1 /*
2  * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2017, SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_Runtime1.hpp"
33 #include "c1/c1_ValueStack.hpp"
34 #include "ci/ciArray.hpp"
35 #include "ci/ciObjArrayKlass.hpp"
36 #include "ci/ciTypeArrayKlass.hpp"
37 #include "runtime/sharedRuntime.hpp"
38 #include "runtime/stubRoutines.hpp"
39 #include "vmreg_s390.inline.hpp"
40 
41 #ifdef ASSERT
42 #define __ gen()->lir(__FILE__, __LINE__)->
43 #else
44 #define __ gen()->lir()->
45 #endif
46 
load_byte_item()47 void LIRItem::load_byte_item() {
48   // Byte loads use same registers as other loads.
49   load_item();
50 }
51 
load_nonconstant(int bits)52 void LIRItem::load_nonconstant(int bits) {
53   LIR_Opr r = value()->operand();
54   if (_gen->can_inline_as_constant(value(), bits)) {
55     if (!r->is_constant()) {
56       r = LIR_OprFact::value_type(value()->type());
57     }
58     _result = r;
59   } else {
60     load_item();
61   }
62 }
63 
64 //--------------------------------------------------------------
65 //               LIRGenerator
66 //--------------------------------------------------------------
67 
exceptionOopOpr()68 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::as_oop_opr(Z_EXC_OOP); }
exceptionPcOpr()69 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::as_opr(Z_EXC_PC); }
divInOpr()70 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::Z_R11_opr; }
divOutOpr()71 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::Z_R11_opr; }
remOutOpr()72 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::Z_R10_opr; }
ldivInOpr()73 LIR_Opr LIRGenerator::ldivInOpr()       { return FrameMap::Z_R11_long_opr; }
ldivOutOpr()74 LIR_Opr LIRGenerator::ldivOutOpr()      { return FrameMap::Z_R11_long_opr; }
lremOutOpr()75 LIR_Opr LIRGenerator::lremOutOpr()      { return FrameMap::Z_R10_long_opr; }
syncLockOpr()76 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
syncTempOpr()77 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::Z_R13_opr; }
getThreadTemp()78 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
79 
result_register_for(ValueType * type,bool callee)80 LIR_Opr LIRGenerator::result_register_for (ValueType* type, bool callee) {
81   LIR_Opr opr;
82   switch (type->tag()) {
83     case intTag:    opr = FrameMap::Z_R2_opr;        break;
84     case objectTag: opr = FrameMap::Z_R2_oop_opr;    break;
85     case longTag:   opr = FrameMap::Z_R2_long_opr;   break;
86     case floatTag:  opr = FrameMap::Z_F0_opr;        break;
87     case doubleTag: opr = FrameMap::Z_F0_double_opr; break;
88 
89     case addressTag:
90     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
91   }
92 
93   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
94   return opr;
95 }
96 
rlock_byte(BasicType type)97 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
98   return new_register(T_INT);
99 }
100 
101 //--------- Loading items into registers. --------------------------------
102 
103 // z/Architecture cannot inline all constants.
can_store_as_constant(Value v,BasicType type) const104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
105   if (v->type()->as_IntConstant() != NULL) {
106     return Immediate::is_simm16(v->type()->as_IntConstant()->value());
107   } else if (v->type()->as_LongConstant() != NULL) {
108     return Immediate::is_simm16(v->type()->as_LongConstant()->value());
109   } else if (v->type()->as_ObjectConstant() != NULL) {
110     return v->type()->as_ObjectConstant()->value()->is_null_object();
111   } else {
112     return false;
113   }
114 }
115 
can_inline_as_constant(Value i,int bits) const116 bool LIRGenerator::can_inline_as_constant(Value i, int bits) const {
117   if (i->type()->as_IntConstant() != NULL) {
118     return Assembler::is_simm(i->type()->as_IntConstant()->value(), bits);
119   } else if (i->type()->as_LongConstant() != NULL) {
120     return Assembler::is_simm(i->type()->as_LongConstant()->value(), bits);
121   } else {
122     return can_store_as_constant(i, as_BasicType(i->type()));
123   }
124 }
125 
can_inline_as_constant(LIR_Const * c) const126 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
127   if (c->type() == T_INT) {
128     return Immediate::is_simm20(c->as_jint());
129   } else   if (c->type() == T_LONG) {
130     return Immediate::is_simm20(c->as_jlong());
131   }
132   return false;
133 }
134 
safepoint_poll_register()135 LIR_Opr LIRGenerator::safepoint_poll_register() {
136   return new_register(longType);
137 }
138 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)139 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
140                                             int shift, int disp, BasicType type) {
141   assert(base->is_register(), "must be");
142   if (index->is_constant()) {
143     intx large_disp = disp;
144     LIR_Const *constant = index->as_constant_ptr();
145     if (constant->type() == T_LONG) {
146       large_disp += constant->as_jlong() << shift;
147     } else {
148       large_disp += (intx)(constant->as_jint()) << shift;
149     }
150     if (Displacement::is_validDisp(large_disp)) {
151       return new LIR_Address(base, large_disp, type);
152     }
153     // Index is illegal so replace it with the displacement loaded into a register.
