1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "asm/assembler.hpp"
28 #include "asm/assembler.inline.hpp"
29 #include "compiler/disassembler.hpp"
30 #include "gc/shared/barrierSet.hpp"
31 #include "gc/shared/barrierSetAssembler.hpp"
32 #include "gc/shared/collectedHeap.inline.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "memory/universe.hpp"
36 #include "oops/accessDecorators.hpp"
37 #include "oops/compressedOops.inline.hpp"
38 #include "oops/klass.inline.hpp"
39 #include "prims/methodHandles.hpp"
40 #include "runtime/biasedLocking.hpp"
41 #include "runtime/flags/flagSetting.hpp"
42 #include "runtime/interfaceSupport.inline.hpp"
43 #include "runtime/objectMonitor.hpp"
44 #include "runtime/os.hpp"
45 #include "runtime/safepoint.hpp"
46 #include "runtime/safepointMechanism.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/thread.hpp"
50 #include "utilities/macros.hpp"
51 #include "crc32c.h"
52 #ifdef COMPILER2
53 #include "opto/intrinsicnode.hpp"
54 #endif
55 
56 #ifdef PRODUCT
57 #define BLOCK_COMMENT(str) /* nothing */
58 #define STOP(error) stop(error)
59 #else
60 #define BLOCK_COMMENT(str) block_comment(str)
61 #define STOP(error) block_comment(error); stop(error)
62 #endif
63 
64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
65 
66 #ifdef ASSERT
pd_check_instruction_mark()67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
68 #endif
69 
70 static Assembler::Condition reverse[] = {
71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
77     Assembler::above          /* belowEqual    = 0x6 */ ,
78     Assembler::belowEqual     /* above         = 0x7 */ ,
79     Assembler::positive       /* negative      = 0x8 */ ,
80     Assembler::negative       /* positive      = 0x9 */ ,
81     Assembler::noParity       /* parity        = 0xa */ ,
82     Assembler::parity         /* noParity      = 0xb */ ,
83     Assembler::greaterEqual   /* less          = 0xc */ ,
84     Assembler::less           /* greaterEqual  = 0xd */ ,
85     Assembler::greater        /* lessEqual     = 0xe */ ,
86     Assembler::lessEqual      /* greater       = 0xf, */
87 
88 };
89 
90 
91 // Implementation of MacroAssembler
92 
93 // First all the versions that have distinct versions depending on 32/64 bit
94 // Unless the difference is trivial (1 line or so).
95 
96 #ifndef _LP64
97 
98 // 32bit versions
99 
as_Address(AddressLiteral adr)100 Address MacroAssembler::as_Address(AddressLiteral adr) {
101   return Address(adr.target(), adr.rspec());
102 }
103 
as_Address(ArrayAddress adr)104 Address MacroAssembler::as_Address(ArrayAddress adr) {
105   return Address::make_array(adr);
106 }
107 
call_VM_leaf_base(address entry_point,int number_of_arguments)108 void MacroAssembler::call_VM_leaf_base(address entry_point,
109                                        int number_of_arguments) {
110   call(RuntimeAddress(entry_point));
111   increment(rsp, number_of_arguments * wordSize);
112 }
113 
cmpklass(Address src1,Metadata * obj)114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
116 }
117 
cmpklass(Register src1,Metadata * obj)118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
120 }
121 
cmpoop_raw(Address src1,jobject obj)122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
124 }
125 
cmpoop_raw(Register src1,jobject obj)126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
128 }
129 
cmpoop(Address src1,jobject obj)130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
132   bs->obj_equals(this, src1, obj);
133 }
134 
cmpoop(Register src1,jobject obj)135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
137   bs->obj_equals(this, src1, obj);
138 }
139 
extend_sign(Register hi,Register lo)140 void MacroAssembler::extend_sign(Register hi, Register lo) {
141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
143     cdql();
144   } else {
145     movl(hi, lo);
146     sarl(hi, 31);
147   }
148 }
149 
jC2(Register tmp,Label & L)150 void MacroAssembler::jC2(Register tmp, Label& L) {
151   // set parity bit if FPU flag C2 is set (via rax)
152   save_rax(tmp);
153   fwait(); fnstsw_ax();
154   sahf();
155   restore_rax(tmp);
156   // branch
157   jcc(Assembler::parity, L);
158 }
159 
jnC2(Register tmp,Label & L)160 void MacroAssembler::jnC2(Register tmp, Label& L) {
161   // set parity bit if FPU flag C2 is set (via rax)
162   save_rax(tmp);
163   fwait(); fnstsw_ax();
164   sahf();
165   restore_rax(tmp);
166   // branch
167   jcc(Assembler::noParity, L);
168 }
169 
170 // 32bit can do a case table jump in one instruction but we no longer allow the base
171 // to be installed in the Address class
jump(ArrayAddress entry)172 void MacroAssembler::jump(ArrayAddress entry) {
173   jmp(as_Address(entry));
174 }
175 
176 // Note: y_lo will be destroyed
lcmp2int(Register x_hi,Register x_lo,Register y_hi,Register y_lo)177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
178   // Long compare for Java (semantics as described in JVM spec.)
