALU reg-reg operation
4591pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4592%{
4593    instruction_count(2);
4594    dst    : S4(write);
4595    src    : S3(read);
4596    D0     : S0(2);     // big decoder only; twice
4597    ALU    : S3(2);     // both alus
4598%}
4599
4600// Integer ALU reg-mem operation
4601pipe_class ialu_reg_mem(rRegI dst, memory mem)
4602%{
4603    single_instruction;
4604    dst    : S5(write);
4605    mem    : S3(read);
4606    D0     : S0;        // big decoder only
4607    ALU    : S4;        // any alu
4608    MEM    : S3;        // any mem
4609%}
4610
4611// Integer mem operation (prefetch)
4612pipe_class ialu_mem(memory mem)
4613%{
4614    single_instruction;
4615    mem    : S3(read);
4616    D0     : S0;        // big decoder only
4617    MEM    : S3;        // any mem
4618%}
4619
4620// Integer Store to Memory
4621pipe_class ialu_mem_reg(memory mem, rRegI src)
4622%{
4623    single_instruction;
4624    mem    : S3(read);
4625    src    : S5(read);
4626    D0     : S0;        // big decoder only
4627    ALU    : S4;        // any alu
4628    MEM    : S3;
4629%}
4630
4631// // Long Store to Memory
4632// pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4633// %{
4634//     instruction_count(2);
4635//     mem    : S3(read);
4636//     src    : S5(read);
4637//     D0     : S0(2);          // big decoder only; twice
4638//     ALU    : S4(2);     // any 2 alus
4639//     MEM    : S3(2);  // Both mems
4640// %}
4641
4642// Integer Store to Memory
4643pipe_class ialu_mem_imm(memory mem)
4644%{
4645    single_instruction;
4646    mem    : S3(read);
4647    D0     : S0;        // big decoder only
4648    ALU    : S4;        // any alu
4649    MEM    : S3;
4650%}
4651
4652// Integer ALU0 reg-reg operation
4653pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4654%{
4655    single_instruction;
4656    dst    : S4(write);
4657    src    : S3(read);
4658    D0     : S0;        // Big decoder only
4659    ALU0   : S3;        // only alu0
4660%}
4661
4662// Integer ALU0 reg-mem operation
4663pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4664%{
4665    single_instruction;
4666    dst    : S5(write);
4667    mem    : S3(read);
4668    D0     : S0;        // big decoder only
4669    ALU0   : S4;        // ALU0 only
4670    MEM    : S3;        // any mem
4671%}
4672
4673// Integer ALU reg-reg operation
4674pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4675%{
4676    single_instruction;
4677    cr     : S4(write);
4678    src1   : S3(read);
4679    src2   : S3(read);
4680    DECODE : S0;        // any decoder
4681    ALU    : S3;        // any alu
4682%}
4683
4684// Integer ALU reg-imm operation
4685pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4686%{
4687    single_instruction;
4688    cr     : S4(write);
4689    src1   : S3(read);
4690    DECODE : S0;        // any decoder
4691    ALU    : S3;        // any alu
4692%}
4693
4694// Integer ALU reg-mem operation
4695pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4696%{
4697    single_instruction;
4698    cr     : S4(write);
4699    src1   : S3(read);
4700    src2   : S3(read);
4701    D0     : S0;        // big decoder only
4702    ALU    : S4;        // any alu
4703    MEM    : S3;
4704%}
4705
4706// Conditional move reg-reg
4707pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4708%{
4709    instruction_count(4);
4710    y      : S4(read);
4711    q      : S3(read);
4712    p      : S3(read);
4713    DECODE : S0(4);     // any decoder
4714%}
4715
4716// Conditional move reg-reg
4717pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4718%{
4719    single_instruction;
4720    dst    : S4(write);
4721    src    : S3(read);
4722    cr     : S3(read);
4723    DECODE : S0;        // any decoder
4724%}
4725
4726// Conditional move reg-mem
4727pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4728%{
4729    single_instruction;
4730    dst    : S4(write);
4731    src    : S3(read);
4732    cr     : S3(read);
4733    DECODE : S0;        // any decoder
4734    MEM    : S3;
4735%}
4736
4737// Conditional move reg-reg long
4738pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4739%{
4740    single_instruction;
4741    dst    : S4(write);
4742    src    : S3(read);
4743    cr     : S3(read);
4744    DECODE : S0(2);     // any 2 decoders
4745%}
4746
4747// XXX
4748// // Conditional move double reg-reg
4749// pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4750// %{
4751//     single_instruction;
4752//     dst    : S4(write);
4753//     src    : S3(read);
4754//     cr     : S3(read);
4755//     DECODE : S0;     // any decoder
4756// %}
4757
4758// Float reg-reg operation
4759pipe_class fpu_reg(regD dst)
4760%{
4761    instruction_count(2);
4762    dst    : S3(read);
4763    DECODE : S0(2);     // any 2 decoders
4764    FPU    : S3;
4765%}
4766
4767// Float reg-reg operation
4768pipe_class fpu_reg_reg(regD dst, regD src)
4769%{
4770    instruction_count(2);
4771    dst    : S4(write);
4772    src    : S3(read);
4773    DECODE : S0(2);     // any 2 decoders
4774    FPU    : S3;
4775%}
4776
4777// Float reg-reg operation
4778pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4779%{
4780    instruction_count(3);
4781    dst    : S4(write);
4782    src1   : S3(read);
4783    src2   : S3(read);
4784    DECODE : S0(3);     // any 3 decoders
4785    FPU    : S3(2);
4786%}
4787
4788// Float reg-reg operation
4789pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4790%{
4791    instruction_count(4);
4792    dst    : S4(write);
4793    src1   : S3(read);
4794    src2   : S3(read);
4795    src3   : S3(read);
4796    DECODE : S0(4);     // any 3 decoders
4797    FPU    : S3(2);
4798%}
4799
4800// Float reg-reg operation
4801pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4802%{
4803    instruction_count(4);
4804    dst    : S4(write);
4805    src1   : S3(read);
4806    src2   : S3(read);
4807    src3   : S3(read);
4808    DECODE : S1(3);     // any 3 decoders
4809    D0     : S0;        // Big decoder only
4810    FPU    : S3(2);
4811    MEM    : S3;
4812%}
4813
4814// Float reg-mem operation
4815pipe_class fpu_reg_mem(regD dst, memory mem)
4816%{
4817    instruction_count(2);
4818    dst    : S5(write);
4819    mem    : S3(read);
4820    D0     : S0;        // big decoder only
4821    DECODE : S1;        // any decoder for FPU POP
4822    FPU    : S4;
4823    MEM    : S3;        // any mem
4824%}
4825
4826// Float reg-mem operation
4827pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4828%{
4829    instruction_count(3);
4830    dst    : S5(write);
4831    src1   : S3(read);
4832    mem    : S3(read);
4833    D0     : S0;        // big decoder only
4834    DECODE : S1(2);     // any decoder for FPU POP
4835    FPU    : S4;
4836    MEM    : S3;        // any mem
4837%}
4838
4839// Float mem-reg operation
4840pipe_class fpu_mem_reg(memory mem, regD src)
4841%{
4842    instruction_count(2);
4843    src    : S5(read);
4844    mem    : S3(read);
4845    DECODE : S0;        // any decoder for FPU PUSH
4846    D0     : S1;        // big decoder only
4847    FPU    : S4;
4848    MEM    : S3;        // any mem
4849%}
4850
4851pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4852%{
4853    instruction_count(3);
4854    src1   : S3(read);
4855    src2   : S3(read);
4856    mem    : S3(read);
4857    DECODE : S0(2);     // any decoder for FPU PUSH
4858    D0     : S1;        // big decoder only
4859    FPU    : S4;
4860    MEM    : S3;        // any mem
4861%}
4862
4863pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4864%{
4865    instruction_count(3);
4866    src1   : S3(read);
4867    src2   : S3(read);
4868    mem    : S4(read);
4869    DECODE : S0;        // any decoder for FPU PUSH
4870    D0     : S0(2);     // big decoder only
4871    FPU    : S4;
4872    MEM    : S3(2);     // any mem
4873%}
4874
4875pipe_class fpu_mem_mem(memory dst, memory src1)
4876%{
4877    instruction_count(2);
4878    src1   : S3(read);
4879    dst    : S4(read);
4880    D0     : S0(2);     // big decoder only
4881    MEM    : S3(2);     // any mem
4882%}
4883
4884pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4885%{
4886    instruction_count(3);
4887    src1   : S3(read);
4888    src2   : S3(read);
4889    dst    : S4(read);
4890    D0     : S0(3);     // big decoder only
4891    FPU    : S4;
4892    MEM    : S3(3);     // any mem
4893%}
4894
4895pipe_class fpu_mem_reg_con(memory mem, regD src1)
4896%{
4897    instruction_count(3);
4898    src1   : S4(read);
4899    mem    : S4(read);
4900    DECODE : S0;        // any decoder for FPU PUSH
4901    D0     : S0(2);     // big decoder only
4902    FPU    : S4;
4903    MEM    : S3(2);     // any mem
4904%}
4905
4906// Float load constant
4907pipe_class fpu_reg_con(regD dst)
4908%{
4909    instruction_count(2);
4910    dst    : S5(write);
4911    D0     : S0;        // big decoder only for the load
4912    DECODE : S1;        // any decoder for FPU POP
4913    FPU    : S4;
4914    MEM    : S3;        // any mem
4915%}
4916
4917// Float load constant
4918pipe_class fpu_reg_reg_con(regD dst, regD src)
4919%{
4920    instruction_count(3);
4921    dst    : S5(write);
4922    src    : S3(read);
4923    D0     : S0;        // big decoder only for the load
4924    DECODE : S1(2);     // any decoder for FPU POP
4925    FPU    : S4;
4926    MEM    : S3;        // any mem
4927%}
4928
4929// UnConditional branch
4930pipe_class pipe_jmp(label labl)
4931%{
4932    single_instruction;
4933    BR   : S3;
4934%}
4935
4936// Conditional branch
4937pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4938%{
4939    single_instruction;
4940    cr    : S1(read);
4941    BR    : S3;
4942%}
4943
4944// Allocation idiom
4945pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4946%{
4947    instruction_count(1); force_serialization;
4948    fixed_latency(6);
4949    heap_ptr : S3(read);
4950    DECODE   : S0(3);
4951    D0       : S2;
4952    MEM      : S3;
4953    ALU      : S3(2);
4954    dst      : S5(write);
4955    BR       : S5;
4956%}
4957
4958// Generic big/slow expanded idiom
4959pipe_class pipe_slow()
4960%{
4961    instruction_count(10); multiple_bundles; force_serialization;
4962    fixed_latency(100);
4963    D0  : S0(2);
4964    MEM : S3(2);
4965%}
4966
4967// The real do-nothing guy
4968pipe_class empty()
4969%{
4970    instruction_count(0);
4971%}
4972
4973// Define the class for the Nop node
4974define
4975%{
4976   MachNop = empty;
4977%}
4978
4979%}
4980
4981//----------INSTRUCTIONS-------------------------------------------------------
4982//
4983// match      -- States which machine-independent subtree may be replaced
4984//               by this instruction.
4985// ins_cost   -- The estimated cost of this instruction is used by instruction
4986//               selection to identify a minimum cost tree of machine
4987//               instructions that matches a tree of machine-independent
4988//               instructions.
4989// format     -- A string providing the disassembly for this instruction.
4990//               The value of an instruction's operand may be inserted
4991//               by referring to it with a '$' prefix.
4992// opcode     -- Three instruction opcodes may be provided.  These are referred
4993//               to within an encode class as $primary, $secondary, and $tertiary
4994//               rrspectively.  The primary opcode is commonly used to
4995//               indicate the type of machine instruction, while secondary
4996//               and tertiary are often used for prefix options or addressing
4997//               modes.
4998// ins_encode -- A list of encode classes with parameters. The encode class
4999//               name must have been defined in an 'enc_class' specification
5000//               in the encode section of the architecture description.
5001
5002
5003//----------Load/Store/Move Instructions---------------------------------------
5004//----------Load Instructions--------------------------------------------------
5005
5006// Load Byte (8 bit signed)
5007instruct loadB(rRegI dst, memory mem)
5008%{
5009  match(Set dst (LoadB mem));
5010
5011  ins_cost(125);
5012  format %{ "movsbl  $dst, $mem\t# byte" %}
5013
5014  ins_encode %{
5015    __ movsbl($dst$$Register, $mem$$Address);
5016  %}
5017
5018  ins_pipe(ialu_reg_mem);
5019%}
5020
5021// Load Byte (8 bit signed) into Long Register
5022instruct loadB2L(rRegL dst, memory mem)
5023%{
5024  match(Set dst (ConvI2L (LoadB mem)));
5025
5026  ins_cost(125);
5027  format %{ "movsbq  $dst, $mem\t# byte -> long" %}
5028
5029  ins_encode %{
5030    __ movsbq($dst$$Register, $mem$$Address);
5031  %}
5032
5033  ins_pipe(ialu_reg_mem);
5034%}
5035
5036// Load Unsigned Byte (8 bit UNsigned)
5037instruct loadUB(rRegI dst, memory mem)
5038%{
5039  match(Set dst (LoadUB mem));
5040
5041  ins_cost(125);
5042  format %{ "movzbl  $dst, $mem\t# ubyte" %}
5043
5044  ins_encode %{
5045    __ movzbl($dst$$Register, $mem$$Address);
5046  %}
5047
5048  ins_pipe(ialu_reg_mem);
5049%}
5050
5051// Load Unsigned Byte (8 bit UNsigned) into Long Register
5052instruct loadUB2L(rRegL dst, memory mem)
5053%{
5054  match(Set dst (ConvI2L (LoadUB mem)));
5055
5056  ins_cost(125);
5057  format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
5058
5059  ins_encode %{
5060    __ movzbq($dst$$Register, $mem$$Address);
5061  %}
5062
5063  ins_pipe(ialu_reg_mem);
5064%}
5065
5066// Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5067instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
5068  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5069  effect(KILL cr);
5070
5071  format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
5072            "andl    $dst, right_n_bits($mask, 8)" %}
5073  ins_encode %{
5074    Register Rdst = $dst$$Register;
5075    __ movzbq(Rdst, $mem$$Address);
5076    __ andl(Rdst, $mask$$constant & right_n_bits(8));
5077  %}
5078  ins_pipe(ialu_reg_mem);
5079%}
5080
5081// Load Short (16 bit signed)
5082instruct loadS(rRegI dst, memory mem)
5083%{
5084  match(Set dst (LoadS mem));
5085
5086  ins_cost(125);
5087  format %{ "movswl $dst, $mem\t# short" %}
5088
5089  ins_encode %{
5090    __ movswl($dst$$Register, $mem$$Address);
5091  %}
5092
5093  ins_pipe(ialu_reg_mem);
5094%}
5095
5096// Load Short (16 bit signed) to Byte (8 bit signed)
5097instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5098  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5099
5100  ins_cost(125);
5101  format %{ "movsbl $dst, $mem\t# short -> byte" %}
5102  ins_encode %{
5103    __ movsbl($dst$$Register, $mem$$Address);
5104  %}
5105  ins_pipe(ialu_reg_mem);
5106%}
5107
5108// Load Short (16 bit signed) into Long Register
5109instruct loadS2L(rRegL dst, memory mem)
5110%{
5111  match(Set dst (ConvI2L (LoadS mem)));
5112
5113  ins_cost(125);
5114  format %{ "movswq $dst, $mem\t# short -> long" %}
5115
5116  ins_encode %{
5117    __ movswq($dst$$Register, $mem$$Address);
5118  %}
5119
5120  ins_pipe(ialu_reg_mem);
5121%}
5122
5123// Load Unsigned Short/Char (16 bit UNsigned)
5124instruct loadUS(rRegI dst, memory mem)
5125%{
5126  match(Set dst (LoadUS mem));
5127
5128  ins_cost(125);
5129  format %{ "movzwl  $dst, $mem\t# ushort/char" %}
5130
5131  ins_encode %{
5132    __ movzwl($dst$$Register, $mem$$Address);
5133  %}
5134
5135  ins_pipe(ialu_reg_mem);
5136%}
5137
5138// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5139instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5140  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5141
5142  ins_cost(125);
5143  format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
5144  ins_encode %{
5145    __ movsbl($dst$$Register, $mem$$Address);
5146  %}
5147  ins_pipe(ialu_reg_mem);
5148%}
5149
5150// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5151instruct loadUS2L(rRegL dst, memory mem)
5152%{
5153  match(Set dst (ConvI2L (LoadUS mem)));
5154
5155  ins_cost(125);
5156  format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
5157
5158  ins_encode %{
5159    __ movzwq($dst$$Register, $mem$$Address);
5160  %}
5161
5162  ins_pipe(ialu_reg_mem);
5163%}
5164
5165// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5166instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5167  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5168
5169  format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
5170  ins_encode %{
5171    __ movzbq($dst$$Register, $mem$$Address);
5172  %}
5173  ins_pipe(ialu_reg_mem);
5174%}
5175
5176// Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
5177instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
5178  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5179  effect(KILL cr);
5180
5181  format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
5182            "andl    $dst, right_n_bits($mask, 16)" %}
5183  ins_encode %{
5184    Register Rdst = $dst$$Register;
5185    __ movzwq(Rdst, $mem$$Address);
5186    __ andl(Rdst, $mask$$constant & right_n_bits(16));
5187  %}
5188  ins_pipe(ialu_reg_mem);
5189%}
5190
5191// Load Integer
5192instruct loadI(rRegI dst, memory mem)
5193%{
5194  match(Set dst (LoadI mem));
5195
5196  ins_cost(125);
5197  format %{ "movl    $dst, $mem\t# int" %}
5198
5199  ins_encode %{
5200    __ movl($dst$$Register, $mem$$Address);
5201  %}
5202
5203  ins_pipe(ialu_reg_mem);
5204%}
5205
5206// Load Integer (32 bit signed) to Byte (8 bit signed)
5207instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5208  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5209
5210  ins_cost(125);
5211  format %{ "movsbl  $dst, $mem\t# int -> byte" %}
5212  ins_encode %{
5213    __ movsbl($dst$$Register, $mem$$Address);
5214  %}
5215  ins_pipe(ialu_reg_mem);
5216%}
5217
5218// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5219instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5220  match(Set dst (AndI (LoadI mem) mask));
5221
5222  ins_cost(125);
5223  format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
5224  ins_encode %{
5225    __ movzbl($dst$$Register, $mem$$Address);
5226  %}
5227  ins_pipe(ialu_reg_mem);
5228%}
5229
5230// Load Integer (32 bit signed) to Short (16 bit signed)
5231instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5232  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5233
5234  ins_cost(125);
5235  format %{ "movswl  $dst, $mem\t# int -> short" %}
5236  ins_encode %{
5237    __ movswl($dst$$Register, $mem$$Address);
5238  %}
5239  ins_pipe(ialu_reg_mem);
5240%}
5241
5242// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5243instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5244  match(Set dst (AndI (LoadI mem) mask));
5245
5246  ins_cost(125);
5247  format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
5248  ins_encode %{
5249    __ movzwl($dst$$Register, $mem$$Address);
5250  %}
5251  ins_pipe(ialu_reg_mem);
5252%}
5253
5254// Load Integer into Long Register
5255instruct loadI2L(rRegL dst, memory mem)
5256%{
5257  match(Set dst (ConvI2L (LoadI mem)));
5258
5259  ins_cost(125);
5260  format %{ "movslq  $dst, $mem\t# int -> long" %}
5261
5262  ins_encode %{
5263    __ movslq($dst$$Register, $mem$$Address);
5264  %}
5265
5266  ins_pipe(ialu_reg_mem);
5267%}
5268
5269// Load Integer with mask 0xFF into Long Register
5270instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5271  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5272
5273  format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5274  ins_encode %{
5275    __ movzbq($dst$$Register, $mem$$Address);
5276  %}
5277  ins_pipe(ialu_reg_mem);
5278%}
5279
5280// Load Integer with mask 0xFFFF into Long Register
5281instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5282  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5283
5284  format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5285  ins_encode %{
5286    __ movzwq($dst$$Register, $mem$$Address);
5287  %}
5288  ins_pipe(ialu_reg_mem);
5289%}
5290
5291// Load Integer with a 31-bit mask into Long Register
5292instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5293  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5294  effect(KILL cr);
5295
5296  format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5297            "andl    $dst, $mask" %}
5298  ins_encode %{
5299    Register Rdst = $dst$$Register;
5300    __ movl(Rdst, $mem$$Address);
5301    __ andl(Rdst, $mask$$constant);
5302  %}
5303  ins_pipe(ialu_reg_mem);
5304%}
5305
5306// Load Unsigned Integer into Long Register
5307instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5308%{
5309  match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5310
5311  ins_cost(125);
5312  format %{ "movl    $dst, $mem\t# uint -> long" %}
5313
5314  ins_encode %{
5315    __ movl($dst$$Register, $mem$$Address);
5316  %}
5317
5318  ins_pipe(ialu_reg_mem);
5319%}
5320
5321// Load Long
5322instruct loadL(rRegL dst, memory mem)
5323%{
5324  match(Set dst (LoadL mem));
5325
5326  ins_cost(125);
5327  format %{ "movq    $dst, $mem\t# long" %}
5328
5329  ins_encode %{
5330    __ movq($dst$$Register, $mem$$Address);
5331  %}
5332
5333  ins_pipe(ialu_reg_mem); // XXX
5334%}
5335
5336// Load Range
5337instruct loadRange(rRegI dst, memory mem)
5338%{
5339  match(Set dst (LoadRange mem));
5340
5341  ins_cost(125); // XXX
5342  format %{ "movl    $dst, $mem\t# range" %}
5343  opcode(0x8B);
5344  ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5345  ins_pipe(ialu_reg_mem);
5346%}
5347
5348// Load Pointer
5349instruct loadP(rRegP dst, memory mem)
5350%{
5351  match(Set dst (LoadP mem));
5352
5353  ins_cost(125); // XXX
5354  format %{ "movq    $dst, $mem\t# ptr" %}
5355  opcode(0x8B);
5356  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5357  ins_pipe(ialu_reg_mem); // XXX
5358%}
5359
5360// Load Compressed Pointer
5361instruct loadN(rRegN dst, memory mem)
5362%{
5363   match(Set dst (LoadN mem));
5364
5365   ins_cost(125); // XXX
5366   format %{ "movl    $dst, $mem\t# compressed ptr" %}
5367   ins_encode %{
5368     __ movl($dst$$Register, $mem$$Address);
5369   %}
5370   ins_pipe(ialu_reg_mem); // XXX
5371%}
5372
5373
5374// Load Klass Pointer
5375instruct loadKlass(rRegP dst, memory mem)
5376%{
5377  match(Set dst (LoadKlass mem));
5378
5379  ins_cost(125); // XXX
5380  format %{ "movq    $dst, $mem\t# class" %}
5381  opcode(0x8B);
5382  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5383  ins_pipe(ialu_reg_mem); // XXX
5384%}
5385
5386// Load narrow Klass Pointer
5387instruct loadNKlass(rRegN dst, memory mem)
5388%{
5389  match(Set dst (LoadNKlass mem));
5390
5391  ins_cost(125); // XXX
5392  format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5393  ins_encode %{
5394    __ movl($dst$$Register, $mem$$Address);
5395  %}
5396  ins_pipe(ialu_reg_mem); // XXX
5397%}
5398
5399// Load Float
5400instruct loadF(regF dst, memory mem)
5401%{
5402  match(Set dst (LoadF mem));
5403
5404  ins_cost(145); // XXX
5405  format %{ "movss   $dst, $mem\t# float" %}
5406  ins_encode %{
5407    __ movflt($dst$$XMMRegister, $mem$$Address);
5408  %}
5409  ins_pipe(pipe_slow); // XXX
5410%}
5411
5412// Load Float
5413instruct MoveF2VL(vlRegF dst, regF src) %{
5414  match(Set dst src);
5415  format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5416  ins_encode %{
5417    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5418  %}
5419  ins_pipe( fpu_reg_reg );
5420%}
5421
5422// Load Float
5423instruct MoveVL2F(regF dst, vlRegF src) %{
5424  match(Set dst src);
5425  format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5426  ins_encode %{
5427    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5428  %}
5429  ins_pipe( fpu_reg_reg );
5430%}
5431
5432// Load Double
5433instruct loadD_partial(regD dst, memory mem)
5434%{
5435  predicate(!UseXmmLoadAndClearUpper);
5436  match(Set dst (LoadD mem));
5437
5438  ins_cost(145); // XXX
5439  format %{ "movlpd  $dst, $mem\t# double" %}
5440  ins_encode %{
5441    __ movdbl($dst$$XMMRegister, $mem$$Address);
5442  %}
5443  ins_pipe(pipe_slow); // XXX
5444%}
5445
5446instruct loadD(regD dst, memory mem)
5447%{
5448  predicate(UseXmmLoadAndClearUpper);
5449  match(Set dst (LoadD mem));
5450
5451  ins_cost(145); // XXX
5452  format %{ "movsd   $dst, $mem\t# double" %}
5453  ins_encode %{
5454    __ movdbl($dst$$XMMRegister, $mem$$Address);
5455  %}
5456  ins_pipe(pipe_slow); // XXX
5457%}
5458
5459// Load Double
5460instruct MoveD2VL(vlRegD dst, regD src) %{
5461  match(Set dst src);
5462  format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5463  ins_encode %{
5464    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5465  %}
5466  ins_pipe( fpu_reg_reg );
5467%}
5468
5469// Load Double
5470instruct MoveVL2D(regD dst, vlRegD src) %{
5471  match(Set dst src);
5472  format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5473  ins_encode %{
5474    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5475  %}
5476  ins_pipe( fpu_reg_reg );
5477%}
5478
5479// Load Effective Address
5480instruct leaP8(rRegP dst, indOffset8 mem)
5481%{
5482  match(Set dst mem);
5483
5484  ins_cost(110); // XXX
5485  format %{ "leaq    $dst, $mem\t# ptr 8" %}
5486  opcode(0x8D);
5487  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5488  ins_pipe(ialu_reg_reg_fat);
5489%}
5490
5491instruct leaP32(rRegP dst, indOffset32 mem)
5492%{
5493  match(Set dst mem);
5494
5495  ins_cost(110);
5496  format %{ "leaq    $dst, $mem\t# ptr 32" %}
5497  opcode(0x8D);
5498  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5499  ins_pipe(ialu_reg_reg_fat);
5500%}
5501
5502// instruct leaPIdx(rRegP dst, indIndex mem)
5503// %{
5504//   match(Set dst mem);
5505
5506//   ins_cost(110);
5507//   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5508//   opcode(0x8D);
5509//   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5510//   ins_pipe(ialu_reg_reg_fat);
5511// %}
5512
5513instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5514%{
5515  match(Set dst mem);
5516
5517  ins_cost(110);
5518  format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5519  opcode(0x8D);
5520  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5521  ins_pipe(ialu_reg_reg_fat);
5522%}
5523
5524instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5525%{
5526  match(Set dst mem);
5527
5528  ins_cost(110);
5529  format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5530  opcode(0x8D);
5531  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5532  ins_pipe(ialu_reg_reg_fat);
5533%}
5534
5535instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5536%{
5537  match(Set dst mem);
5538
5539  ins_cost(110);
5540  format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5541  opcode(0x8D);
5542  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5543  ins_pipe(ialu_reg_reg_fat);
5544%}
5545
5546instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5547%{
5548  match(Set dst mem);
5549
5550  ins_cost(110);
5551  format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5552  opcode(0x8D);
5553  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5554  ins_pipe(ialu_reg_reg_fat);
5555%}
5556
5557instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5558%{
5559  match(Set dst mem);
5560
5561  ins_cost(110);
5562  format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5563  opcode(0x8D);
5564  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5565  ins_pipe(ialu_reg_reg_fat);
5566%}
5567
5568instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5569%{
5570  match(Set dst mem);
5571
5572  ins_cost(110);
5573  format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5574  opcode(0x8D);
5575  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5576  ins_pipe(ialu_reg_reg_fat);
5577%}
5578
5579// Load Effective Address which uses Narrow (32-bits) oop
5580instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5581%{
5582  predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
5583  match(Set dst mem);
5584
5585  ins_cost(110);
5586  format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5587  opcode(0x8D);
5588  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5589  ins_pipe(ialu_reg_reg_fat);
5590%}
5591
5592instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5593%{
5594  predicate(Universe::narrow_oop_shift() == 0);
5595  match(Set dst mem);
5596
5597  ins_cost(110); // XXX
5598  format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5599  opcode(0x8D);
5600  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5601  ins_pipe(ialu_reg_reg_fat);
5602%}
5603
5604instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5605%{
5606  predicate(Universe::narrow_oop_shift() == 0);
5607  match(Set dst mem);
5608
5609  ins_cost(110);
5610  format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5611  opcode(0x8D);
5612  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5613  ins_pipe(ialu_reg_reg_fat);
5614%}
5615
5616instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5617%{
5618  predicate(Universe::narrow_oop_shift() == 0);
5619  match(Set dst mem);
5620
5621  ins_cost(110);
5622  format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5623  opcode(0x8D);
5624  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5625  ins_pipe(ialu_reg_reg_fat);
5626%}
5627
5628instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5629%{
5630  predicate(Universe::narrow_oop_shift() == 0);
5631  match(Set dst mem);
5632
5633  ins_cost(110);
5634  format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5635  opcode(0x8D);
5636  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5637  ins_pipe(ialu_reg_reg_fat);
5638%}
5639
5640instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5641%{
5642  predicate(Universe::narrow_oop_shift() == 0);
5643  match(Set dst mem);
5644
5645  ins_cost(110);
5646  format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5647  opcode(0x8D);
5648  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5649  ins_pipe(ialu_reg_reg_fat);
5650%}
5651
5652instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5653%{
5654  predicate(Universe::narrow_oop_shift() == 0);
5655  match(Set dst mem);
5656
5657  ins_cost(110);
5658  format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5659  opcode(0x8D);
5660  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5661  ins_pipe(ialu_reg_reg_fat);
5662%}
5663
5664instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5665%{
5666  predicate(Universe::narrow_oop_shift() == 0);
5667  match(Set dst mem);
5668
5669  ins_cost(110);
5670  format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5671  opcode(0x8D);
5672  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5673  ins_pipe(ialu_reg_reg_fat);
5674%}
5675
5676instruct loadConI(rRegI dst, immI src)
5677%{
5678  match(Set dst src);
5679
5680  format %{ "movl    $dst, $src\t# int" %}
5681  ins_encode(load_immI(dst, src));
5682  ins_pipe(ialu_reg_fat); // XXX
5683%}
5684
5685instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5686%{
5687  match(Set dst src);
5688  effect(KILL cr);
5689
5690  ins_cost(50);
5691  format %{ "xorl    $dst, $dst\t# int" %}
5692  opcode(0x33); /* + rd */
5693  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5694  ins_pipe(ialu_reg);
5695%}
5696
5697instruct loadConL(rRegL dst, immL src)
5698%{
5699  match(Set dst src);
5700
5701  ins_cost(150);
5702  format %{ "movq    $dst, $src\t# long" %}
5703  ins_encode(load_immL(dst, src));
5704  ins_pipe(ialu_reg);
5705%}
5706
5707instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5708%{
5709  match(Set dst src);
5710  effect(KILL cr);
5711
5712  ins_cost(50);
5713  format %{ "xorl    $dst, $dst\t# long" %}
5714  opcode(0x33); /* + rd */
5715  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5716  ins_pipe(ialu_reg); // XXX
5717%}
5718
5719instruct loadConUL32(rRegL dst, immUL32 src)
5720%{
5721  match(Set dst src);
5722
5723  ins_cost(60);
5724  format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5725  ins_encode(load_immUL32(dst, src));
5726  ins_pipe(ialu_reg);
5727%}
5728
5729instruct loadConL32(rRegL dst, immL32 src)
5730%{
5731  match(Set dst src);
5732
5733  ins_cost(70);
5734  format %{ "movq    $dst, $src\t# long (32-bit)" %}
5735  ins_encode(load_immL32(dst, src));
5736  ins_pipe(ialu_reg);
5737%}
5738
5739instruct loadConP(rRegP dst, immP con) %{
5740  match(Set dst con);
5741
5742  format %{ "movq    $dst, $con\t# ptr" %}
5743  ins_encode(load_immP(dst, con));
5744  ins_pipe(ialu_reg_fat); // XXX
5745%}
5746
5747instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5748%{
5749  match(Set dst src);
5750  effect(KILL cr);
5751
5752  ins_cost(50);
5753  format %{ "xorl    $dst, $dst\t# ptr" %}
5754  opcode(0x33); /* + rd */
5755  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5756  ins_pipe(ialu_reg);
5757%}
5758
5759instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5760%{
5761  match(Set dst src);
5762  effect(KILL cr);
5763
5764  ins_cost(60);
5765  format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5766  ins_encode(load_immP31(dst, src));
5767  ins_pipe(ialu_reg);
5768%}
5769
5770instruct loadConF(regF dst, immF con) %{
5771  match(Set dst con);
5772  ins_cost(125);
5773  format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5774  ins_encode %{
5775    __ movflt($dst$$XMMRegister, $constantaddress($con));
5776  %}
5777  ins_pipe(pipe_slow);
5778%}
5779
5780instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5781  match(Set dst src);
5782  effect(KILL cr);
5783  format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5784  ins_encode %{
5785    __ xorq($dst$$Register, $dst$$Register);
5786  %}
5787  ins_pipe(ialu_reg);
5788%}
5789
5790instruct loadConN(rRegN dst, immN src) %{
5791  match(Set dst src);
5792
5793  ins_cost(125);
5794  format %{ "movl    $dst, $src\t# compressed ptr" %}
5795  ins_encode %{
5796    address con = (address)$src$$constant;
5797    if (con == NULL) {
5798      ShouldNotReachHere();
5799    } else {
5800      __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5801    }
5802  %}
5803  ins_pipe(ialu_reg_fat); // XXX
5804%}
5805
5806instruct loadConNKlass(rRegN dst, immNKlass src) %{
5807  match(Set dst src);
5808
5809  ins_cost(125);
5810  format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5811  ins_encode %{
5812    address con = (address)$src$$constant;
5813    if (con == NULL) {
5814      ShouldNotReachHere();
5815    } else {
5816      __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5817    }
5818  %}
5819  ins_pipe(ialu_reg_fat); // XXX
5820%}
5821
5822instruct loadConF0(regF dst, immF0 src)
5823%{
5824  match(Set dst src);
5825  ins_cost(100);
5826
5827  format %{ "xorps   $dst, $dst\t# float 0.0" %}
5828  ins_encode %{
5829    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5830  %}
5831  ins_pipe(pipe_slow);
5832%}
5833
5834// Use the same format since predicate() can not be used here.