154     index = new_pointer_register();
155     __ move(LIR_OprFact::intptrConst(large_disp), index);
156     return new LIR_Address(base, index, type);
157   } else {
158     if (shift > 0) {
159       LIR_Opr tmp = new_pointer_register();
160       __ shift_left(index, shift, tmp);
161       index = tmp;
162     }
163     return new LIR_Address(base, index, disp, type);
164   }
165 }
166 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type)167 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
168                                               BasicType type) {
169   int elem_size = type2aelembytes(type);
170   int shift = exact_log2(elem_size);
171   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
172 
173   LIR_Address* addr;
174   if (index_opr->is_constant()) {
175     addr = new LIR_Address(array_opr,
176                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
177   } else {
178     if (index_opr->type() == T_INT) {
179       LIR_Opr tmp = new_register(T_LONG);
180       __ convert(Bytecodes::_i2l, index_opr, tmp);
181       index_opr = tmp;
182     }
183     if (shift > 0) {
184       __ shift_left(index_opr, shift, index_opr);
185     }
186     addr = new LIR_Address(array_opr,
187                            index_opr,
188                            offset_in_bytes, type);
189   }
190   return addr;
191 }
192 
load_immediate(int x,BasicType type)193 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
194   LIR_Opr r = LIR_OprFact::illegalOpr;
195   if (type == T_LONG) {
196     r = LIR_OprFact::longConst(x);
197   } else if (type == T_INT) {
198     r = LIR_OprFact::intConst(x);
199   } else {
200     ShouldNotReachHere();
201   }
202   return r;
203 }
204 
increment_counter(address counter,BasicType type,int step)205 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
206   LIR_Opr pointer = new_pointer_register();
207   __ move(LIR_OprFact::intptrConst(counter), pointer);
208   LIR_Address* addr = new LIR_Address(pointer, type);
209   increment_counter(addr, step);
210 }
211 
increment_counter(LIR_Address * addr,int step)212 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
213   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
214 }
215 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)216 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
217   LIR_Opr scratch = FrameMap::Z_R1_opr;
218   __ load(new LIR_Address(base, disp, T_INT), scratch, info);
219   __ cmp(condition, scratch, c);
220 }
221 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)222 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
223   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
224 }
225 
strength_reduce_multiply(LIR_Opr left,int c,LIR_Opr result,LIR_Opr tmp)226 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
227   if (tmp->is_valid()) {
228     if (is_power_of_2(c + 1)) {
229       __ move(left, tmp);
230       __ shift_left(left, log2_int(c + 1), left);
231       __ sub(left, tmp, result);
232       return true;
233     } else if (is_power_of_2(c - 1)) {
234       __ move(left, tmp);
235       __ shift_left(left, log2_int(c - 1), left);
236       __ add(left, tmp, result);
237       return true;
238     }
239   }
240   return false;
241 }
242 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)243 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
244   BasicType type = item->type();
245   __ store(item, new LIR_Address(FrameMap::Z_SP_opr, in_bytes(offset_from_sp), type));
246 }
247 
248 //----------------------------------------------------------------------
249 //             visitor functions
250 //----------------------------------------------------------------------
251 
array_store_check(LIR_Opr value,LIR_Opr array,CodeEmitInfo * store_check_info,ciMethod * profiled_method,int profiled_bci)252 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
253   LIR_Opr tmp1 = new_register(objectType);
254   LIR_Opr tmp2 = new_register(objectType);
255   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
256   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
257 }
258 
do_MonitorEnter(MonitorEnter * x)259 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
260   assert(x->is_pinned(),"");
261   LIRItem obj(x->obj(), this);
262   obj.load_item();
263 
264   set_no_result(x);
265 
266   // "lock" stores the address of the monitor stack slot, so this is not an oop.
267   LIR_Opr lock = new_register(T_INT);
268 
269   CodeEmitInfo* info_for_exception = NULL;
270   if (x->needs_null_check()) {
271     info_for_exception = state_for (x);
272   }
273   // This CodeEmitInfo must not have the xhandlers because here the
274   // object is already locked (xhandlers expect object to be unlocked).