179   Label high, low, done;
180 
181   cmpl(x_hi, y_hi);
182   jcc(Assembler::less, low);
183   jcc(Assembler::greater, high);
184   // x_hi is the return register
185   xorl(x_hi, x_hi);
186   cmpl(x_lo, y_lo);
187   jcc(Assembler::below, low);
188   jcc(Assembler::equal, done);
189 
190   bind(high);
191   xorl(x_hi, x_hi);
192   increment(x_hi);
193   jmp(done);
194 
195   bind(low);
196   xorl(x_hi, x_hi);
197   decrementl(x_hi);
198 
199   bind(done);
200 }
201 
lea(Register dst,AddressLiteral src)202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
204 }
205 
lea(Address dst,AddressLiteral adr)206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
207   // leal(dst, as_Address(adr));
208   // see note in movl as to why we must use a move
209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
210 }
211 
leave()212 void MacroAssembler::leave() {
213   mov(rsp, rbp);
214   pop(rbp);
215 }
216 
lmul(int x_rsp_offset,int y_rsp_offset)217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
218   // Multiplication of two Java long values stored on the stack
219   // as illustrated below. Result is in rdx:rax.
220   //
221   // rsp ---> [  ??  ] \               \
222   //            ....    | y_rsp_offset  |
223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
224   //          [ y_hi ]                  | (in bytes)
225   //            ....                    |
226   //          [ x_lo ]                 /
227   //          [ x_hi ]
228   //            ....
229   //
230   // Basic idea: lo(result) = lo(x_lo * y_lo)
231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
234   Label quick;
235   // load x_hi, y_hi and check if quick
236   // multiplication is possible
237   movl(rbx, x_hi);
238   movl(rcx, y_hi);
239   movl(rax, rbx);
240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
242   // do full multiplication
243   // 1st step
244   mull(y_lo);                                    // x_hi * y_lo
245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
246   // 2nd step
247   movl(rax, x_lo);
248   mull(rcx);                                     // x_lo * y_hi
249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
250   // 3rd step
251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
252   movl(rax, x_lo);
253   mull(y_lo);                                    // x_lo * y_lo
254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
255 }
256 
lneg(Register hi,Register lo)257 void MacroAssembler::lneg(Register hi, Register lo) {
258   negl(lo);
259   adcl(hi, 0);
260   negl(hi);
261 }
262 
lshl(Register hi,Register lo)263 void MacroAssembler::lshl(Register hi, Register lo) {
264   // Java shift left long support (semantics as described in JVM spec., p.305)
265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
266   // shift value is in rcx !