5835instruct loadConD(regD dst, immD con) %{
5836  match(Set dst con);
5837  ins_cost(125);
5838  format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5839  ins_encode %{
5840    __ movdbl($dst$$XMMRegister, $constantaddress($con));
5841  %}
5842  ins_pipe(pipe_slow);
5843%}
5844
5845instruct loadConD0(regD dst, immD0 src)
5846%{
5847  match(Set dst src);
5848  ins_cost(100);
5849
5850  format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5851  ins_encode %{
5852    __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5853  %}
5854  ins_pipe(pipe_slow);
5855%}
5856
5857instruct loadSSI(rRegI dst, stackSlotI src)
5858%{
5859  match(Set dst src);
5860
5861  ins_cost(125);
5862  format %{ "movl    $dst, $src\t# int stk" %}
5863  opcode(0x8B);
5864  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5865  ins_pipe(ialu_reg_mem);
5866%}
5867
5868instruct loadSSL(rRegL dst, stackSlotL src)
5869%{
5870  match(Set dst src);
5871
5872  ins_cost(125);
5873  format %{ "movq    $dst, $src\t# long stk" %}
5874  opcode(0x8B);
5875  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5876  ins_pipe(ialu_reg_mem);
5877%}
5878
5879instruct loadSSP(rRegP dst, stackSlotP src)
5880%{
5881  match(Set dst src);
5882
5883  ins_cost(125);
5884  format %{ "movq    $dst, $src\t# ptr stk" %}
5885  opcode(0x8B);
5886  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5887  ins_pipe(ialu_reg_mem);
5888%}
5889
5890instruct loadSSF(regF dst, stackSlotF src)
5891%{
5892  match(Set dst src);
5893
5894  ins_cost(125);
5895  format %{ "movss   $dst, $src\t# float stk" %}
5896  ins_encode %{
5897    __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5898  %}
5899  ins_pipe(pipe_slow); // XXX
5900%}
5901
5902// Use the same format since predicate() can not be used here.
5903instruct loadSSD(regD dst, stackSlotD src)
5904%{
5905  match(Set dst src);
5906
5907  ins_cost(125);
5908  format %{ "movsd   $dst, $src\t# double stk" %}
5909  ins_encode  %{
5910    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5911  %}
5912  ins_pipe(pipe_slow); // XXX
5913%}
5914
5915// Prefetch instructions for allocation.
5916// Must be safe to execute with invalid address (cannot fault).
5917
5918instruct prefetchAlloc( memory mem ) %{
5919  predicate(AllocatePrefetchInstr==3);
5920  match(PrefetchAllocation mem);
5921  ins_cost(125);
5922
5923  format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5924  ins_encode %{
5925    __ prefetchw($mem$$Address);
5926  %}
5927  ins_pipe(ialu_mem);
5928%}
5929
5930instruct prefetchAllocNTA( memory mem ) %{
5931  predicate(AllocatePrefetchInstr==0);
5932  match(PrefetchAllocation mem);
5933  ins_cost(125);
5934
5935  format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5936  ins_encode %{
5937    __ prefetchnta($mem$$Address);
5938  %}
5939  ins_pipe(ialu_mem);
5940%}
5941
5942instruct prefetchAllocT0( memory mem ) %{
5943  predicate(AllocatePrefetchInstr==1);
5944  match(PrefetchAllocation mem);
5945  ins_cost(125);
5946
5947  format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5948  ins_encode %{
5949    __ prefetcht0($mem$$Address);
5950  %}
5951  ins_pipe(ialu_mem);
5952%}
5953
5954instruct prefetchAllocT2( memory mem ) %{
5955  predicate(AllocatePrefetchInstr==2);
5956  match(PrefetchAllocation mem);
5957  ins_cost(125);
5958
5959  format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5960  ins_encode %{
5961    __ prefetcht2($mem$$Address);
5962  %}
5963  ins_pipe(ialu_mem);
5964%}
5965
5966//----------Store Instructions-------------------------------------------------
5967
5968// Store Byte
5969instruct storeB(memory mem, rRegI src)
5970%{
5971  match(Set mem (StoreB mem src));
5972
5973  ins_cost(125); // XXX
5974  format %{ "movb    $mem, $src\t# byte" %}
5975  opcode(0x88);
5976  ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5977  ins_pipe(ialu_mem_reg);
5978%}
5979
5980// Store Char/Short
5981instruct storeC(memory mem, rRegI src)
5982%{
5983  match(Set mem (StoreC mem src));
5984
5985  ins_cost(125); // XXX
5986  format %{ "movw    $mem, $src\t# char/short" %}
5987  opcode(0x89);
5988  ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5989  ins_pipe(ialu_mem_reg);
5990%}
5991
5992// Store Integer
5993instruct storeI(memory mem, rRegI src)
5994%{
5995  match(Set mem (StoreI mem src));
5996
5997  ins_cost(125); // XXX
5998  format %{ "movl    $mem, $src\t# int" %}
5999  opcode(0x89);
6000  ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
6001  ins_pipe(ialu_mem_reg);
6002%}
6003
6004// Store Long
6005instruct storeL(memory mem, rRegL src)
6006%{
6007  match(Set mem (StoreL mem src));
6008
6009  ins_cost(125); // XXX
6010  format %{ "movq    $mem, $src\t# long" %}
6011  opcode(0x89);
6012  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6013  ins_pipe(ialu_mem_reg); // XXX
6014%}
6015
6016// Store Pointer
6017instruct storeP(memory mem, any_RegP src)
6018%{
6019  match(Set mem (StoreP mem src));
6020
6021  ins_cost(125); // XXX
6022  format %{ "movq    $mem, $src\t# ptr" %}
6023  opcode(0x89);
6024  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6025  ins_pipe(ialu_mem_reg);
6026%}
6027
6028instruct storeImmP0(memory mem, immP0 zero)
6029%{
6030  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6031  match(Set mem (StoreP mem zero));
6032
6033  ins_cost(125); // XXX
6034  format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
6035  ins_encode %{
6036    __ movq($mem$$Address, r12);
6037  %}
6038  ins_pipe(ialu_mem_reg);
6039%}
6040
6041// Store NULL Pointer, mark word, or other simple pointer constant.
6042instruct storeImmP(memory mem, immP31 src)
6043%{
6044  match(Set mem (StoreP mem src));
6045
6046  ins_cost(150); // XXX
6047  format %{ "movq    $mem, $src\t# ptr" %}
6048  opcode(0xC7); /* C7 /0 */
6049  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6050  ins_pipe(ialu_mem_imm);
6051%}
6052
6053// Store Compressed Pointer
6054instruct storeN(memory mem, rRegN src)
6055%{
6056  match(Set mem (StoreN mem src));
6057
6058  ins_cost(125); // XXX
6059  format %{ "movl    $mem, $src\t# compressed ptr" %}
6060  ins_encode %{
6061    __ movl($mem$$Address, $src$$Register);
6062  %}
6063  ins_pipe(ialu_mem_reg);
6064%}
6065
6066instruct storeNKlass(memory mem, rRegN src)
6067%{
6068  match(Set mem (StoreNKlass mem src));
6069
6070  ins_cost(125); // XXX
6071  format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6072  ins_encode %{
6073    __ movl($mem$$Address, $src$$Register);
6074  %}
6075  ins_pipe(ialu_mem_reg);
6076%}
6077
6078instruct storeImmN0(memory mem, immN0 zero)
6079%{
6080  predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
6081  match(Set mem (StoreN mem zero));
6082
6083  ins_cost(125); // XXX
6084  format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
6085  ins_encode %{
6086    __ movl($mem$$Address, r12);
6087  %}
6088  ins_pipe(ialu_mem_reg);
6089%}
6090
6091instruct storeImmN(memory mem, immN src)
6092%{
6093  match(Set mem (StoreN mem src));
6094
6095  ins_cost(150); // XXX
6096  format %{ "movl    $mem, $src\t# compressed ptr" %}
6097  ins_encode %{
6098    address con = (address)$src$$constant;
6099    if (con == NULL) {
6100      __ movl($mem$$Address, (int32_t)0);
6101    } else {
6102      __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6103    }
6104  %}
6105  ins_pipe(ialu_mem_imm);
6106%}
6107
6108instruct storeImmNKlass(memory mem, immNKlass src)
6109%{
6110  match(Set mem (StoreNKlass mem src));
6111
6112  ins_cost(150); // XXX
6113  format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6114  ins_encode %{
6115    __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
6116  %}
6117  ins_pipe(ialu_mem_imm);
6118%}
6119
6120// Store Integer Immediate
6121instruct storeImmI0(memory mem, immI0 zero)
6122%{
6123  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6124  match(Set mem (StoreI mem zero));
6125
6126  ins_cost(125); // XXX
6127  format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6128  ins_encode %{
6129    __ movl($mem$$Address, r12);
6130  %}
6131  ins_pipe(ialu_mem_reg);
6132%}
6133
6134instruct storeImmI(memory mem, immI src)
6135%{
6136  match(Set mem (StoreI mem src));
6137
6138  ins_cost(150);
6139  format %{ "movl    $mem, $src\t# int" %}
6140  opcode(0xC7); /* C7 /0 */
6141  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6142  ins_pipe(ialu_mem_imm);
6143%}
6144
6145// Store Long Immediate
6146instruct storeImmL0(memory mem, immL0 zero)
6147%{
6148  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6149  match(Set mem (StoreL mem zero));
6150
6151  ins_cost(125); // XXX
6152  format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6153  ins_encode %{
6154    __ movq($mem$$Address, r12);
6155  %}
6156  ins_pipe(ialu_mem_reg);
6157%}
6158
6159instruct storeImmL(memory mem, immL32 src)
6160%{
6161  match(Set mem (StoreL mem src));
6162
6163  ins_cost(150);
6164  format %{ "movq    $mem, $src\t# long" %}
6165  opcode(0xC7); /* C7 /0 */
6166  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6167  ins_pipe(ialu_mem_imm);
6168%}
6169
6170// Store Short/Char Immediate
6171instruct storeImmC0(memory mem, immI0 zero)
6172%{
6173  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6174  match(Set mem (StoreC mem zero));
6175
6176  ins_cost(125); // XXX
6177  format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6178  ins_encode %{
6179    __ movw($mem$$Address, r12);
6180  %}
6181  ins_pipe(ialu_mem_reg);
6182%}
6183
6184instruct storeImmI16(memory mem, immI16 src)
6185%{
6186  predicate(UseStoreImmI16);
6187  match(Set mem (StoreC mem src));
6188
6189  ins_cost(150);
6190  format %{ "movw    $mem, $src\t# short/char" %}
6191  opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6192  ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6193  ins_pipe(ialu_mem_imm);
6194%}
6195
6196// Store Byte Immediate
6197instruct storeImmB0(memory mem, immI0 zero)
6198%{
6199  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6200  match(Set mem (StoreB mem zero));
6201
6202  ins_cost(125); // XXX
6203  format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6204  ins_encode %{
6205    __ movb($mem$$Address, r12);
6206  %}
6207  ins_pipe(ialu_mem_reg);
6208%}
6209
6210instruct storeImmB(memory mem, immI8 src)
6211%{
6212  match(Set mem (StoreB mem src));
6213
6214  ins_cost(150); // XXX
6215  format %{ "movb    $mem, $src\t# byte" %}
6216  opcode(0xC6); /* C6 /0 */
6217  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6218  ins_pipe(ialu_mem_imm);
6219%}
6220
6221// Store CMS card-mark Immediate
6222instruct storeImmCM0_reg(memory mem, immI0 zero)
6223%{
6224  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6225  match(Set mem (StoreCM mem zero));
6226
6227  ins_cost(125); // XXX
6228  format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6229  ins_encode %{
6230    __ movb($mem$$Address, r12);
6231  %}
6232  ins_pipe(ialu_mem_reg);
6233%}
6234
6235instruct storeImmCM0(memory mem, immI0 src)
6236%{
6237  match(Set mem (StoreCM mem src));
6238
6239  ins_cost(150); // XXX
6240  format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6241  opcode(0xC6); /* C6 /0 */
6242  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6243  ins_pipe(ialu_mem_imm);
6244%}
6245
6246// Store Float
6247instruct storeF(memory mem, regF src)
6248%{
6249  match(Set mem (StoreF mem src));
6250
6251  ins_cost(95); // XXX
6252  format %{ "movss   $mem, $src\t# float" %}
6253  ins_encode %{
6254    __ movflt($mem$$Address, $src$$XMMRegister);
6255  %}
6256  ins_pipe(pipe_slow); // XXX
6257%}
6258
6259// Store immediate Float value (it is faster than store from XMM register)
6260instruct storeF0(memory mem, immF0 zero)
6261%{
6262  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6263  match(Set mem (StoreF mem zero));
6264
6265  ins_cost(25); // XXX
6266  format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6267  ins_encode %{
6268    __ movl($mem$$Address, r12);
6269  %}
6270  ins_pipe(ialu_mem_reg);
6271%}
6272
6273instruct storeF_imm(memory mem, immF src)
6274%{
6275  match(Set mem (StoreF mem src));
6276
6277  ins_cost(50);
6278  format %{ "movl    $mem, $src\t# float" %}
6279  opcode(0xC7); /* C7 /0 */
6280  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6281  ins_pipe(ialu_mem_imm);
6282%}
6283
6284// Store Double
6285instruct storeD(memory mem, regD src)
6286%{
6287  match(Set mem (StoreD mem src));
6288
6289  ins_cost(95); // XXX
6290  format %{ "movsd   $mem, $src\t# double" %}
6291  ins_encode %{
6292    __ movdbl($mem$$Address, $src$$XMMRegister);
6293  %}
6294  ins_pipe(pipe_slow); // XXX
6295%}
6296
6297// Store immediate double 0.0 (it is faster than store from XMM register)
6298instruct storeD0_imm(memory mem, immD0 src)
6299%{
6300  predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
6301  match(Set mem (StoreD mem src));
6302
6303  ins_cost(50);
6304  format %{ "movq    $mem, $src\t# double 0." %}
6305  opcode(0xC7); /* C7 /0 */
6306  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6307  ins_pipe(ialu_mem_imm);
6308%}
6309
6310instruct storeD0(memory mem, immD0 zero)
6311%{
6312  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6313  match(Set mem (StoreD mem zero));
6314
6315  ins_cost(25); // XXX
6316  format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6317  ins_encode %{
6318    __ movq($mem$$Address, r12);
6319  %}
6320  ins_pipe(ialu_mem_reg);
6321%}
6322
6323instruct storeSSI(stackSlotI dst, rRegI src)
6324%{
6325  match(Set dst src);
6326
6327  ins_cost(100);
6328  format %{ "movl    $dst, $src\t# int stk" %}
6329  opcode(0x89);
6330  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6331  ins_pipe( ialu_mem_reg );
6332%}
6333
6334instruct storeSSL(stackSlotL dst, rRegL src)
6335%{
6336  match(Set dst src);
6337
6338  ins_cost(100);
6339  format %{ "movq    $dst, $src\t# long stk" %}
6340  opcode(0x89);
6341  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6342  ins_pipe(ialu_mem_reg);
6343%}
6344
6345instruct storeSSP(stackSlotP dst, rRegP src)
6346%{
6347  match(Set dst src);
6348
6349  ins_cost(100);
6350  format %{ "movq    $dst, $src\t# ptr stk" %}
6351  opcode(0x89);
6352  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6353  ins_pipe(ialu_mem_reg);
6354%}
6355
6356instruct storeSSF(stackSlotF dst, regF src)
6357%{
6358  match(Set dst src);
6359
6360  ins_cost(95); // XXX
6361  format %{ "movss   $dst, $src\t# float stk" %}
6362  ins_encode %{
6363    __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6364  %}
6365  ins_pipe(pipe_slow); // XXX
6366%}
6367
6368instruct storeSSD(stackSlotD dst, regD src)
6369%{
6370  match(Set dst src);
6371
6372  ins_cost(95); // XXX
6373  format %{ "movsd   $dst, $src\t# double stk" %}
6374  ins_encode %{
6375    __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6376  %}
6377  ins_pipe(pipe_slow); // XXX
6378%}
6379
6380//----------BSWAP Instructions-------------------------------------------------
6381instruct bytes_reverse_int(rRegI dst) %{
6382  match(Set dst (ReverseBytesI dst));
6383
6384  format %{ "bswapl  $dst" %}
6385  opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6386  ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6387  ins_pipe( ialu_reg );
6388%}
6389
6390instruct bytes_reverse_long(rRegL dst) %{
6391  match(Set dst (ReverseBytesL dst));
6392
6393  format %{ "bswapq  $dst" %}
6394  opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6395  ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6396  ins_pipe( ialu_reg);
6397%}
6398
6399instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6400  match(Set dst (ReverseBytesUS dst));
6401  effect(KILL cr);
6402
6403  format %{ "bswapl  $dst\n\t"
6404            "shrl    $dst,16\n\t" %}
6405  ins_encode %{
6406    __ bswapl($dst$$Register);
6407    __ shrl($dst$$Register, 16);
6408  %}
6409  ins_pipe( ialu_reg );
6410%}
6411
6412instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6413  match(Set dst (ReverseBytesS dst));
6414  effect(KILL cr);
6415
6416  format %{ "bswapl  $dst\n\t"
6417            "sar     $dst,16\n\t" %}
6418  ins_encode %{
6419    __ bswapl($dst$$Register);
6420    __ sarl($dst$$Register, 16);
6421  %}
6422  ins_pipe( ialu_reg );
6423%}
6424
6425//---------- Zeros Count Instructions ------------------------------------------
6426
6427instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6428  predicate(UseCountLeadingZerosInstruction);
6429  match(Set dst (CountLeadingZerosI src));
6430  effect(KILL cr);
6431
6432  format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6433  ins_encode %{
6434    __ lzcntl($dst$$Register, $src$$Register);
6435  %}
6436  ins_pipe(ialu_reg);
6437%}
6438
6439instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6440  predicate(!UseCountLeadingZerosInstruction);
6441  match(Set dst (CountLeadingZerosI src));
6442  effect(KILL cr);
6443
6444  format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6445            "jnz     skip\n\t"
6446            "movl    $dst, -1\n"
6447      "skip:\n\t"
6448            "negl    $dst\n\t"
6449            "addl    $dst, 31" %}
6450  ins_encode %{
6451    Register Rdst = $dst$$Register;
6452    Register Rsrc = $src$$Register;
6453    Label skip;
6454    __ bsrl(Rdst, Rsrc);
6455    __ jccb(Assembler::notZero, skip);
6456    __ movl(Rdst, -1);
6457    __ bind(skip);
6458    __ negl(Rdst);
6459    __ addl(Rdst, BitsPerInt - 1);
6460  %}
6461  ins_pipe(ialu_reg);
6462%}
6463
6464instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6465  predicate(UseCountLeadingZerosInstruction);
6466  match(Set dst (CountLeadingZerosL src));
6467  effect(KILL cr);
6468
6469  format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6470  ins_encode %{
6471    __ lzcntq($dst$$Register, $src$$Register);
6472  %}
6473  ins_pipe(ialu_reg);
6474%}
6475
6476instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6477  predicate(!UseCountLeadingZerosInstruction);
6478  match(Set dst (CountLeadingZerosL src));
6479  effect(KILL cr);
6480
6481  format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6482            "jnz     skip\n\t"
6483            "movl    $dst, -1\n"
6484      "skip:\n\t"
6485            "negl    $dst\n\t"
6486            "addl    $dst, 63" %}
6487  ins_encode %{
6488    Register Rdst = $dst$$Register;
6489    Register Rsrc = $src$$Register;
6490    Label skip;
6491    __ bsrq(Rdst, Rsrc);
6492    __ jccb(Assembler::notZero, skip);
6493    __ movl(Rdst, -1);
6494    __ bind(skip);
6495    __ negl(Rdst);
6496    __ addl(Rdst, BitsPerLong - 1);
6497  %}
6498  ins_pipe(ialu_reg);
6499%}
6500
6501instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6502  predicate(UseCountTrailingZerosInstruction);
6503  match(Set dst (CountTrailingZerosI src));
6504  effect(KILL cr);
6505
6506  format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6507  ins_encode %{
6508    __ tzcntl($dst$$Register, $src$$Register);
6509  %}
6510  ins_pipe(ialu_reg);
6511%}
6512
6513instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6514  predicate(!UseCountTrailingZerosInstruction);
6515  match(Set dst (CountTrailingZerosI src));
6516  effect(KILL cr);
6517
6518  format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6519            "jnz     done\n\t"
6520            "movl    $dst, 32\n"
6521      "done:" %}
6522  ins_encode %{
6523    Register Rdst = $dst$$Register;
6524    Label done;
6525    __ bsfl(Rdst, $src$$Register);
6526    __ jccb(Assembler::notZero, done);
6527    __ movl(Rdst, BitsPerInt);
6528    __ bind(done);
6529  %}
6530  ins_pipe(ialu_reg);
6531%}
6532
6533instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6534  predicate(UseCountTrailingZerosInstruction);
6535  match(Set dst (CountTrailingZerosL src));
6536  effect(KILL cr);
6537
6538  format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6539  ins_encode %{
6540    __ tzcntq($dst$$Register, $src$$Register);
6541  %}
6542  ins_pipe(ialu_reg);
6543%}
6544
6545instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6546  predicate(!UseCountTrailingZerosInstruction);
6547  match(Set dst (CountTrailingZerosL src));
6548  effect(KILL cr);
6549
6550  format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6551            "jnz     done\n\t"
6552            "movl    $dst, 64\n"
6553      "done:" %}
6554  ins_encode %{
6555    Register Rdst = $dst$$Register;
6556    Label done;
6557    __ bsfq(Rdst, $src$$Register);
6558    __ jccb(Assembler::notZero, done);
6559    __ movl(Rdst, BitsPerLong);
6560    __ bind(done);
6561  %}
6562  ins_pipe(ialu_reg);
6563%}
6564
6565
6566//---------- Population Count Instructions -------------------------------------
6567
6568instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6569  predicate(UsePopCountInstruction);
6570  match(Set dst (PopCountI src));
6571  effect(KILL cr);
6572
6573  format %{ "popcnt  $dst, $src" %}
6574  ins_encode %{
6575    __ popcntl($dst$$Register, $src$$Register);
6576  %}
6577  ins_pipe(ialu_reg);
6578%}
6579
6580instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6581  predicate(UsePopCountInstruction);
6582  match(Set dst (PopCountI (LoadI mem)));
6583  effect(KILL cr);
6584
6585  format %{ "popcnt  $dst, $mem" %}
6586  ins_encode %{
6587    __ popcntl($dst$$Register, $mem$$Address);
6588  %}
6589  ins_pipe(ialu_reg);
6590%}
6591
6592// Note: Long.bitCount(long) returns an int.
6593instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6594  predicate(UsePopCountInstruction);
6595  match(Set dst (PopCountL src));
6596  effect(KILL cr);
6597
6598  format %{ "popcnt  $dst, $src" %}
6599  ins_encode %{
6600    __ popcntq($dst$$Register, $src$$Register);
6601  %}
6602  ins_pipe(ialu_reg);
6603%}
6604
6605// Note: Long.bitCount(long) returns an int.
6606instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6607  predicate(UsePopCountInstruction);
6608  match(Set dst (PopCountL (LoadL mem)));
6609  effect(KILL cr);
6610
6611  format %{ "popcnt  $dst, $mem" %}
6612  ins_encode %{
6613    __ popcntq($dst$$Register, $mem$$Address);
6614  %}
6615  ins_pipe(ialu_reg);
6616%}
6617
6618
6619//----------MemBar Instructions-----------------------------------------------
6620// Memory barrier flavors
6621
6622instruct membar_acquire()
6623%{
6624  match(MemBarAcquire);
6625  match(LoadFence);
6626  ins_cost(0);
6627
6628  size(0);
6629  format %{ "MEMBAR-acquire ! (empty encoding)" %}
6630  ins_encode();
6631  ins_pipe(empty);
6632%}
6633
6634instruct membar_acquire_lock()
6635%{
6636  match(MemBarAcquireLock);
6637  ins_cost(0);
6638
6639  size(0);
6640  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6641  ins_encode();
6642  ins_pipe(empty);
6643%}
6644
6645instruct membar_release()
6646%{
6647  match(MemBarRelease);
6648  match(StoreFence);
6649  ins_cost(0);
6650
6651  size(0);
6652  format %{ "MEMBAR-release ! (empty encoding)" %}
6653  ins_encode();
6654  ins_pipe(empty);
6655%}
6656
6657instruct membar_release_lock()
6658%{
6659  match(MemBarReleaseLock);
6660  ins_cost(0);
6661
6662  size(0);
6663  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6664  ins_encode();
6665  ins_pipe(empty);
6666%}
6667
6668instruct membar_volatile(rFlagsReg cr) %{
6669  match(MemBarVolatile);
6670  effect(KILL cr);
6671  ins_cost(400);
6672
6673  format %{
6674    $$template
6675    $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6676  %}
6677  ins_encode %{
6678    __ membar(Assembler::StoreLoad);
6679  %}
6680  ins_pipe(pipe_slow);
6681%}
6682
6683instruct unnecessary_membar_volatile()
6684%{
6685  match(MemBarVolatile);
6686  predicate(Matcher::post_store_load_barrier(n));
6687  ins_cost(0);
6688
6689  size(0);
6690  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6691  ins_encode();
6692  ins_pipe(empty);
6693%}
6694
6695instruct membar_storestore() %{
6696  match(MemBarStoreStore);
6697  ins_cost(0);
6698
6699  size(0);
6700  format %{ "MEMBAR-storestore (empty encoding)" %}
6701  ins_encode( );
6702  ins_pipe(empty);
6703%}
6704
6705//----------Move Instructions--------------------------------------------------
6706
6707instruct castX2P(rRegP dst, rRegL src)
6708%{
6709  match(Set dst (CastX2P src));
6710
6711  format %{ "movq    $dst, $src\t# long->ptr" %}
6712  ins_encode %{
6713    if ($dst$$reg != $src$$reg) {
6714      __ movptr($dst$$Register, $src$$Register);
6715    }
6716  %}
6717  ins_pipe(ialu_reg_reg); // XXX
6718%}
6719
6720instruct castP2X(rRegL dst, rRegP src)
6721%{
6722  match(Set dst (CastP2X src));
6723
6724  format %{ "movq    $dst, $src\t# ptr -> long" %}
6725  ins_encode %{
6726    if ($dst$$reg != $src$$reg) {
6727      __ movptr($dst$$Register, $src$$Register);
6728    }
6729  %}
6730  ins_pipe(ialu_reg_reg); // XXX
6731%}
6732
6733// Convert oop into int for vectors alignment masking
6734instruct convP2I(rRegI dst, rRegP src)
6735%{
6736  match(Set dst (ConvL2I (CastP2X src)));
6737
6738  format %{ "movl    $dst, $src\t# ptr -> int" %}
6739  ins_encode %{
6740    __ movl($dst$$Register, $src$$Register);
6741  %}
6742  ins_pipe(ialu_reg_reg); // XXX
6743%}
6744
6745// Convert compressed oop into int for vectors alignment masking
6746// in case of 32bit oops (heap < 4Gb).
