1 /*
2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /*
25  * @test
26  * @bug 4851638 4900189 4939441
27  * @summary Tests for {Math, StrictMath}.expm1
28  * @author Joseph D. Darcy
29  */
30 
31 /*
32  * The Taylor expansion of expxm1(x) = exp(x) -1 is
33  *
34  * 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
35  *
36  * x + x^2/2! + x^3/3 + ...
37  *
38  * Therefore, for small values of x, expxm1 ~= x.
39  *
40  * For large values of x, expxm1(x) ~= exp(x)
41  *
42  * For large negative x, expxm1(x) ~= -1.
43  */
44 
45 public class Expm1Tests {
46 
Expm1Tests()47     private Expm1Tests(){}
48 
49     static final double infinityD = Double.POSITIVE_INFINITY;
50     static final double NaNd = Double.NaN;
51 
testExpm1()52     static int testExpm1() {
53         int failures = 0;
54 
55         double [][] testCases = {
56             {Double.NaN,                NaNd},
57             {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
58             {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
59             {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
60             {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
61             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
62             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
63             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
64             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
65             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
66             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
67             {infinityD,                 infinityD},
68             {-infinityD,                -1.0},
69             {-0.0,                      -0.0},
70             {+0.0,                      +0.0},
71         };
72 
73         // Test special cases
74         for(int i = 0; i < testCases.length; i++) {
75             failures += testExpm1CaseWithUlpDiff(testCases[i][0],
76                                                  testCases[i][1], 0, null);
77         }
78 
79 
80         // For |x| < 2^-54 expm1(x) ~= x
81         for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
82             double d = Math.scalb(2, i);
83             failures += testExpm1Case(d, d);
84             failures += testExpm1Case(-d, -d);
85         }
86 
87 
88         // For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
89         // The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
90         // overflows for x > ~= 709.8
91 
92         // Use a 2-ulp error threshold to account for errors in the
93         // exp implementation; the increments of d in the loop will be
94         // exact.
95         for(double d = 37.5; d <= 709.5; d += 1.0) {
96             failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
97         }
98 
99         // For x > 710, expm1(x) should be infinity
100         for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
101             double d = Math.scalb(2, i);
102             failures += testExpm1Case(d, infinityD);
103         }
104 
105         // By monotonicity, once the limit is reached, the
106         // implemenation should return the limit for all smaller
107         // values.
108         boolean reachedLimit [] = {false, false};
109 
110         // Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
111         // The greatest such y is ln(2^-53) ~= -36.7368005696771.
112         for(double d = -36.75; d >= -127.75; d -= 1.0) {
113             failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
114                                                  reachedLimit);
115         }
116 
117         for(int i = 7; i <= Double.MAX_EXPONENT; i++) {
118             double d = -Math.scalb(2, i);
119             failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
120         }
121 
122         // Test for monotonicity failures near multiples of log(2).
123         // Test two numbers before and two numbers after each chosen
124         // value; i.e.
125         //
126         // pcNeighbors[] =
127         // {nextDown(nextDown(pc)),
128         // nextDown(pc),
129         // pc,
130         // nextUp(pc),
131         // nextUp(nextUp(pc))}
132         //
133         // and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
134         {
135             double pcNeighbors[] = new double[5];
136             double pcNeighborsExpm1[] = new double[5];
137             double pcNeighborsStrictExpm1[] = new double[5];
138 
139             for(int i = -50; i <= 50; i++) {
140                 double pc = StrictMath.log(2)*i;
141 
142                 pcNeighbors[2] = pc;
143                 pcNeighbors[1] = Math.nextDown(pc);
144                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
145                 pcNeighbors[3] = Math.nextUp(pc);
146                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
147 
148                 for(int j = 0; j < pcNeighbors.length; j++) {
149                     pcNeighborsExpm1[j]       =       Math.expm1(pcNeighbors[j]);
150                     pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
151                 }
152 
153                 for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
154                     if(pcNeighborsExpm1[j] >  pcNeighborsExpm1[j+1] ) {
155                         failures++;
156                         System.err.println("Monotonicity failure for Math.expm1 on " +
157                                           pcNeighbors[j] + " and "  +
158                                           pcNeighbors[j+1] + "\n\treturned " +
159                                           pcNeighborsExpm1[j] + " and " +
160                                           pcNeighborsExpm1[j+1] );
161                     }
162 
163                     if(pcNeighborsStrictExpm1[j] >  pcNeighborsStrictExpm1[j+1] ) {
164                         failures++;
165                         System.err.println("Monotonicity failure for StrictMath.expm1 on " +
166                                           pcNeighbors[j] + " and "  +
167                                           pcNeighbors[j+1] + "\n\treturned " +
168                                           pcNeighborsStrictExpm1[j] + " and " +
169                                           pcNeighborsStrictExpm1[j+1] );
170                     }
171 
172 
173                 }
174 
175             }
176         }
177 
178         return failures;
179     }
180 
testExpm1Case(double input, double expected)181     public static int testExpm1Case(double input,
182                                     double expected) {
183         return testExpm1CaseWithUlpDiff(input, expected, 1, null);
184     }
185 
testExpm1CaseWithUlpDiff(double input, double expected, double ulps, boolean [] reachedLimit)186     public static int testExpm1CaseWithUlpDiff(double input,
187                                                double expected,
188                                                double ulps,
189                                                boolean [] reachedLimit) {
190         int failures = 0;
191         double mathUlps = ulps, strictUlps = ulps;
192         double mathOutput;
193         double strictOutput;
194 
195         if (reachedLimit != null) {
196             if (reachedLimit[0])
197                 mathUlps = 0;
198 
199             if (reachedLimit[1])
200                 strictUlps = 0;
201         }
202 
203         failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
204                                                     input, mathOutput=Math.expm1(input),
205                                                     expected, mathUlps, -1.0);
206         failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
207                                                     input, strictOutput=StrictMath.expm1(input),
208                                                     expected, strictUlps, -1.0);
209         if (reachedLimit != null) {
210             reachedLimit[0] |= (mathOutput   == -1.0);
211             reachedLimit[1] |= (strictOutput == -1.0);
212         }
213 
214         return failures;
215     }
216 
main(String argv[])217     public static void main(String argv[]) {
218         int failures = 0;
219 
220         failures += testExpm1();
221 
222         if (failures > 0) {
223             System.err.println("Testing expm1 incurred "
224                                + failures + " failures.");
225             throw new RuntimeException();
226         }
227     }
228 }
229