267   assert(hi != rcx, "must not use rcx");
268   assert(lo != rcx, "must not use rcx");
269   const Register s = rcx;                        // shift count
270   const int      n = BitsPerWord;
271   Label L;
272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
273   cmpl(s, n);                                    // if (s < n)
274   jcc(Assembler::less, L);                       // else (s >= n)
275   movl(hi, lo);                                  // x := x << n
276   xorl(lo, lo);
277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
278   bind(L);                                       // s (mod n) < n
279   shldl(hi, lo);                                 // x := x << s
280   shll(lo);
281 }
282 
283 
lshr(Register hi,Register lo,bool sign_extension)284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
287   assert(hi != rcx, "must not use rcx");
288   assert(lo != rcx, "must not use rcx");
289   const Register s = rcx;                        // shift count
290   const int      n = BitsPerWord;
291   Label L;
292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
293   cmpl(s, n);                                    // if (s < n)
294   jcc(Assembler::less, L);                       // else (s >= n)
295   movl(lo, hi);                                  // x := x >> n
296   if (sign_extension) sarl(hi, 31);
297   else                xorl(hi, hi);
298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
299   bind(L);                                       // s (mod n) < n
300   shrdl(lo, hi);                                 // x := x >> s
301   if (sign_extension) sarl(hi);
302   else                shrl(hi);
303 }
304 
movoop(Register dst,jobject obj)305 void MacroAssembler::movoop(Register dst, jobject obj) {
306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
307 }
308 
movoop(Address dst,jobject obj)309 void MacroAssembler::movoop(Address dst, jobject obj) {
310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
311 }
312 
mov_metadata(Register dst,Metadata * obj)313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
315 }
316 
mov_metadata(Address dst,Metadata * obj)317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
319 }
320 
movptr(Register dst,AddressLiteral src,Register scratch)321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
322   // scratch register is not used,
323   // it is defined to match parameters of 64-bit version of this method.
324   if (src.is_lval()) {
325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
326   } else {
327     movl(dst, as_Address(src));
328   }
329 }
330 
movptr(ArrayAddress dst,Register src)331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
332   movl(as_Address(dst), src);
333 }
334 
movptr(Register dst,ArrayAddress src)335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
336   movl(dst, as_Address(src));
337 }
338 
339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
movptr(Address dst,intptr_t src)340 void MacroAssembler::movptr(Address dst, intptr_t src) {
341   movl(dst, src);
342 }
343 
344 
pop_callee_saved_registers()345 void MacroAssembler::pop_callee_saved_registers() {
346   pop(rcx);
347   pop(rdx);
348   pop(rdi);
349   pop(rsi);
350 }
351 
pop_fTOS()352 void MacroAssembler::pop_fTOS() {
353   fld_d(Address(rsp, 0));
354   addl(rsp, 2 * wordSize);
355 }
356 
push_callee_saved_registers()357 void MacroAssembler::push_callee_saved_registers() {
358   push(rsi);
359   push(rdi);
360   push(rdx);
361   push(rcx);
362 }
363 
push_fTOS()364 void MacroAssembler::push_fTOS() {
365   subl(rsp, 2 * wordSize);
366   fstp_d(Address(rsp, 0));
367 }
368 
369 
pushoop(jobject obj)370 void MacroAssembler::pushoop(jobject obj) {
371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
372 }
373 
pushklass(Metadata * obj)374 void MacroAssembler::pushklass(Metadata* obj) {
375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
376 }
377 
pushptr(AddressLiteral src)378 void MacroAssembler::pushptr(AddressLiteral src) {
379   if (src.is_lval()) {
380     push_literal32((int32_t)src.target(), src.rspec());
381   } else {
382     pushl(as_Address(src));
383   }
384 }
385 
set_word_if_not_zero(Register dst)386 void MacroAssembler::set_word_if_not_zero(Register dst) {
387   xorl(dst, dst);
388   set_byte_if_not_zero(dst);
389 }
390 
pass_arg0(MacroAssembler * masm,Register arg)391 static void pass_arg0(MacroAssembler* masm, Register arg) {
392   masm->push(arg);
393 }
394 
pass_arg1(MacroAssembler * masm,Register arg)395 static void pass_arg1(MacroAssembler* masm, Register arg) {
396   masm->push(arg);
397 }
398 
pass_arg2(MacroAssembler * masm,Register arg)399 static void pass_arg2(MacroAssembler* masm, Register arg) {
400   masm->push(arg);
401 }
402 
pass_arg3(MacroAssembler * masm,Register arg)403 static void pass_arg3(MacroAssembler* masm, Register arg) {
404   masm->push(arg);
405 }
406 
407 #ifndef PRODUCT
408 extern "C" void findpc(intptr_t x);
409 #endif
410 
debug32(int rdi,int rsi,int rbp,int rsp,int rbx,int rdx,int rcx,int rax,int eip,char * msg)411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
412   // In order to get locks to work, we need to fake a in_VM state
413   JavaThread* thread = JavaThread::current();
414   JavaThreadState saved_state = thread->thread_state();
415   thread->set_thread_state(_thread_in_vm);
416   if (ShowMessageBoxOnError) {
417     JavaThread* thread = JavaThread::current();
418     JavaThreadState saved_state = thread->thread_state();
419     thread->set_thread_state(_thread_in_vm);
420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
421       ttyLocker ttyl;
422       BytecodeCounter::print();
423     }
424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
425     // This is the value of eip which points to where verify_oop will return.