6747instruct convN2I(rRegI dst, rRegN src)
6748%{
6749  predicate(Universe::narrow_oop_shift() == 0);
6750  match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6751
6752  format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6753  ins_encode %{
6754    __ movl($dst$$Register, $src$$Register);
6755  %}
6756  ins_pipe(ialu_reg_reg); // XXX
6757%}
6758
6759// Convert oop pointer into compressed form
6760instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6761  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6762  match(Set dst (EncodeP src));
6763  effect(KILL cr);
6764  format %{ "encode_heap_oop $dst,$src" %}
6765  ins_encode %{
6766    Register s = $src$$Register;
6767    Register d = $dst$$Register;
6768    if (s != d) {
6769      __ movq(d, s);
6770    }
6771    __ encode_heap_oop(d);
6772  %}
6773  ins_pipe(ialu_reg_long);
6774%}
6775
6776instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6777  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6778  match(Set dst (EncodeP src));
6779  effect(KILL cr);
6780  format %{ "encode_heap_oop_not_null $dst,$src" %}
6781  ins_encode %{
6782    __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6783  %}
6784  ins_pipe(ialu_reg_long);
6785%}
6786
6787instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6788  predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6789            n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6790  match(Set dst (DecodeN src));
6791  effect(KILL cr);
6792  format %{ "decode_heap_oop $dst,$src" %}
6793  ins_encode %{
6794    Register s = $src$$Register;
6795    Register d = $dst$$Register;
6796    if (s != d) {
6797      __ movq(d, s);
6798    }
6799    __ decode_heap_oop(d);
6800  %}
6801  ins_pipe(ialu_reg_long);
6802%}
6803
6804instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6805  predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6806            n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6807  match(Set dst (DecodeN src));
6808  effect(KILL cr);
6809  format %{ "decode_heap_oop_not_null $dst,$src" %}
6810  ins_encode %{
6811    Register s = $src$$Register;
6812    Register d = $dst$$Register;
6813    if (s != d) {
6814      __ decode_heap_oop_not_null(d, s);
6815    } else {
6816      __ decode_heap_oop_not_null(d);
6817    }
6818  %}
6819  ins_pipe(ialu_reg_long);
6820%}
6821
6822instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6823  match(Set dst (EncodePKlass src));
6824  effect(KILL cr);
6825  format %{ "encode_klass_not_null $dst,$src" %}
6826  ins_encode %{
6827    __ encode_klass_not_null($dst$$Register, $src$$Register);
6828  %}
6829  ins_pipe(ialu_reg_long);
6830%}
6831
6832instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6833  match(Set dst (DecodeNKlass src));
6834  effect(KILL cr);
6835  format %{ "decode_klass_not_null $dst,$src" %}
6836  ins_encode %{
6837    Register s = $src$$Register;
6838    Register d = $dst$$Register;
6839    if (s != d) {
6840      __ decode_klass_not_null(d, s);
6841    } else {
6842      __ decode_klass_not_null(d);
6843    }
6844  %}
6845  ins_pipe(ialu_reg_long);
6846%}
6847
6848
6849//----------Conditional Move---------------------------------------------------
6850// Jump
6851// dummy instruction for generating temp registers
6852instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6853  match(Jump (LShiftL switch_val shift));
6854  ins_cost(350);
6855  predicate(false);
6856  effect(TEMP dest);
6857
6858  format %{ "leaq    $dest, [$constantaddress]\n\t"
6859            "jmp     [$dest + $switch_val << $shift]\n\t" %}
6860  ins_encode %{
6861    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6862    // to do that and the compiler is using that register as one it can allocate.
6863    // So we build it all by hand.
6864    // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6865    // ArrayAddress dispatch(table, index);
6866    Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6867    __ lea($dest$$Register, $constantaddress);
6868    __ jmp(dispatch);
6869  %}
6870  ins_pipe(pipe_jmp);
6871%}
6872
6873instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6874  match(Jump (AddL (LShiftL switch_val shift) offset));
6875  ins_cost(350);
6876  effect(TEMP dest);
6877
6878  format %{ "leaq    $dest, [$constantaddress]\n\t"
6879            "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6880  ins_encode %{
6881    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6882    // to do that and the compiler is using that register as one it can allocate.
6883    // So we build it all by hand.
6884    // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6885    // ArrayAddress dispatch(table, index);
6886    Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6887    __ lea($dest$$Register, $constantaddress);
6888    __ jmp(dispatch);
6889  %}
6890  ins_pipe(pipe_jmp);
6891%}
6892
6893instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6894  match(Jump switch_val);
6895  ins_cost(350);
6896  effect(TEMP dest);
6897
6898  format %{ "leaq    $dest, [$constantaddress]\n\t"
6899            "jmp     [$dest + $switch_val]\n\t" %}
6900  ins_encode %{
6901    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6902    // to do that and the compiler is using that register as one it can allocate.
6903    // So we build it all by hand.
6904    // Address index(noreg, switch_reg, Address::times_1);
6905    // ArrayAddress dispatch(table, index);
6906    Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6907    __ lea($dest$$Register, $constantaddress);
6908    __ jmp(dispatch);
6909  %}
6910  ins_pipe(pipe_jmp);
6911%}
6912
6913// Conditional move
6914instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6915%{
6916  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6917
6918  ins_cost(200); // XXX
6919  format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6920  opcode(0x0F, 0x40);
6921  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6922  ins_pipe(pipe_cmov_reg);
6923%}
6924
6925instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6926  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6927
6928  ins_cost(200); // XXX
6929  format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6930  opcode(0x0F, 0x40);
6931  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6932  ins_pipe(pipe_cmov_reg);
6933%}
6934
6935instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6936  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6937  ins_cost(200);
6938  expand %{
6939    cmovI_regU(cop, cr, dst, src);
6940  %}
6941%}
6942
6943// Conditional move
6944instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6945  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6946
6947  ins_cost(250); // XXX
6948  format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6949  opcode(0x0F, 0x40);
6950  ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6951  ins_pipe(pipe_cmov_mem);
6952%}
6953
6954// Conditional move
6955instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6956%{
6957  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6958
6959  ins_cost(250); // XXX
6960  format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6961  opcode(0x0F, 0x40);
6962  ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6963  ins_pipe(pipe_cmov_mem);
6964%}
6965
6966instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6967  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6968  ins_cost(250);
6969  expand %{
6970    cmovI_memU(cop, cr, dst, src);
6971  %}
6972%}
6973
6974// Conditional move
6975instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6976%{
6977  match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6978
6979  ins_cost(200); // XXX
6980  format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6981  opcode(0x0F, 0x40);
6982  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6983  ins_pipe(pipe_cmov_reg);
6984%}
6985
6986// Conditional move
6987instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6988%{
6989  match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6990
6991  ins_cost(200); // XXX
6992  format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6993  opcode(0x0F, 0x40);
6994  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6995  ins_pipe(pipe_cmov_reg);
6996%}
6997
6998instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6999  match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
7000  ins_cost(200);
7001  expand %{
7002    cmovN_regU(cop, cr, dst, src);
7003  %}
7004%}
7005
7006// Conditional move
7007instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
7008%{
7009  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7010
7011  ins_cost(200); // XXX
7012  format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
7013  opcode(0x0F, 0x40);
7014  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7015  ins_pipe(pipe_cmov_reg);  // XXX
7016%}
7017
7018// Conditional move
7019instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
7020%{
7021  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7022
7023  ins_cost(200); // XXX
7024  format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
7025  opcode(0x0F, 0x40);
7026  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7027  ins_pipe(pipe_cmov_reg); // XXX
7028%}
7029
7030instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
7031  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7032  ins_cost(200);
7033  expand %{
7034    cmovP_regU(cop, cr, dst, src);
7035  %}
7036%}
7037
7038// DISABLED: Requires the ADLC to emit a bottom_type call that
7039// correctly meets the two pointer arguments; one is an incoming
7040// register but the other is a memory operand.  ALSO appears to
7041// be buggy with implicit null checks.
7042//
7043//// Conditional move
7044//instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
7045//%{
7046//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7047//  ins_cost(250);
7048//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7049//  opcode(0x0F,0x40);
7050//  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7051//  ins_pipe( pipe_cmov_mem );
7052//%}
7053//
7054//// Conditional move
7055//instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
7056//%{
7057//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7058//  ins_cost(250);
7059//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7060//  opcode(0x0F,0x40);
7061//  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7062//  ins_pipe( pipe_cmov_mem );
7063//%}
7064
7065instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7066%{
7067  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7068
7069  ins_cost(200); // XXX
7070  format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7071  opcode(0x0F, 0x40);
7072  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7073  ins_pipe(pipe_cmov_reg);  // XXX
7074%}
7075
7076instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7077%{
7078  match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7079
7080  ins_cost(200); // XXX
7081  format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7082  opcode(0x0F, 0x40);
7083  ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7084  ins_pipe(pipe_cmov_mem);  // XXX
7085%}
7086
7087instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7088%{
7089  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7090
7091  ins_cost(200); // XXX
7092  format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7093  opcode(0x0F, 0x40);
7094  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7095  ins_pipe(pipe_cmov_reg); // XXX
7096%}
7097
7098instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7099  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7100  ins_cost(200);
7101  expand %{
7102    cmovL_regU(cop, cr, dst, src);
7103  %}
7104%}
7105
7106instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7107%{
7108  match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7109
7110  ins_cost(200); // XXX
7111  format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7112  opcode(0x0F, 0x40);
7113  ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7114  ins_pipe(pipe_cmov_mem); // XXX
7115%}
7116
7117instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7118  match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7119  ins_cost(200);
7120  expand %{
7121    cmovL_memU(cop, cr, dst, src);
7122  %}
7123%}
7124
7125instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7126%{
7127  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7128
7129  ins_cost(200); // XXX
7130  format %{ "jn$cop    skip\t# signed cmove float\n\t"
7131            "movss     $dst, $src\n"
7132    "skip:" %}
7133  ins_encode %{
7134    Label Lskip;
7135    // Invert sense of branch from sense of CMOV
7136    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7137    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7138    __ bind(Lskip);
7139  %}
7140  ins_pipe(pipe_slow);
7141%}
7142
7143// instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7144// %{
7145//   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7146
7147//   ins_cost(200); // XXX
7148//   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7149//             "movss     $dst, $src\n"
7150//     "skip:" %}
7151//   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7152//   ins_pipe(pipe_slow);
7153// %}
7154
7155instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7156%{
7157  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7158
7159  ins_cost(200); // XXX
7160  format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7161            "movss     $dst, $src\n"
7162    "skip:" %}
7163  ins_encode %{
7164    Label Lskip;
7165    // Invert sense of branch from sense of CMOV
7166    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7167    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7168    __ bind(Lskip);
7169  %}
7170  ins_pipe(pipe_slow);
7171%}
7172
7173instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7174  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7175  ins_cost(200);
7176  expand %{
7177    cmovF_regU(cop, cr, dst, src);
7178  %}
7179%}
7180
7181instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7182%{
7183  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7184
7185  ins_cost(200); // XXX
7186  format %{ "jn$cop    skip\t# signed cmove double\n\t"
7187            "movsd     $dst, $src\n"
7188    "skip:" %}
7189  ins_encode %{
7190    Label Lskip;
7191    // Invert sense of branch from sense of CMOV
7192    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7193    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7194    __ bind(Lskip);
7195  %}
7196  ins_pipe(pipe_slow);
7197%}
7198
7199instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7200%{
7201  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7202
7203  ins_cost(200); // XXX
7204  format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7205            "movsd     $dst, $src\n"
7206    "skip:" %}
7207  ins_encode %{
7208    Label Lskip;
7209    // Invert sense of branch from sense of CMOV
7210    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7211    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7212    __ bind(Lskip);
7213  %}
7214  ins_pipe(pipe_slow);
7215%}
7216
7217instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7218  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7219  ins_cost(200);
7220  expand %{
7221    cmovD_regU(cop, cr, dst, src);
7222  %}
7223%}
7224
7225//----------Arithmetic Instructions--------------------------------------------
7226//----------Addition Instructions----------------------------------------------
7227
7228instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7229%{
7230  match(Set dst (AddI dst src));
7231  effect(KILL cr);
7232
7233  format %{ "addl    $dst, $src\t# int" %}
7234  opcode(0x03);
7235  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7236  ins_pipe(ialu_reg_reg);
7237%}
7238
7239instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7240%{
7241  match(Set dst (AddI dst src));
7242  effect(KILL cr);
7243
7244  format %{ "addl    $dst, $src\t# int" %}
7245  opcode(0x81, 0x00); /* /0 id */
7246  ins_encode(OpcSErm(dst, src), Con8or32(src));
7247  ins_pipe( ialu_reg );
7248%}
7249
7250instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7251%{
7252  match(Set dst (AddI dst (LoadI src)));
7253  effect(KILL cr);
7254
7255  ins_cost(125); // XXX
7256  format %{ "addl    $dst, $src\t# int" %}
7257  opcode(0x03);
7258  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7259  ins_pipe(ialu_reg_mem);
7260%}
7261
7262instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7263%{
7264  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7265  effect(KILL cr);
7266
7267  ins_cost(150); // XXX
7268  format %{ "addl    $dst, $src\t# int" %}
7269  opcode(0x01); /* Opcode 01 /r */
7270  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7271  ins_pipe(ialu_mem_reg);
7272%}
7273
7274instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7275%{
7276  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7277  effect(KILL cr);
7278
7279  ins_cost(125); // XXX
7280  format %{ "addl    $dst, $src\t# int" %}
7281  opcode(0x81); /* Opcode 81 /0 id */
7282  ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7283  ins_pipe(ialu_mem_imm);
7284%}
7285
7286instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7287%{
7288  predicate(UseIncDec);
7289  match(Set dst (AddI dst src));
7290  effect(KILL cr);
7291
7292  format %{ "incl    $dst\t# int" %}
7293  opcode(0xFF, 0x00); // FF /0
7294  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7295  ins_pipe(ialu_reg);
7296%}
7297
7298instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7299%{
7300  predicate(UseIncDec);
7301  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7302  effect(KILL cr);
7303
7304  ins_cost(125); // XXX
7305  format %{ "incl    $dst\t# int" %}
7306  opcode(0xFF); /* Opcode FF /0 */
7307  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7308  ins_pipe(ialu_mem_imm);
7309%}
7310
7311// XXX why does that use AddI
7312instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7313%{
7314  predicate(UseIncDec);
7315  match(Set dst (AddI dst src));
7316  effect(KILL cr);
7317
7318  format %{ "decl    $dst\t# int" %}
7319  opcode(0xFF, 0x01); // FF /1
7320  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7321  ins_pipe(ialu_reg);
7322%}
7323
7324// XXX why does that use AddI
7325instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7326%{
7327  predicate(UseIncDec);
7328  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7329  effect(KILL cr);
7330
7331  ins_cost(125); // XXX
7332  format %{ "decl    $dst\t# int" %}
7333  opcode(0xFF); /* Opcode FF /1 */
7334  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7335  ins_pipe(ialu_mem_imm);
7336%}
7337
7338instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7339%{
7340  match(Set dst (AddI src0 src1));
7341
7342  ins_cost(110);
7343  format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7344  opcode(0x8D); /* 0x8D /r */
7345  ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7346  ins_pipe(ialu_reg_reg);
7347%}
7348
7349instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7350%{
7351  match(Set dst (AddL dst src));
7352  effect(KILL cr);
7353
7354  format %{ "addq    $dst, $src\t# long" %}
7355  opcode(0x03);
7356  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7357  ins_pipe(ialu_reg_reg);
7358%}
7359
7360instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7361%{
7362  match(Set dst (AddL dst src));
7363  effect(KILL cr);
7364
7365  format %{ "addq    $dst, $src\t# long" %}
7366  opcode(0x81, 0x00); /* /0 id */
7367  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7368  ins_pipe( ialu_reg );
7369%}
7370
7371instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7372%{
7373  match(Set dst (AddL dst (LoadL src)));
7374  effect(KILL cr);
7375
7376  ins_cost(125); // XXX
7377  format %{ "addq    $dst, $src\t# long" %}
7378  opcode(0x03);
7379  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7380  ins_pipe(ialu_reg_mem);
7381%}
7382
7383instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7384%{
7385  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7386  effect(KILL cr);
7387
7388  ins_cost(150); // XXX
7389  format %{ "addq    $dst, $src\t# long" %}
7390  opcode(0x01); /* Opcode 01 /r */
7391  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7392  ins_pipe(ialu_mem_reg);
7393%}
7394
7395instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7396%{
7397  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7398  effect(KILL cr);
7399
7400  ins_cost(125); // XXX
7401  format %{ "addq    $dst, $src\t# long" %}
7402  opcode(0x81); /* Opcode 81 /0 id */
7403  ins_encode(REX_mem_wide(dst),
7404             OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7405  ins_pipe(ialu_mem_imm);
7406%}
7407
7408instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7409%{
7410  predicate(UseIncDec);
7411  match(Set dst (AddL dst src));
7412  effect(KILL cr);
7413
7414  format %{ "incq    $dst\t# long" %}
7415  opcode(0xFF, 0x00); // FF /0
7416  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7417  ins_pipe(ialu_reg);
7418%}
7419
7420instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7421%{
7422  predicate(UseIncDec);
7423  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7424  effect(KILL cr);
7425
7426  ins_cost(125); // XXX
7427  format %{ "incq    $dst\t# long" %}
7428  opcode(0xFF); /* Opcode FF /0 */
7429  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7430  ins_pipe(ialu_mem_imm);
7431%}
7432
7433// XXX why does that use AddL
7434instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7435%{
7436  predicate(UseIncDec);
7437  match(Set dst (AddL dst src));
7438  effect(KILL cr);
7439
7440  format %{ "decq    $dst\t# long" %}
7441  opcode(0xFF, 0x01); // FF /1
7442  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7443  ins_pipe(ialu_reg);
7444%}
7445
7446// XXX why does that use AddL
7447instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7448%{
7449  predicate(UseIncDec);
7450  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7451  effect(KILL cr);
7452
7453  ins_cost(125); // XXX
7454  format %{ "decq    $dst\t# long" %}
7455  opcode(0xFF); /* Opcode FF /1 */
7456  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7457  ins_pipe(ialu_mem_imm);
7458%}
7459
7460instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7461%{
7462  match(Set dst (AddL src0 src1));
7463
7464  ins_cost(110);
7465  format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7466  opcode(0x8D); /* 0x8D /r */
7467  ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7468  ins_pipe(ialu_reg_reg);
7469%}
7470
7471instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7472%{
7473  match(Set dst (AddP dst src));
7474  effect(KILL cr);
7475
7476  format %{ "addq    $dst, $src\t# ptr" %}
7477  opcode(0x03);
7478  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7479  ins_pipe(ialu_reg_reg);
7480%}
7481
7482instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7483%{
7484  match(Set dst (AddP dst src));
7485  effect(KILL cr);
7486
7487  format %{ "addq    $dst, $src\t# ptr" %}
7488  opcode(0x81, 0x00); /* /0 id */
7489  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7490  ins_pipe( ialu_reg );
7491%}
7492
7493// XXX addP mem ops ????
7494
7495instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7496%{
7497  match(Set dst (AddP src0 src1));
7498
7499  ins_cost(110);
7500  format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7501  opcode(0x8D); /* 0x8D /r */
7502  ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7503  ins_pipe(ialu_reg_reg);
7504%}
7505
7506instruct checkCastPP(rRegP dst)
7507%{
7508  match(Set dst (CheckCastPP dst));
7509
7510  size(0);
7511  format %{ "# checkcastPP of $dst" %}
7512  ins_encode(/* empty encoding */);
7513  ins_pipe(empty);
7514%}
7515
7516instruct castPP(rRegP dst)
7517%{
7518  match(Set dst (CastPP dst));
7519
7520  size(0);
7521  format %{ "# castPP of $dst" %}
7522  ins_encode(/* empty encoding */);
7523  ins_pipe(empty);
7524%}
7525
7526instruct castII(rRegI dst)
7527%{
7528  match(Set dst (CastII dst));
7529
7530  size(0);
7531  format %{ "# castII of $dst" %}
7532  ins_encode(/* empty encoding */);
7533  ins_cost(0);
7534  ins_pipe(empty);
7535%}
7536
7537// LoadP-locked same as a regular LoadP when used with compare-swap
7538instruct loadPLocked(rRegP dst, memory mem)
7539%{
7540  match(Set dst (LoadPLocked mem));
7541
7542  ins_cost(125); // XXX
7543  format %{ "movq    $dst, $mem\t# ptr locked" %}
7544  opcode(0x8B);
7545  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7546  ins_pipe(ialu_reg_mem); // XXX
7547%}
7548
7549// Conditional-store of the updated heap-top.
7550// Used during allocation of the shared heap.
7551// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7552
7553instruct storePConditional(memory heap_top_ptr,
7554                           rax_RegP oldval, rRegP newval,
7555                           rFlagsReg cr)
7556%{
7557  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7558
7559  format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7560            "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7561  opcode(0x0F, 0xB1);
7562  ins_encode(lock_prefix,
7563             REX_reg_mem_wide(newval, heap_top_ptr),
7564             OpcP, OpcS,
7565             reg_mem(newval, heap_top_ptr));
7566  ins_pipe(pipe_cmpxchg);
7567%}
7568
7569// Conditional-store of an int value.
7570// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7571instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7572%{
7573  match(Set cr (StoreIConditional mem (Binary oldval newval)));
7574  effect(KILL oldval);
7575
7576  format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7577  opcode(0x0F, 0xB1);
7578  ins_encode(lock_prefix,
7579             REX_reg_mem(newval, mem),
7580             OpcP, OpcS,
7581             reg_mem(newval, mem));
7582  ins_pipe(pipe_cmpxchg);
7583%}
7584
7585// Conditional-store of a long value.
