1 /*
2  * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2018, SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "registerSaver_s390.hpp"
29 #include "gc/g1/g1CardTable.hpp"
30 #include "gc/g1/g1BarrierSet.hpp"
31 #include "gc/g1/g1BarrierSetAssembler.hpp"
32 #include "gc/g1/g1BarrierSetRuntime.hpp"
33 #include "gc/g1/g1DirtyCardQueue.hpp"
34 #include "gc/g1/g1SATBMarkQueueSet.hpp"
35 #include "gc/g1/g1ThreadLocalData.hpp"
36 #include "gc/g1/heapRegion.hpp"
37 #include "interpreter/interp_masm.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #ifdef COMPILER1
40 #include "c1/c1_LIRAssembler.hpp"
41 #include "c1/c1_MacroAssembler.hpp"
42 #include "gc/g1/c1/g1BarrierSetC1.hpp"
43 #endif
44 
45 #define __ masm->
46 
47 #define BLOCK_COMMENT(str) if (PrintAssembly) __ block_comment(str)
48 
gen_write_ref_array_pre_barrier(MacroAssembler * masm,DecoratorSet decorators,Register addr,Register count)49 void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
50                                                             Register addr, Register count) {
51   bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0;
52 
53   // With G1, don't generate the call if we statically know that the target is uninitialized.
54   if (!dest_uninitialized) {
55     // Is marking active?
56     Label filtered;
57     assert_different_registers(addr,  Z_R0_scratch);  // would be destroyed by push_frame()
58     assert_different_registers(count, Z_R0_scratch);  // would be destroyed by push_frame()
59     Register Rtmp1 = Z_R0_scratch;
60     const int active_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
61     if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
62       __ load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
63     } else {
64       guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
65       __ load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
66     }
67     __ z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
68 
69     RegisterSaver::save_live_registers(masm, RegisterSaver::arg_registers); // Creates frame.
70 
71     if (UseCompressedOops) {
72       __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_narrow_oop_entry), addr, count);
73     } else {
74       __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_oop_entry), addr, count);
75     }
76 
77     RegisterSaver::restore_live_registers(masm, RegisterSaver::arg_registers);
78 
79     __ bind(filtered);
80   }
81 }
82 
gen_write_ref_array_post_barrier(MacroAssembler * masm,DecoratorSet decorators,Register addr,Register count,bool do_return)83 void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
84                                                              Register addr, Register count, bool do_return) {
85   address entry_point = CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_post_entry);
86   if (!do_return) {
87     assert_different_registers(addr,  Z_R0_scratch);  // would be destroyed by push_frame()
88     assert_different_registers(count, Z_R0_scratch);  // would be destroyed by push_frame()
89     RegisterSaver::save_live_registers(masm, RegisterSaver::arg_registers); // Creates frame.
90     __ call_VM_leaf(entry_point, addr, count);
91     RegisterSaver::restore_live_registers(masm, RegisterSaver::arg_registers);
92   } else {
93     // Tail call: call c and return to stub caller.
94     __ lgr_if_needed(Z_ARG1, addr);
95     __ lgr_if_needed(Z_ARG2, count);
96     __ load_const(Z_R1, entry_point);
97     __ z_br(Z_R1); // Branch without linking, callee will return to stub caller.
98   }
99 }
100 
load_at(MacroAssembler * masm,DecoratorSet decorators,BasicType type,const Address & src,Register dst,Register tmp1,Register tmp2,Label * L_handle_null)101 void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
102                                     const Address& src, Register dst, Register tmp1, Register tmp2, Label *L_handle_null) {
103   bool on_oop = type == T_OBJECT || type == T_ARRAY;
104   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
105   bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
106   bool on_reference = on_weak || on_phantom;
107   Label done;
108   if (on_oop && on_reference && L_handle_null == NULL) { L_handle_null = &done; }
109   ModRefBarrierSetAssembler::load_at(masm, decorators, type, src, dst, tmp1, tmp2, L_handle_null);
110   if (on_oop && on_reference) {
111     // Generate the G1 pre-barrier code to log the value of
112     // the referent field in an SATB buffer.
113     g1_write_barrier_pre(masm, decorators | IS_NOT_NULL,
114                          NULL /* obj */,
115                          dst  /* pre_val */,
116                          noreg/* preserve */ ,
117                          tmp1, tmp2 /* tmp */,
118                          true /* pre_val_needed */);
119   }
120   __ bind(done);
121 }
122 
g1_write_barrier_pre(MacroAssembler * masm,DecoratorSet decorators,const Address * obj,Register Rpre_val,Register Rval,Register Rtmp1,Register Rtmp2,bool pre_val_needed)123 void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm, DecoratorSet decorators,
124                                                  const Address*  obj,
125                                                  Register        Rpre_val,      // Ideally, this is a non-volatile register.