426     if (os::message_box(msg, "Execution stopped, print registers?")) {
427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
428       BREAKPOINT;
429     }
430   } else {
431     ttyLocker ttyl;
432     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
433   }
434   // Don't assert holding the ttyLock
435     assert(false, "DEBUG MESSAGE: %s", msg);
436   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
437 }
438 
print_state32(int rdi,int rsi,int rbp,int rsp,int rbx,int rdx,int rcx,int rax,int eip)439 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
440   ttyLocker ttyl;
441   FlagSetting fs(Debugging, true);
442   tty->print_cr("eip = 0x%08x", eip);
443 #ifndef PRODUCT
444   if ((WizardMode || Verbose) && PrintMiscellaneous) {
445     tty->cr();
446     findpc(eip);
447     tty->cr();
448   }
449 #endif
450 #define PRINT_REG(rax) \
451   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
452   PRINT_REG(rax);
453   PRINT_REG(rbx);
454   PRINT_REG(rcx);
455   PRINT_REG(rdx);
456   PRINT_REG(rdi);
457   PRINT_REG(rsi);
458   PRINT_REG(rbp);
459   PRINT_REG(rsp);
460 #undef PRINT_REG
461   // Print some words near top of staack.
462   int* dump_sp = (int*) rsp;
463   for (int col1 = 0; col1 < 8; col1++) {
464     tty->print("(rsp+0x%03x) " INTPTR_FORMAT ": ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
465     os::print_location(tty, *dump_sp++);
466   }
467   for (int row = 0; row < 16; row++) {
468     tty->print("(rsp+0x%03x) " INTPTR_FORMAT ": ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
469     for (int col = 0; col < 8; col++) {
470       tty->print(" 0x%08x", *dump_sp++);
471     }
472     tty->cr();
473   }
474   // Print some instructions around pc:
475   Disassembler::decode((address)eip-64, (address)eip);
476   tty->print_cr("--------");
477   Disassembler::decode((address)eip, (address)eip+32);
478 }
479 
stop(const char * msg)480 void MacroAssembler::stop(const char* msg) {
481   ExternalAddress message((address)msg);
482   // push address of message
483   pushptr(message.addr());
484   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
485   pusha();                                            // push registers
486   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
487   hlt();
488 }
489 
warn(const char * msg)490 void MacroAssembler::warn(const char* msg) {
491   push_CPU_state();
492 
493   ExternalAddress message((address) msg);
494   // push address of message
495   pushptr(message.addr());
496 
497   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
498   addl(rsp, wordSize);       // discard argument
499   pop_CPU_state();
500 }
501 
print_state()502 void MacroAssembler::print_state() {
503   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
504   pusha();                                            // push registers
505 
506   push_CPU_state();
507   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
508   pop_CPU_state();
509 
510   popa();
511   addl(rsp, wordSize);
512 }
513 
514 #else // _LP64
515 
516 // 64 bit versions
517 
as_Address(AddressLiteral adr)518 Address MacroAssembler::as_Address(AddressLiteral adr) {
519   // amd64 always does this as a pc-rel
520   // we can be absolute or disp based on the instruction type
521   // jmp/call are displacements others are absolute
522   assert(!adr.is_lval(), "must be rval");
523   assert(reachable(adr), "must be");
524   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
525 
526 }
527 
as_Address(ArrayAddress adr)528 Address MacroAssembler::as_Address(ArrayAddress adr) {
529   AddressLiteral base = adr.base();
530   lea(rscratch1, base);
531   Address index = adr.index();
532   assert(index._disp == 0, "must not have disp"); // maybe it can?