275   CodeEmitInfo* info = state_for (x, x->state(), true);
276   monitor_enter(obj.result(), lock, syncTempOpr(), LIR_OprFact::illegalOpr,
277                 x->monitor_no(), info_for_exception, info);
278 }
279 
do_MonitorExit(MonitorExit * x)280 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
281   assert(x->is_pinned(),"");
282 
283   LIRItem obj(x->obj(), this);
284   obj.dont_load_item();
285 
286   LIR_Opr lock = new_register(T_INT);
287   LIR_Opr obj_temp = new_register(T_INT);
288   set_no_result(x);
289   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
290 }
291 
292 // _ineg, _lneg, _fneg, _dneg
do_NegateOp(NegateOp * x)293 void LIRGenerator::do_NegateOp(NegateOp* x) {
294   LIRItem value(x->x(), this);
295   value.load_item();
296   LIR_Opr reg = rlock_result(x);
297   __ negate(value.result(), reg);
298 }
299 
300 // for _fadd, _fmul, _fsub, _fdiv, _frem
301 //     _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)302 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
303   LIRItem left(x->x(),  this);
304   LIRItem right(x->y(), this);
305   LIRItem* left_arg  = &left;
306   LIRItem* right_arg = &right;
307   assert(!left.is_stack(), "can't both be memory operands");
308   left.load_item();
309 
310   if (right.is_register() || right.is_constant()) {
311     right.load_item();
312   } else {
313     right.dont_load_item();
314   }
315 
316   if ((x->op() == Bytecodes::_frem) || (x->op() == Bytecodes::_drem)) {
317     address entry;
318     switch (x->op()) {
319     case Bytecodes::_frem:
320       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
321       break;
322     case Bytecodes::_drem:
323       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
324       break;
325     default:
326       ShouldNotReachHere();
327     }
328     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
329     set_result(x, result);
330   } else {
331     LIR_Opr reg = rlock(x);
332     LIR_Opr tmp = LIR_OprFact::illegalOpr;
333     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
334     set_result(x, reg);
335   }
336 }
337 
338 // for _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)339 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
340   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
341     // Use shifts if divisior is a power of 2 otherwise use DSGR instruction.
342     // Instruction: DSGR R1, R2
343     // input : R1+1: dividend   (R1, R1+1 designate a register pair, R1 must be even)
344     //         R2:   divisor
345     //
346     // output: R1+1: quotient
347     //         R1:   remainder
348     //
349     // Register selection: R1:   Z_R10
350     //                     R1+1: Z_R11
351     //                     R2:   to be chosen by register allocator (linear scan)
352 
353     // R1, and R1+1 will be destroyed.
354 
355     LIRItem right(x->y(), this);
356     LIRItem left(x->x() , this);   // Visit left second, so that the is_register test is valid.
357 
358     // Call state_for before load_item_force because state_for may
359     // force the evaluation of other instructions that are needed for
360     // correct debug info. Otherwise the live range of the fix
361     // register might be too long.
362     CodeEmitInfo* info = state_for (x);
363 
364     LIR_Opr result = rlock_result(x);
365     LIR_Opr result_reg = result;
366     LIR_Opr tmp = LIR_OprFact::illegalOpr;
367     LIR_Opr divisor_opr = right.result();
368     if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jlong())) {
369       left.load_item();
370       right.dont_load_item();
371     } else {
372       left.load_item_force(ldivInOpr());
373       right.load_item();
374 
375       // DSGR instruction needs register pair.
376       if (x->op() == Bytecodes::_ldiv) {
377         result_reg = ldivOutOpr();
378         tmp        = lremOutOpr();
379       } else {
380         result_reg = lremOutOpr();
381         tmp        = ldivOutOpr();
382       }
383     }
384 
385     if (!ImplicitDiv0Checks) {
386       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
387       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
388       // Idiv/irem cannot trap (passing info would generate an assertion).
389       info = NULL;
390     }
391 
392     if (x->op() == Bytecodes::_lrem) {
393       __ irem(left.result(), right.result(), result_reg, tmp, info);
394     } else if (x->op() == Bytecodes::_ldiv) {
395       __ idiv(left.result(), right.result(), result_reg, tmp, info);
396     } else {
397       ShouldNotReachHere();
398     }
399 
400     if (result_reg != result) {
401       __ move(result_reg, result);
402     }
403   } else {
404     LIRItem left(x->x(), this);
405     LIRItem right(x->y(), this);
406 
407     left.load_item();
408     right.load_nonconstant(32);
409     rlock_result(x);
410     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
411   }
412 }
413 
414 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)415 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
416   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
417     // Use shifts if divisior is a power of 2 otherwise use DSGFR instruction.
418     // Instruction: DSGFR R1, R2
419     // input : R1+1: dividend   (R1, R1+1 designate a register pair, R1 must be even)
420     //         R2:   divisor
421     //
422     // output: R1+1: quotient
423     //         R1:   remainder
424     //
425     // Register selection: R1:   Z_R10
426     //                     R1+1: Z_R11
427     //                     R2:   To be chosen by register allocator (linear scan).
428 
429     // R1, and R1+1 will be destroyed.
430 
431     LIRItem right(x->y(), this);
432     LIRItem left(x->x() , this);   // Visit left second, so that the is_register test is valid.
433 
434     // Call state_for before load_item_force because state_for may
435     // force the evaluation of other instructions that are needed for
436     // correct debug info. Otherwise the live range of the fix
437     // register might be too long.
438     CodeEmitInfo* info = state_for (x);
439 
440     LIR_Opr result = rlock_result(x);
441     LIR_Opr result_reg = result;
442     LIR_Opr tmp = LIR_OprFact::illegalOpr;
443     LIR_Opr divisor_opr = right.result();
444     if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jint())) {
445       left.load_item();
446       right.dont_load_item();
447     } else {
448       left.load_item_force(divInOpr());
449       right.load_item();
450 
451       // DSGFR instruction needs register pair.