126                                                  Register        Rval,          // Will be preserved.
127                                                  Register        Rtmp1,         // If Rpre_val is volatile, either Rtmp1
128                                                  Register        Rtmp2,         // or Rtmp2 has to be non-volatile.
129                                                  bool            pre_val_needed // Save Rpre_val across runtime call, caller uses it.
130                                                  ) {
131 
132   bool not_null  = (decorators & IS_NOT_NULL) != 0,
133        preloaded = obj == NULL;
134 
135   const Register Robj = obj ? obj->base() : noreg,
136                  Roff = obj ? obj->index() : noreg;
137   const int active_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
138   const int buffer_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
139   const int index_offset  = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
140   assert_different_registers(Rtmp1, Rtmp2, Z_R0_scratch); // None of the Rtmp<i> must be Z_R0!!
141   assert_different_registers(Robj, Z_R0_scratch);         // Used for addressing. Furthermore, push_frame destroys Z_R0!!
142   assert_different_registers(Rval, Z_R0_scratch);         // push_frame destroys Z_R0!!
143 
144   Label callRuntime, filtered;
145 
146   BLOCK_COMMENT("g1_write_barrier_pre {");
147 
148   // Is marking active?
149   // Note: value is loaded for test purposes only. No further use here.
150   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
151     __ load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
152   } else {
153     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
154     __ load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
155   }
156   __ z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
157 
158   assert(Rpre_val != noreg, "must have a real register");
159 
160 
161   // If an object is given, we need to load the previous value into Rpre_val.
162   if (obj) {
163     // Load the previous value...
164     if (UseCompressedOops) {
165       __ z_llgf(Rpre_val, *obj);
166     } else {
167       __ z_lg(Rpre_val, *obj);
168     }
169   }
170 
171   // Is the previous value NULL?
172   // If so, we don't need to record it and we're done.
173   // Note: pre_val is loaded, decompressed and stored (directly or via runtime call).
174   //       Register contents is preserved across runtime call if caller requests to do so.
175   if (preloaded && not_null) {
176 #ifdef ASSERT
177     __ z_ltgr(Rpre_val, Rpre_val);
178     __ asm_assert_ne("null oop not allowed (G1 pre)", 0x321); // Checked by caller.
179 #endif
180   } else {
181     __ z_ltgr(Rpre_val, Rpre_val);
182     __ z_bre(filtered); // previous value is NULL, so we don't need to record it.
183   }
184 
185   // Decode the oop now. We know it's not NULL.
186   if (Robj != noreg && UseCompressedOops) {
187     __ oop_decoder(Rpre_val, Rpre_val, /*maybeNULL=*/false);
188   }
189 
190   // OK, it's not filtered, so we'll need to call enqueue.
191 
192   // We can store the original value in the thread's buffer
193   // only if index > 0. Otherwise, we need runtime to handle.
194   // (The index field is typed as size_t.)
195   Register Rbuffer = Rtmp1, Rindex = Rtmp2;
196   assert_different_registers(Rbuffer, Rindex, Rpre_val);
197 
198   __ z_lg(Rbuffer, buffer_offset, Z_thread);
199 
200   __ load_and_test_long(Rindex, Address(Z_thread, index_offset));
201   __ z_bre(callRuntime); // If index == 0, goto runtime.
202 
203   __ add2reg(Rindex, -wordSize); // Decrement index.
204   __ z_stg(Rindex, index_offset, Z_thread);
205 
206   // Record the previous value.
207   __ z_stg(Rpre_val, 0, Rbuffer, Rindex);
208   __ z_bru(filtered);  // We are done.
209 
210   Rbuffer = noreg;  // end of life
211   Rindex  = noreg;  // end of life
212 
213   __ bind(callRuntime);
214 
215   // Save some registers (inputs and result) over runtime call
216   // by spilling them into the top frame.
217   if (Robj != noreg && Robj->is_volatile()) {
218     __ z_stg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
219   }
220   if (Roff != noreg && Roff->is_volatile()) {
221     __ z_stg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
222   }
223   if (Rval != noreg && Rval->is_volatile()) {
224     __ z_stg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
225   }
226 
227   // Save Rpre_val (result) over runtime call.