533   Address array(rscratch1, index._index, index._scale, index._disp);
534   return array;
535 }
536 
call_VM_leaf_base(address entry_point,int num_args)537 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
538   Label L, E;
539 
540 #ifdef _WIN64
541   // Windows always allocates space for it's register args
542   assert(num_args <= 4, "only register arguments supported");
543   subq(rsp,  frame::arg_reg_save_area_bytes);
544 #endif
545 
546   // Align stack if necessary
547   testl(rsp, 15);
548   jcc(Assembler::zero, L);
549 
550   subq(rsp, 8);
551   {
552     call(RuntimeAddress(entry_point));
553   }
554   addq(rsp, 8);
555   jmp(E);
556 
557   bind(L);
558   {
559     call(RuntimeAddress(entry_point));
560   }
561 
562   bind(E);
563 
564 #ifdef _WIN64
565   // restore stack pointer
566   addq(rsp, frame::arg_reg_save_area_bytes);
567 #endif
568 
569 }
570 
cmp64(Register src1,AddressLiteral src2)571 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
572   assert(!src2.is_lval(), "should use cmpptr");
573 
574   if (reachable(src2)) {
575     cmpq(src1, as_Address(src2));
576   } else {
577     lea(rscratch1, src2);
578     Assembler::cmpq(src1, Address(rscratch1, 0));
579   }
580 }
581 
corrected_idivq(Register reg)582 int MacroAssembler::corrected_idivq(Register reg) {
583   // Full implementation of Java ldiv and lrem; checks for special
584   // case as described in JVM spec., p.243 & p.271.  The function
585   // returns the (pc) offset of the idivl instruction - may be needed
586   // for implicit exceptions.
587   //
588   //         normal case                           special case
589   //
590   // input : rax: dividend                         min_long
591   //         reg: divisor   (may not be eax/edx)   -1
592   //
593   // output: rax: quotient  (= rax idiv reg)       min_long
594   //         rdx: remainder (= rax irem reg)       0
595   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
596   static const int64_t min_long = 0x8000000000000000;
597   Label normal_case, special_case;
598 
599   // check for special case
600   cmp64(rax, ExternalAddress((address) &min_long));
601   jcc(Assembler::notEqual, normal_case);
602   xorl(rdx, rdx); // prepare rdx for possible special case (where
603                   // remainder = 0)
604   cmpq(reg, -1);
605   jcc(Assembler::equal, special_case);
606 
607   // handle normal case
608   bind(normal_case);
609   cdqq();
610   int idivq_offset = offset();
611   idivq(reg);
612 
613   // normal and special case exit
614   bind(special_case);
615 
616   return idivq_offset;
617 }
618 
decrementq(Register reg,int value)619 void MacroAssembler::decrementq(Register reg, int value) {
620   if (value == min_jint) { subq(reg, value); return; }
621   if (value <  0) { incrementq(reg, -value); return; }
622   if (value == 0) {                        ; return; }
623   if (value == 1 && UseIncDec) { decq(reg) ; return; }
624   /* else */      { subq(reg, value)       ; return; }
625 }
626 
decrementq(Address dst,int value)627 void MacroAssembler::decrementq(Address dst, int value) {
628   if (value == min_jint) { subq(dst, value); return; }
629   if (value <  0) { incrementq(dst, -value); return; }
630   if (value == 0) {                        ; return; }
631   if (value == 1 && UseIncDec) { decq(dst) ; return; }
632   /* else */      { subq(dst, value)       ; return; }
633 }
634 
incrementq(AddressLiteral dst)635 void MacroAssembler::incrementq(AddressLiteral dst) {
636   if (reachable(dst)) {
637     incrementq(as_Address(dst));
638   } else {
639     lea(rscratch1, dst);
640     incrementq(Address(rscratch1, 0));
641   }
642 }
643 
incrementq(Register reg,int value)644 void MacroAssembler::incrementq(Register reg, int value) {
645   if (value == min_jint) { addq(reg, value); return; }