7586// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7587instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7588%{
7589  match(Set cr (StoreLConditional mem (Binary oldval newval)));
7590  effect(KILL oldval);
7591
7592  format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7593  opcode(0x0F, 0xB1);
7594  ins_encode(lock_prefix,
7595             REX_reg_mem_wide(newval, mem),
7596             OpcP, OpcS,
7597             reg_mem(newval, mem));
7598  ins_pipe(pipe_cmpxchg);
7599%}
7600
7601
7602// XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7603instruct compareAndSwapP(rRegI res,
7604                         memory mem_ptr,
7605                         rax_RegP oldval, rRegP newval,
7606                         rFlagsReg cr)
7607%{
7608  predicate(VM_Version::supports_cx8());
7609  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7610  match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7611  effect(KILL cr, KILL oldval);
7612
7613  format %{ "cmpxchgq $mem_ptr,$newval\t# "
7614            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7615            "sete    $res\n\t"
7616            "movzbl  $res, $res" %}
7617  opcode(0x0F, 0xB1);
7618  ins_encode(lock_prefix,
7619             REX_reg_mem_wide(newval, mem_ptr),
7620             OpcP, OpcS,
7621             reg_mem(newval, mem_ptr),
7622             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7623             REX_reg_breg(res, res), // movzbl
7624             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7625  ins_pipe( pipe_cmpxchg );
7626%}
7627
7628instruct compareAndSwapL(rRegI res,
7629                         memory mem_ptr,
7630                         rax_RegL oldval, rRegL newval,
7631                         rFlagsReg cr)
7632%{
7633  predicate(VM_Version::supports_cx8());
7634  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7635  match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7636  effect(KILL cr, KILL oldval);
7637
7638  format %{ "cmpxchgq $mem_ptr,$newval\t# "
7639            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7640            "sete    $res\n\t"
7641            "movzbl  $res, $res" %}
7642  opcode(0x0F, 0xB1);
7643  ins_encode(lock_prefix,
7644             REX_reg_mem_wide(newval, mem_ptr),
7645             OpcP, OpcS,
7646             reg_mem(newval, mem_ptr),
7647             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7648             REX_reg_breg(res, res), // movzbl
7649             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7650  ins_pipe( pipe_cmpxchg );
7651%}
7652
7653instruct compareAndSwapI(rRegI res,
7654                         memory mem_ptr,
7655                         rax_RegI oldval, rRegI newval,
7656                         rFlagsReg cr)
7657%{
7658  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7659  match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7660  effect(KILL cr, KILL oldval);
7661
7662  format %{ "cmpxchgl $mem_ptr,$newval\t# "
7663            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7664            "sete    $res\n\t"
7665            "movzbl  $res, $res" %}
7666  opcode(0x0F, 0xB1);
7667  ins_encode(lock_prefix,
7668             REX_reg_mem(newval, mem_ptr),
7669             OpcP, OpcS,
7670             reg_mem(newval, mem_ptr),
7671             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7672             REX_reg_breg(res, res), // movzbl
7673             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7674  ins_pipe( pipe_cmpxchg );
7675%}
7676
7677instruct compareAndSwapB(rRegI res,
7678                         memory mem_ptr,
7679                         rax_RegI oldval, rRegI newval,
7680                         rFlagsReg cr)
7681%{
7682  match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7683  match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7684  effect(KILL cr, KILL oldval);
7685
7686  format %{ "cmpxchgb $mem_ptr,$newval\t# "
7687            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7688            "sete    $res\n\t"
7689            "movzbl  $res, $res" %}
7690  opcode(0x0F, 0xB0);
7691  ins_encode(lock_prefix,
7692             REX_breg_mem(newval, mem_ptr),
7693             OpcP, OpcS,
7694             reg_mem(newval, mem_ptr),
7695             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7696             REX_reg_breg(res, res), // movzbl
7697             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7698  ins_pipe( pipe_cmpxchg );
7699%}
7700
7701instruct compareAndSwapS(rRegI res,
7702                         memory mem_ptr,
7703                         rax_RegI oldval, rRegI newval,
7704                         rFlagsReg cr)
7705%{
7706  match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7707  match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7708  effect(KILL cr, KILL oldval);
7709
7710  format %{ "cmpxchgw $mem_ptr,$newval\t# "
7711            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7712            "sete    $res\n\t"
7713            "movzbl  $res, $res" %}
7714  opcode(0x0F, 0xB1);
7715  ins_encode(lock_prefix,
7716             SizePrefix,
7717             REX_reg_mem(newval, mem_ptr),
7718             OpcP, OpcS,
7719             reg_mem(newval, mem_ptr),
7720             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7721             REX_reg_breg(res, res), // movzbl
7722             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7723  ins_pipe( pipe_cmpxchg );
7724%}
7725
7726instruct compareAndSwapN(rRegI res,
7727                          memory mem_ptr,
7728                          rax_RegN oldval, rRegN newval,
7729                          rFlagsReg cr) %{
7730  match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7731  match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7732  effect(KILL cr, KILL oldval);
7733
7734  format %{ "cmpxchgl $mem_ptr,$newval\t# "
7735            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7736            "sete    $res\n\t"
7737            "movzbl  $res, $res" %}
7738  opcode(0x0F, 0xB1);
7739  ins_encode(lock_prefix,
7740             REX_reg_mem(newval, mem_ptr),
7741             OpcP, OpcS,
7742             reg_mem(newval, mem_ptr),
7743             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7744             REX_reg_breg(res, res), // movzbl
7745             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7746  ins_pipe( pipe_cmpxchg );
7747%}
7748
7749instruct compareAndExchangeB(
7750                         memory mem_ptr,
7751                         rax_RegI oldval, rRegI newval,
7752                         rFlagsReg cr)
7753%{
7754  match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7755  effect(KILL cr);
7756
7757  format %{ "cmpxchgb $mem_ptr,$newval\t# "
7758            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7759  opcode(0x0F, 0xB0);
7760  ins_encode(lock_prefix,
7761             REX_breg_mem(newval, mem_ptr),
7762             OpcP, OpcS,
7763             reg_mem(newval, mem_ptr) // lock cmpxchg
7764             );
7765  ins_pipe( pipe_cmpxchg );
7766%}
7767
7768instruct compareAndExchangeS(
7769                         memory mem_ptr,
7770                         rax_RegI oldval, rRegI newval,
7771                         rFlagsReg cr)
7772%{
7773  match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7774  effect(KILL cr);
7775
7776  format %{ "cmpxchgw $mem_ptr,$newval\t# "
7777            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7778  opcode(0x0F, 0xB1);
7779  ins_encode(lock_prefix,
7780             SizePrefix,
7781             REX_reg_mem(newval, mem_ptr),
7782             OpcP, OpcS,
7783             reg_mem(newval, mem_ptr) // lock cmpxchg
7784             );
7785  ins_pipe( pipe_cmpxchg );
7786%}
7787
7788instruct compareAndExchangeI(
7789                         memory mem_ptr,
7790                         rax_RegI oldval, rRegI newval,
7791                         rFlagsReg cr)
7792%{
7793  match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7794  effect(KILL cr);
7795
7796  format %{ "cmpxchgl $mem_ptr,$newval\t# "
7797            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7798  opcode(0x0F, 0xB1);
7799  ins_encode(lock_prefix,
7800             REX_reg_mem(newval, mem_ptr),
7801             OpcP, OpcS,
7802             reg_mem(newval, mem_ptr) // lock cmpxchg
7803             );
7804  ins_pipe( pipe_cmpxchg );
7805%}
7806
7807instruct compareAndExchangeL(
7808                         memory mem_ptr,
7809                         rax_RegL oldval, rRegL newval,
7810                         rFlagsReg cr)
7811%{
7812  predicate(VM_Version::supports_cx8());
7813  match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7814  effect(KILL cr);
7815
7816  format %{ "cmpxchgq $mem_ptr,$newval\t# "
7817            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7818  opcode(0x0F, 0xB1);
7819  ins_encode(lock_prefix,
7820             REX_reg_mem_wide(newval, mem_ptr),
7821             OpcP, OpcS,
7822             reg_mem(newval, mem_ptr)  // lock cmpxchg
7823            );
7824  ins_pipe( pipe_cmpxchg );
7825%}
7826
7827instruct compareAndExchangeN(
7828                          memory mem_ptr,
7829                          rax_RegN oldval, rRegN newval,
7830                          rFlagsReg cr) %{
7831  match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7832  effect(KILL cr);
7833
7834  format %{ "cmpxchgl $mem_ptr,$newval\t# "
7835            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7836  opcode(0x0F, 0xB1);
7837  ins_encode(lock_prefix,
7838             REX_reg_mem(newval, mem_ptr),
7839             OpcP, OpcS,
7840             reg_mem(newval, mem_ptr)  // lock cmpxchg
7841          );
7842  ins_pipe( pipe_cmpxchg );
7843%}
7844
7845instruct compareAndExchangeP(
7846                         memory mem_ptr,
7847                         rax_RegP oldval, rRegP newval,
7848                         rFlagsReg cr)
7849%{
7850  predicate(VM_Version::supports_cx8());
7851  match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7852  effect(KILL cr);
7853
7854  format %{ "cmpxchgq $mem_ptr,$newval\t# "
7855            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7856  opcode(0x0F, 0xB1);
7857  ins_encode(lock_prefix,
7858             REX_reg_mem_wide(newval, mem_ptr),
7859             OpcP, OpcS,
7860             reg_mem(newval, mem_ptr)  // lock cmpxchg
7861          );
7862  ins_pipe( pipe_cmpxchg );
7863%}
7864
7865instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7866  predicate(n->as_LoadStore()->result_not_used());
7867  match(Set dummy (GetAndAddB mem add));
7868  effect(KILL cr);
7869  format %{ "ADDB  [$mem],$add" %}
7870  ins_encode %{
7871    __ lock();
7872    __ addb($mem$$Address, $add$$constant);
7873  %}
7874  ins_pipe( pipe_cmpxchg );
7875%}
7876
7877instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7878  match(Set newval (GetAndAddB mem newval));
7879  effect(KILL cr);
7880  format %{ "XADDB  [$mem],$newval" %}
7881  ins_encode %{
7882    __ lock();
7883    __ xaddb($mem$$Address, $newval$$Register);
7884  %}
7885  ins_pipe( pipe_cmpxchg );
7886%}
7887
7888instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7889  predicate(n->as_LoadStore()->result_not_used());
7890  match(Set dummy (GetAndAddS mem add));
7891  effect(KILL cr);
7892  format %{ "ADDW  [$mem],$add" %}
7893  ins_encode %{
7894    __ lock();
7895    __ addw($mem$$Address, $add$$constant);
7896  %}
7897  ins_pipe( pipe_cmpxchg );
7898%}
7899
7900instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7901  match(Set newval (GetAndAddS mem newval));
7902  effect(KILL cr);
7903  format %{ "XADDW  [$mem],$newval" %}
7904  ins_encode %{
7905    __ lock();
7906    __ xaddw($mem$$Address, $newval$$Register);
7907  %}
7908  ins_pipe( pipe_cmpxchg );
7909%}
7910
7911instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7912  predicate(n->as_LoadStore()->result_not_used());
7913  match(Set dummy (GetAndAddI mem add));
7914  effect(KILL cr);
7915  format %{ "ADDL  [$mem],$add" %}
7916  ins_encode %{
7917    __ lock();
7918    __ addl($mem$$Address, $add$$constant);
7919  %}
7920  ins_pipe( pipe_cmpxchg );
7921%}
7922
7923instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7924  match(Set newval (GetAndAddI mem newval));
7925  effect(KILL cr);
7926  format %{ "XADDL  [$mem],$newval" %}
7927  ins_encode %{
7928    __ lock();
7929    __ xaddl($mem$$Address, $newval$$Register);
7930  %}
7931  ins_pipe( pipe_cmpxchg );
7932%}
7933
7934instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7935  predicate(n->as_LoadStore()->result_not_used());
7936  match(Set dummy (GetAndAddL mem add));
7937  effect(KILL cr);
7938  format %{ "ADDQ  [$mem],$add" %}
7939  ins_encode %{
7940    __ lock();
7941    __ addq($mem$$Address, $add$$constant);
7942  %}
7943  ins_pipe( pipe_cmpxchg );
7944%}
7945
7946instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7947  match(Set newval (GetAndAddL mem newval));
7948  effect(KILL cr);
7949  format %{ "XADDQ  [$mem],$newval" %}
7950  ins_encode %{
7951    __ lock();
7952    __ xaddq($mem$$Address, $newval$$Register);
7953  %}
7954  ins_pipe( pipe_cmpxchg );
7955%}
7956
7957instruct xchgB( memory mem, rRegI newval) %{
7958  match(Set newval (GetAndSetB mem newval));
7959  format %{ "XCHGB  $newval,[$mem]" %}
7960  ins_encode %{
7961    __ xchgb($newval$$Register, $mem$$Address);
7962  %}
7963  ins_pipe( pipe_cmpxchg );
7964%}
7965
7966instruct xchgS( memory mem, rRegI newval) %{
7967  match(Set newval (GetAndSetS mem newval));
7968  format %{ "XCHGW  $newval,[$mem]" %}
7969  ins_encode %{
7970    __ xchgw($newval$$Register, $mem$$Address);
7971  %}
7972  ins_pipe( pipe_cmpxchg );
7973%}
7974
7975instruct xchgI( memory mem, rRegI newval) %{
7976  match(Set newval (GetAndSetI mem newval));
7977  format %{ "XCHGL  $newval,[$mem]" %}
7978  ins_encode %{
7979    __ xchgl($newval$$Register, $mem$$Address);
7980  %}
7981  ins_pipe( pipe_cmpxchg );
7982%}
7983
7984instruct xchgL( memory mem, rRegL newval) %{
7985  match(Set newval (GetAndSetL mem newval));
7986  format %{ "XCHGL  $newval,[$mem]" %}
7987  ins_encode %{
7988    __ xchgq($newval$$Register, $mem$$Address);
7989  %}
7990  ins_pipe( pipe_cmpxchg );
7991%}
7992
7993instruct xchgP( memory mem, rRegP newval) %{
7994  match(Set newval (GetAndSetP mem newval));
7995  format %{ "XCHGQ  $newval,[$mem]" %}
7996  ins_encode %{
7997    __ xchgq($newval$$Register, $mem$$Address);
7998  %}
7999  ins_pipe( pipe_cmpxchg );
8000%}
8001
8002instruct xchgN( memory mem, rRegN newval) %{
8003  match(Set newval (GetAndSetN mem newval));
8004  format %{ "XCHGL  $newval,$mem]" %}
8005  ins_encode %{
8006    __ xchgl($newval$$Register, $mem$$Address);
8007  %}
8008  ins_pipe( pipe_cmpxchg );
8009%}
8010
8011//----------Subtraction Instructions-------------------------------------------
8012
8013// Integer Subtraction Instructions
8014instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8015%{
8016  match(Set dst (SubI dst src));
8017  effect(KILL cr);
8018
8019  format %{ "subl    $dst, $src\t# int" %}
8020  opcode(0x2B);
8021  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8022  ins_pipe(ialu_reg_reg);
8023%}
8024
8025instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8026%{
8027  match(Set dst (SubI dst src));
8028  effect(KILL cr);
8029
8030  format %{ "subl    $dst, $src\t# int" %}
8031  opcode(0x81, 0x05);  /* Opcode 81 /5 */
8032  ins_encode(OpcSErm(dst, src), Con8or32(src));
8033  ins_pipe(ialu_reg);
8034%}
8035
8036instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8037%{
8038  match(Set dst (SubI dst (LoadI src)));
8039  effect(KILL cr);
8040
8041  ins_cost(125);
8042  format %{ "subl    $dst, $src\t# int" %}
8043  opcode(0x2B);
8044  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8045  ins_pipe(ialu_reg_mem);
8046%}
8047
8048instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8049%{
8050  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8051  effect(KILL cr);
8052
8053  ins_cost(150);
8054  format %{ "subl    $dst, $src\t# int" %}
8055  opcode(0x29); /* Opcode 29 /r */
8056  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8057  ins_pipe(ialu_mem_reg);
8058%}
8059
8060instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
8061%{
8062  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8063  effect(KILL cr);
8064
8065  ins_cost(125); // XXX
8066  format %{ "subl    $dst, $src\t# int" %}
8067  opcode(0x81); /* Opcode 81 /5 id */
8068  ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8069  ins_pipe(ialu_mem_imm);
8070%}
8071
8072instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8073%{
8074  match(Set dst (SubL dst src));
8075  effect(KILL cr);
8076
8077  format %{ "subq    $dst, $src\t# long" %}
8078  opcode(0x2B);
8079  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8080  ins_pipe(ialu_reg_reg);
8081%}
8082
8083instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
8084%{
8085  match(Set dst (SubL dst src));
8086  effect(KILL cr);
8087
8088  format %{ "subq    $dst, $src\t# long" %}
8089  opcode(0x81, 0x05);  /* Opcode 81 /5 */
8090  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8091  ins_pipe(ialu_reg);
8092%}
8093
8094instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8095%{
8096  match(Set dst (SubL dst (LoadL src)));
8097  effect(KILL cr);
8098
8099  ins_cost(125);
8100  format %{ "subq    $dst, $src\t# long" %}
8101  opcode(0x2B);
8102  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8103  ins_pipe(ialu_reg_mem);
8104%}
8105
8106instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8107%{
8108  match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8109  effect(KILL cr);
8110
8111  ins_cost(150);
8112  format %{ "subq    $dst, $src\t# long" %}
8113  opcode(0x29); /* Opcode 29 /r */
8114  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8115  ins_pipe(ialu_mem_reg);
8116%}
8117
8118instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8119%{
8120  match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8121  effect(KILL cr);
8122
8123  ins_cost(125); // XXX
8124  format %{ "subq    $dst, $src\t# long" %}
8125  opcode(0x81); /* Opcode 81 /5 id */
8126  ins_encode(REX_mem_wide(dst),
8127             OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8128  ins_pipe(ialu_mem_imm);
8129%}
8130
8131// Subtract from a pointer
8132// XXX hmpf???
8133instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
8134%{
8135  match(Set dst (AddP dst (SubI zero src)));
8136  effect(KILL cr);
8137
8138  format %{ "subq    $dst, $src\t# ptr - int" %}
8139  opcode(0x2B);
8140  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8141  ins_pipe(ialu_reg_reg);
8142%}
8143
8144instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8145%{
8146  match(Set dst (SubI zero dst));
8147  effect(KILL cr);
8148
8149  format %{ "negl    $dst\t# int" %}
8150  opcode(0xF7, 0x03);  // Opcode F7 /3
8151  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8152  ins_pipe(ialu_reg);
8153%}
8154
8155instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8156%{
8157  match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8158  effect(KILL cr);
8159
8160  format %{ "negl    $dst\t# int" %}
8161  opcode(0xF7, 0x03);  // Opcode F7 /3
8162  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8163  ins_pipe(ialu_reg);
8164%}
8165
8166instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8167%{
8168  match(Set dst (SubL zero dst));
8169  effect(KILL cr);
8170
8171  format %{ "negq    $dst\t# long" %}
8172  opcode(0xF7, 0x03);  // Opcode F7 /3
8173  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8174  ins_pipe(ialu_reg);
8175%}
8176
8177instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8178%{
8179  match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8180  effect(KILL cr);
8181
8182  format %{ "negq    $dst\t# long" %}
8183  opcode(0xF7, 0x03);  // Opcode F7 /3
8184  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8185  ins_pipe(ialu_reg);
8186%}
8187
8188//----------Multiplication/Division Instructions-------------------------------
8189// Integer Multiplication Instructions
8190// Multiply Register
8191
8192instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8193%{
8194  match(Set dst (MulI dst src));
8195  effect(KILL cr);
8196
8197  ins_cost(300);
8198  format %{ "imull   $dst, $src\t# int" %}
8199  opcode(0x0F, 0xAF);
8200  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8201  ins_pipe(ialu_reg_reg_alu0);
8202%}
8203
8204instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8205%{
8206  match(Set dst (MulI src imm));
8207  effect(KILL cr);
8208
8209  ins_cost(300);
8210  format %{ "imull   $dst, $src, $imm\t# int" %}
8211  opcode(0x69); /* 69 /r id */
8212  ins_encode(REX_reg_reg(dst, src),
8213             OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8214  ins_pipe(ialu_reg_reg_alu0);
8215%}
8216
8217instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8218%{
8219  match(Set dst (MulI dst (LoadI src)));
8220  effect(KILL cr);
8221
8222  ins_cost(350);
8223  format %{ "imull   $dst, $src\t# int" %}
8224  opcode(0x0F, 0xAF);
8225  ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8226  ins_pipe(ialu_reg_mem_alu0);
8227%}
8228
8229instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8230%{
8231  match(Set dst (MulI (LoadI src) imm));
8232  effect(KILL cr);
8233
8234  ins_cost(300);
8235  format %{ "imull   $dst, $src, $imm\t# int" %}
8236  opcode(0x69); /* 69 /r id */
8237  ins_encode(REX_reg_mem(dst, src),
8238             OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8239  ins_pipe(ialu_reg_mem_alu0);
8240%}
8241
8242instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
8243%{
8244  match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
8245  effect(KILL cr, KILL src2);
8246
8247  expand %{ mulI_rReg(dst, src1, cr);
8248           mulI_rReg(src2, src3, cr);
8249           addI_rReg(dst, src2, cr); %}
8250%}
8251
8252instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8253%{
8254  match(Set dst (MulL dst src));
8255  effect(KILL cr);
8256
8257  ins_cost(300);
8258  format %{ "imulq   $dst, $src\t# long" %}
8259  opcode(0x0F, 0xAF);
8260  ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8261  ins_pipe(ialu_reg_reg_alu0);
8262%}
8263
8264instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8265%{
8266  match(Set dst (MulL src imm));
8267  effect(KILL cr);
8268
8269  ins_cost(300);
8270  format %{ "imulq   $dst, $src, $imm\t# long" %}
8271  opcode(0x69); /* 69 /r id */
8272  ins_encode(REX_reg_reg_wide(dst, src),
8273             OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8274  ins_pipe(ialu_reg_reg_alu0);
8275%}
8276
8277instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8278%{
8279  match(Set dst (MulL dst (LoadL src)));
8280  effect(KILL cr);
8281
8282  ins_cost(350);
8283  format %{ "imulq   $dst, $src\t# long" %}
8284  opcode(0x0F, 0xAF);
8285  ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8286  ins_pipe(ialu_reg_mem_alu0);
8287%}
8288
8289instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8290%{
8291  match(Set dst (MulL (LoadL src) imm));
8292  effect(KILL cr);
8293
8294  ins_cost(300);
8295  format %{ "imulq   $dst, $src, $imm\t# long" %}
8296  opcode(0x69); /* 69 /r id */
8297  ins_encode(REX_reg_mem_wide(dst, src),
8298             OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8299  ins_pipe(ialu_reg_mem_alu0);
8300%}
8301
8302instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8303%{
8304  match(Set dst (MulHiL src rax));
8305  effect(USE_KILL rax, KILL cr);
8306
8307  ins_cost(300);
8308  format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8309  opcode(0xF7, 0x5); /* Opcode F7 /5 */
8310  ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8311  ins_pipe(ialu_reg_reg_alu0);
8312%}
8313
8314instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8315                   rFlagsReg cr)
8316%{
8317  match(Set rax (DivI rax div));
8318  effect(KILL rdx, KILL cr);
8319
8320  ins_cost(30*100+10*100); // XXX
8321  format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8322            "jne,s   normal\n\t"
8323            "xorl    rdx, rdx\n\t"
8324            "cmpl    $div, -1\n\t"
8325            "je,s    done\n"
8326    "normal: cdql\n\t"
8327            "idivl   $div\n"
8328    "done:"        %}
8329  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8330  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8331  ins_pipe(ialu_reg_reg_alu0);
8332%}
8333
8334instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8335                   rFlagsReg cr)
8336%{
8337  match(Set rax (DivL rax div));
8338  effect(KILL rdx, KILL cr);
8339
8340  ins_cost(30*100+10*100); // XXX
8341  format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8342            "cmpq    rax, rdx\n\t"
8343            "jne,s   normal\n\t"
8344            "xorl    rdx, rdx\n\t"
8345            "cmpq    $div, -1\n\t"
8346            "je,s    done\n"
8347    "normal: cdqq\n\t"
8348            "idivq   $div\n"
8349    "done:"        %}
8350  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8351  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8352  ins_pipe(ialu_reg_reg_alu0);
8353%}
8354
8355// Integer DIVMOD with Register, both quotient and mod results
8356instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8357                             rFlagsReg cr)
8358%{
8359  match(DivModI rax div);
8360  effect(KILL cr);
8361
8362  ins_cost(30*100+10*100); // XXX
8363  format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8364            "jne,s   normal\n\t"
8365            "xorl    rdx, rdx\n\t"
8366            "cmpl    $div, -1\n\t"
8367            "je,s    done\n"
8368    "normal: cdql\n\t"
8369            "idivl   $div\n"
8370    "done:"        %}
8371  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8372  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8373  ins_pipe(pipe_slow);
8374%}
8375
8376// Long DIVMOD with Register, both quotient and mod results
8377instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8378                             rFlagsReg cr)
8379%{
8380  match(DivModL rax div);
8381  effect(KILL cr);
8382
8383  ins_cost(30*100+10*100); // XXX
8384  format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8385            "cmpq    rax, rdx\n\t"
8386            "jne,s   normal\n\t"
8387            "xorl    rdx, rdx\n\t"
8388            "cmpq    $div, -1\n\t"
8389            "je,s    done\n"
8390    "normal: cdqq\n\t"
8391            "idivq   $div\n"
8392    "done:"        %}
8393  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8394  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8395  ins_pipe(pipe_slow);
8396%}
8397
8398//----------- DivL-By-Constant-Expansions--------------------------------------
8399// DivI cases are handled by the compiler
8400
8401// Magic constant, reciprocal of 10
8402instruct loadConL_0x6666666666666667(rRegL dst)
8403%{
8404  effect(DEF dst);
8405
8406  format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8407  ins_encode(load_immL(dst, 0x6666666666666667));
8408  ins_pipe(ialu_reg);
8409%}
8410
8411instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8412%{
8413  effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8414
8415  format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8416  opcode(0xF7, 0x5); /* Opcode F7 /5 */
8417  ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8418  ins_pipe(ialu_reg_reg_alu0);
8419%}
8420
8421instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8422%{
8423  effect(USE_DEF dst, KILL cr);
8424
8425  format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8426  opcode(0xC1, 0x7); /* C1 /7 ib */
8427  ins_encode(reg_opc_imm_wide(dst, 0x3F));
8428  ins_pipe(ialu_reg);
8429%}
8430
8431instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8432%{
8433  effect(USE_DEF dst, KILL cr);
8434
8435  format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8436  opcode(0xC1, 0x7); /* C1 /7 ib */
8437  ins_encode(reg_opc_imm_wide(dst, 0x2));
8438  ins_pipe(ialu_reg);
8439%}
8440
8441instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8442%{
8443  match(Set dst (DivL src div));
8444
8445  ins_cost((5+8)*100);
8446  expand %{
8447    rax_RegL rax;                     // Killed temp
8448    rFlagsReg cr;                     // Killed
8449    loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8450    mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8451    sarL_rReg_63(src, cr);            // sarq  src, 63
8452    sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8453    subL_rReg(dst, src, cr);          // subl  rdx, src
8454  %}
8455%}
8456
8457//-----------------------------------------------------------------------------
8458
8459instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8460                   rFlagsReg cr)
8461%{
8462  match(Set rdx (ModI rax div));
8463  effect(KILL rax, KILL cr);
8464
8465  ins_cost(300); // XXX
8466  format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8467            "jne,s   normal\n\t"
8468            "xorl    rdx, rdx\n\t"
8469            "cmpl    $div, -1\n\t"
8470            "je,s    done\n"
8471    "normal: cdql\n\t"
8472            "idivl   $div\n"
8473    "done:"        %}
8474  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8475  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8476  ins_pipe(ialu_reg_reg_alu0);
8477%}
8478
8479instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8480                   rFlagsReg cr)
8481%{
8482  match(Set rdx (ModL rax div));
8483  effect(KILL rax, KILL cr);
8484
8485  ins_cost(300); // XXX
8486  format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8487            "cmpq    rax, rdx\n\t"
8488            "jne,s   normal\n\t"
8489            "xorl    rdx, rdx\n\t"
8490            "cmpq    $div, -1\n\t"
8491            "je,s    done\n"
8492    "normal: cdqq\n\t"
8493            "idivq   $div\n"
8494    "done:"        %}
8495  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8496  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8497  ins_pipe(ialu_reg_reg_alu0);
8498%}
8499
8500// Integer Shift Instructions
8501// Shift Left by one
8502instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8503%{
8504  match(Set dst (LShiftI dst shift));
8505  effect(KILL cr);
8506
8507  format %{ "sall    $dst, $shift" %}
8508  opcode(0xD1, 0x4); /* D1 /4 */
8509  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8510  ins_pipe(ialu_reg);
8511%}
8512
8513// Shift Left by one
8514instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8515%{
8516  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8517  effect(KILL cr);
8518
8519  format %{ "sall    $dst, $shift\t" %}
8520  opcode(0xD1, 0x4); /* D1 /4 */
8521  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8522  ins_pipe(ialu_mem_imm);
8523%}
8524
8525// Shift Left by 8-bit immediate
8526instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8527%{
8528  match(Set dst (LShiftI dst shift));
8529  effect(KILL cr);
8530
8531  format %{ "sall    $dst, $shift" %}
8532  opcode(0xC1, 0x4); /* C1 /4 ib */
8533  ins_encode(reg_opc_imm(dst, shift));
8534  ins_pipe(ialu_reg);
8535%}
8536
8537// Shift Left by 8-bit immediate
8538instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8539%{
8540  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8541  effect(KILL cr);
8542
8543  format %{ "sall    $dst, $shift" %}
8544  opcode(0xC1, 0x4); /* C1 /4 ib */
8545  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8546  ins_pipe(ialu_mem_imm);
8547%}
8548
8549// Shift Left by variable
8550instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8551%{
8552  match(Set dst (LShiftI dst shift));
8553  effect(KILL cr);
8554
8555  format %{ "sall    $dst, $shift" %}
8556  opcode(0xD3, 0x4); /* D3 /4 */
8557  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8558  ins_pipe(ialu_reg_reg);
8559%}
8560
8561// Shift Left by variable
8562instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8563%{
8564  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8565  effect(KILL cr);
8566
8567  format %{ "sall    $dst, $shift" %}
8568  opcode(0xD3, 0x4); /* D3 /4 */
8569  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8570  ins_pipe(ialu_mem_reg);
8571%}
8572
8573// Arithmetic shift right by one
8574instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8575%{
8576  match(Set dst (RShiftI dst shift));
8577  effect(KILL cr);
8578
8579  format %{ "sarl    $dst, $shift" %}
8580  opcode(0xD1, 0x7); /* D1 /7 */
8581  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8582  ins_pipe(ialu_reg);
8583%}
8584
8585// Arithmetic shift right by one
8586instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8587%{
8588  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8589  effect(KILL cr);
8590
8591  format %{ "sarl    $dst, $shift" %}
8592  opcode(0xD1, 0x7); /* D1 /7 */
8593  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8594  ins_pipe(ialu_mem_imm);
8595%}
8596
8597// Arithmetic Shift Right by 8-bit immediate
8598instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8599%{
8600  match(Set dst (RShiftI dst shift));
8601  effect(KILL cr);
8602
8603  format %{ "sarl    $dst, $shift" %}
8604  opcode(0xC1, 0x7); /* C1 /7 ib */
8605  ins_encode(reg_opc_imm(dst, shift));
8606  ins_pipe(ialu_mem_imm);
8607%}
8608
8609// Arithmetic Shift Right by 8-bit immediate
8610instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8611%{
8612  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8613  effect(KILL cr);
8614
8615  format %{ "sarl    $dst, $shift" %}
8616  opcode(0xC1, 0x7); /* C1 /7 ib */
8617  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8618  ins_pipe(ialu_mem_imm);
8619%}
8620
8621// Arithmetic Shift Right by variable
8622instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8623%{
8624  match(Set dst (RShiftI dst shift));
8625  effect(KILL cr);
8626
8627  format %{ "sarl    $dst, $shift" %}
8628  opcode(0xD3, 0x7); /* D3 /7 */
8629  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8630  ins_pipe(ialu_reg_reg);
8631%}
8632
8633// Arithmetic Shift Right by variable
8634instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8635%{
8636  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8637  effect(KILL cr);
8638
8639  format %{ "sarl    $dst, $shift" %}
8640  opcode(0xD3, 0x7); /* D3 /7 */
8641  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8642  ins_pipe(ialu_mem_reg);
8643%}
8644
8645// Logical shift right by one
8646instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8647%{
8648  match(Set dst (URShiftI dst shift));
8649  effect(KILL cr);
8650
8651  format %{ "shrl    $dst, $shift" %}
8652  opcode(0xD1, 0x5); /* D1 /5 */
8653  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8654  ins_pipe(ialu_reg);
8655%}
8656
8657// Logical shift right by one
8658instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8659%{
8660  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8661  effect(KILL cr);
8662
8663  format %{ "shrl    $dst, $shift" %}
8664  opcode(0xD1, 0x5); /* D1 /5 */
8665  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8666  ins_pipe(ialu_mem_imm);
8667%}
8668
8669// Logical Shift Right by 8-bit immediate
8670instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8671%{
8672  match(Set dst (URShiftI dst shift));
8673  effect(KILL cr);
8674
8675  format %{ "shrl    $dst, $shift" %}
8676  opcode(0xC1, 0x5); /* C1 /5 ib */
8677  ins_encode(reg_opc_imm(dst, shift));
8678  ins_pipe(ialu_reg);
8679%}
8680
8681// Logical Shift Right by 8-bit immediate
8682instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8683%{
8684  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8685  effect(KILL cr);
8686
8687  format %{ "shrl    $dst, $shift" %}
8688  opcode(0xC1, 0x5); /* C1 /5 ib */
8689  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8690  ins_pipe(ialu_mem_imm);
8691%}
8692
8693// Logical Shift Right by variable
8694instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8695%{
8696  match(Set dst (URShiftI dst shift));
8697  effect(KILL cr);
8698
8699  format %{ "shrl    $dst, $shift" %}
8700  opcode(0xD3, 0x5); /* D3 /5 */
8701  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8702  ins_pipe(ialu_reg_reg);
8703%}
8704
8705// Logical Shift Right by variable
8706instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8707%{
8708  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8709  effect(KILL cr);
8710
8711  format %{ "shrl    $dst, $shift" %}
8712  opcode(0xD3, 0x5); /* D3 /5 */
8713  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8714  ins_pipe(ialu_mem_reg);
8715%}
8716
8717// Long Shift Instructions
8718// Shift Left by one
8719instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8720%{
8721  match(Set dst (LShiftL dst shift));
8722  effect(KILL cr);
8723
8724  format %{ "salq    $dst, $shift" %}
8725  opcode(0xD1, 0x4); /* D1 /4 */
8726  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8727  ins_pipe(ialu_reg);
8728%}
8729
8730// Shift Left by one
8731instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8732%{
8733  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8734  effect(KILL cr);
8735
8736  format %{ "salq    $dst, $shift" %}
8737  opcode(0xD1, 0x4); /* D1 /4 */
8738  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8739  ins_pipe(ialu_mem_imm);
8740%}
8741
8742// Shift Left by 8-bit immediate
8743instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8744%{
8745  match(Set dst (LShiftL dst shift));
8746  effect(KILL cr);
8747
8748  format %{ "salq    $dst, $shift" %}
8749  opcode(0xC1, 0x4); /* C1 /4 ib */
8750  ins_encode(reg_opc_imm_wide(dst, shift));
8751  ins_pipe(ialu_reg);
8752%}
8753
8754// Shift Left by 8-bit immediate
8755instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8756%{
8757  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8758  effect(KILL cr);
8759
8760  format %{ "salq    $dst, $shift" %}
8761  opcode(0xC1, 0x4); /* C1 /4 ib */
8762  ins_encode(REX_mem_wide(dst), OpcP,
8763             RM_opc_mem(secondary, dst), Con8or32(shift));
8764  ins_pipe(ialu_mem_imm);
8765%}
8766
8767// Shift Left by variable
8768instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8769%{
8770  match(Set dst (LShiftL dst shift));
8771  effect(KILL cr);
8772
8773  format %{ "salq    $dst, $shift" %}
8774  opcode(0xD3, 0x4); /* D3 /4 */
8775  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8776  ins_pipe(ialu_reg_reg);
8777%}
8778
8779// Shift Left by variable
8780instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8781%{
8782  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8783  effect(KILL cr);
8784
8785  format %{ "salq    $dst, $shift" %}
8786  opcode(0xD3, 0x4); /* D3 /4 */
8787  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8788  ins_pipe(ialu_mem_reg);
8789%}
8790
8791// Arithmetic shift right by one
8792instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8793%{
8794  match(Set dst (RShiftL dst shift));
8795  effect(KILL cr);
8796
8797  format %{ "sarq    $dst, $shift" %}
8798  opcode(0xD1, 0x7); /* D1 /7 */
8799  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8800  ins_pipe(ialu_reg);
8801%}
8802
8803// Arithmetic shift right by one
8804instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8805%{
8806  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8807  effect(KILL cr);
8808
8809  format %{ "sarq    $dst, $shift" %}
8810  opcode(0xD1, 0x7); /* D1 /7 */
8811  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8812  ins_pipe(ialu_mem_imm);
8813%}
8814
8815// Arithmetic Shift Right by 8-bit immediate
8816instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8817%{
8818  match(Set dst (RShiftL dst shift));
8819  effect(KILL cr);
8820
8821  format %{ "sarq    $dst, $shift" %}
8822  opcode(0xC1, 0x7); /* C1 /7 ib */
8823  ins_encode(reg_opc_imm_wide(dst, shift));
8824  ins_pipe(ialu_mem_imm);
8825%}
8826
8827// Arithmetic Shift Right by 8-bit immediate
8828instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8829%{
8830  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8831  effect(KILL cr);
8832
8833  format %{ "sarq    $dst, $shift" %}
8834  opcode(0xC1, 0x7); /* C1 /7 ib */
8835  ins_encode(REX_mem_wide(dst), OpcP,
8836             RM_opc_mem(secondary, dst), Con8or32(shift));
8837  ins_pipe(ialu_mem_imm);
8838%}
8839
8840// Arithmetic Shift Right by variable
8841instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8842%{
8843  match(Set dst (RShiftL dst shift));
8844  effect(KILL cr);
8845
8846  format %{ "sarq    $dst, $shift" %}
8847  opcode(0xD3, 0x7); /* D3 /7 */
8848  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8849  ins_pipe(ialu_reg_reg);
8850%}
8851
8852// Arithmetic Shift Right by variable
8853instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8854%{
8855  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8856  effect(KILL cr);
8857
8858  format %{ "sarq    $dst, $shift" %}
8859  opcode(0xD3, 0x7); /* D3 /7 */
8860  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8861  ins_pipe(ialu_mem_reg);
8862%}
8863
8864// Logical shift right by one
8865instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8866%{
8867  match(Set dst (URShiftL dst shift));
8868  effect(KILL cr);
8869
8870  format %{ "shrq    $dst, $shift" %}
8871  opcode(0xD1, 0x5); /* D1 /5 */
8872  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8873  ins_pipe(ialu_reg);
8874%}
8875
8876// Logical shift right by one
8877instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8878%{
8879  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8880  effect(KILL cr);
8881
8882  format %{ "shrq    $dst, $shift" %}
8883  opcode(0xD1, 0x5); /* D1 /5 */
8884  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8885  ins_pipe(ialu_mem_imm);
8886%}
8887
8888// Logical Shift Right by 8-bit immediate
8889instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8890%{
8891  match(Set dst (URShiftL dst shift));
8892  effect(KILL cr);
8893
8894  format %{ "shrq    $dst, $shift" %}
8895  opcode(0xC1, 0x5); /* C1 /5 ib */
8896  ins_encode(reg_opc_imm_wide(dst, shift));
8897  ins_pipe(ialu_reg);
8898%}
8899
8900
8901// Logical Shift Right by 8-bit immediate
8902instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8903%{
8904  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8905  effect(KILL cr);
8906
8907  format %{ "shrq    $dst, $shift" %}
8908  opcode(0xC1, 0x5); /* C1 /5 ib */
8909  ins_encode(REX_mem_wide(dst), OpcP,
8910             RM_opc_mem(secondary, dst), Con8or32(shift));
8911  ins_pipe(ialu_mem_imm);
8912%}
8913
8914// Logical Shift Right by variable
8915instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8916%{
8917  match(Set dst (URShiftL dst shift));
8918  effect(KILL cr);
8919
8920  format %{ "shrq    $dst, $shift" %}
8921  opcode(0xD3, 0x5); /* D3 /5 */
8922  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8923  ins_pipe(ialu_reg_reg);
8924%}
8925
8926// Logical Shift Right by variable
8927instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8928%{
8929  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8930  effect(KILL cr);
8931
8932  format %{ "shrq    $dst, $shift" %}
8933  opcode(0xD3, 0x5); /* D3 /5 */
8934  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8935  ins_pipe(ialu_mem_reg);
8936%}
8937
8938// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8939// This idiom is used by the compiler for the i2b bytecode.