228   Register Rpre_save = Rpre_val;
229   if ((Rpre_val == Z_R0_scratch) || (pre_val_needed && Rpre_val->is_volatile())) {
230     guarantee(!Rtmp1->is_volatile() || !Rtmp2->is_volatile(), "oops!");
231     Rpre_save = !Rtmp1->is_volatile() ? Rtmp1 : Rtmp2;
232   }
233   __ lgr_if_needed(Rpre_save, Rpre_val);
234 
235   // Push frame to protect top frame with return pc and spilled register values.
236   __ save_return_pc();
237   __ push_frame_abi160(0); // Will use Z_R0 as tmp.
238 
239   // Rpre_val may be destroyed by push_frame().
240   __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), Rpre_save, Z_thread);
241 
242   __ pop_frame();
243   __ restore_return_pc();
244 
245   // Restore spilled values.
246   if (Robj != noreg && Robj->is_volatile()) {
247     __ z_lg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
248   }
249   if (Roff != noreg && Roff->is_volatile()) {
250     __ z_lg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
251   }
252   if (Rval != noreg && Rval->is_volatile()) {
253     __ z_lg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
254   }
255   if (pre_val_needed && Rpre_val->is_volatile()) {
256     __ lgr_if_needed(Rpre_val, Rpre_save);
257   }
258 
259   __ bind(filtered);
260   BLOCK_COMMENT("} g1_write_barrier_pre");
261 }
262 
g1_write_barrier_post(MacroAssembler * masm,DecoratorSet decorators,Register Rstore_addr,Register Rnew_val,Register Rtmp1,Register Rtmp2,Register Rtmp3)263 void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm, DecoratorSet decorators, Register Rstore_addr, Register Rnew_val,
264                                                   Register Rtmp1, Register Rtmp2, Register Rtmp3) {
265   bool not_null = (decorators & IS_NOT_NULL) != 0;
266 
267   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); // Most probably, Rnew_val == Rtmp3.
268 
269   Label callRuntime, filtered;
270 
271   CardTableBarrierSet* ct = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
272 
273   BLOCK_COMMENT("g1_write_barrier_post {");
274 
275   // Does store cross heap regions?
276   // It does if the two addresses specify different grain addresses.
277   if (VM_Version::has_DistinctOpnds()) {
278     __ z_xgrk(Rtmp1, Rstore_addr, Rnew_val);
279   } else {
280     __ z_lgr(Rtmp1, Rstore_addr);
281     __ z_xgr(Rtmp1, Rnew_val);
282   }
283   __ z_srag(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
284   __ z_bre(filtered);
285 
286   // Crosses regions, storing NULL?
287   if (not_null) {
288 #ifdef ASSERT
289     __ z_ltgr(Rnew_val, Rnew_val);
290     __ asm_assert_ne("null oop not allowed (G1 post)", 0x322); // Checked by caller.
291 #endif
292   } else {
293     __ z_ltgr(Rnew_val, Rnew_val);
294     __ z_bre(filtered);
295   }
296 
297   Rnew_val = noreg; // end of lifetime
298 
299   // Storing region crossing non-NULL, is card already dirty?
300   assert_different_registers(Rtmp1, Rtmp2, Rtmp3);
301   // Make sure not to use Z_R0 for any of these registers.
302   Register Rcard_addr = (Rtmp1 != Z_R0_scratch) ? Rtmp1 : Rtmp3;
303   Register Rbase      = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp3;
304 
305   // calculate address of card
306   __ load_const_optimized(Rbase, (address)ct->card_table()->byte_map_base());      // Card table base.
307   __ z_srlg(Rcard_addr, Rstore_addr, CardTable::card_shift);         // Index into card table.
308   __ z_algr(Rcard_addr, Rbase);                                      // Explicit calculation needed for cli.
309   Rbase = noreg; // end of lifetime
310 
311   // Filter young.
312   __ z_cli(0, Rcard_addr, G1CardTable::g1_young_card_val());
313   __ z_bre(filtered);
314 
315   // Check the card value. If dirty, we're done.
316   // This also avoids false sharing of the (already dirty) card.
317   __ z_sync(); // Required to support concurrent cleaning.
318   __ z_cli(0, Rcard_addr, G1CardTable::dirty_card_val()); // Reload after membar.
319   __ z_bre(filtered);
320 
321   // Storing a region crossing, non-NULL oop, card is clean.
322   // Dirty card and log.