452       if (x->op() == Bytecodes::_idiv) {
453         result_reg = divOutOpr();
454         tmp        = remOutOpr();
455       } else {
456         result_reg = remOutOpr();
457         tmp        = divOutOpr();
458       }
459     }
460 
461     if (!ImplicitDiv0Checks) {
462       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
463       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
464       // Idiv/irem cannot trap (passing info would generate an assertion).
465       info = NULL;
466     }
467 
468     if (x->op() == Bytecodes::_irem) {
469       __ irem(left.result(), right.result(), result_reg, tmp, info);
470     } else if (x->op() == Bytecodes::_idiv) {
471       __ idiv(left.result(), right.result(), result_reg, tmp, info);
472     } else {
473       ShouldNotReachHere();
474     }
475 
476     if (result_reg != result) {
477       __ move(result_reg, result);
478     }
479   } else {
480     LIRItem left(x->x(),  this);
481     LIRItem right(x->y(), this);
482     LIRItem* left_arg = &left;
483     LIRItem* right_arg = &right;
484     if (x->is_commutative() && left.is_stack() && right.is_register()) {
485       // swap them if left is real stack (or cached) and right is real register(not cached)
486       left_arg = &right;
487       right_arg = &left;
488     }
489 
490     left_arg->load_item();
491 
492     // Do not need to load right, as we can handle stack and constants.
493     if (x->op() == Bytecodes::_imul) {
494       bool use_tmp = false;
495       if (right_arg->is_constant()) {
496         int iconst = right_arg->get_jint_constant();
497         if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
498           use_tmp = true;
499         }
500       }
501       right_arg->dont_load_item();
502       LIR_Opr tmp = LIR_OprFact::illegalOpr;
503       if (use_tmp) {
504         tmp = new_register(T_INT);
505       }
506       rlock_result(x);
507 
508       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
509     } else {
510       right_arg->dont_load_item();
511       rlock_result(x);
512       LIR_Opr tmp = LIR_OprFact::illegalOpr;
513       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
514     }
515   }
516 }
517 
do_ArithmeticOp(ArithmeticOp * x)518 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
519   // If an operand with use count 1 is the left operand, then it is
520   // likely that no move for 2-operand-LIR-form is necessary.
521   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
522     x->swap_operands();
523   }
524 
525   ValueTag tag = x->type()->tag();
526   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
527   switch (tag) {
528     case floatTag:
529     case doubleTag: do_ArithmeticOp_FPU(x);  return;
530     case longTag:   do_ArithmeticOp_Long(x); return;
531     case intTag:    do_ArithmeticOp_Int(x);  return;
532     default:
533       ShouldNotReachHere();
534   }
535 }
536 
537 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)538 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
539   // count must always be in rcx
540   LIRItem value(x->x(), this);
541   LIRItem count(x->y(), this);
542 
543   ValueTag elemType = x->type()->tag();
544   bool must_load_count = !count.is_constant();
545   if (must_load_count) {
546     count.load_item();
547   } else {
548     count.dont_load_item();
549   }
550   value.load_item();
551   LIR_Opr reg = rlock_result(x);
552 
553   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
554 }
555 
556 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)557 void LIRGenerator::do_LogicOp(LogicOp* x) {
558   // IF an operand with use count 1 is the left operand, then it is
559   // likely that no move for 2-operand-LIR-form is necessary.
560   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
561     x->swap_operands();
562   }
563 
564   LIRItem left(x->x(), this);
565   LIRItem right(x->y(), this);
566 
567   left.load_item();
568   right.load_nonconstant(32);
569   LIR_Opr reg = rlock_result(x);
570 
571   logic_op(x->op(), reg, left.result(), right.result());
572 }
573 
574 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)575 void LIRGenerator::do_CompareOp(CompareOp* x) {
576   LIRItem left(x->x(), this);
577   LIRItem right(x->y(), this);
578   left.load_item();
579   right.load_item();
580   LIR_Opr reg = rlock_result(x);
581   if (x->x()->type()->is_float_kind()) {
582     Bytecodes::Code code = x->op();
583     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
584   } else if (x->x()->type()->tag() == longTag) {
585     __ lcmp2int(left.result(), right.result(), reg);
586   } else {
587     ShouldNotReachHere();
588   }
589 }
590 
atomic_cmpxchg(BasicType type,LIR_Opr addr,LIRItem & cmp_value,LIRItem & new_value)591 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
592   LIR_Opr t1 = LIR_OprFact::illegalOpr;
593   LIR_Opr t2 = LIR_OprFact::illegalOpr;
594   cmp_value.load_item();
595   new_value.load_item();
596   if (type == T_OBJECT) {
597     if (UseCompressedOops) {
598       t1 = new_register(T_OBJECT);
599       t2 = new_register(T_OBJECT);
600     }
601     __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
602   } else if (type == T_INT) {
603     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
604   } else if (type == T_LONG) {
605     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
606   } else {
607     ShouldNotReachHere();
608   }
609   // Generate conditional move of boolean result.