8940instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8941%{
8942  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8943
8944  format %{ "movsbl  $dst, $src\t# i2b" %}
8945  opcode(0x0F, 0xBE);
8946  ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8947  ins_pipe(ialu_reg_reg);
8948%}
8949
8950// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8951// This idiom is used by the compiler the i2s bytecode.
8952instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8953%{
8954  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8955
8956  format %{ "movswl  $dst, $src\t# i2s" %}
8957  opcode(0x0F, 0xBF);
8958  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8959  ins_pipe(ialu_reg_reg);
8960%}
8961
8962// ROL/ROR instructions
8963
8964// ROL expand
8965instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8966  effect(KILL cr, USE_DEF dst);
8967
8968  format %{ "roll    $dst" %}
8969  opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8970  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8971  ins_pipe(ialu_reg);
8972%}
8973
8974instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8975  effect(USE_DEF dst, USE shift, KILL cr);
8976
8977  format %{ "roll    $dst, $shift" %}
8978  opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8979  ins_encode( reg_opc_imm(dst, shift) );
8980  ins_pipe(ialu_reg);
8981%}
8982
8983instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8984%{
8985  effect(USE_DEF dst, USE shift, KILL cr);
8986
8987  format %{ "roll    $dst, $shift" %}
8988  opcode(0xD3, 0x0); /* Opcode D3 /0 */
8989  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8990  ins_pipe(ialu_reg_reg);
8991%}
8992// end of ROL expand
8993
8994// Rotate Left by one
8995instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8996%{
8997  match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8998
8999  expand %{
9000    rolI_rReg_imm1(dst, cr);
9001  %}
9002%}
9003
9004// Rotate Left by 8-bit immediate
9005instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9006%{
9007  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9008  match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9009
9010  expand %{
9011    rolI_rReg_imm8(dst, lshift, cr);
9012  %}
9013%}
9014
9015// Rotate Left by variable
9016instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9017%{
9018  match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9019
9020  expand %{
9021    rolI_rReg_CL(dst, shift, cr);
9022  %}
9023%}
9024
9025// Rotate Left by variable
9026instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9027%{
9028  match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9029
9030  expand %{
9031    rolI_rReg_CL(dst, shift, cr);
9032  %}
9033%}
9034
9035// ROR expand
9036instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
9037%{
9038  effect(USE_DEF dst, KILL cr);
9039
9040  format %{ "rorl    $dst" %}
9041  opcode(0xD1, 0x1); /* D1 /1 */
9042  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9043  ins_pipe(ialu_reg);
9044%}
9045
9046instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
9047%{
9048  effect(USE_DEF dst, USE shift, KILL cr);
9049
9050  format %{ "rorl    $dst, $shift" %}
9051  opcode(0xC1, 0x1); /* C1 /1 ib */
9052  ins_encode(reg_opc_imm(dst, shift));
9053  ins_pipe(ialu_reg);
9054%}
9055
9056instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9057%{
9058  effect(USE_DEF dst, USE shift, KILL cr);
9059
9060  format %{ "rorl    $dst, $shift" %}
9061  opcode(0xD3, 0x1); /* D3 /1 */
9062  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9063  ins_pipe(ialu_reg_reg);
9064%}
9065// end of ROR expand
9066
9067// Rotate Right by one
9068instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9069%{
9070  match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9071
9072  expand %{
9073    rorI_rReg_imm1(dst, cr);
9074  %}
9075%}
9076
9077// Rotate Right by 8-bit immediate
9078instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9079%{
9080  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9081  match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9082
9083  expand %{
9084    rorI_rReg_imm8(dst, rshift, cr);
9085  %}
9086%}
9087
9088// Rotate Right by variable
9089instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9090%{
9091  match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9092
9093  expand %{
9094    rorI_rReg_CL(dst, shift, cr);
9095  %}
9096%}
9097
9098// Rotate Right by variable
9099instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9100%{
9101  match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9102
9103  expand %{
9104    rorI_rReg_CL(dst, shift, cr);
9105  %}
9106%}
9107
9108// for long rotate
9109// ROL expand
9110instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
9111  effect(USE_DEF dst, KILL cr);
9112
9113  format %{ "rolq    $dst" %}
9114  opcode(0xD1, 0x0); /* Opcode  D1 /0 */
9115  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9116  ins_pipe(ialu_reg);
9117%}
9118
9119instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
9120  effect(USE_DEF dst, USE shift, KILL cr);
9121
9122  format %{ "rolq    $dst, $shift" %}
9123  opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9124  ins_encode( reg_opc_imm_wide(dst, shift) );
9125  ins_pipe(ialu_reg);
9126%}
9127
9128instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9129%{
9130  effect(USE_DEF dst, USE shift, KILL cr);
9131
9132  format %{ "rolq    $dst, $shift" %}
9133  opcode(0xD3, 0x0); /* Opcode D3 /0 */
9134  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9135  ins_pipe(ialu_reg_reg);
9136%}
9137// end of ROL expand
9138
9139// Rotate Left by one
9140instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9141%{
9142  match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9143
9144  expand %{
9145    rolL_rReg_imm1(dst, cr);
9146  %}
9147%}
9148
9149// Rotate Left by 8-bit immediate
9150instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9151%{
9152  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9153  match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9154
9155  expand %{
9156    rolL_rReg_imm8(dst, lshift, cr);
9157  %}
9158%}
9159
9160// Rotate Left by variable
9161instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9162%{
9163  match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
9164
9165  expand %{
9166    rolL_rReg_CL(dst, shift, cr);
9167  %}
9168%}
9169
9170// Rotate Left by variable
9171instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9172%{
9173  match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
9174
9175  expand %{
9176    rolL_rReg_CL(dst, shift, cr);
9177  %}
9178%}
9179
9180// ROR expand
9181instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
9182%{
9183  effect(USE_DEF dst, KILL cr);
9184
9185  format %{ "rorq    $dst" %}
9186  opcode(0xD1, 0x1); /* D1 /1 */
9187  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9188  ins_pipe(ialu_reg);
9189%}
9190
9191instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
9192%{
9193  effect(USE_DEF dst, USE shift, KILL cr);
9194
9195  format %{ "rorq    $dst, $shift" %}
9196  opcode(0xC1, 0x1); /* C1 /1 ib */
9197  ins_encode(reg_opc_imm_wide(dst, shift));
9198  ins_pipe(ialu_reg);
9199%}
9200
9201instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9202%{
9203  effect(USE_DEF dst, USE shift, KILL cr);
9204
9205  format %{ "rorq    $dst, $shift" %}
9206  opcode(0xD3, 0x1); /* D3 /1 */
9207  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9208  ins_pipe(ialu_reg_reg);
9209%}
9210// end of ROR expand
9211
9212// Rotate Right by one
9213instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9214%{
9215  match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9216
9217  expand %{
9218    rorL_rReg_imm1(dst, cr);
9219  %}
9220%}
9221
9222// Rotate Right by 8-bit immediate
9223instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9224%{
9225  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9226  match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9227
9228  expand %{
9229    rorL_rReg_imm8(dst, rshift, cr);
9230  %}
9231%}
9232
9233// Rotate Right by variable
9234instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9235%{
9236  match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
9237
9238  expand %{
9239    rorL_rReg_CL(dst, shift, cr);
9240  %}
9241%}
9242
9243// Rotate Right by variable
9244instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9245%{
9246  match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
9247
9248  expand %{
9249    rorL_rReg_CL(dst, shift, cr);
9250  %}
9251%}
9252
9253// Logical Instructions
9254
9255// Integer Logical Instructions
9256
9257// And Instructions
9258// And Register with Register
9259instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9260%{
9261  match(Set dst (AndI dst src));
9262  effect(KILL cr);
9263
9264  format %{ "andl    $dst, $src\t# int" %}
9265  opcode(0x23);
9266  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9267  ins_pipe(ialu_reg_reg);
9268%}
9269
9270// And Register with Immediate 255
9271instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9272%{
9273  match(Set dst (AndI dst src));
9274
9275  format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9276  opcode(0x0F, 0xB6);
9277  ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9278  ins_pipe(ialu_reg);
9279%}
9280
9281// And Register with Immediate 255 and promote to long
9282instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9283%{
9284  match(Set dst (ConvI2L (AndI src mask)));
9285
9286  format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9287  opcode(0x0F, 0xB6);
9288  ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9289  ins_pipe(ialu_reg);
9290%}
9291
9292// And Register with Immediate 65535
9293instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9294%{
9295  match(Set dst (AndI dst src));
9296
9297  format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9298  opcode(0x0F, 0xB7);
9299  ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9300  ins_pipe(ialu_reg);
9301%}
9302
9303// And Register with Immediate 65535 and promote to long
9304instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9305%{
9306  match(Set dst (ConvI2L (AndI src mask)));
9307
9308  format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9309  opcode(0x0F, 0xB7);
9310  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9311  ins_pipe(ialu_reg);
9312%}
9313
9314// And Register with Immediate
9315instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9316%{
9317  match(Set dst (AndI dst src));
9318  effect(KILL cr);
9319
9320  format %{ "andl    $dst, $src\t# int" %}
9321  opcode(0x81, 0x04); /* Opcode 81 /4 */
9322  ins_encode(OpcSErm(dst, src), Con8or32(src));
9323  ins_pipe(ialu_reg);
9324%}
9325
9326// And Register with Memory
9327instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9328%{
9329  match(Set dst (AndI dst (LoadI src)));
9330  effect(KILL cr);
9331
9332  ins_cost(125);
9333  format %{ "andl    $dst, $src\t# int" %}
9334  opcode(0x23);
9335  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9336  ins_pipe(ialu_reg_mem);
9337%}
9338
9339// And Memory with Register
9340instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9341%{
9342  match(Set dst (StoreB dst (AndI (LoadB dst) src)));
9343  effect(KILL cr);
9344
9345  ins_cost(150);
9346  format %{ "andb    $dst, $src\t# byte" %}
9347  opcode(0x20);
9348  ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9349  ins_pipe(ialu_mem_reg);
9350%}
9351
9352instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9353%{
9354  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9355  effect(KILL cr);
9356
9357  ins_cost(150);
9358  format %{ "andl    $dst, $src\t# int" %}
9359  opcode(0x21); /* Opcode 21 /r */
9360  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9361  ins_pipe(ialu_mem_reg);
9362%}
9363
9364// And Memory with Immediate
9365instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9366%{
9367  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9368  effect(KILL cr);
9369
9370  ins_cost(125);
9371  format %{ "andl    $dst, $src\t# int" %}
9372  opcode(0x81, 0x4); /* Opcode 81 /4 id */
9373  ins_encode(REX_mem(dst), OpcSE(src),
9374             RM_opc_mem(secondary, dst), Con8or32(src));
9375  ins_pipe(ialu_mem_imm);
9376%}
9377
9378// BMI1 instructions
9379instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9380  match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9381  predicate(UseBMI1Instructions);
9382  effect(KILL cr);
9383
9384  ins_cost(125);
9385  format %{ "andnl  $dst, $src1, $src2" %}
9386
9387  ins_encode %{
9388    __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9389  %}
9390  ins_pipe(ialu_reg_mem);
9391%}
9392
9393instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9394  match(Set dst (AndI (XorI src1 minus_1) src2));
9395  predicate(UseBMI1Instructions);
9396  effect(KILL cr);
9397
9398  format %{ "andnl  $dst, $src1, $src2" %}
9399
9400  ins_encode %{
9401    __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9402  %}
9403  ins_pipe(ialu_reg);
9404%}
9405
9406instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9407  match(Set dst (AndI (SubI imm_zero src) src));
9408  predicate(UseBMI1Instructions);
9409  effect(KILL cr);
9410
9411  format %{ "blsil  $dst, $src" %}
9412
9413  ins_encode %{
9414    __ blsil($dst$$Register, $src$$Register);
9415  %}
9416  ins_pipe(ialu_reg);
9417%}
9418
9419instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9420  match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9421  predicate(UseBMI1Instructions);
9422  effect(KILL cr);
9423
9424  ins_cost(125);
9425  format %{ "blsil  $dst, $src" %}
9426
9427  ins_encode %{
9428    __ blsil($dst$$Register, $src$$Address);
9429  %}
9430  ins_pipe(ialu_reg_mem);
9431%}
9432
9433instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9434%{
9435  match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9436  predicate(UseBMI1Instructions);
9437  effect(KILL cr);
9438
9439  ins_cost(125);
9440  format %{ "blsmskl $dst, $src" %}
9441
9442  ins_encode %{
9443    __ blsmskl($dst$$Register, $src$$Address);
9444  %}
9445  ins_pipe(ialu_reg_mem);
9446%}
9447
9448instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9449%{
9450  match(Set dst (XorI (AddI src minus_1) src));
9451  predicate(UseBMI1Instructions);
9452  effect(KILL cr);
9453
9454  format %{ "blsmskl $dst, $src" %}
9455
9456  ins_encode %{
9457    __ blsmskl($dst$$Register, $src$$Register);
9458  %}
9459
9460  ins_pipe(ialu_reg);
9461%}
9462
9463instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9464%{
9465  match(Set dst (AndI (AddI src minus_1) src) );
9466  predicate(UseBMI1Instructions);
9467  effect(KILL cr);
9468
9469  format %{ "blsrl  $dst, $src" %}
9470
9471  ins_encode %{
9472    __ blsrl($dst$$Register, $src$$Register);
9473  %}
9474
9475  ins_pipe(ialu_reg_mem);
9476%}
9477
9478instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9479%{
9480  match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9481  predicate(UseBMI1Instructions);
9482  effect(KILL cr);
9483
9484  ins_cost(125);
9485  format %{ "blsrl  $dst, $src" %}
9486
9487  ins_encode %{
9488    __ blsrl($dst$$Register, $src$$Address);
9489  %}
9490
9491  ins_pipe(ialu_reg);
9492%}
9493
9494// Or Instructions
9495// Or Register with Register
9496instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9497%{
9498  match(Set dst (OrI dst src));
9499  effect(KILL cr);
9500
9501  format %{ "orl     $dst, $src\t# int" %}
9502  opcode(0x0B);
9503  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9504  ins_pipe(ialu_reg_reg);
9505%}
9506
9507// Or Register with Immediate
9508instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9509%{
9510  match(Set dst (OrI dst src));
9511  effect(KILL cr);
9512
9513  format %{ "orl     $dst, $src\t# int" %}
9514  opcode(0x81, 0x01); /* Opcode 81 /1 id */
9515  ins_encode(OpcSErm(dst, src), Con8or32(src));
9516  ins_pipe(ialu_reg);
9517%}
9518
9519// Or Register with Memory
9520instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9521%{
9522  match(Set dst (OrI dst (LoadI src)));
9523  effect(KILL cr);
9524
9525  ins_cost(125);
9526  format %{ "orl     $dst, $src\t# int" %}
9527  opcode(0x0B);
9528  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9529  ins_pipe(ialu_reg_mem);
9530%}
9531
9532// Or Memory with Register
9533instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9534%{
9535  match(Set dst (StoreB dst (OrI (LoadB dst) src)));
9536  effect(KILL cr);
9537
9538  ins_cost(150);
9539  format %{ "orb    $dst, $src\t# byte" %}
9540  opcode(0x08);
9541  ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9542  ins_pipe(ialu_mem_reg);
9543%}
9544
9545instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9546%{
9547  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9548  effect(KILL cr);
9549
9550  ins_cost(150);
9551  format %{ "orl     $dst, $src\t# int" %}
9552  opcode(0x09); /* Opcode 09 /r */
9553  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9554  ins_pipe(ialu_mem_reg);
9555%}
9556
9557// Or Memory with Immediate
9558instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9559%{
9560  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9561  effect(KILL cr);
9562
9563  ins_cost(125);
9564  format %{ "orl     $dst, $src\t# int" %}
9565  opcode(0x81, 0x1); /* Opcode 81 /1 id */
9566  ins_encode(REX_mem(dst), OpcSE(src),
9567             RM_opc_mem(secondary, dst), Con8or32(src));
9568  ins_pipe(ialu_mem_imm);
9569%}
9570
9571// Xor Instructions
9572// Xor Register with Register
9573instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9574%{
9575  match(Set dst (XorI dst src));
9576  effect(KILL cr);
9577
9578  format %{ "xorl    $dst, $src\t# int" %}
9579  opcode(0x33);
9580  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9581  ins_pipe(ialu_reg_reg);
9582%}
9583
9584// Xor Register with Immediate -1
9585instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9586  match(Set dst (XorI dst imm));
9587
9588  format %{ "not    $dst" %}
9589  ins_encode %{
9590     __ notl($dst$$Register);
9591  %}
9592  ins_pipe(ialu_reg);
9593%}
9594
9595// Xor Register with Immediate
9596instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9597%{
9598  match(Set dst (XorI dst src));
9599  effect(KILL cr);
9600
9601  format %{ "xorl    $dst, $src\t# int" %}
9602  opcode(0x81, 0x06); /* Opcode 81 /6 id */
9603  ins_encode(OpcSErm(dst, src), Con8or32(src));
9604  ins_pipe(ialu_reg);
9605%}
9606
9607// Xor Register with Memory
9608instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9609%{
9610  match(Set dst (XorI dst (LoadI src)));
9611  effect(KILL cr);
9612
9613  ins_cost(125);
9614  format %{ "xorl    $dst, $src\t# int" %}
9615  opcode(0x33);
9616  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9617  ins_pipe(ialu_reg_mem);
9618%}
9619
9620// Xor Memory with Register
9621instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9622%{
9623  match(Set dst (StoreB dst (XorI (LoadB dst) src)));
9624  effect(KILL cr);
9625
9626  ins_cost(150);
9627  format %{ "xorb    $dst, $src\t# byte" %}
9628  opcode(0x30);
9629  ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9630  ins_pipe(ialu_mem_reg);
9631%}
9632
9633instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9634%{
9635  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9636  effect(KILL cr);
9637
9638  ins_cost(150);
9639  format %{ "xorl    $dst, $src\t# int" %}
9640  opcode(0x31); /* Opcode 31 /r */
9641  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9642  ins_pipe(ialu_mem_reg);
9643%}
9644
9645// Xor Memory with Immediate
9646instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9647%{
9648  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9649  effect(KILL cr);
9650
9651  ins_cost(125);
9652  format %{ "xorl    $dst, $src\t# int" %}
9653  opcode(0x81, 0x6); /* Opcode 81 /6 id */
9654  ins_encode(REX_mem(dst), OpcSE(src),
9655             RM_opc_mem(secondary, dst), Con8or32(src));
9656  ins_pipe(ialu_mem_imm);
9657%}
9658
9659
9660// Long Logical Instructions
9661
9662// And Instructions
9663// And Register with Register
9664instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9665%{
9666  match(Set dst (AndL dst src));
9667  effect(KILL cr);
9668
9669  format %{ "andq    $dst, $src\t# long" %}
9670  opcode(0x23);
9671  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9672  ins_pipe(ialu_reg_reg);
9673%}
9674
9675// And Register with Immediate 255
9676instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9677%{
9678  match(Set dst (AndL dst src));
9679
9680  format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9681  opcode(0x0F, 0xB6);
9682  ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9683  ins_pipe(ialu_reg);
9684%}
9685
9686// And Register with Immediate 65535
9687instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9688%{
9689  match(Set dst (AndL dst src));
9690
9691  format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9692  opcode(0x0F, 0xB7);
9693  ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9694  ins_pipe(ialu_reg);
9695%}
9696
9697// And Register with Immediate
9698instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9699%{
9700  match(Set dst (AndL dst src));
9701  effect(KILL cr);
9702
9703  format %{ "andq    $dst, $src\t# long" %}
9704  opcode(0x81, 0x04); /* Opcode 81 /4 */
9705  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9706  ins_pipe(ialu_reg);
9707%}
9708
9709// And Register with Memory
9710instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9711%{
9712  match(Set dst (AndL dst (LoadL src)));
9713  effect(KILL cr);
9714
9715  ins_cost(125);
9716  format %{ "andq    $dst, $src\t# long" %}
9717  opcode(0x23);
9718  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9719  ins_pipe(ialu_reg_mem);
9720%}
9721
9722// And Memory with Register
9723instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9724%{
9725  match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9726  effect(KILL cr);
9727
9728  ins_cost(150);
9729  format %{ "andq    $dst, $src\t# long" %}
9730  opcode(0x21); /* Opcode 21 /r */
9731  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9732  ins_pipe(ialu_mem_reg);
9733%}
9734
9735// And Memory with Immediate
9736instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9737%{
9738  match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9739  effect(KILL cr);
9740
9741  ins_cost(125);
9742  format %{ "andq    $dst, $src\t# long" %}
9743  opcode(0x81, 0x4); /* Opcode 81 /4 id */
9744  ins_encode(REX_mem_wide(dst), OpcSE(src),
9745             RM_opc_mem(secondary, dst), Con8or32(src));
9746  ins_pipe(ialu_mem_imm);
9747%}
9748
9749// BMI1 instructions
9750instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9751  match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9752  predicate(UseBMI1Instructions);
9753  effect(KILL cr);
9754
9755  ins_cost(125);
9756  format %{ "andnq  $dst, $src1, $src2" %}
9757
9758  ins_encode %{
9759    __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9760  %}
9761  ins_pipe(ialu_reg_mem);
9762%}
9763
9764instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9765  match(Set dst (AndL (XorL src1 minus_1) src2));
9766  predicate(UseBMI1Instructions);
9767  effect(KILL cr);
9768
9769  format %{ "andnq  $dst, $src1, $src2" %}
9770
9771  ins_encode %{
9772  __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9773  %}
9774  ins_pipe(ialu_reg_mem);
9775%}
9776
9777instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9778  match(Set dst (AndL (SubL imm_zero src) src));
9779  predicate(UseBMI1Instructions);
9780  effect(KILL cr);
9781
9782  format %{ "blsiq  $dst, $src" %}
9783
9784  ins_encode %{
9785    __ blsiq($dst$$Register, $src$$Register);
9786  %}
9787  ins_pipe(ialu_reg);
9788%}
9789
9790instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9791  match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9792  predicate(UseBMI1Instructions);
9793  effect(KILL cr);
9794
9795  ins_cost(125);
9796  format %{ "blsiq  $dst, $src" %}
9797
9798  ins_encode %{
9799    __ blsiq($dst$$Register, $src$$Address);
9800  %}
9801  ins_pipe(ialu_reg_mem);
9802%}
9803
9804instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9805%{
9806  match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9807  predicate(UseBMI1Instructions);
9808  effect(KILL cr);
9809
9810  ins_cost(125);
9811  format %{ "blsmskq $dst, $src" %}
9812
9813  ins_encode %{
9814    __ blsmskq($dst$$Register, $src$$Address);
9815  %}
9816  ins_pipe(ialu_reg_mem);
9817%}
9818
9819instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9820%{
9821  match(Set dst (XorL (AddL src minus_1) src));
9822  predicate(UseBMI1Instructions);
9823  effect(KILL cr);
9824
9825  format %{ "blsmskq $dst, $src" %}
9826
9827  ins_encode %{
9828    __ blsmskq($dst$$Register, $src$$Register);
9829  %}
9830
9831  ins_pipe(ialu_reg);
9832%}
9833
9834instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9835%{
9836  match(Set dst (AndL (AddL src minus_1) src) );
9837  predicate(UseBMI1Instructions);
9838  effect(KILL cr);
9839
9840  format %{ "blsrq  $dst, $src" %}
9841
9842  ins_encode %{
9843    __ blsrq($dst$$Register, $src$$Register);
9844  %}
9845
9846  ins_pipe(ialu_reg);
9847%}
9848
9849instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9850%{
9851  match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9852  predicate(UseBMI1Instructions);
9853  effect(KILL cr);
9854
9855  ins_cost(125);
9856  format %{ "blsrq  $dst, $src" %}
9857
9858  ins_encode %{
9859    __ blsrq($dst$$Register, $src$$Address);
9860  %}
9861
9862  ins_pipe(ialu_reg);
9863%}
9864
9865// Or Instructions
9866// Or Register with Register
9867instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9868%{
9869  match(Set dst (OrL dst src));
9870  effect(KILL cr);
9871
9872  format %{ "orq     $dst, $src\t# long" %}
9873  opcode(0x0B);
9874  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9875  ins_pipe(ialu_reg_reg);
9876%}
9877
9878// Use any_RegP to match R15 (TLS register) without spilling.