323   __ z_mvi(0, Rcard_addr, G1CardTable::dirty_card_val());
324 
325   Register Rcard_addr_x = Rcard_addr;
326   Register Rqueue_index = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp1;
327   Register Rqueue_buf   = (Rtmp3 != Z_R0_scratch) ? Rtmp3 : Rtmp1;
328   const int qidx_off    = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
329   const int qbuf_off    = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
330   if ((Rcard_addr == Rqueue_buf) || (Rcard_addr == Rqueue_index)) {
331     Rcard_addr_x = Z_R0_scratch;  // Register shortage. We have to use Z_R0.
332   }
333   __ lgr_if_needed(Rcard_addr_x, Rcard_addr);
334 
335   __ load_and_test_long(Rqueue_index, Address(Z_thread, qidx_off));
336   __ z_bre(callRuntime); // Index == 0 then jump to runtime.
337 
338   __ z_lg(Rqueue_buf, qbuf_off, Z_thread);
339 
340   __ add2reg(Rqueue_index, -wordSize); // Decrement index.
341   __ z_stg(Rqueue_index, qidx_off, Z_thread);
342 
343   __ z_stg(Rcard_addr_x, 0, Rqueue_index, Rqueue_buf); // Store card.
344   __ z_bru(filtered);
345 
346   __ bind(callRuntime);
347 
348   // TODO: do we need a frame? Introduced to be on the safe side.
349   bool needs_frame = true;
350   __ lgr_if_needed(Rcard_addr, Rcard_addr_x); // copy back asap. push_frame will destroy Z_R0_scratch!
351 
352   // VM call need frame to access(write) O register.
353   if (needs_frame) {
354     __ save_return_pc();
355     __ push_frame_abi160(0); // Will use Z_R0 as tmp on old CPUs.
356   }
357 
358   // Save the live input values.
359   __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), Rcard_addr, Z_thread);
360 
361   if (needs_frame) {
362     __ pop_frame();
363     __ restore_return_pc();
364   }
365 
366   __ bind(filtered);
367 
368   BLOCK_COMMENT("} g1_write_barrier_post");
369 }
370 
oop_store_at(MacroAssembler * masm,DecoratorSet decorators,BasicType type,const Address & dst,Register val,Register tmp1,Register tmp2,Register tmp3)371 void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
372                                          const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
373   bool is_array = (decorators & IS_ARRAY) != 0;
374   bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
375   bool precise = is_array || on_anonymous;
376   // Load and record the previous value.
377   g1_write_barrier_pre(masm, decorators, &dst, tmp3, val, tmp1, tmp2, false);
378 
379   BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
380 
381   // No need for post barrier if storing NULL
382   if (val != noreg) {
383     const Register base = dst.base(),
384                    idx  = dst.index();
385     const intptr_t disp = dst.disp();
386     if (precise && (disp != 0 || idx != noreg)) {
387       __ add2reg_with_index(base, disp, idx, base);
388     }
389     g1_write_barrier_post(masm, decorators, base, val, tmp1, tmp2, tmp3);
390   }
391 }
392 
resolve_jobject(MacroAssembler * masm,Register value,Register tmp1,Register tmp2)393 void G1BarrierSetAssembler::resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2) {
394   NearLabel Ldone, Lnot_weak;
395   __ z_ltgr(tmp1, value);
396   __ z_bre(Ldone);          // Use NULL result as-is.
397 
398   __ z_nill(value, ~JNIHandles::weak_tag_mask);
399   __ z_lg(value, 0, value); // Resolve (untagged) jobject.
400 
401   __ z_tmll(tmp1, JNIHandles::weak_tag_mask); // Test for jweak tag.
402   __ z_braz(Lnot_weak);
403   __ verify_oop(value);
404   DecoratorSet decorators = IN_NATIVE | ON_PHANTOM_OOP_REF;
405   g1_write_barrier_pre(masm, decorators, (const Address*)NULL, value, noreg, tmp1, tmp2, true);
406   __ bind(Lnot_weak);
407   __ verify_oop(value);
408   __ bind(Ldone);
409 }
410 
411 #ifdef COMPILER1
412 
413 #undef __
414 #define __ ce->masm()->
415 
gen_pre_barrier_stub(LIR_Assembler * ce,G1PreBarrierStub * stub)416 void G1BarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub) {
417   G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
418   // At this point we know that marking is in progress.
419   // If do_load() is true then we have to emit the
420   // load of the previous value; otherwise it has already
421   // been loaded into _pre_val.
422   __ bind(*stub->entry());
423   ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots.