646   if (value <  0) { decrementq(reg, -value); return; }
647   if (value == 0) {                        ; return; }
648   if (value == 1 && UseIncDec) { incq(reg) ; return; }
649   /* else */      { addq(reg, value)       ; return; }
650 }
651 
incrementq(Address dst,int value)652 void MacroAssembler::incrementq(Address dst, int value) {
653   if (value == min_jint) { addq(dst, value); return; }
654   if (value <  0) { decrementq(dst, -value); return; }
655   if (value == 0) {                        ; return; }
656   if (value == 1 && UseIncDec) { incq(dst) ; return; }
657   /* else */      { addq(dst, value)       ; return; }
658 }
659 
660 // 32bit can do a case table jump in one instruction but we no longer allow the base
661 // to be installed in the Address class
jump(ArrayAddress entry)662 void MacroAssembler::jump(ArrayAddress entry) {
663   lea(rscratch1, entry.base());
664   Address dispatch = entry.index();
665   assert(dispatch._base == noreg, "must be");
666   dispatch._base = rscratch1;
667   jmp(dispatch);
668 }
669 
lcmp2int(Register x_hi,Register x_lo,Register y_hi,Register y_lo)670 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
671   ShouldNotReachHere(); // 64bit doesn't use two regs
672   cmpq(x_lo, y_lo);
673 }
674 
lea(Register dst,AddressLiteral src)675 void MacroAssembler::lea(Register dst, AddressLiteral src) {
676     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
677 }
678 
lea(Address dst,AddressLiteral adr)679 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
680   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
681   movptr(dst, rscratch1);
682 }
683 
leave()684 void MacroAssembler::leave() {
685   // %%% is this really better? Why not on 32bit too?
686   emit_int8((unsigned char)0xC9); // LEAVE
687 }
688 
lneg(Register hi,Register lo)689 void MacroAssembler::lneg(Register hi, Register lo) {
690   ShouldNotReachHere(); // 64bit doesn't use two regs
691   negq(lo);
692 }
693 
movoop(Register dst,jobject obj)694 void MacroAssembler::movoop(Register dst, jobject obj) {
695   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
696 }
697 
movoop(Address dst,jobject obj)698 void MacroAssembler::movoop(Address dst, jobject obj) {
699   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
700   movq(dst, rscratch1);
701 }
702 
mov_metadata(Register dst,Metadata * obj)703 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
704   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
705 }
706 
mov_metadata(Address dst,Metadata * obj)707 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
708   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
709   movq(dst, rscratch1);
710 }
711 
movptr(Register dst,AddressLiteral src,Register scratch)712 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
713   if (src.is_lval()) {
714     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
715   } else {
716     if (reachable(src)) {
717       movq(dst, as_Address(src));
718     } else {
719       lea(scratch, src);
720       movq(dst, Address(scratch, 0));
721     }
722   }
723 }
724 
movptr(ArrayAddress dst,Register src)725 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
726   movq(as_Address(dst), src);
727 }
728 
movptr(Register dst,ArrayAddress src)729 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
730   movq(dst, as_Address(src));
731 }
732 
733 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
movptr(Address dst,intptr_t src)734 void MacroAssembler::movptr(Address dst, intptr_t src) {
735   mov64(rscratch1, src);
736   movq(dst, rscratch1);
737 }
738 
739 // These are mostly for initializing NULL
movptr(Address dst,int32_t src)740 void MacroAssembler::movptr(Address dst, int32_t src) {
741   movslq(dst, src);
742 }
743 