610   LIR_Opr result = new_register(T_INT);
611   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
612            result, type);
613   return result;
614 }
615 
atomic_xchg(BasicType type,LIR_Opr addr,LIRItem & value)616 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
617   Unimplemented(); // Currently not supported on this platform.
618   return LIR_OprFact::illegalOpr;
619 }
620 
atomic_add(BasicType type,LIR_Opr addr,LIRItem & value)621 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
622   LIR_Opr result = new_register(type);
623   value.load_item();
624   __ xadd(addr, value.result(), result, LIR_OprFact::illegalOpr);
625   return result;
626 }
627 
do_MathIntrinsic(Intrinsic * x)628 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
629   switch (x->id()) {
630     case vmIntrinsics::_dabs:
631     case vmIntrinsics::_dsqrt: {
632       assert(x->number_of_arguments() == 1, "wrong type");
633       LIRItem value(x->argument_at(0), this);
634       value.load_item();
635       LIR_Opr dst = rlock_result(x);
636 
637       switch (x->id()) {
638         case vmIntrinsics::_dsqrt: {
639           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
640           break;
641         }
642         case vmIntrinsics::_dabs: {
643           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
644           break;
645         }
646         default:
647           ShouldNotReachHere();
648       }
649       break;
650     }
651     case vmIntrinsics::_dsin:   // fall through
652     case vmIntrinsics::_dcos:   // fall through
653     case vmIntrinsics::_dtan:   // fall through
654     case vmIntrinsics::_dlog:   // fall through
655     case vmIntrinsics::_dlog10: // fall through
656     case vmIntrinsics::_dexp: {
657       assert(x->number_of_arguments() == 1, "wrong type");
658 
659       address runtime_entry = NULL;
660       switch (x->id()) {
661         case vmIntrinsics::_dsin:
662           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
663           break;
664         case vmIntrinsics::_dcos:
665           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
666           break;
667         case vmIntrinsics::_dtan:
668           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
669           break;
670         case vmIntrinsics::_dlog:
671           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
672           break;
673         case vmIntrinsics::_dlog10:
674           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
675           break;
676         case vmIntrinsics::_dexp:
677           runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
678           break;
679         default:
680           ShouldNotReachHere();
681       }
682 
683       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
684       set_result(x, result);
685       break;
686     }
687     case vmIntrinsics::_dpow: {
688       assert(x->number_of_arguments() == 2, "wrong type");
689       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
690       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
691       set_result(x, result);
692       break;
693     }
694     default:
695       break;
696   }
697 }
698 
do_ArrayCopy(Intrinsic * x)699 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
700   assert(x->number_of_arguments() == 5, "wrong type");
701 
702   // Copy stubs possibly call C code, e.g. G1 barriers, so we need to reserve room
703   // for the C ABI (see frame::z_abi_160).
704   BasicTypeArray sig; // Empty signature is precise enough.
705   frame_map()->c_calling_convention(&sig);
706 
707   // Make all state_for calls early since they can emit code.
708   CodeEmitInfo* info = state_for (x, x->state());
709 
710   LIRItem src(x->argument_at(0), this);
711   LIRItem src_pos(x->argument_at(1), this);
712   LIRItem dst(x->argument_at(2), this);
713   LIRItem dst_pos(x->argument_at(3), this);
714   LIRItem length(x->argument_at(4), this);
715 
716   // Operands for arraycopy must use fixed registers, otherwise
717   // LinearScan will fail allocation (because arraycopy always needs a
718   // call).
719 
720   src.load_item_force     (FrameMap::as_oop_opr(Z_ARG1));
721   src_pos.load_item_force (FrameMap::as_opr(Z_ARG2));
722   dst.load_item_force     (FrameMap::as_oop_opr(Z_ARG3));
723   dst_pos.load_item_force (FrameMap::as_opr(Z_ARG4));
724   length.load_item_force  (FrameMap::as_opr(Z_ARG5));
725 
726   LIR_Opr tmp =            FrameMap::as_opr(Z_R7);
727 
728   set_no_result(x);
729 
730   int flags;
731   ciArrayKlass* expected_type;
732   arraycopy_helper(x, &flags, &expected_type);
733 
734   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
735                length.result(), tmp, expected_type, flags, info); // does add_safepoint
736 }
737 
738 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
739 // _i2b, _i2c, _i2s
do_Convert(Convert * x)740 void LIRGenerator::do_Convert(Convert* x) {
741   LIRItem value(x->value(), this);
742 
743   value.load_item();
744   LIR_Opr reg = rlock_result(x);
745   __ convert(x->op(), value.result(), reg);
746 }
747 
do_NewInstance(NewInstance * x)748 void LIRGenerator::do_NewInstance(NewInstance* x) {
749   print_if_not_loaded(x);
750 
751   // This instruction can be deoptimized in the slow path : use
752   // Z_R2 as result register.