424   assert(stub->pre_val()->is_register(), "Precondition.");
425 
426   Register pre_val_reg = stub->pre_val()->as_register();
427 
428   if (stub->do_load()) {
429     ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/);
430   }
431 
432   __ z_ltgr(Z_R1_scratch, pre_val_reg); // Pass oop in Z_R1_scratch to Runtime1::g1_pre_barrier_slow_id.
433   __ branch_optimized(Assembler::bcondZero, *stub->continuation());
434   ce->emit_call_c(bs->pre_barrier_c1_runtime_code_blob()->code_begin());
435   __ branch_optimized(Assembler::bcondAlways, *stub->continuation());
436 }
437 
gen_post_barrier_stub(LIR_Assembler * ce,G1PostBarrierStub * stub)438 void G1BarrierSetAssembler::gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub) {
439   G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
440   __ bind(*stub->entry());
441   ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots.
442   assert(stub->addr()->is_register(), "Precondition.");
443   assert(stub->new_val()->is_register(), "Precondition.");
444   Register new_val_reg = stub->new_val()->as_register();
445   __ z_ltgr(new_val_reg, new_val_reg);
446   __ branch_optimized(Assembler::bcondZero, *stub->continuation());
447   __ z_lgr(Z_R1_scratch, stub->addr()->as_pointer_register());
448   ce->emit_call_c(bs->post_barrier_c1_runtime_code_blob()->code_begin());
449   __ branch_optimized(Assembler::bcondAlways, *stub->continuation());
450 }
451 
452 #undef __
453 
454 #define __ sasm->
455 
save_volatile_registers(StubAssembler * sasm,Register return_pc=Z_R14)456 static OopMap* save_volatile_registers(StubAssembler* sasm, Register return_pc = Z_R14) {
457   __ block_comment("save_volatile_registers");
458   RegisterSaver::RegisterSet reg_set = RegisterSaver::all_volatile_registers;
459   int frame_size_in_slots = RegisterSaver::live_reg_frame_size(reg_set) / VMRegImpl::stack_slot_size;
460   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
461   return RegisterSaver::save_live_registers(sasm, reg_set, return_pc);
462 }
463 
restore_volatile_registers(StubAssembler * sasm)464 static void restore_volatile_registers(StubAssembler* sasm) {
465   __ block_comment("restore_volatile_registers");
466   RegisterSaver::RegisterSet reg_set = RegisterSaver::all_volatile_registers;
467   RegisterSaver::restore_live_registers(sasm, reg_set);
468 }
469 
generate_c1_pre_barrier_runtime_stub(StubAssembler * sasm)470 void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
471   // Z_R1_scratch: previous value of memory
472 
473   BarrierSet* bs = BarrierSet::barrier_set();
474   __ set_info("g1_pre_barrier_slow_id", false);
475 
476   Register pre_val = Z_R1_scratch;
477   Register tmp  = Z_R6; // Must be non-volatile because it is used to save pre_val.
478   Register tmp2 = Z_R7;
479 
480   Label refill, restart, marking_not_active;
481   int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
482   int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
483   int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
484 
485   // Save tmp registers (see assertion in G1PreBarrierStub::emit_code()).
486   __ z_stg(tmp,  0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
487   __ z_stg(tmp2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
488 
489   // Is marking still active?
490   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
491     __ load_and_test_int(tmp, Address(Z_thread, satb_q_active_byte_offset));
492   } else {
493     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
494     __ load_and_test_byte(tmp, Address(Z_thread, satb_q_active_byte_offset));
495   }
496   __ z_bre(marking_not_active); // Activity indicator is zero, so there is no marking going on currently.
497 
498   __ bind(restart);
499   // Load the index into the SATB buffer. SATBMarkQueue::_index is a
500   // size_t so ld_ptr is appropriate.
501   __ z_ltg(tmp, satb_q_index_byte_offset, Z_R0, Z_thread);
502 
503   // index == 0?
504   __ z_brz(refill);
505 
506   __ z_lg(tmp2, satb_q_buf_byte_offset, Z_thread);
507   __ add2reg(tmp, -oopSize);
508 
509   __ z_stg(pre_val, 0, tmp, tmp2); // [_buf + index] := <address_of_card>
510   __ z_stg(tmp, satb_q_index_byte_offset, Z_thread);
511 
512   __ bind(marking_not_active);
513   // Restore tmp registers (see assertion in G1PreBarrierStub::emit_code()).