9879instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9880  match(Set dst (OrL dst (CastP2X src)));
9881  effect(KILL cr);
9882
9883  format %{ "orq     $dst, $src\t# long" %}
9884  opcode(0x0B);
9885  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9886  ins_pipe(ialu_reg_reg);
9887%}
9888
9889
9890// Or Register with Immediate
9891instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9892%{
9893  match(Set dst (OrL dst src));
9894  effect(KILL cr);
9895
9896  format %{ "orq     $dst, $src\t# long" %}
9897  opcode(0x81, 0x01); /* Opcode 81 /1 id */
9898  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9899  ins_pipe(ialu_reg);
9900%}
9901
9902// Or Register with Memory
9903instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9904%{
9905  match(Set dst (OrL dst (LoadL src)));
9906  effect(KILL cr);
9907
9908  ins_cost(125);
9909  format %{ "orq     $dst, $src\t# long" %}
9910  opcode(0x0B);
9911  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9912  ins_pipe(ialu_reg_mem);
9913%}
9914
9915// Or Memory with Register
9916instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9917%{
9918  match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9919  effect(KILL cr);
9920
9921  ins_cost(150);
9922  format %{ "orq     $dst, $src\t# long" %}
9923  opcode(0x09); /* Opcode 09 /r */
9924  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9925  ins_pipe(ialu_mem_reg);
9926%}
9927
9928// Or Memory with Immediate
9929instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9930%{
9931  match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9932  effect(KILL cr);
9933
9934  ins_cost(125);
9935  format %{ "orq     $dst, $src\t# long" %}
9936  opcode(0x81, 0x1); /* Opcode 81 /1 id */
9937  ins_encode(REX_mem_wide(dst), OpcSE(src),
9938             RM_opc_mem(secondary, dst), Con8or32(src));
9939  ins_pipe(ialu_mem_imm);
9940%}
9941
9942// Xor Instructions
9943// Xor Register with Register
9944instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9945%{
9946  match(Set dst (XorL dst src));
9947  effect(KILL cr);
9948
9949  format %{ "xorq    $dst, $src\t# long" %}
9950  opcode(0x33);
9951  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9952  ins_pipe(ialu_reg_reg);
9953%}
9954
9955// Xor Register with Immediate -1
9956instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9957  match(Set dst (XorL dst imm));
9958
9959  format %{ "notq   $dst" %}
9960  ins_encode %{
9961     __ notq($dst$$Register);
9962  %}
9963  ins_pipe(ialu_reg);
9964%}
9965
9966// Xor Register with Immediate
9967instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9968%{
9969  match(Set dst (XorL dst src));
9970  effect(KILL cr);
9971
9972  format %{ "xorq    $dst, $src\t# long" %}
9973  opcode(0x81, 0x06); /* Opcode 81 /6 id */
9974  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9975  ins_pipe(ialu_reg);
9976%}
9977
9978// Xor Register with Memory
9979instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9980%{
9981  match(Set dst (XorL dst (LoadL src)));
9982  effect(KILL cr);
9983
9984  ins_cost(125);
9985  format %{ "xorq    $dst, $src\t# long" %}
9986  opcode(0x33);
9987  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9988  ins_pipe(ialu_reg_mem);
9989%}
9990
9991// Xor Memory with Register
9992instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9993%{
9994  match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9995  effect(KILL cr);
9996
9997  ins_cost(150);
9998  format %{ "xorq    $dst, $src\t# long" %}
9999  opcode(0x31); /* Opcode 31 /r */
10000  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10001  ins_pipe(ialu_mem_reg);
10002%}
10003
10004// Xor Memory with Immediate
10005instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
10006%{
10007  match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10008  effect(KILL cr);
10009
10010  ins_cost(125);
10011  format %{ "xorq    $dst, $src\t# long" %}
10012  opcode(0x81, 0x6); /* Opcode 81 /6 id */
10013  ins_encode(REX_mem_wide(dst), OpcSE(src),
10014             RM_opc_mem(secondary, dst), Con8or32(src));
10015  ins_pipe(ialu_mem_imm);
10016%}
10017
10018// Convert Int to Boolean
10019instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
10020%{
10021  match(Set dst (Conv2B src));
10022  effect(KILL cr);
10023
10024  format %{ "testl   $src, $src\t# ci2b\n\t"
10025            "setnz   $dst\n\t"
10026            "movzbl  $dst, $dst" %}
10027  ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
10028             setNZ_reg(dst),
10029             REX_reg_breg(dst, dst), // movzbl
10030             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10031  ins_pipe(pipe_slow); // XXX
10032%}
10033
10034// Convert Pointer to Boolean
10035instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
10036%{
10037  match(Set dst (Conv2B src));
10038  effect(KILL cr);
10039
10040  format %{ "testq   $src, $src\t# cp2b\n\t"
10041            "setnz   $dst\n\t"
10042            "movzbl  $dst, $dst" %}
10043  ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
10044             setNZ_reg(dst),
10045             REX_reg_breg(dst, dst), // movzbl
10046             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10047  ins_pipe(pipe_slow); // XXX
10048%}
10049
10050instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
10051%{
10052  match(Set dst (CmpLTMask p q));
10053  effect(KILL cr);
10054
10055  ins_cost(400);
10056  format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
10057            "setlt   $dst\n\t"
10058            "movzbl  $dst, $dst\n\t"
10059            "negl    $dst" %}
10060  ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
10061             setLT_reg(dst),
10062             REX_reg_breg(dst, dst), // movzbl
10063             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
10064             neg_reg(dst));
10065  ins_pipe(pipe_slow);
10066%}
10067
10068instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
10069%{
10070  match(Set dst (CmpLTMask dst zero));
10071  effect(KILL cr);
10072
10073  ins_cost(100);
10074  format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
10075  ins_encode %{
10076  __ sarl($dst$$Register, 31);
10077  %}
10078  ins_pipe(ialu_reg);
10079%}
10080
10081/* Better to save a register than avoid a branch */
10082instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10083%{
10084  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
10085  effect(KILL cr);
10086  ins_cost(300);
10087  format %{ "subl   $p,$q\t# cadd_cmpLTMask\n\t"
10088            "jge    done\n\t"
10089            "addl   $p,$y\n"
10090            "done:  " %}
10091  ins_encode %{
10092    Register Rp = $p$$Register;
10093    Register Rq = $q$$Register;
10094    Register Ry = $y$$Register;
10095    Label done;
10096    __ subl(Rp, Rq);
10097    __ jccb(Assembler::greaterEqual, done);
10098    __ addl(Rp, Ry);
10099    __ bind(done);
10100  %}
10101  ins_pipe(pipe_cmplt);
10102%}
10103
10104/* Better to save a register than avoid a branch */
10105instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10106%{
10107  match(Set y (AndI (CmpLTMask p q) y));
10108  effect(KILL cr);
10109
10110  ins_cost(300);
10111
10112  format %{ "cmpl     $p, $q\t# and_cmpLTMask\n\t"
10113            "jlt      done\n\t"
10114            "xorl     $y, $y\n"
10115            "done:  " %}
10116  ins_encode %{
10117    Register Rp = $p$$Register;
10118    Register Rq = $q$$Register;
10119    Register Ry = $y$$Register;
10120    Label done;
10121    __ cmpl(Rp, Rq);
10122    __ jccb(Assembler::less, done);
10123    __ xorl(Ry, Ry);
10124    __ bind(done);
10125  %}
10126  ins_pipe(pipe_cmplt);
10127%}
10128
10129
10130//---------- FP Instructions------------------------------------------------
10131
10132instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
10133%{
10134  match(Set cr (CmpF src1 src2));
10135
10136  ins_cost(145);
10137  format %{ "ucomiss $src1, $src2\n\t"
10138            "jnp,s   exit\n\t"
10139            "pushfq\t# saw NaN, set CF\n\t"
10140            "andq    [rsp], #0xffffff2b\n\t"
10141            "popfq\n"
10142    "exit:" %}
10143  ins_encode %{
10144    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10145    emit_cmpfp_fixup(_masm);
10146  %}
10147  ins_pipe(pipe_slow);
10148%}
10149
10150instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
10151  match(Set cr (CmpF src1 src2));
10152
10153  ins_cost(100);
10154  format %{ "ucomiss $src1, $src2" %}
10155  ins_encode %{
10156    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10157  %}
10158  ins_pipe(pipe_slow);
10159%}
10160
10161instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
10162%{
10163  match(Set cr (CmpF src1 (LoadF src2)));
10164
10165  ins_cost(145);
10166  format %{ "ucomiss $src1, $src2\n\t"
10167            "jnp,s   exit\n\t"
10168            "pushfq\t# saw NaN, set CF\n\t"
10169            "andq    [rsp], #0xffffff2b\n\t"
10170            "popfq\n"
10171    "exit:" %}
10172  ins_encode %{
10173    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10174    emit_cmpfp_fixup(_masm);
10175  %}
10176  ins_pipe(pipe_slow);
10177%}
10178
10179instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
10180  match(Set cr (CmpF src1 (LoadF src2)));
10181
10182  ins_cost(100);
10183  format %{ "ucomiss $src1, $src2" %}
10184  ins_encode %{
10185    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10186  %}
10187  ins_pipe(pipe_slow);
10188%}
10189
10190instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10191  match(Set cr (CmpF src con));
10192
10193  ins_cost(145);
10194  format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10195            "jnp,s   exit\n\t"
10196            "pushfq\t# saw NaN, set CF\n\t"
10197            "andq    [rsp], #0xffffff2b\n\t"
10198            "popfq\n"
10199    "exit:" %}
10200  ins_encode %{
10201    __ ucomiss($src$$XMMRegister, $constantaddress($con));
10202    emit_cmpfp_fixup(_masm);
10203  %}
10204  ins_pipe(pipe_slow);
10205%}
10206
10207instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10208  match(Set cr (CmpF src con));
10209  ins_cost(100);
10210  format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10211  ins_encode %{
10212    __ ucomiss($src$$XMMRegister, $constantaddress($con));
10213  %}
10214  ins_pipe(pipe_slow);
10215%}
10216
10217instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10218%{
10219  match(Set cr (CmpD src1 src2));
10220
10221  ins_cost(145);
10222  format %{ "ucomisd $src1, $src2\n\t"
10223            "jnp,s   exit\n\t"
10224            "pushfq\t# saw NaN, set CF\n\t"
10225            "andq    [rsp], #0xffffff2b\n\t"
10226            "popfq\n"
10227    "exit:" %}
10228  ins_encode %{
10229    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10230    emit_cmpfp_fixup(_masm);
10231  %}
10232  ins_pipe(pipe_slow);
10233%}
10234
10235instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10236  match(Set cr (CmpD src1 src2));
10237
10238  ins_cost(100);
10239  format %{ "ucomisd $src1, $src2 test" %}
10240  ins_encode %{
10241    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10242  %}
10243  ins_pipe(pipe_slow);
10244%}
10245
10246instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10247%{
10248  match(Set cr (CmpD src1 (LoadD src2)));
10249
10250  ins_cost(145);
10251  format %{ "ucomisd $src1, $src2\n\t"
10252            "jnp,s   exit\n\t"
10253            "pushfq\t# saw NaN, set CF\n\t"
10254            "andq    [rsp], #0xffffff2b\n\t"
10255            "popfq\n"
10256    "exit:" %}
10257  ins_encode %{
10258    __ ucomisd($src1$$XMMRegister, $src2$$Address);
10259    emit_cmpfp_fixup(_masm);
10260  %}
10261  ins_pipe(pipe_slow);
10262%}
10263
10264instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10265  match(Set cr (CmpD src1 (LoadD src2)));
10266
10267  ins_cost(100);
10268  format %{ "ucomisd $src1, $src2" %}
10269  ins_encode %{
10270    __ ucomisd($src1$$XMMRegister, $src2$$Address);
10271  %}
10272  ins_pipe(pipe_slow);
10273%}
10274
10275instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10276  match(Set cr (CmpD src con));
10277
10278  ins_cost(145);
10279  format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10280            "jnp,s   exit\n\t"
10281            "pushfq\t# saw NaN, set CF\n\t"
10282            "andq    [rsp], #0xffffff2b\n\t"
10283            "popfq\n"
10284    "exit:" %}
10285  ins_encode %{
10286    __ ucomisd($src$$XMMRegister, $constantaddress($con));
10287    emit_cmpfp_fixup(_masm);
10288  %}
10289  ins_pipe(pipe_slow);
10290%}
10291
10292instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10293  match(Set cr (CmpD src con));
10294  ins_cost(100);
10295  format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10296  ins_encode %{
10297    __ ucomisd($src$$XMMRegister, $constantaddress($con));
10298  %}
10299  ins_pipe(pipe_slow);
10300%}
10301
10302// Compare into -1,0,1
10303instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10304%{
10305  match(Set dst (CmpF3 src1 src2));
10306  effect(KILL cr);
10307
10308  ins_cost(275);
10309  format %{ "ucomiss $src1, $src2\n\t"
10310            "movl    $dst, #-1\n\t"
10311            "jp,s    done\n\t"
10312            "jb,s    done\n\t"
10313            "setne   $dst\n\t"
10314            "movzbl  $dst, $dst\n"
10315    "done:" %}
10316  ins_encode %{
10317    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10318    emit_cmpfp3(_masm, $dst$$Register);
10319  %}
10320  ins_pipe(pipe_slow);
10321%}
10322
10323// Compare into -1,0,1
10324instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10325%{
10326  match(Set dst (CmpF3 src1 (LoadF src2)));
10327  effect(KILL cr);
10328
10329  ins_cost(275);
10330  format %{ "ucomiss $src1, $src2\n\t"
10331            "movl    $dst, #-1\n\t"
10332            "jp,s    done\n\t"
10333            "jb,s    done\n\t"
10334            "setne   $dst\n\t"
10335            "movzbl  $dst, $dst\n"
10336    "done:" %}
10337  ins_encode %{
10338    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10339    emit_cmpfp3(_masm, $dst$$Register);
10340  %}
10341  ins_pipe(pipe_slow);
10342%}
10343
10344// Compare into -1,0,1
10345instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10346  match(Set dst (CmpF3 src con));
10347  effect(KILL cr);
10348
10349  ins_cost(275);
10350  format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10351            "movl    $dst, #-1\n\t"
10352            "jp,s    done\n\t"
10353            "jb,s    done\n\t"
10354            "setne   $dst\n\t"
10355            "movzbl  $dst, $dst\n"
10356    "done:" %}
10357  ins_encode %{
10358    __ ucomiss($src$$XMMRegister, $constantaddress($con));
10359    emit_cmpfp3(_masm, $dst$$Register);
10360  %}
10361  ins_pipe(pipe_slow);
10362%}
10363
10364// Compare into -1,0,1
10365instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10366%{
10367  match(Set dst (CmpD3 src1 src2));
10368  effect(KILL cr);
10369
10370  ins_cost(275);
10371  format %{ "ucomisd $src1, $src2\n\t"
10372            "movl    $dst, #-1\n\t"
10373            "jp,s    done\n\t"
10374            "jb,s    done\n\t"
10375            "setne   $dst\n\t"
10376            "movzbl  $dst, $dst\n"
10377    "done:" %}
10378  ins_encode %{
10379    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10380    emit_cmpfp3(_masm, $dst$$Register);
10381  %}
10382  ins_pipe(pipe_slow);
10383%}
10384
10385// Compare into -1,0,1
10386instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10387%{
10388  match(Set dst (CmpD3 src1 (LoadD src2)));
10389  effect(KILL cr);
10390
10391  ins_cost(275);
10392  format %{ "ucomisd $src1, $src2\n\t"
10393            "movl    $dst, #-1\n\t"
10394            "jp,s    done\n\t"
10395            "jb,s    done\n\t"
10396            "setne   $dst\n\t"
10397            "movzbl  $dst, $dst\n"
10398    "done:" %}
10399  ins_encode %{
10400    __ ucomisd($src1$$XMMRegister, $src2$$Address);
10401    emit_cmpfp3(_masm, $dst$$Register);
10402  %}
10403  ins_pipe(pipe_slow);
10404%}
10405
10406// Compare into -1,0,1
10407instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10408  match(Set dst (CmpD3 src con));
10409  effect(KILL cr);
10410
10411  ins_cost(275);
10412  format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10413            "movl    $dst, #-1\n\t"
10414            "jp,s    done\n\t"
10415            "jb,s    done\n\t"
10416            "setne   $dst\n\t"
10417            "movzbl  $dst, $dst\n"
10418    "done:" %}
10419  ins_encode %{
10420    __ ucomisd($src$$XMMRegister, $constantaddress($con));
10421    emit_cmpfp3(_masm, $dst$$Register);
10422  %}
10423  ins_pipe(pipe_slow);
10424%}
10425
10426//----------Arithmetic Conversion Instructions---------------------------------
10427
10428instruct roundFloat_nop(regF dst)
10429%{
10430  match(Set dst (RoundFloat dst));
10431
10432  ins_cost(0);
10433  ins_encode();
10434  ins_pipe(empty);
10435%}
10436
10437instruct roundDouble_nop(regD dst)
10438%{
10439  match(Set dst (RoundDouble dst));
10440
10441  ins_cost(0);
10442  ins_encode();
10443  ins_pipe(empty);
10444%}
10445
10446instruct convF2D_reg_reg(regD dst, regF src)
10447%{
10448  match(Set dst (ConvF2D src));
10449
10450  format %{ "cvtss2sd $dst, $src" %}
10451  ins_encode %{
10452    __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10453  %}
10454  ins_pipe(pipe_slow); // XXX
10455%}
10456
10457instruct convF2D_reg_mem(regD dst, memory src)
10458%{
10459  match(Set dst (ConvF2D (LoadF src)));
10460
10461  format %{ "cvtss2sd $dst, $src" %}
10462  ins_encode %{
10463    __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10464  %}
10465  ins_pipe(pipe_slow); // XXX
10466%}
10467
10468instruct convD2F_reg_reg(regF dst, regD src)
10469%{
10470  match(Set dst (ConvD2F src));
10471
10472  format %{ "cvtsd2ss $dst, $src" %}
10473  ins_encode %{
10474    __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10475  %}
10476  ins_pipe(pipe_slow); // XXX
10477%}
10478
10479instruct convD2F_reg_mem(regF dst, memory src)
10480%{
10481  match(Set dst (ConvD2F (LoadD src)));
10482
10483  format %{ "cvtsd2ss $dst, $src" %}
10484  ins_encode %{
10485    __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10486  %}
10487  ins_pipe(pipe_slow); // XXX
10488%}
10489
10490// XXX do mem variants
10491instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10492%{
10493  match(Set dst (ConvF2I src));
10494  effect(KILL cr);
10495
10496  format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
10497            "cmpl    $dst, #0x80000000\n\t"
10498            "jne,s   done\n\t"
10499            "subq    rsp, #8\n\t"
10500            "movss   [rsp], $src\n\t"
10501            "call    f2i_fixup\n\t"
10502            "popq    $dst\n"
10503    "done:   "%}
10504  ins_encode %{
10505    Label done;
10506    __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10507    __ cmpl($dst$$Register, 0x80000000);
10508    __ jccb(Assembler::notEqual, done);
10509    __ subptr(rsp, 8);
10510    __ movflt(Address(rsp, 0), $src$$XMMRegister);
10511    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10512    __ pop($dst$$Register);
10513    __ bind(done);
10514  %}
10515  ins_pipe(pipe_slow);
10516%}
10517
10518instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10519%{
10520  match(Set dst (ConvF2L src));
10521  effect(KILL cr);
10522
10523  format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
10524            "cmpq    $dst, [0x8000000000000000]\n\t"
10525            "jne,s   done\n\t"
10526            "subq    rsp, #8\n\t"
10527            "movss   [rsp], $src\n\t"
10528            "call    f2l_fixup\n\t"
10529            "popq    $dst\n"
10530    "done:   "%}
10531  ins_encode %{
10532    Label done;
10533    __ cvttss2siq($dst$$Register, $src$$XMMRegister);
10534    __ cmp64($dst$$Register,
10535             ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10536    __ jccb(Assembler::notEqual, done);
10537    __ subptr(rsp, 8);
10538    __ movflt(Address(rsp, 0), $src$$XMMRegister);
10539    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10540    __ pop($dst$$Register);
10541    __ bind(done);
10542  %}
10543  ins_pipe(pipe_slow);
10544%}
10545
10546instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10547%{
10548  match(Set dst (ConvD2I src));
10549  effect(KILL cr);
10550
10551  format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
10552            "cmpl    $dst, #0x80000000\n\t"
10553            "jne,s   done\n\t"
10554            "subq    rsp, #8\n\t"
10555            "movsd   [rsp], $src\n\t"
10556            "call    d2i_fixup\n\t"
10557            "popq    $dst\n"
10558    "done:   "%}
10559  ins_encode %{
10560    Label done;
10561    __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10562    __ cmpl($dst$$Register, 0x80000000);
10563    __ jccb(Assembler::notEqual, done);
10564    __ subptr(rsp, 8);
10565    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10566    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10567    __ pop($dst$$Register);
10568    __ bind(done);
10569  %}
10570  ins_pipe(pipe_slow);
10571%}
10572
10573instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10574%{
10575  match(Set dst (ConvD2L src));
10576  effect(KILL cr);
10577
10578  format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
10579            "cmpq    $dst, [0x8000000000000000]\n\t"
10580            "jne,s   done\n\t"
10581            "subq    rsp, #8\n\t"
10582            "movsd   [rsp], $src\n\t"
10583            "call    d2l_fixup\n\t"
10584            "popq    $dst\n"
10585    "done:   "%}
10586  ins_encode %{
10587    Label done;
10588    __ cvttsd2siq($dst$$Register, $src$$XMMRegister);
10589    __ cmp64($dst$$Register,
10590             ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10591    __ jccb(Assembler::notEqual, done);
10592    __ subptr(rsp, 8);
10593    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10594    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10595    __ pop($dst$$Register);
10596    __ bind(done);
10597  %}
10598  ins_pipe(pipe_slow);
10599%}
10600
10601instruct convI2F_reg_reg(regF dst, rRegI src)
10602%{
10603  predicate(!UseXmmI2F);
10604  match(Set dst (ConvI2F src));
10605
10606  format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10607  ins_encode %{
10608    __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10609  %}
10610  ins_pipe(pipe_slow); // XXX
10611%}
10612
10613instruct convI2F_reg_mem(regF dst, memory src)
10614%{
10615  match(Set dst (ConvI2F (LoadI src)));
10616
10617  format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10618  ins_encode %{
10619    __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10620  %}
10621  ins_pipe(pipe_slow); // XXX
10622%}
10623
10624instruct convI2D_reg_reg(regD dst, rRegI src)
10625%{
10626  predicate(!UseXmmI2D);
10627  match(Set dst (ConvI2D src));
10628
10629  format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10630  ins_encode %{
10631    __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10632  %}
10633  ins_pipe(pipe_slow); // XXX
10634%}
10635
10636instruct convI2D_reg_mem(regD dst, memory src)
10637%{
10638  match(Set dst (ConvI2D (LoadI src)));
10639
10640  format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10641  ins_encode %{
10642    __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10643  %}
10644  ins_pipe(pipe_slow); // XXX
10645%}
10646
10647instruct convXI2F_reg(regF dst, rRegI src)
10648%{
10649  predicate(UseXmmI2F);
10650  match(Set dst (ConvI2F src));
10651
10652  format %{ "movdl $dst, $src\n\t"
10653            "cvtdq2psl $dst, $dst\t# i2f" %}
10654  ins_encode %{
10655    __ movdl($dst$$XMMRegister, $src$$Register);
10656    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10657  %}
10658  ins_pipe(pipe_slow); // XXX
10659%}
10660
10661instruct convXI2D_reg(regD dst, rRegI src)
10662%{
10663  predicate(UseXmmI2D);
10664  match(Set dst (ConvI2D src));
10665
10666  format %{ "movdl $dst, $src\n\t"
10667            "cvtdq2pdl $dst, $dst\t# i2d" %}
10668  ins_encode %{
10669    __ movdl($dst$$XMMRegister, $src$$Register);
10670    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10671  %}
10672  ins_pipe(pipe_slow); // XXX
10673%}
10674
10675instruct convL2F_reg_reg(regF dst, rRegL src)
10676%{
10677  match(Set dst (ConvL2F src));
10678
10679  format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10680  ins_encode %{
10681    __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10682  %}
10683  ins_pipe(pipe_slow); // XXX
10684%}
10685
10686instruct convL2F_reg_mem(regF dst, memory src)
10687%{
10688  match(Set dst (ConvL2F (LoadL src)));
10689
10690  format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10691  ins_encode %{
10692    __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10693  %}
10694  ins_pipe(pipe_slow); // XXX
10695%}
10696
10697instruct convL2D_reg_reg(regD dst, rRegL src)
10698%{
10699  match(Set dst (ConvL2D src));
10700
10701  format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10702  ins_encode %{
10703    __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10704  %}
10705  ins_pipe(pipe_slow); // XXX
10706%}
10707
10708instruct convL2D_reg_mem(regD dst, memory src)
10709%{
10710  match(Set dst (ConvL2D (LoadL src)));
10711
10712  format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10713  ins_encode %{
10714    __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10715  %}
10716  ins_pipe(pipe_slow); // XXX
10717%}
10718
10719instruct convI2L_reg_reg(rRegL dst, rRegI src)
10720%{
10721  match(Set dst (ConvI2L src));
10722
10723  ins_cost(125);
10724  format %{ "movslq  $dst, $src\t# i2l" %}
10725  ins_encode %{
10726    __ movslq($dst$$Register, $src$$Register);
10727  %}
10728  ins_pipe(ialu_reg_reg);
10729%}
10730
10731// instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10732// %{
10733//   match(Set dst (ConvI2L src));
10734// //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10735// //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10736//   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10737//             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10738//             ((const TypeNode*) n)->type()->is_long()->_lo ==
10739//             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10740
10741//   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10742//   ins_encode(enc_copy(dst, src));
10743// //   opcode(0x63); // needs REX.W
10744// //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10745//   ins_pipe(ialu_reg_reg);
10746// %}
10747
10748// Zero-extend convert int to long
10749instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10750%{
10751  match(Set dst (AndL (ConvI2L src) mask));
10752
10753  format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10754  ins_encode %{
10755    if ($dst$$reg != $src$$reg) {
10756      __ movl($dst$$Register, $src$$Register);
10757    }
10758  %}
10759  ins_pipe(ialu_reg_reg);
10760%}
10761
10762// Zero-extend convert int to long
10763instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10764%{
10765  match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10766
10767  format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10768  ins_encode %{
10769    __ movl($dst$$Register, $src$$Address);
10770  %}
10771  ins_pipe(ialu_reg_mem);
10772%}
10773
10774instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10775%{
10776  match(Set dst (AndL src mask));
10777
10778  format %{ "movl    $dst, $src\t# zero-extend long" %}
10779  ins_encode %{
10780    __ movl($dst$$Register, $src$$Register);
10781  %}
10782  ins_pipe(ialu_reg_reg);
10783%}
10784
10785instruct convL2I_reg_reg(rRegI dst, rRegL src)
10786%{
10787  match(Set dst (ConvL2I src));
10788
10789  format %{ "movl    $dst, $src\t# l2i" %}
10790  ins_encode %{
10791    __ movl($dst$$Register, $src$$Register);
10792  %}
10793  ins_pipe(ialu_reg_reg);
10794%}
10795
10796
10797instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10798  match(Set dst (MoveF2I src));
10799  effect(DEF dst, USE src);
10800
10801  ins_cost(125);
10802  format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10803  ins_encode %{
10804    __ movl($dst$$Register, Address(rsp, $src$$disp));
10805  %}
10806  ins_pipe(ialu_reg_mem);
10807%}
10808
10809instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10810  match(Set dst (MoveI2F src));
10811  effect(DEF dst, USE src);
10812
10813  ins_cost(125);
10814  format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10815  ins_encode %{
10816    __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10817  %}
10818  ins_pipe(pipe_slow);
10819%}
10820
10821instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10822  match(Set dst (MoveD2L src));
10823  effect(DEF dst, USE src);
10824
10825  ins_cost(125);
10826  format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10827  ins_encode %{
10828    __ movq($dst$$Register, Address(rsp, $src$$disp));
10829  %}
10830  ins_pipe(ialu_reg_mem);
10831%}
10832
10833instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10834  predicate(!UseXmmLoadAndClearUpper);
10835  match(Set dst (MoveL2D src));
10836  effect(DEF dst, USE src);
10837
10838  ins_cost(125);
10839  format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10840  ins_encode %{
10841    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10842  %}
10843  ins_pipe(pipe_slow);
10844%}
10845
10846instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10847  predicate(UseXmmLoadAndClearUpper);
10848  match(Set dst (MoveL2D src));
10849  effect(DEF dst, USE src);
10850
10851  ins_cost(125);
10852  format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10853  ins_encode %{
10854    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10855  %}
10856  ins_pipe(pipe_slow);
10857%}
10858
10859
10860instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10861  match(Set dst (MoveF2I src));
10862  effect(DEF dst, USE src);
10863
10864  ins_cost(95); // XXX
10865  format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10866  ins_encode %{
10867    __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10868  %}
10869  ins_pipe(pipe_slow);
10870%}
10871
10872instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10873  match(Set dst (MoveI2F src));
10874  effect(DEF dst, USE src);
10875
10876  ins_cost(100);
10877  format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10878  ins_encode %{
10879    __ movl(Address(rsp, $dst$$disp), $src$$Register);
10880  %}
10881  ins_pipe( ialu_mem_reg );
10882%}
10883
10884instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10885  match(Set dst (MoveD2L src));
10886  effect(DEF dst, USE src);
10887
10888  ins_cost(95); // XXX
10889  format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10890  ins_encode %{
10891    __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10892  %}
10893  ins_pipe(pipe_slow);
10894%}
10895
10896instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10897  match(Set dst (MoveL2D src));
10898  effect(DEF dst, USE src);
10899
10900  ins_cost(100);
10901  format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10902  ins_encode %{
10903    __ movq(Address(rsp, $dst$$disp), $src$$Register);
10904  %}
10905  ins_pipe(ialu_mem_reg);
10906%}
10907
10908instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10909  match(Set dst (MoveF2I src));
10910  effect(DEF dst, USE src);
10911  ins_cost(85);
10912  format %{ "movd    $dst,$src\t# MoveF2I" %}
10913  ins_encode %{
10914    __ movdl($dst$$Register, $src$$XMMRegister);
10915  %}
10916  ins_pipe( pipe_slow );
10917%}
10918
10919instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10920  match(Set dst (MoveD2L src));
10921  effect(DEF dst, USE src);
10922  ins_cost(85);
10923  format %{ "movd    $dst,$src\t# MoveD2L" %}
10924  ins_encode %{
10925    __ movdq($dst$$Register, $src$$XMMRegister);
10926  %}
10927  ins_pipe( pipe_slow );
10928%}
10929
10930instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10931  match(Set dst (MoveI2F src));
10932  effect(DEF dst, USE src);
10933  ins_cost(100);
10934  format %{ "movd    $dst,$src\t# MoveI2F" %}
10935  ins_encode %{
10936    __ movdl($dst$$XMMRegister, $src$$Register);
10937  %}
10938  ins_pipe( pipe_slow );
10939%}
10940
10941instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10942  match(Set dst (MoveL2D src));
10943  effect(DEF dst, USE src);
10944  ins_cost(100);
10945  format %{ "movd    $dst,$src\t# MoveL2D" %}
10946  ins_encode %{
10947     __ movdq($dst$$XMMRegister, $src$$Register);
10948  %}
10949  ins_pipe( pipe_slow );
10950%}
10951
10952
10953// =======================================================================
10954// fast clearing of an array
10955instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10956                  Universe dummy, rFlagsReg cr)
10957%{
10958  predicate(!((ClearArrayNode*)n)->is_large());
10959  match(Set dummy (ClearArray cnt base));
10960  effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10961
10962  format %{ $$template
10963    $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10964    $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10965    $$emit$$"jg      LARGE\n\t"
10966    $$emit$$"dec     rcx\n\t"
10967    $$emit$$"js      DONE\t# Zero length\n\t"
10968    $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10969    $$emit$$"dec     rcx\n\t"
10970    $$emit$$"jge     LOOP\n\t"
10971    $$emit$$"jmp     DONE\n\t"
10972    $$emit$$"# LARGE:\n\t"
10973    if (UseFastStosb) {
10974       $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10975       $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10976    } else if (UseXMMForObjInit) {
10977       $$emit$$"mov     rdi,rax\n\t"
10978       $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10979       $$emit$$"jmpq    L_zero_64_bytes\n\t"
10980       $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10981       $$emit$$"vmovdqu ymm0,(rax)\n\t"
10982       $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10983       $$emit$$"add     0x40,rax\n\t"
10984       $$emit$$"# L_zero_64_bytes:\n\t"
10985       $$emit$$"sub     0x8,rcx\n\t"
10986       $$emit$$"jge     L_loop\n\t"
10987       $$emit$$"add     0x4,rcx\n\t"
10988       $$emit$$"jl      L_tail\n\t"
10989       $$emit$$"vmovdqu ymm0,(rax)\n\t"
10990       $$emit$$"add     0x20,rax\n\t"
10991       $$emit$$"sub     0x4,rcx\n\t"
10992       $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10993       $$emit$$"add     0x4,rcx\n\t"
10994       $$emit$$"jle     L_end\n\t"
10995       $$emit$$"dec     rcx\n\t"
10996       $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10997       $$emit$$"vmovq   xmm0,(rax)\n\t"
10998       $$emit$$"add     0x8,rax\n\t"
10999       $$emit$$"dec     rcx\n\t"
11000       $$emit$$"jge     L_sloop\n\t"
11001       $$emit$$"# L_end:\n\t"
11002    } else {
11003       $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
11004    }
11005    $$emit$$"# DONE"
11006  %}
11007  ins_encode %{
11008    __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11009                 $tmp$$XMMRegister, false);
11010  %}
11011  ins_pipe(pipe_slow);
11012%}
11013
11014instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
11015                        Universe dummy, rFlagsReg cr)
11016%{
11017  predicate(((ClearArrayNode*)n)->is_large());
11018  match(Set dummy (ClearArray cnt base));
11019  effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
11020
11021  format %{ $$template
11022    if (UseFastStosb) {
11023       $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11024       $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
11025       $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
11026    } else if (UseXMMForObjInit) {
11027       $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
11028       $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
11029       $$emit$$"jmpq    L_zero_64_bytes\n\t"
11030       $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
11031       $$emit$$"vmovdqu ymm0,(rax)\n\t"
11032       $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
11033       $$emit$$"add     0x40,rax\n\t"
11034       $$emit$$"# L_zero_64_bytes:\n\t"
11035       $$emit$$"sub     0x8,rcx\n\t"
11036       $$emit$$"jge     L_loop\n\t"
11037       $$emit$$"add     0x4,rcx\n\t"
11038       $$emit$$"jl      L_tail\n\t"
11039       $$emit$$"vmovdqu ymm0,(rax)\n\t"
11040       $$emit$$"add     0x20,rax\n\t"
11041       $$emit$$"sub     0x4,rcx\n\t"
11042       $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
11043       $$emit$$"add     0x4,rcx\n\t"
11044       $$emit$$"jle     L_end\n\t"
11045       $$emit$$"dec     rcx\n\t"
11046       $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
11047       $$emit$$"vmovq   xmm0,(rax)\n\t"
11048       $$emit$$"add     0x8,rax\n\t"
11049       $$emit$$"dec     rcx\n\t"
11050       $$emit$$"jge     L_sloop\n\t"
11051       $$emit$$"# L_end:\n\t"
11052    } else {
11053       $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11054       $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
11055    }
11056  %}
11057  ins_encode %{
11058    __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11059                 $tmp$$XMMRegister, true);
11060  %}
11061  ins_pipe(pipe_slow);
11062%}
11063
11064instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11065                         rax_RegI result, legVecS tmp1, rFlagsReg cr)
11066%{
11067  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
11068  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11069  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11070
11071  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11072  ins_encode %{
11073    __ string_compare($str1$$Register, $str2$$Register,
11074                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
11075                      $tmp1$$XMMRegister, StrIntrinsicNode::LL);
11076  %}
11077  ins_pipe( pipe_slow );
11078%}
11079
11080instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11081                         rax_RegI result, legVecS tmp1, rFlagsReg cr)
11082%{
11083  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
11084  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11085  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11086
11087  format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11088  ins_encode %{
11089    __ string_compare($str1$$Register, $str2$$Register,
11090                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
11091                      $tmp1$$XMMRegister, StrIntrinsicNode::UU);
11092  %}
11093  ins_pipe( pipe_slow );
11094%}
11095
11096instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11097                          rax_RegI result, legVecS tmp1, rFlagsReg cr)
11098%{
11099  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
11100  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11101  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11102
11103  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11104  ins_encode %{
11105    __ string_compare($str1$$Register, $str2$$Register,
11106                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
11107                      $tmp1$$XMMRegister, StrIntrinsicNode::LU);
11108  %}
11109  ins_pipe( pipe_slow );
11110%}
11111
11112instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
11113                          rax_RegI result, legVecS tmp1, rFlagsReg cr)
11114%{
11115  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
11116  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11117  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11118
11119  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11120  ins_encode %{
11121    __ string_compare($str2$$Register, $str1$$Register,
11122                      $cnt2$$Register, $cnt1$$Register, $result$$Register,
11123                      $tmp1$$XMMRegister, StrIntrinsicNode::UL);
11124  %}
11125  ins_pipe( pipe_slow );
11126%}
11127
11128// fast search of substring with known size.