753   const LIR_Opr reg = result_register_for (x->type());
754 
755   CodeEmitInfo* info = state_for (x, x->state());
756   LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
757   LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
758   LIR_Opr tmp3 = reg;
759   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
760   LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
761   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
762   LIR_Opr result = rlock_result(x);
763   __ move(reg, result);
764 }
765 
do_NewTypeArray(NewTypeArray * x)766 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
767   CodeEmitInfo* info = state_for (x, x->state());
768 
769   LIRItem length(x->length(), this);
770   length.load_item();
771 
772   LIR_Opr reg = result_register_for (x->type());
773   LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
774   LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
775   LIR_Opr tmp3 = reg;
776   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
777   LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
778   LIR_Opr len = length.result();
779   BasicType elem_type = x->elt_type();
780 
781   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
782 
783   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
784   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
785 
786   LIR_Opr result = rlock_result(x);
787   __ move(reg, result);
788 }
789 
do_NewObjectArray(NewObjectArray * x)790 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
791   // Evaluate state_for early since it may emit code.
792   CodeEmitInfo* info = state_for (x, x->state());
793   // In case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
794   // and therefore provide the state before the parameters have been consumed.
795   CodeEmitInfo* patching_info = NULL;
796   if (!x->klass()->is_loaded() || PatchALot) {
797     patching_info = state_for (x, x->state_before());
798   }
799 
800   LIRItem length(x->length(), this);
801   length.load_item();
802 
803   const LIR_Opr reg = result_register_for (x->type());
804   LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr;
805   LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr;
806   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
807   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
808   LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr;
809   LIR_Opr len = length.result();
810 
811   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
812   ciKlass* obj = ciObjArrayKlass::make(x->klass());
813   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
814     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
815   }
816   klass2reg_with_patching(klass_reg, obj, patching_info);
817   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
818 
819   LIR_Opr result = rlock_result(x);
820   __ move(reg, result);
821 }
822 
do_NewMultiArray(NewMultiArray * x)823 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
824   Values* dims = x->dims();
825   int i = dims->length();
826   LIRItemList* items = new LIRItemList(i, i, NULL);
827   while (i-- > 0) {
828     LIRItem* size = new LIRItem(dims->at(i), this);
829     items->at_put(i, size);
830   }
831 
832   // Evaluate state_for early since it may emit code.
833   CodeEmitInfo* patching_info = NULL;
834   if (!x->klass()->is_loaded() || PatchALot) {
835     patching_info = state_for (x, x->state_before());
836 
837     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
838     // clone all handlers (NOTE: Usually this is handled transparently
839     // by the CodeEmitInfo cloning logic in CodeStub constructors but
840     // is done explicitly here because a stub isn't being used).
841     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
842   }
843   CodeEmitInfo* info = state_for (x, x->state());
844 
845   i = dims->length();
846   while (--i >= 0) {
847     LIRItem* size = items->at(i);
848     size->load_nonconstant(32);
849     // FrameMap::_reserved_argument_area_size includes the dimensions varargs, because
850     // it's initialized to hir()->max_stack() when the FrameMap is created.
851     store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame));
852   }
853 
854   LIR_Opr klass_reg = FrameMap::Z_R3_metadata_opr;
855   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
856 
857   LIR_Opr rank = FrameMap::Z_R4_opr;
858   __ move(LIR_OprFact::intConst(x->rank()), rank);
859   LIR_Opr varargs = FrameMap::Z_R5_opr;
860   __ leal(LIR_OprFact::address(new LIR_Address(FrameMap::Z_SP_opr, FrameMap::first_available_sp_in_frame, T_INT)),
861           varargs);
862   LIR_OprList* args = new LIR_OprList(3);
863   args->append(klass_reg);
864   args->append(rank);
865   args->append(varargs);
866   LIR_Opr reg = result_register_for (x->type());
867   __ call_runtime(Runtime1::entry_for (Runtime1::new_multi_array_id),
868                   LIR_OprFact::illegalOpr,
869                   reg, args, info);
870 
871   LIR_Opr result = rlock_result(x);
872   __ move(reg, result);
873 }
874 
do_BlockBegin(BlockBegin * x)875 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
876   // Nothing to do.
877 }
878 
do_CheckCast(CheckCast * x)879 void LIRGenerator::do_CheckCast(CheckCast* x) {
880   LIRItem obj(x->obj(), this);
881 
882   CodeEmitInfo* patching_info = NULL;
883   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
884     // Must do this before locking the destination register as an oop register,
885     // and before the obj is loaded (the latter is for deoptimization).