514   __ z_lg(tmp,  0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
515   __ z_lg(tmp2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
516   __ z_br(Z_R14);
517 
518   __ bind(refill);
519   save_volatile_registers(sasm);
520   __ z_lgr(tmp, pre_val); // save pre_val
521   __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1SATBMarkQueueSet::handle_zero_index_for_thread),
522                   Z_thread);
523   __ z_lgr(pre_val, tmp); // restore pre_val
524   restore_volatile_registers(sasm);
525   __ z_bru(restart);
526 }
527 
generate_c1_post_barrier_runtime_stub(StubAssembler * sasm)528 void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler* sasm) {
529   // Z_R1_scratch: oop address, address of updated memory slot
530 
531   BarrierSet* bs = BarrierSet::barrier_set();
532   __ set_info("g1_post_barrier_slow_id", false);
533 
534   Register addr_oop  = Z_R1_scratch;
535   Register addr_card = Z_R1_scratch;
536   Register r1        = Z_R6; // Must be saved/restored.
537   Register r2        = Z_R7; // Must be saved/restored.
538   Register cardtable = r1;   // Must be non-volatile, because it is used to save addr_card.
539   CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
540   CardTable* ct = ctbs->card_table();
541   CardTable::CardValue* byte_map_base = ct->byte_map_base();
542 
543   // Save registers used below (see assertion in G1PreBarrierStub::emit_code()).
544   __ z_stg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
545 
546   Label not_already_dirty, restart, refill, young_card;
547 
548   // Calculate address of card corresponding to the updated oop slot.
549   AddressLiteral rs(byte_map_base);
550   __ z_srlg(addr_card, addr_oop, CardTable::card_shift);
551   addr_oop = noreg; // dead now
552   __ load_const_optimized(cardtable, rs); // cardtable := <card table base>
553   __ z_agr(addr_card, cardtable); // addr_card := addr_oop>>card_shift + cardtable
554 
555   __ z_cli(0, addr_card, (int)G1CardTable::g1_young_card_val());
556   __ z_bre(young_card);
557 
558   __ z_sync(); // Required to support concurrent cleaning.
559 
560   __ z_cli(0, addr_card, (int)CardTable::dirty_card_val());
561   __ z_brne(not_already_dirty);
562 
563   __ bind(young_card);
564   // We didn't take the branch, so we're already dirty: restore
565   // used registers and return.
566   __ z_lg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
567   __ z_br(Z_R14);
568 
569   // Not dirty.
570   __ bind(not_already_dirty);
571 
572   // First, dirty it: [addr_card] := 0
573   __ z_mvi(0, addr_card, CardTable::dirty_card_val());
574 
575   Register idx = cardtable; // Must be non-volatile, because it is used to save addr_card.
576   Register buf = r2;
577   cardtable = noreg; // now dead
578 
579   // Save registers used below (see assertion in G1PreBarrierStub::emit_code()).
580   __ z_stg(r2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
581 
582   ByteSize dirty_card_q_index_byte_offset = G1ThreadLocalData::dirty_card_queue_index_offset();
583   ByteSize dirty_card_q_buf_byte_offset = G1ThreadLocalData::dirty_card_queue_buffer_offset();
584 
585   __ bind(restart);
586 
587   // Get the index into the update buffer. G1DirtyCardQueue::_index is
588   // a size_t so z_ltg is appropriate here.
589   __ z_ltg(idx, Address(Z_thread, dirty_card_q_index_byte_offset));
590 
591   // index == 0?
592   __ z_brz(refill);
593 
594   __ z_lg(buf, Address(Z_thread, dirty_card_q_buf_byte_offset));
595   __ add2reg(idx, -oopSize);
596 
597   __ z_stg(addr_card, 0, idx, buf); // [_buf + index] := <address_of_card>
598   __ z_stg(idx, Address(Z_thread, dirty_card_q_index_byte_offset));
599   // Restore killed registers and return.
600   __ z_lg(r1, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
601   __ z_lg(r2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
602   __ z_br(Z_R14);
603 
604   __ bind(refill);
605   save_volatile_registers(sasm);
606   __ z_lgr(idx, addr_card); // Save addr_card, tmp3 must be non-volatile.
607   __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1DirtyCardQueueSet::handle_zero_index_for_thread),
608                                    Z_thread);
609   __ z_lgr(addr_card, idx);
610   restore_volatile_registers(sasm); // Restore addr_card.
611   __ z_bru(restart);
612 }
613 
614 #undef __
615 
616 #endif // COMPILER1
617