11129instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11130                             rbx_RegI result, legVecS vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11131%{
11132  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11133  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11134  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11135
11136  format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11137  ins_encode %{
11138    int icnt2 = (int)$int_cnt2$$constant;
11139    if (icnt2 >= 16) {
11140      // IndexOf for constant substrings with size >= 16 elements
11141      // which don't need to be loaded through stack.
11142      __ string_indexofC8($str1$$Register, $str2$$Register,
11143                          $cnt1$$Register, $cnt2$$Register,
11144                          icnt2, $result$$Register,
11145                          $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11146    } else {
11147      // Small strings are loaded through stack if they cross page boundary.
11148      __ string_indexof($str1$$Register, $str2$$Register,
11149                        $cnt1$$Register, $cnt2$$Register,
11150                        icnt2, $result$$Register,
11151                        $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11152    }
11153  %}
11154  ins_pipe( pipe_slow );
11155%}
11156
11157// fast search of substring with known size.
11158instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11159                             rbx_RegI result, legVecS vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11160%{
11161  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11162  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11163  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11164
11165  format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11166  ins_encode %{
11167    int icnt2 = (int)$int_cnt2$$constant;
11168    if (icnt2 >= 8) {
11169      // IndexOf for constant substrings with size >= 8 elements
11170      // which don't need to be loaded through stack.
11171      __ string_indexofC8($str1$$Register, $str2$$Register,
11172                          $cnt1$$Register, $cnt2$$Register,
11173                          icnt2, $result$$Register,
11174                          $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11175    } else {
11176      // Small strings are loaded through stack if they cross page boundary.
11177      __ string_indexof($str1$$Register, $str2$$Register,
11178                        $cnt1$$Register, $cnt2$$Register,
11179                        icnt2, $result$$Register,
11180                        $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11181    }
11182  %}
11183  ins_pipe( pipe_slow );
11184%}
11185
11186// fast search of substring with known size.
11187instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11188                             rbx_RegI result, legVecS vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11189%{
11190  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11191  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11192  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11193
11194  format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11195  ins_encode %{
11196    int icnt2 = (int)$int_cnt2$$constant;
11197    if (icnt2 >= 8) {
11198      // IndexOf for constant substrings with size >= 8 elements
11199      // which don't need to be loaded through stack.
11200      __ string_indexofC8($str1$$Register, $str2$$Register,
11201                          $cnt1$$Register, $cnt2$$Register,
11202                          icnt2, $result$$Register,
11203                          $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11204    } else {
11205      // Small strings are loaded through stack if they cross page boundary.
11206      __ string_indexof($str1$$Register, $str2$$Register,
11207                        $cnt1$$Register, $cnt2$$Register,
11208                        icnt2, $result$$Register,
11209                        $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11210    }
11211  %}
11212  ins_pipe( pipe_slow );
11213%}
11214
11215instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11216                         rbx_RegI result, legVecS vec, rcx_RegI tmp, rFlagsReg cr)
11217%{
11218  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11219  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11220  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11221
11222  format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11223  ins_encode %{
11224    __ string_indexof($str1$$Register, $str2$$Register,
11225                      $cnt1$$Register, $cnt2$$Register,
11226                      (-1), $result$$Register,
11227                      $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11228  %}
11229  ins_pipe( pipe_slow );
11230%}
11231
11232instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11233                         rbx_RegI result, legVecS vec, rcx_RegI tmp, rFlagsReg cr)
11234%{
11235  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11236  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11237  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11238
11239  format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11240  ins_encode %{
11241    __ string_indexof($str1$$Register, $str2$$Register,
11242                      $cnt1$$Register, $cnt2$$Register,
11243                      (-1), $result$$Register,
11244                      $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11245  %}
11246  ins_pipe( pipe_slow );
11247%}
11248
11249instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11250                         rbx_RegI result, legVecS vec, rcx_RegI tmp, rFlagsReg cr)
11251%{
11252  predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11253  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11254  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11255
11256  format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11257  ins_encode %{
11258    __ string_indexof($str1$$Register, $str2$$Register,
11259                      $cnt1$$Register, $cnt2$$Register,
11260                      (-1), $result$$Register,
11261                      $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11262  %}
11263  ins_pipe( pipe_slow );
11264%}
11265
11266instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11267                              rbx_RegI result, legVecS vec1, legVecS vec2, legVecS vec3, rcx_RegI tmp, rFlagsReg cr)
11268%{
11269  predicate(UseSSE42Intrinsics);
11270  match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11271  effect(TEMP vec1, TEMP vec2, TEMP vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11272  format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11273  ins_encode %{
11274    __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11275                           $vec1$$XMMRegister, $vec2$$XMMRegister, $vec3$$XMMRegister, $tmp$$Register);
11276  %}
11277  ins_pipe( pipe_slow );
11278%}
11279
11280// fast string equals
11281instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11282                       legVecS tmp1, legVecS tmp2, rbx_RegI tmp3, rFlagsReg cr)
11283%{
11284  match(Set result (StrEquals (Binary str1 str2) cnt));
11285  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11286
11287  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11288  ins_encode %{
11289    __ arrays_equals(false, $str1$$Register, $str2$$Register,
11290                     $cnt$$Register, $result$$Register, $tmp3$$Register,
11291                     $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11292  %}
11293  ins_pipe( pipe_slow );
11294%}
11295
11296// fast array equals
11297instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11298                       legVecS tmp1, legVecS tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11299%{
11300  predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11301  match(Set result (AryEq ary1 ary2));
11302  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11303
11304  format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11305  ins_encode %{
11306    __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11307                     $tmp3$$Register, $result$$Register, $tmp4$$Register,
11308                     $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11309  %}
11310  ins_pipe( pipe_slow );
11311%}
11312
11313instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11314                      legVecS tmp1, legVecS tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11315%{
11316  predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11317  match(Set result (AryEq ary1 ary2));
11318  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11319
11320  format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11321  ins_encode %{
11322    __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11323                     $tmp3$$Register, $result$$Register, $tmp4$$Register,
11324                     $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11325  %}
11326  ins_pipe( pipe_slow );
11327%}
11328
11329instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11330                      legVecS tmp1, legVecS tmp2, rbx_RegI tmp3, rFlagsReg cr)
11331%{
11332  match(Set result (HasNegatives ary1 len));
11333  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11334
11335  format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11336  ins_encode %{
11337    __ has_negatives($ary1$$Register, $len$$Register,
11338                     $result$$Register, $tmp3$$Register,
11339                     $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11340  %}
11341  ins_pipe( pipe_slow );
11342%}
11343
11344// fast char[] to byte[] compression
11345instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legVecS tmp1, legVecS tmp2, legVecS tmp3, legVecS tmp4,
11346                         rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11347  match(Set result (StrCompressedCopy src (Binary dst len)));
11348  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11349
11350  format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11351  ins_encode %{
11352    __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11353                           $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11354                           $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11355  %}
11356  ins_pipe( pipe_slow );
11357%}
11358
11359// fast byte[] to char[] inflation
11360instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11361                        legVecS tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11362  match(Set dummy (StrInflatedCopy src (Binary dst len)));
11363  effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11364
11365  format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11366  ins_encode %{
11367    __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11368                          $tmp1$$XMMRegister, $tmp2$$Register);
11369  %}
11370  ins_pipe( pipe_slow );
11371%}
11372
11373// encode char[] to byte[] in ISO_8859_1
11374instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11375                          legVecS tmp1, legVecS tmp2, legVecS tmp3, legVecS tmp4,
11376                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11377  match(Set result (EncodeISOArray src (Binary dst len)));
11378  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11379
11380  format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11381  ins_encode %{
11382    __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11383                        $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11384                        $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11385  %}
11386  ins_pipe( pipe_slow );
11387%}
11388
11389//----------Overflow Math Instructions-----------------------------------------
11390
11391instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11392%{
11393  match(Set cr (OverflowAddI op1 op2));
11394  effect(DEF cr, USE_KILL op1, USE op2);
11395
11396  format %{ "addl    $op1, $op2\t# overflow check int" %}
11397
11398  ins_encode %{
11399    __ addl($op1$$Register, $op2$$Register);
11400  %}
11401  ins_pipe(ialu_reg_reg);
11402%}
11403
11404instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11405%{
11406  match(Set cr (OverflowAddI op1 op2));
11407  effect(DEF cr, USE_KILL op1, USE op2);
11408
11409  format %{ "addl    $op1, $op2\t# overflow check int" %}
11410
11411  ins_encode %{
11412    __ addl($op1$$Register, $op2$$constant);
11413  %}
11414  ins_pipe(ialu_reg_reg);
11415%}
11416
11417instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11418%{
11419  match(Set cr (OverflowAddL op1 op2));
11420  effect(DEF cr, USE_KILL op1, USE op2);
11421
11422  format %{ "addq    $op1, $op2\t# overflow check long" %}
11423  ins_encode %{
11424    __ addq($op1$$Register, $op2$$Register);
11425  %}
11426  ins_pipe(ialu_reg_reg);
11427%}
11428
11429instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11430%{
11431  match(Set cr (OverflowAddL op1 op2));
11432  effect(DEF cr, USE_KILL op1, USE op2);
11433
11434  format %{ "addq    $op1, $op2\t# overflow check long" %}
11435  ins_encode %{
11436    __ addq($op1$$Register, $op2$$constant);
11437  %}
11438  ins_pipe(ialu_reg_reg);
11439%}
11440
11441instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11442%{
11443  match(Set cr (OverflowSubI op1 op2));
11444
11445  format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11446  ins_encode %{
11447    __ cmpl($op1$$Register, $op2$$Register);
11448  %}
11449  ins_pipe(ialu_reg_reg);
11450%}
11451
11452instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11453%{
11454  match(Set cr (OverflowSubI op1 op2));
11455
11456  format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11457  ins_encode %{
11458    __ cmpl($op1$$Register, $op2$$constant);
11459  %}
11460  ins_pipe(ialu_reg_reg);
11461%}
11462
11463instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11464%{
11465  match(Set cr (OverflowSubL op1 op2));
11466
11467  format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11468  ins_encode %{
11469    __ cmpq($op1$$Register, $op2$$Register);
11470  %}
11471  ins_pipe(ialu_reg_reg);
11472%}
11473
11474instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11475%{
11476  match(Set cr (OverflowSubL op1 op2));
11477
11478  format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11479  ins_encode %{
11480    __ cmpq($op1$$Register, $op2$$constant);
11481  %}
11482  ins_pipe(ialu_reg_reg);
11483%}
11484
11485instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11486%{
11487  match(Set cr (OverflowSubI zero op2));
11488  effect(DEF cr, USE_KILL op2);
11489
11490  format %{ "negl    $op2\t# overflow check int" %}
11491  ins_encode %{
11492    __ negl($op2$$Register);
11493  %}
11494  ins_pipe(ialu_reg_reg);
11495%}
11496
11497instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11498%{
11499  match(Set cr (OverflowSubL zero op2));
11500  effect(DEF cr, USE_KILL op2);
11501
11502  format %{ "negq    $op2\t# overflow check long" %}
11503  ins_encode %{
11504    __ negq($op2$$Register);
11505  %}
11506  ins_pipe(ialu_reg_reg);
11507%}
11508
11509instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11510%{
11511  match(Set cr (OverflowMulI op1 op2));
11512  effect(DEF cr, USE_KILL op1, USE op2);
11513
11514  format %{ "imull    $op1, $op2\t# overflow check int" %}
11515  ins_encode %{
11516    __ imull($op1$$Register, $op2$$Register);
11517  %}
11518  ins_pipe(ialu_reg_reg_alu0);
11519%}
11520
11521instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11522%{
11523  match(Set cr (OverflowMulI op1 op2));
11524  effect(DEF cr, TEMP tmp, USE op1, USE op2);
11525
11526  format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11527  ins_encode %{
11528    __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11529  %}
11530  ins_pipe(ialu_reg_reg_alu0);
11531%}
11532
11533instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11534%{
11535  match(Set cr (OverflowMulL op1 op2));
11536  effect(DEF cr, USE_KILL op1, USE op2);
11537
11538  format %{ "imulq    $op1, $op2\t# overflow check long" %}
11539  ins_encode %{
11540    __ imulq($op1$$Register, $op2$$Register);
11541  %}
11542  ins_pipe(ialu_reg_reg_alu0);
11543%}
11544
11545instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11546%{
11547  match(Set cr (OverflowMulL op1 op2));
11548  effect(DEF cr, TEMP tmp, USE op1, USE op2);
11549
11550  format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11551  ins_encode %{
11552    __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11553  %}
11554  ins_pipe(ialu_reg_reg_alu0);
11555%}
11556
11557
11558//----------Control Flow Instructions------------------------------------------
11559// Signed compare Instructions
11560
11561// XXX more variants!!
11562instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11563%{
11564  match(Set cr (CmpI op1 op2));
11565  effect(DEF cr, USE op1, USE op2);
11566
11567  format %{ "cmpl    $op1, $op2" %}
11568  opcode(0x3B);  /* Opcode 3B /r */
11569  ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11570  ins_pipe(ialu_cr_reg_reg);
11571%}
11572
11573instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11574%{
11575  match(Set cr (CmpI op1 op2));
11576
11577  format %{ "cmpl    $op1, $op2" %}
11578  opcode(0x81, 0x07); /* Opcode 81 /7 */
11579  ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11580  ins_pipe(ialu_cr_reg_imm);
11581%}
11582
11583instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11584%{
11585  match(Set cr (CmpI op1 (LoadI op2)));
11586
11587  ins_cost(500); // XXX
11588  format %{ "cmpl    $op1, $op2" %}
11589  opcode(0x3B); /* Opcode 3B /r */
11590  ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11591  ins_pipe(ialu_cr_reg_mem);
11592%}
11593
11594instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11595%{
11596  match(Set cr (CmpI src zero));
11597
11598  format %{ "testl   $src, $src" %}
11599  opcode(0x85);
11600  ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11601  ins_pipe(ialu_cr_reg_imm);
11602%}
11603
11604instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11605%{
11606  match(Set cr (CmpI (AndI src con) zero));
11607
11608  format %{ "testl   $src, $con" %}
11609  opcode(0xF7, 0x00);
11610  ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11611  ins_pipe(ialu_cr_reg_imm);
11612%}
11613
11614instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11615%{
11616  match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11617
11618  format %{ "testl   $src, $mem" %}
11619  opcode(0x85);
11620  ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11621  ins_pipe(ialu_cr_reg_mem);
11622%}
11623
11624// Unsigned compare Instructions; really, same as signed except they
11625// produce an rFlagsRegU instead of rFlagsReg.
11626instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11627%{
11628  match(Set cr (CmpU op1 op2));
11629
11630  format %{ "cmpl    $op1, $op2\t# unsigned" %}
11631  opcode(0x3B); /* Opcode 3B /r */
11632  ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11633  ins_pipe(ialu_cr_reg_reg);
11634%}
11635
11636instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11637%{
11638  match(Set cr (CmpU op1 op2));
11639
11640  format %{ "cmpl    $op1, $op2\t# unsigned" %}
11641  opcode(0x81,0x07); /* Opcode 81 /7 */
11642  ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11643  ins_pipe(ialu_cr_reg_imm);
11644%}
11645
11646instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11647%{
11648  match(Set cr (CmpU op1 (LoadI op2)));
11649
11650  ins_cost(500); // XXX
11651  format %{ "cmpl    $op1, $op2\t# unsigned" %}
11652  opcode(0x3B); /* Opcode 3B /r */
11653  ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11654  ins_pipe(ialu_cr_reg_mem);
11655%}
11656
11657// // // Cisc-spilled version of cmpU_rReg
11658// //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11659// //%{
11660// //  match(Set cr (CmpU (LoadI op1) op2));
11661// //
11662// //  format %{ "CMPu   $op1,$op2" %}
11663// //  ins_cost(500);
11664// //  opcode(0x39);  /* Opcode 39 /r */
11665// //  ins_encode( OpcP, reg_mem( op1, op2) );
11666// //%}
11667
11668instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11669%{
11670  match(Set cr (CmpU src zero));
11671
11672  format %{ "testl  $src, $src\t# unsigned" %}
11673  opcode(0x85);
11674  ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11675  ins_pipe(ialu_cr_reg_imm);
11676%}
11677
11678instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11679%{
11680  match(Set cr (CmpP op1 op2));
11681
11682  format %{ "cmpq    $op1, $op2\t# ptr" %}
11683  opcode(0x3B); /* Opcode 3B /r */
11684  ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11685  ins_pipe(ialu_cr_reg_reg);
11686%}
11687
11688instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11689%{
11690  match(Set cr (CmpP op1 (LoadP op2)));
11691
11692  ins_cost(500); // XXX
11693  format %{ "cmpq    $op1, $op2\t# ptr" %}
11694  opcode(0x3B); /* Opcode 3B /r */
11695  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11696  ins_pipe(ialu_cr_reg_mem);
11697%}
11698
11699// // // Cisc-spilled version of cmpP_rReg
11700// //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11701// //%{
11702// //  match(Set cr (CmpP (LoadP op1) op2));
11703// //
11704// //  format %{ "CMPu   $op1,$op2" %}
11705// //  ins_cost(500);
11706// //  opcode(0x39);  /* Opcode 39 /r */
11707// //  ins_encode( OpcP, reg_mem( op1, op2) );
11708// //%}
11709
11710// XXX this is generalized by compP_rReg_mem???
11711// Compare raw pointer (used in out-of-heap check).
11712// Only works because non-oop pointers must be raw pointers
11713// and raw pointers have no anti-dependencies.
11714instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11715%{
11716  predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none);
11717  match(Set cr (CmpP op1 (LoadP op2)));
11718
11719  format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11720  opcode(0x3B); /* Opcode 3B /r */
11721  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11722  ins_pipe(ialu_cr_reg_mem);
11723%}
11724
11725// This will generate a signed flags result. This should be OK since
11726// any compare to a zero should be eq/neq.
11727instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11728%{
11729  match(Set cr (CmpP src zero));
11730
11731  format %{ "testq   $src, $src\t# ptr" %}
11732  opcode(0x85);
11733  ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11734  ins_pipe(ialu_cr_reg_imm);
11735%}
11736
11737// This will generate a signed flags result. This should be OK since
11738// any compare to a zero should be eq/neq.
11739instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11740%{
11741  predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
11742  match(Set cr (CmpP (LoadP op) zero));
11743
11744  ins_cost(500); // XXX
11745  format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11746  opcode(0xF7); /* Opcode F7 /0 */
11747  ins_encode(REX_mem_wide(op),
11748             OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11749  ins_pipe(ialu_cr_reg_imm);
11750%}
11751
11752instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11753%{
11754  predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
11755  match(Set cr (CmpP (LoadP mem) zero));
11756
11757  format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11758  ins_encode %{
11759    __ cmpq(r12, $mem$$Address);
11760  %}
11761  ins_pipe(ialu_cr_reg_mem);
11762%}
11763
11764instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11765%{
11766  match(Set cr (CmpN op1 op2));
11767
11768  format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11769  ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11770  ins_pipe(ialu_cr_reg_reg);
11771%}
11772
11773instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11774%{
11775  match(Set cr (CmpN src (LoadN mem)));
11776
11777  format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11778  ins_encode %{
11779    __ cmpl($src$$Register, $mem$$Address);
11780  %}
11781  ins_pipe(ialu_cr_reg_mem);
11782%}
11783
11784instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11785  match(Set cr (CmpN op1 op2));
11786
11787  format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11788  ins_encode %{
11789    __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11790  %}
11791  ins_pipe(ialu_cr_reg_imm);
11792%}
11793
11794instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11795%{
11796  match(Set cr (CmpN src (LoadN mem)));
11797
11798  format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11799  ins_encode %{
11800    __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11801  %}
11802  ins_pipe(ialu_cr_reg_mem);
11803%}
11804
11805instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11806  match(Set cr (CmpN op1 op2));
11807
11808  format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11809  ins_encode %{
11810    __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11811  %}
11812  ins_pipe(ialu_cr_reg_imm);
11813%}
11814
11815instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11816%{
11817  match(Set cr (CmpN src (LoadNKlass mem)));
11818
11819  format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11820  ins_encode %{
11821    __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11822  %}
11823  ins_pipe(ialu_cr_reg_mem);
11824%}
11825
11826instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11827  match(Set cr (CmpN src zero));
11828
11829  format %{ "testl   $src, $src\t# compressed ptr" %}
11830  ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11831  ins_pipe(ialu_cr_reg_imm);
11832%}
11833
11834instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11835%{
11836  predicate(Universe::narrow_oop_base() != NULL);
11837  match(Set cr (CmpN (LoadN mem) zero));
11838
11839  ins_cost(500); // XXX
11840  format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11841  ins_encode %{
11842    __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11843  %}
11844  ins_pipe(ialu_cr_reg_mem);
11845%}
11846
11847instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11848%{
11849  predicate(Universe::narrow_oop_base() == NULL && (Universe::narrow_klass_base() == NULL));
11850  match(Set cr (CmpN (LoadN mem) zero));
11851
11852  format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11853  ins_encode %{
11854    __ cmpl(r12, $mem$$Address);
11855  %}
11856  ins_pipe(ialu_cr_reg_mem);
11857%}
11858
11859// Yanked all unsigned pointer compare operations.
11860// Pointer compares are done with CmpP which is already unsigned.
11861
11862instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11863%{
11864  match(Set cr (CmpL op1 op2));
11865
11866  format %{ "cmpq    $op1, $op2" %}
11867  opcode(0x3B);  /* Opcode 3B /r */
11868  ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11869  ins_pipe(ialu_cr_reg_reg);
11870%}
11871
11872instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11873%{
11874  match(Set cr (CmpL op1 op2));
11875
11876  format %{ "cmpq    $op1, $op2" %}
11877  opcode(0x81, 0x07); /* Opcode 81 /7 */
11878  ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11879  ins_pipe(ialu_cr_reg_imm);
11880%}
11881
11882instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11883%{
11884  match(Set cr (CmpL op1 (LoadL op2)));
11885
11886  format %{ "cmpq    $op1, $op2" %}
11887  opcode(0x3B); /* Opcode 3B /r */
11888  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11889  ins_pipe(ialu_cr_reg_mem);
11890%}
11891
11892instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11893%{
11894  match(Set cr (CmpL src zero));
11895
11896  format %{ "testq   $src, $src" %}
11897  opcode(0x85);
11898  ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11899  ins_pipe(ialu_cr_reg_imm);
11900%}
11901
11902instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11903%{
11904  match(Set cr (CmpL (AndL src con) zero));
11905
11906  format %{ "testq   $src, $con\t# long" %}
11907  opcode(0xF7, 0x00);
11908  ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11909  ins_pipe(ialu_cr_reg_imm);
11910%}
11911
11912instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11913%{
11914  match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11915
11916  format %{ "testq   $src, $mem" %}
11917  opcode(0x85);
11918  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11919  ins_pipe(ialu_cr_reg_mem);
11920%}
11921
11922instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11923%{
11924  match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11925
11926  format %{ "testq   $src, $mem" %}
11927  opcode(0x85);
11928  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11929  ins_pipe(ialu_cr_reg_mem);
11930%}
11931
11932// Manifest a CmpL result in an integer register.  Very painful.
11933// This is the test to avoid.
11934instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11935%{
11936  match(Set dst (CmpL3 src1 src2));
11937  effect(KILL flags);
11938
11939  ins_cost(275); // XXX
11940  format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11941            "movl    $dst, -1\n\t"
11942            "jl,s    done\n\t"
11943            "setne   $dst\n\t"
11944            "movzbl  $dst, $dst\n\t"
11945    "done:" %}
11946  ins_encode(cmpl3_flag(src1, src2, dst));
11947  ins_pipe(pipe_slow);
11948%}
11949
11950// Unsigned long compare Instructions; really, same as signed long except they
11951// produce an rFlagsRegU instead of rFlagsReg.