886     patching_info = state_for (x, x->state_before());
887   }
888   obj.load_item();
889 
890   // info for exceptions
891   CodeEmitInfo* info_for_exception =
892       (x->needs_exception_state() ? state_for(x) :
893                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
894 
895   CodeStub* stub;
896   if (x->is_incompatible_class_change_check()) {
897     assert(patching_info == NULL, "can't patch this");
898     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
899   } else if (x->is_invokespecial_receiver_check()) {
900     assert(patching_info == NULL, "can't patch this");
901     stub = new DeoptimizeStub(info_for_exception,
902                               Deoptimization::Reason_class_check,
903                               Deoptimization::Action_none);
904   } else {
905     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
906   }
907   LIR_Opr reg = rlock_result(x);
908   LIR_Opr tmp1 = new_register(objectType);
909   LIR_Opr tmp2 = new_register(objectType);
910   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
911   __ checkcast(reg, obj.result(), x->klass(),
912                tmp1, tmp2, tmp3,
913                x->direct_compare(), info_for_exception, patching_info, stub,
914                x->profiled_method(), x->profiled_bci());
915 }
916 
917 
do_InstanceOf(InstanceOf * x)918 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
919   LIRItem obj(x->obj(), this);
920   CodeEmitInfo* patching_info = NULL;
921   if (!x->klass()->is_loaded() || PatchALot) {
922     patching_info = state_for (x, x->state_before());
923   }
924   // Ensure the result register is not the input register because the
925   // result is initialized before the patching safepoint.
926   obj.load_item();
927   LIR_Opr out_reg = rlock_result(x);
928   LIR_Opr tmp1 = new_register(objectType);
929   LIR_Opr tmp2 = new_register(objectType);
930   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
931   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
932                 x->direct_compare(), patching_info,
933                 x->profiled_method(), x->profiled_bci());
934 }
935 
936 
do_If(If * x)937 void LIRGenerator::do_If (If* x) {
938   assert(x->number_of_sux() == 2, "inconsistency");
939   ValueTag tag = x->x()->type()->tag();
940   bool is_safepoint = x->is_safepoint();
941 
942   If::Condition cond = x->cond();
943 
944   LIRItem xitem(x->x(), this);
945   LIRItem yitem(x->y(), this);
946   LIRItem* xin = &xitem;
947   LIRItem* yin = &yitem;
948 
949   if (tag == longTag) {
950     // For longs, only conditions "eql", "neq", "lss", "geq" are valid;
951     // mirror for other conditions.
952     if (cond == If::gtr || cond == If::leq) {
953       cond = Instruction::mirror(cond);
954       xin = &yitem;
955       yin = &xitem;
956     }
957     xin->set_destroys_register();
958   }
959   xin->load_item();
960   // TODO: don't load long constants != 0L
961   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
962     // inline long zero
963     yin->dont_load_item();
964   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
965     // Longs cannot handle constants at right side.
966     yin->load_item();
967   } else {
968     yin->dont_load_item();
969   }
970 
971   LIR_Opr left = xin->result();
972   LIR_Opr right = yin->result();
973 
974   set_no_result(x);
975 
976   // Add safepoint before generating condition code so it can be recomputed.
977   if (x->is_safepoint()) {
978     // Increment backedge counter if needed.
979     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
980         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
981     // Use safepoint_poll_register() instead of LIR_OprFact::illegalOpr.
982     __ safepoint(safepoint_poll_register(), state_for (x, x->state_before()));
983   }
984 
985   __ cmp(lir_cond(cond), left, right);
986   // Generate branch profiling. Profiling code doesn't kill flags.
987   profile_branch(x, cond);
988   move_to_phi(x->state());
989   if (x->x()->type()->is_float_kind()) {
990     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
991   } else {
992     __ branch(lir_cond(cond), right->type(), x->tsux());
993   }
994   assert(x->default_sux() == x->fsux(), "wrong destination above");
995   __ jump(x->default_sux());
996 }
997 
getThreadPointer()998 LIR_Opr LIRGenerator::getThreadPointer() {
999   return FrameMap::as_pointer_opr(Z_thread);
1000 }
1001 
trace_block_entry(BlockBegin * block)1002 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1003   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::Z_R2_opr);
1004   LIR_OprList* args = new LIR_OprList(1);
1005   args->append(FrameMap::Z_R2_opr);
1006   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1007   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1008 }
1009 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1010 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1011                                         CodeEmitInfo* info) {
1012   __ store(value, address, info);
1013 }
1014 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1015 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1016                                        CodeEmitInfo* info) {
1017   __ load(address, result, info);
1018 }
1019 
do_update_CRC32(Intrinsic * x)1020 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1021   assert(UseCRC32Intrinsics, "or should not be here");
1022   LIR_Opr result = rlock_result(x);
1023 
1024   switch (x->id()) {
1025     case vmIntrinsics::_updateCRC32: {
1026       LIRItem crc(x->argument_at(0), this);
1027       LIRItem val(x->argument_at(1), this);
1028       // Registers destroyed by update_crc32.
1029       crc.set_destroys_register();
1030       val.set_destroys_register();
1031       crc.load_item();
1032       val.load_item();
1033       __ update_crc32(crc.result(), val.result(), result);
1034       break;
1035     }
1036     case vmIntrinsics::_updateBytesCRC32:
1037     case vmIntrinsics::_updateByteBufferCRC32: {
1038       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1039 
1040       LIRItem crc(x->argument_at(0), this);
1041       LIRItem buf(x->argument_at(1), this);
1042       LIRItem off(x->argument_at(2), this);
1043       LIRItem len(x->argument_at(3), this);
1044       buf.load_item();
1045       off.load_nonconstant();
1046 
1047       LIR_Opr index = off.result();
1048       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1049       if (off.result()->is_constant()) {
1050         index = LIR_OprFact::illegalOpr;
1051         offset += off.result()->as_jint();
1052       }
1053       LIR_Opr base_op = buf.result();
1054 
1055       if (index->is_valid()) {
1056         LIR_Opr tmp = new_register(T_LONG);
1057         __ convert(Bytecodes::_i2l, index, tmp);
1058         index = tmp;
1059       }
1060 
1061       LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE);
1062 
1063       BasicTypeList signature(3);
1064       signature.append(T_INT);
1065       signature.append(T_ADDRESS);
1066       signature.append(T_INT);
1067       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1068       const LIR_Opr result_reg = result_register_for (x->type());
1069 
1070       LIR_Opr arg1 = cc->at(0);
1071       LIR_Opr arg2 = cc->at(1);
1072       LIR_Opr arg3 = cc->at(2);
1073 
1074       crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits.
1075       __ leal(LIR_OprFact::address(a), arg2);
1076       len.load_item_force(arg3); // We skip int->long conversion here, because CRC32 stub expects int.
1077 
1078       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args());
1079       __ move(result_reg, result);
1080       break;
1081     }
1082     default: {
1083       ShouldNotReachHere();
1084     }
1085   }
1086 }
1087 
do_update_CRC32C(Intrinsic * x)1088 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1089   assert(UseCRC32CIntrinsics, "or should not be here");
1090   LIR_Opr result = rlock_result(x);
1091 
1092   switch (x->id()) {
1093     case vmIntrinsics::_updateBytesCRC32C:
1094     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1095       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1096 
1097       LIRItem crc(x->argument_at(0), this);
1098       LIRItem buf(x->argument_at(1), this);
1099       LIRItem off(x->argument_at(2), this);
1100       LIRItem end(x->argument_at(3), this);
1101       buf.load_item();
1102       off.load_nonconstant();
1103       end.load_nonconstant();
1104 
1105       // len = end - off
1106       LIR_Opr len  = end.result();
1107       LIR_Opr tmpA = new_register(T_INT);
1108       LIR_Opr tmpB = new_register(T_INT);
1109       __ move(end.result(), tmpA);
1110       __ move(off.result(), tmpB);
1111       __ sub(tmpA, tmpB, tmpA);
1112       len = tmpA;
1113 
1114       LIR_Opr index = off.result();
1115       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1116       if (off.result()->is_constant()) {
1117         index = LIR_OprFact::illegalOpr;
1118         offset += off.result()->as_jint();
1119       }
1120       LIR_Opr base_op = buf.result();
1121 
1122       if (index->is_valid()) {
1123         LIR_Opr tmp = new_register(T_LONG);
1124         __ convert(Bytecodes::_i2l, index, tmp);
1125         index = tmp;
1126       }
1127 
1128       LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE);
1129 
1130       BasicTypeList signature(3);
1131       signature.append(T_INT);
1132       signature.append(T_ADDRESS);
1133       signature.append(T_INT);
1134       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1135       const LIR_Opr result_reg = result_register_for (x->type());
1136 
1137       LIR_Opr arg1 = cc->at(0);
1138       LIR_Opr arg2 = cc->at(1);
1139       LIR_Opr arg3 = cc->at(2);
1140 
1141       crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32C stub doesn't care about high bits.
1142       __ leal(LIR_OprFact::address(a), arg2);
1143       __ move(len, cc->at(2));   // We skip int->long conversion here, because CRC32C stub expects int.
1144 
1145       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), LIR_OprFact::illegalOpr, result_reg, cc->args());
1146       __ move(result_reg, result);
1147       break;
1148     }
1149     default: {
1150       ShouldNotReachHere();
1151     }
1152   }
1153 }
1154 
do_FmaIntrinsic(Intrinsic * x)1155 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1156   assert(x->number_of_arguments() == 3, "wrong type");
1157   assert(UseFMA, "Needs FMA instructions support.");
1158   LIRItem value(x->argument_at(0), this);
1159   LIRItem value1(x->argument_at(1), this);
1160   LIRItem value2(x->argument_at(2), this);
1161 
1162   value2.set_destroys_register();
1163 
1164   value.load_item();
1165   value1.load_item();
1166   value2.load_item();
1167 
1168   LIR_Opr calc_input = value.result();
1169   LIR_Opr calc_input1 = value1.result();
1170   LIR_Opr calc_input2 = value2.result();
1171   LIR_Opr calc_result = rlock_result(x);
1172 
1173   switch (x->id()) {
1174   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1175   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1176   default:                    ShouldNotReachHere();
1177   }
1178 }
1179 
do_vectorizedMismatch(Intrinsic * x)1180 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1181   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1182 }
1183