11952instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11953%{
11954  match(Set cr (CmpUL op1 op2));
11955
11956  format %{ "cmpq    $op1, $op2\t# unsigned" %}
11957  opcode(0x3B);  /* Opcode 3B /r */
11958  ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11959  ins_pipe(ialu_cr_reg_reg);
11960%}
11961
11962instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11963%{
11964  match(Set cr (CmpUL op1 op2));
11965
11966  format %{ "cmpq    $op1, $op2\t# unsigned" %}
11967  opcode(0x81, 0x07); /* Opcode 81 /7 */
11968  ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11969  ins_pipe(ialu_cr_reg_imm);
11970%}
11971
11972instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11973%{
11974  match(Set cr (CmpUL op1 (LoadL op2)));
11975
11976  format %{ "cmpq    $op1, $op2\t# unsigned" %}
11977  opcode(0x3B); /* Opcode 3B /r */
11978  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11979  ins_pipe(ialu_cr_reg_mem);
11980%}
11981
11982instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11983%{
11984  match(Set cr (CmpUL src zero));
11985
11986  format %{ "testq   $src, $src\t# unsigned" %}
11987  opcode(0x85);
11988  ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11989  ins_pipe(ialu_cr_reg_imm);
11990%}
11991
11992instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11993%{
11994  match(Set cr (CmpI (LoadB mem) imm));
11995
11996  ins_cost(125);
11997  format %{ "cmpb    $mem, $imm" %}
11998  ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11999  ins_pipe(ialu_cr_reg_mem);
12000%}
12001
12002instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU8 imm, immI0 zero)
12003%{
12004  match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
12005
12006  ins_cost(125);
12007  format %{ "testb   $mem, $imm\t# ubyte" %}
12008  ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
12009  ins_pipe(ialu_cr_reg_mem);
12010%}
12011
12012instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
12013%{
12014  match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
12015
12016  ins_cost(125);
12017  format %{ "testb   $mem, $imm\t# byte" %}
12018  ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
12019  ins_pipe(ialu_cr_reg_mem);
12020%}
12021
12022//----------Max and Min--------------------------------------------------------
12023// Min Instructions
12024
12025instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
12026%{
12027  effect(USE_DEF dst, USE src, USE cr);
12028
12029  format %{ "cmovlgt $dst, $src\t# min" %}
12030  opcode(0x0F, 0x4F);
12031  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12032  ins_pipe(pipe_cmov_reg);
12033%}
12034
12035
12036instruct minI_rReg(rRegI dst, rRegI src)
12037%{
12038  match(Set dst (MinI dst src));
12039
12040  ins_cost(200);
12041  expand %{
12042    rFlagsReg cr;
12043    compI_rReg(cr, dst, src);
12044    cmovI_reg_g(dst, src, cr);
12045  %}
12046%}
12047
12048instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
12049%{
12050  effect(USE_DEF dst, USE src, USE cr);
12051
12052  format %{ "cmovllt $dst, $src\t# max" %}
12053  opcode(0x0F, 0x4C);
12054  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12055  ins_pipe(pipe_cmov_reg);
12056%}
12057
12058
12059instruct maxI_rReg(rRegI dst, rRegI src)
12060%{
12061  match(Set dst (MaxI dst src));
12062
12063  ins_cost(200);
12064  expand %{
12065    rFlagsReg cr;
12066    compI_rReg(cr, dst, src);
12067    cmovI_reg_l(dst, src, cr);
12068  %}
12069%}
12070
12071// ============================================================================
12072// Branch Instructions
12073
12074// Jump Direct - Label defines a relative address from JMP+1
12075instruct jmpDir(label labl)
12076%{
12077  match(Goto);
12078  effect(USE labl);
12079
12080  ins_cost(300);
12081  format %{ "jmp     $labl" %}
12082  size(5);
12083  ins_encode %{
12084    Label* L = $labl$$label;
12085    __ jmp(*L, false); // Always long jump
12086  %}
12087  ins_pipe(pipe_jmp);
12088%}
12089
12090// Jump Direct Conditional - Label defines a relative address from Jcc+1
12091instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
12092%{
12093  match(If cop cr);
12094  effect(USE labl);
12095
12096  ins_cost(300);
12097  format %{ "j$cop     $labl" %}
12098  size(6);
12099  ins_encode %{
12100    Label* L = $labl$$label;
12101    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12102  %}
12103  ins_pipe(pipe_jcc);
12104%}
12105
12106// Jump Direct Conditional - Label defines a relative address from Jcc+1
12107instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12108%{
12109  predicate(!n->has_vector_mask_set());
12110  match(CountedLoopEnd cop cr);
12111  effect(USE labl);
12112
12113  ins_cost(300);
12114  format %{ "j$cop     $labl\t# loop end" %}
12115  size(6);
12116  ins_encode %{
12117    Label* L = $labl$$label;
12118    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12119  %}
12120  ins_pipe(pipe_jcc);
12121%}
12122
12123// Jump Direct Conditional - Label defines a relative address from Jcc+1
12124instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12125  predicate(!n->has_vector_mask_set());
12126  match(CountedLoopEnd cop cmp);
12127  effect(USE labl);
12128
12129  ins_cost(300);
12130  format %{ "j$cop,u   $labl\t# loop end" %}
12131  size(6);
12132  ins_encode %{
12133    Label* L = $labl$$label;
12134    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12135  %}
12136  ins_pipe(pipe_jcc);
12137%}
12138
12139instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12140  predicate(!n->has_vector_mask_set());
12141  match(CountedLoopEnd cop cmp);
12142  effect(USE labl);
12143
12144  ins_cost(200);
12145  format %{ "j$cop,u   $labl\t# loop end" %}
12146  size(6);
12147  ins_encode %{
12148    Label* L = $labl$$label;
12149    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12150  %}
12151  ins_pipe(pipe_jcc);
12152%}
12153
12154// mask version
12155// Jump Direct Conditional - Label defines a relative address from Jcc+1
12156instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
12157%{
12158  predicate(n->has_vector_mask_set());
12159  match(CountedLoopEnd cop cr);
12160  effect(USE labl);
12161
12162  ins_cost(400);
12163  format %{ "j$cop     $labl\t# loop end\n\t"
12164            "restorevectmask \t# vector mask restore for loops" %}
12165  size(10);
12166  ins_encode %{
12167    Label* L = $labl$$label;
12168    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12169    __ restorevectmask();
12170  %}
12171  ins_pipe(pipe_jcc);
12172%}
12173
12174// Jump Direct Conditional - Label defines a relative address from Jcc+1
12175instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12176  predicate(n->has_vector_mask_set());
12177  match(CountedLoopEnd cop cmp);
12178  effect(USE labl);
12179
12180  ins_cost(400);
12181  format %{ "j$cop,u   $labl\t# loop end\n\t"
12182            "restorevectmask \t# vector mask restore for loops" %}
12183  size(10);
12184  ins_encode %{
12185    Label* L = $labl$$label;
12186    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12187    __ restorevectmask();
12188  %}
12189  ins_pipe(pipe_jcc);
12190%}
12191
12192instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12193  predicate(n->has_vector_mask_set());
12194  match(CountedLoopEnd cop cmp);
12195  effect(USE labl);
12196
12197  ins_cost(300);
12198  format %{ "j$cop,u   $labl\t# loop end\n\t"
12199            "restorevectmask \t# vector mask restore for loops" %}
12200  size(10);
12201  ins_encode %{
12202    Label* L = $labl$$label;
12203    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12204    __ restorevectmask();
12205  %}
12206  ins_pipe(pipe_jcc);
12207%}
12208
12209// Jump Direct Conditional - using unsigned comparison
12210instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12211  match(If cop cmp);
12212  effect(USE labl);
12213
12214  ins_cost(300);
12215  format %{ "j$cop,u  $labl" %}
12216  size(6);
12217  ins_encode %{
12218    Label* L = $labl$$label;
12219    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12220  %}
12221  ins_pipe(pipe_jcc);
12222%}
12223
12224instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12225  match(If cop cmp);
12226  effect(USE labl);
12227
12228  ins_cost(200);
12229  format %{ "j$cop,u  $labl" %}
12230  size(6);
12231  ins_encode %{
12232    Label* L = $labl$$label;
12233    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12234  %}
12235  ins_pipe(pipe_jcc);
12236%}
12237
12238instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12239  match(If cop cmp);
12240  effect(USE labl);
12241
12242  ins_cost(200);
12243  format %{ $$template
12244    if ($cop$$cmpcode == Assembler::notEqual) {
12245      $$emit$$"jp,u   $labl\n\t"
12246      $$emit$$"j$cop,u   $labl"
12247    } else {
12248      $$emit$$"jp,u   done\n\t"
12249      $$emit$$"j$cop,u   $labl\n\t"
12250      $$emit$$"done:"
12251    }
12252  %}
12253  ins_encode %{
12254    Label* l = $labl$$label;
12255    if ($cop$$cmpcode == Assembler::notEqual) {
12256      __ jcc(Assembler::parity, *l, false);
12257      __ jcc(Assembler::notEqual, *l, false);
12258    } else if ($cop$$cmpcode == Assembler::equal) {
12259      Label done;
12260      __ jccb(Assembler::parity, done);
12261      __ jcc(Assembler::equal, *l, false);
12262      __ bind(done);
12263    } else {
12264       ShouldNotReachHere();
12265    }
12266  %}
12267  ins_pipe(pipe_jcc);
12268%}
12269
12270// ============================================================================
12271// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12272// superklass array for an instance of the superklass.  Set a hidden
12273// internal cache on a hit (cache is checked with exposed code in
12274// gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12275// encoding ALSO sets flags.
12276
12277instruct partialSubtypeCheck(rdi_RegP result,
12278                             rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12279                             rFlagsReg cr)
12280%{
12281  match(Set result (PartialSubtypeCheck sub super));
12282  effect(KILL rcx, KILL cr);
12283
12284  ins_cost(1100);  // slightly larger than the next version
12285  format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12286            "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12287            "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12288            "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12289            "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12290            "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12291            "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12292    "miss:\t" %}
12293
12294  opcode(0x1); // Force a XOR of RDI
12295  ins_encode(enc_PartialSubtypeCheck());
12296  ins_pipe(pipe_slow);
12297%}
12298
12299instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12300                                     rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12301                                     immP0 zero,
12302                                     rdi_RegP result)
12303%{
12304  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12305  effect(KILL rcx, KILL result);
12306
12307  ins_cost(1000);
12308  format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12309            "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12310            "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12311            "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12312            "jne,s   miss\t\t# Missed: flags nz\n\t"
12313            "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12314    "miss:\t" %}
12315
12316  opcode(0x0); // No need to XOR RDI
12317  ins_encode(enc_PartialSubtypeCheck());
12318  ins_pipe(pipe_slow);
12319%}
12320
12321// ============================================================================
12322// Branch Instructions -- short offset versions
12323//
12324// These instructions are used to replace jumps of a long offset (the default
12325// match) with jumps of a shorter offset.  These instructions are all tagged
12326// with the ins_short_branch attribute, which causes the ADLC to suppress the
12327// match rules in general matching.  Instead, the ADLC generates a conversion
12328// method in the MachNode which can be used to do in-place replacement of the
12329// long variant with the shorter variant.  The compiler will determine if a
12330// branch can be taken by the is_short_branch_offset() predicate in the machine
12331// specific code section of the file.
12332
12333// Jump Direct - Label defines a relative address from JMP+1
12334instruct jmpDir_short(label labl) %{
12335  match(Goto);
12336  effect(USE labl);
12337
12338  ins_cost(300);
12339  format %{ "jmp,s   $labl" %}
12340  size(2);
12341  ins_encode %{
12342    Label* L = $labl$$label;
12343    __ jmpb(*L);
12344  %}
12345  ins_pipe(pipe_jmp);
12346  ins_short_branch(1);
12347%}
12348
12349// Jump Direct Conditional - Label defines a relative address from Jcc+1
12350instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12351  match(If cop cr);
12352  effect(USE labl);
12353
12354  ins_cost(300);
12355  format %{ "j$cop,s   $labl" %}
12356  size(2);
12357  ins_encode %{
12358    Label* L = $labl$$label;
12359    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12360  %}
12361  ins_pipe(pipe_jcc);
12362  ins_short_branch(1);
12363%}
12364
12365// Jump Direct Conditional - Label defines a relative address from Jcc+1
12366instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12367  match(CountedLoopEnd cop cr);
12368  effect(USE labl);
12369
12370  ins_cost(300);
12371  format %{ "j$cop,s   $labl\t# loop end" %}
12372  size(2);
12373  ins_encode %{
12374    Label* L = $labl$$label;
12375    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12376  %}
12377  ins_pipe(pipe_jcc);
12378  ins_short_branch(1);
12379%}
12380
12381// Jump Direct Conditional - Label defines a relative address from Jcc+1
12382instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12383  match(CountedLoopEnd cop cmp);
12384  effect(USE labl);
12385
12386  ins_cost(300);
12387  format %{ "j$cop,us  $labl\t# loop end" %}
12388  size(2);
12389  ins_encode %{
12390    Label* L = $labl$$label;
12391    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12392  %}
12393  ins_pipe(pipe_jcc);
12394  ins_short_branch(1);
12395%}
12396
12397instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12398  match(CountedLoopEnd cop cmp);
12399  effect(USE labl);
12400
12401  ins_cost(300);
12402  format %{ "j$cop,us  $labl\t# loop end" %}
12403  size(2);
12404  ins_encode %{
12405    Label* L = $labl$$label;
12406    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12407  %}
12408  ins_pipe(pipe_jcc);
12409  ins_short_branch(1);
12410%}
12411
12412// Jump Direct Conditional - using unsigned comparison
12413instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12414  match(If cop cmp);
12415  effect(USE labl);
12416
12417  ins_cost(300);
12418  format %{ "j$cop,us  $labl" %}
12419  size(2);
12420  ins_encode %{
12421    Label* L = $labl$$label;
12422    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12423  %}
12424  ins_pipe(pipe_jcc);
12425  ins_short_branch(1);
12426%}
12427
12428instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12429  match(If cop cmp);
12430  effect(USE labl);
12431
12432  ins_cost(300);
12433  format %{ "j$cop,us  $labl" %}
12434  size(2);
12435  ins_encode %{
12436    Label* L = $labl$$label;
12437    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12438  %}
12439  ins_pipe(pipe_jcc);
12440  ins_short_branch(1);
12441%}
12442
12443instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12444  match(If cop cmp);
12445  effect(USE labl);
12446
12447  ins_cost(300);
12448  format %{ $$template
12449    if ($cop$$cmpcode == Assembler::notEqual) {
12450      $$emit$$"jp,u,s   $labl\n\t"
12451      $$emit$$"j$cop,u,s   $labl"
12452    } else {
12453      $$emit$$"jp,u,s   done\n\t"
12454      $$emit$$"j$cop,u,s  $labl\n\t"
12455      $$emit$$"done:"
12456    }
12457  %}
12458  size(4);
12459  ins_encode %{
12460    Label* l = $labl$$label;
12461    if ($cop$$cmpcode == Assembler::notEqual) {
12462      __ jccb(Assembler::parity, *l);
12463      __ jccb(Assembler::notEqual, *l);
12464    } else if ($cop$$cmpcode == Assembler::equal) {
12465      Label done;
12466      __ jccb(Assembler::parity, done);
12467      __ jccb(Assembler::equal, *l);
12468      __ bind(done);
12469    } else {
12470       ShouldNotReachHere();
12471    }
12472  %}
12473  ins_pipe(pipe_jcc);
12474  ins_short_branch(1);
12475%}
12476
12477// ============================================================================
12478// inlined locking and unlocking
12479
12480instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12481  predicate(Compile::current()->use_rtm());
12482  match(Set cr (FastLock object box));
12483  effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12484  ins_cost(300);
12485  format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12486  ins_encode %{
12487    __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12488                 $scr$$Register, $cx1$$Register, $cx2$$Register,
12489                 _counters, _rtm_counters, _stack_rtm_counters,
12490                 ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12491                 true, ra_->C->profile_rtm());
12492  %}
12493  ins_pipe(pipe_slow);
12494%}
12495
12496instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
12497  predicate(!Compile::current()->use_rtm());
12498  match(Set cr (FastLock object box));
12499  effect(TEMP tmp, TEMP scr, USE_KILL box);
12500  ins_cost(300);
12501  format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12502  ins_encode %{
12503    __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12504                 $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12505  %}
12506  ins_pipe(pipe_slow);
12507%}
12508
12509instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12510  match(Set cr (FastUnlock object box));
12511  effect(TEMP tmp, USE_KILL box);
12512  ins_cost(300);
12513  format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12514  ins_encode %{
12515    __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12516  %}
12517  ins_pipe(pipe_slow);
12518%}
12519
12520
12521// ============================================================================
12522// Safepoint Instructions
12523instruct safePoint_poll(rFlagsReg cr)
12524%{
12525  predicate(!Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12526  match(SafePoint);
12527  effect(KILL cr);
12528
12529  format %{ "testl  rax, [rip + #offset_to_poll_page]\t"
12530            "# Safepoint: poll for GC" %}
12531  ins_cost(125);
12532  ins_encode %{
12533    AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
12534    __ testl(rax, addr);
12535  %}
12536  ins_pipe(ialu_reg_mem);
12537%}
12538
12539instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
12540%{
12541  predicate(Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12542  match(SafePoint poll);
12543  effect(KILL cr, USE poll);
12544
12545  format %{ "testl  rax, [$poll]\t"
12546            "# Safepoint: poll for GC" %}
12547  ins_cost(125);
12548  ins_encode %{
12549    __ relocate(relocInfo::poll_type);
12550    __ testl(rax, Address($poll$$Register, 0));
12551  %}
12552  ins_pipe(ialu_reg_mem);
12553%}
12554
12555instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12556%{
12557  predicate(SafepointMechanism::uses_thread_local_poll());
12558  match(SafePoint poll);
12559  effect(KILL cr, USE poll);
12560
12561  format %{ "testl  rax, [$poll]\t"
12562            "# Safepoint: poll for GC" %}
12563  ins_cost(125);
12564  size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12565  ins_encode %{
12566    __ relocate(relocInfo::poll_type);
12567    address pre_pc = __ pc();
12568    __ testl(rax, Address($poll$$Register, 0));
12569    assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12570  %}
12571  ins_pipe(ialu_reg_mem);
12572%}
12573
12574// ============================================================================
12575// Procedure Call/Return Instructions
12576// Call Java Static Instruction
12577// Note: If this code changes, the corresponding ret_addr_offset() and
12578//       compute_padding() functions will have to be adjusted.
12579instruct CallStaticJavaDirect(method meth) %{
12580  match(CallStaticJava);
12581  effect(USE meth);
12582
12583  ins_cost(300);
12584  format %{ "call,static " %}
12585  opcode(0xE8); /* E8 cd */
12586  ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12587  ins_pipe(pipe_slow);
12588  ins_alignment(4);
12589%}
12590
12591// Call Java Dynamic Instruction
12592// Note: If this code changes, the corresponding ret_addr_offset() and
12593//       compute_padding() functions will have to be adjusted.
12594instruct CallDynamicJavaDirect(method meth)
12595%{
12596  match(CallDynamicJava);
12597  effect(USE meth);
12598
12599  ins_cost(300);
12600  format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12601            "call,dynamic " %}
12602  ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12603  ins_pipe(pipe_slow);
12604  ins_alignment(4);
12605%}
12606
12607// Call Runtime Instruction
12608instruct CallRuntimeDirect(method meth)
12609%{
12610  match(CallRuntime);
12611  effect(USE meth);
12612
12613  ins_cost(300);
12614  format %{ "call,runtime " %}
12615  ins_encode(clear_avx, Java_To_Runtime(meth));
12616  ins_pipe(pipe_slow);
12617%}
12618
12619// Call runtime without safepoint
12620instruct CallLeafDirect(method meth)
12621%{
12622  match(CallLeaf);
12623  effect(USE meth);
12624
12625  ins_cost(300);
12626  format %{ "call_leaf,runtime " %}
12627  ins_encode(clear_avx, Java_To_Runtime(meth));
12628  ins_pipe(pipe_slow);
12629%}
12630
12631// Call runtime without safepoint
12632instruct CallLeafNoFPDirect(method meth)
12633%{
12634  match(CallLeafNoFP);
12635  effect(USE meth);
12636
12637  ins_cost(300);
12638  format %{ "call_leaf_nofp,runtime " %}
12639  ins_encode(clear_avx, Java_To_Runtime(meth));
12640  ins_pipe(pipe_slow);
12641%}
12642
12643// Return Instruction
12644// Remove the return address & jump to it.
12645// Notice: We always emit a nop after a ret to make sure there is room
12646// for safepoint patching
12647instruct Ret()
12648%{
12649  match(Return);
12650
12651  format %{ "ret" %}
12652  opcode(0xC3);
12653  ins_encode(OpcP);
12654  ins_pipe(pipe_jmp);
12655%}
12656
12657// Tail Call; Jump from runtime stub to Java code.
12658// Also known as an 'interprocedural jump'.
12659// Target of jump will eventually return to caller.
12660// TailJump below removes the return address.
12661instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
12662%{
12663  match(TailCall jump_target method_oop);
12664
12665  ins_cost(300);
12666  format %{ "jmp     $jump_target\t# rbx holds method oop" %}
12667  opcode(0xFF, 0x4); /* Opcode FF /4 */
12668  ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12669  ins_pipe(pipe_jmp);
12670%}
12671
12672// Tail Jump; remove the return address; jump to target.
12673// TailCall above leaves the return address around.
12674instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12675%{
12676  match(TailJump jump_target ex_oop);
12677
12678  ins_cost(300);
12679  format %{ "popq    rdx\t# pop return address\n\t"
12680            "jmp     $jump_target" %}
12681  opcode(0xFF, 0x4); /* Opcode FF /4 */
12682  ins_encode(Opcode(0x5a), // popq rdx
12683             REX_reg(jump_target), OpcP, reg_opc(jump_target));
12684  ins_pipe(pipe_jmp);
12685%}
12686
12687// Create exception oop: created by stack-crawling runtime code.
12688// Created exception is now available to this handler, and is setup
12689// just prior to jumping to this handler.  No code emitted.
12690instruct CreateException(rax_RegP ex_oop)
12691%{
12692  match(Set ex_oop (CreateEx));
12693
12694  size(0);
12695  // use the following format syntax
12696  format %{ "# exception oop is in rax; no code emitted" %}
12697  ins_encode();
12698  ins_pipe(empty);
12699%}
12700
12701// Rethrow exception:
12702// The exception oop will come in the first argument position.
12703// Then JUMP (not call) to the rethrow stub code.
12704instruct RethrowException()
12705%{
12706  match(Rethrow);
12707
12708  // use the following format syntax
12709  format %{ "jmp     rethrow_stub" %}
12710  ins_encode(enc_rethrow);
12711  ins_pipe(pipe_jmp);
12712%}
12713
12714//
12715// Execute ZGC load barrier (strong) slow path
12716//
12717
12718// For XMM and YMM enabled processors
12719instruct loadBarrierSlowRegXmmAndYmm(rRegP dst, memory mem, rFlagsReg cr,
12720                                     rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12721                                     rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12722                                     rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12723                                     rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15) %{
12724
12725  match(Set dst (LoadBarrierSlowReg mem));
12726  predicate(UseAVX <= 2);
12727
12728  effect(DEF dst, KILL cr,
12729         KILL x0, KILL x1, KILL x2, KILL x3,
12730         KILL x4, KILL x5, KILL x6, KILL x7,
12731         KILL x8, KILL x9, KILL x10, KILL x11,
12732         KILL x12, KILL x13, KILL x14, KILL x15);
12733
12734  format %{"LoadBarrierSlowRegXmmAndYmm $dst, $mem" %}
12735  ins_encode %{
12736#if INCLUDE_ZGC
12737    Register d = $dst$$Register;
12738    ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12739
12740    assert(d != r12, "Can't be R12!");
12741    assert(d != r15, "Can't be R15!");
12742    assert(d != rsp, "Can't be RSP!");
12743
12744    __ lea(d, $mem$$Address);
12745    __ call(RuntimeAddress(bs->load_barrier_slow_stub(d)));
12746#else
12747    ShouldNotReachHere();
12748#endif
12749  %}
12750  ins_pipe(pipe_slow);
12751%}
12752
12753// For ZMM enabled processors
12754instruct loadBarrierSlowRegZmm(rRegP dst, memory mem, rFlagsReg cr,
12755                               rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12756                               rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12757                               rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12758                               rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15,
12759                               rxmm16 x16, rxmm17 x17, rxmm18 x18, rxmm19 x19,
12760                               rxmm20 x20, rxmm21 x21, rxmm22 x22, rxmm23 x23,
12761                               rxmm24 x24, rxmm25 x25, rxmm26 x26, rxmm27 x27,
12762                               rxmm28 x28, rxmm29 x29, rxmm30 x30, rxmm31 x31) %{
12763
12764  match(Set dst (LoadBarrierSlowReg mem));
12765  predicate(UseAVX == 3);
12766
12767  effect(DEF dst, KILL cr,
12768         KILL x0, KILL x1, KILL x2, KILL x3,
12769         KILL x4, KILL x5, KILL x6, KILL x7,
12770         KILL x8, KILL x9, KILL x10, KILL x11,
12771         KILL x12, KILL x13, KILL x14, KILL x15,
12772         KILL x16, KILL x17, KILL x18, KILL x19,
12773         KILL x20, KILL x21, KILL x22, KILL x23,
12774         KILL x24, KILL x25, KILL x26, KILL x27,
12775         KILL x28, KILL x29, KILL x30, KILL x31);
12776
12777  format %{"LoadBarrierSlowRegZmm $dst, $mem" %}
12778  ins_encode %{
12779#if INCLUDE_ZGC
12780    Register d = $dst$$Register;
12781    ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12782
12783    assert(d != r12, "Can't be R12!");
12784    assert(d != r15, "Can't be R15!");
12785    assert(d != rsp, "Can't be RSP!");
12786
12787    __ lea(d, $mem$$Address);
12788    __ call(RuntimeAddress(bs->load_barrier_slow_stub(d)));
12789#else
12790    ShouldNotReachHere();
12791#endif
12792  %}
12793  ins_pipe(pipe_slow);
12794%}
12795
12796//
12797// Execute ZGC load barrier (weak) slow path
12798//
12799
12800// For XMM and YMM enabled processors
12801instruct loadBarrierWeakSlowRegXmmAndYmm(rRegP dst, memory mem, rFlagsReg cr,
12802                                         rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12803                                         rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12804                                         rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12805                                         rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15) %{
12806
12807  match(Set dst (LoadBarrierWeakSlowReg mem));
12808  predicate(UseAVX <= 2);
12809
12810  effect(DEF dst, KILL cr,
12811         KILL x0, KILL x1, KILL x2, KILL x3,
12812         KILL x4, KILL x5, KILL x6, KILL x7,
12813         KILL x8, KILL x9, KILL x10, KILL x11,
12814         KILL x12, KILL x13, KILL x14, KILL x15);
12815
12816  format %{"LoadBarrierWeakSlowRegXmmAndYmm $dst, $mem" %}
12817  ins_encode %{
12818#if INCLUDE_ZGC
12819    Register d = $dst$$Register;
12820    ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12821
12822    assert(d != r12, "Can't be R12!");
12823    assert(d != r15, "Can't be R15!");
12824    assert(d != rsp, "Can't be RSP!");
12825
12826    __ lea(d,$mem$$Address);
12827    __ call(RuntimeAddress(bs->load_barrier_weak_slow_stub(d)));
12828#else
12829    ShouldNotReachHere();
12830#endif
12831  %}
12832  ins_pipe(pipe_slow);
12833%}
12834
12835// For ZMM enabled processors
12836instruct loadBarrierWeakSlowRegZmm(rRegP dst, memory mem, rFlagsReg cr,
12837                                   rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12838                                   rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12839                                   rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12840                                   rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15,
12841                                   rxmm16 x16, rxmm17 x17, rxmm18 x18, rxmm19 x19,
12842                                   rxmm20 x20, rxmm21 x21, rxmm22 x22, rxmm23 x23,
12843                                   rxmm24 x24, rxmm25 x25, rxmm26 x26, rxmm27 x27,
12844                                   rxmm28 x28, rxmm29 x29, rxmm30 x30, rxmm31 x31) %{
12845
12846  match(Set dst (LoadBarrierWeakSlowReg mem));
12847  predicate(UseAVX == 3);
12848
12849  effect(DEF dst, KILL cr,
12850         KILL x0, KILL x1, KILL x2, KILL x3,
12851         KILL x4, KILL x5, KILL x6, KILL x7,
12852         KILL x8, KILL x9, KILL x10, KILL x11,
12853         KILL x12, KILL x13, KILL x14, KILL x15,
12854         KILL x16, KILL x17, KILL x18, KILL x19,
12855         KILL x20, KILL x21, KILL x22, KILL x23,
12856         KILL x24, KILL x25, KILL x26, KILL x27,
12857         KILL x28, KILL x29, KILL x30, KILL x31);
12858
12859  format %{"LoadBarrierWeakSlowRegZmm $dst, $mem" %}
12860  ins_encode %{
12861#if INCLUDE_ZGC
12862    Register d = $dst$$Register;
12863    ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12864
12865    assert(d != r12, "Can't be R12!");
12866    assert(d != r15, "Can't be R15!");
12867    assert(d != rsp, "Can't be RSP!");
12868
12869    __ lea(d,$mem$$Address);
12870    __ call(RuntimeAddress(bs->load_barrier_weak_slow_stub(d)));
12871#else
12872    ShouldNotReachHere();
12873#endif
12874  %}
12875  ins_pipe(pipe_slow);
12876%}
12877
12878// ============================================================================
12879// This name is KNOWN by the ADLC and cannot be changed.
12880// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12881// for this guy.
12882instruct tlsLoadP(r15_RegP dst) %{
12883  match(Set dst (ThreadLocal));
12884  effect(DEF dst);
12885
12886  size(0);
12887  format %{ "# TLS is in R15" %}
12888  ins_encode( /*empty encoding*/ );
12889  ins_pipe(ialu_reg_reg);
12890%}
12891
12892
12893//----------PEEPHOLE RULES-----------------------------------------------------
12894// These must follow all instruction definitions as they use the names
12895// defined in the instructions definitions.
12896//
12897// peepmatch ( root_instr_name [preceding_instruction]* );
12898//
12899// peepconstraint %{
12900// (instruction_number.operand_name relational_op instruction_number.operand_name
12901//  [, ...] );
12902// // instruction numbers are zero-based using left to right order in peepmatch
12903//
12904// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12905// // provide an instruction_number.operand_name for each operand that appears
12906// // in the replacement instruction's match rule
12907//
12908// ---------VM FLAGS---------------------------------------------------------
12909//
12910// All peephole optimizations can be turned off using -XX:-OptoPeephole
12911//
12912// Each peephole rule is given an identifying number starting with zero and
12913// increasing by one in the order seen by the parser.  An individual peephole
12914// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12915// on the command-line.
12916//
12917// ---------CURRENT LIMITATIONS----------------------------------------------
12918//
12919// Only match adjacent instructions in same basic block
12920// Only equality constraints
12921// Only constraints between operands, not (0.dest_reg == RAX_enc)
12922// Only one replacement instruction
12923//
12924// ---------EXAMPLE----------------------------------------------------------
12925//
12926// // pertinent parts of existing instructions in architecture description
12927// instruct movI(rRegI dst, rRegI src)
12928// %{
12929//   match(Set dst (CopyI src));
12930// %}
12931//
12932// instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12933// %{
12934//   match(Set dst (AddI dst src));
12935//   effect(KILL cr);
12936// %}
12937//
12938// // Change (inc mov) to lea
12939// peephole %{
12940//   // increment preceeded by register-register move
12941//   peepmatch ( incI_rReg movI );
12942//   // require that the destination register of the increment
12943//   // match the destination register of the move
12944//   peepconstraint ( 0.dst == 1.dst );
12945//   // construct a replacement instruction that sets
12946//   // the destination to ( move's source register + one )
12947//   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12948// %}
12949//
12950
12951// Implementation no longer uses movX instructions since
12952// machine-independent system no longer uses CopyX nodes.
12953//
12954// peephole
12955// %{
12956//   peepmatch (incI_rReg movI);
12957//   peepconstraint (0.dst == 1.dst);
12958//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12959// %}
12960
12961// peephole
12962// %{
12963//   peepmatch (decI_rReg movI);
12964//   peepconstraint (0.dst == 1.dst);
12965//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12966// %}
12967
12968// peephole
12969// %{
12970//   peepmatch (addI_rReg_imm movI);
12971//   peepconstraint (0.dst == 1.dst);
12972//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12973// %}
12974
12975// peephole
12976// %{
12977//   peepmatch (incL_rReg movL);
12978//   peepconstraint (0.dst == 1.dst);
12979//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12980// %}
12981
12982// peephole
12983// %{
12984//   peepmatch (decL_rReg movL);
12985//   peepconstraint (0.dst == 1.dst);
12986//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12987// %}
12988
12989// peephole
12990// %{
12991//   peepmatch (addL_rReg_imm movL);
12992//   peepconstraint (0.dst == 1.dst);
12993//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12994// %}
12995
12996// peephole
12997// %{
12998//   peepmatch (addP_rReg_imm movP);
12999//   peepconstraint (0.dst == 1.dst);
13000//   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
13001// %}
13002
13003// // Change load of spilled value to only a spill
13004// instruct storeI(memory mem, rRegI src)
13005// %{
13006//   match(Set mem (StoreI mem src));
13007// %}
13008//
13009// instruct loadI(rRegI dst, memory mem)
13010// %{
13011//   match(Set dst (LoadI mem));
13012// %}
13013//
13014
13015peephole
13016%{
13017  peepmatch (loadI storeI);
13018  peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
13019  peepreplace (storeI(1.mem 1.mem 1.src));
13020%}
13021
13022peephole
13023%{
13024  peepmatch (loadL storeL);
13025  peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
13026  peepreplace (storeL(1.mem 1.mem 1.src));
13027%}
13028
13029//----------SMARTSPILL RULES---------------------------------------------------
13030// These must follow all instruction definitions as they use the names
13031// defined in the instructions definitions.
13032