movptr(Register dst,int32_t src)744 void MacroAssembler::movptr(Register dst, int32_t src) {
745   mov64(dst, (intptr_t)src);
746 }
747 
pushoop(jobject obj)748 void MacroAssembler::pushoop(jobject obj) {
749   movoop(rscratch1, obj);
750   push(rscratch1);
751 }
752 
pushklass(Metadata * obj)753 void MacroAssembler::pushklass(Metadata* obj) {
754   mov_metadata(rscratch1, obj);
755   push(rscratch1);
756 }
757 
pushptr(AddressLiteral src)758 void MacroAssembler::pushptr(AddressLiteral src) {
759   lea(rscratch1, src);
760   if (src.is_lval()) {
761     push(rscratch1);
762   } else {
763     pushq(Address(rscratch1, 0));
764   }
765 }
766 
reset_last_Java_frame(bool clear_fp)767 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
768   // we must set sp to zero to clear frame
769   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
770   // must clear fp, so that compiled frames are not confused; it is
771   // possible that we need it only for debugging
772   if (clear_fp) {
773     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
774   }
775 
776   // Always clear the pc because it could have been set by make_walkable()
777   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
778   vzeroupper();
779 }
780 
set_last_Java_frame(Register last_java_sp,Register last_java_fp,address last_java_pc)781 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
782                                          Register last_java_fp,
783                                          address  last_java_pc) {
784   vzeroupper();
785   // determine last_java_sp register
786   if (!last_java_sp->is_valid()) {
787     last_java_sp = rsp;
788   }
789 
790   // last_java_fp is optional
791   if (last_java_fp->is_valid()) {
792     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
793            last_java_fp);
794   }
795 
796   // last_java_pc is optional
797   if (last_java_pc != NULL) {
798     Address java_pc(r15_thread,
799                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
800     lea(rscratch1, InternalAddress(last_java_pc));
801     movptr(java_pc, rscratch1);
802   }
803 
804   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
805 }
806 
pass_arg0(MacroAssembler * masm,Register arg)807 static void pass_arg0(MacroAssembler* masm, Register arg) {
808   if (c_rarg0 != arg ) {
809     masm->mov(c_rarg0, arg);
810   }
811 }
812 
pass_arg1(MacroAssembler * masm,Register arg)813 static void pass_arg1(MacroAssembler* masm, Register arg) {
814   if (c_rarg1 != arg ) {
815     masm->mov(c_rarg1, arg);
816   }
817 }
818 
pass_arg2(MacroAssembler * masm,Register arg)819 static void pass_arg2(MacroAssembler* masm, Register arg) {
820   if (c_rarg2 != arg ) {
821     masm->mov(c_rarg2, arg);
822   }
823 }
824 
pass_arg3(MacroAssembler * masm,Register arg)825 static void pass_arg3(MacroAssembler* masm, Register arg) {
826   if (c_rarg3 != arg ) {
827     masm->mov(c_rarg3, arg);
828   }
829 }
830 
stop(const char * msg)831 void MacroAssembler::stop(const char* msg) {
832   if (ShowMessageBoxOnError) {
833     address rip = pc();
834     pusha(); // get regs on stack
835     lea(c_rarg1, InternalAddress(rip));
836     movq(c_rarg2, rsp); // pass pointer to regs array
837   }
838   lea(c_rarg0, ExternalAddress((address) msg));
839   andq(rsp, -16); // align stack as required by ABI
840   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
841   hlt();
842 }
843 
warn(const char * msg)844 void MacroAssembler::warn(const char* msg) {
845   push(rbp);
846   movq(rbp, rsp);
847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
848   push_CPU_state();   // keeps alignment at 16 bytes
849   lea(c_rarg0, ExternalAddress((address) msg));
850   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
851   call(rax);
852   pop_CPU_state();
853   mov(rsp, rbp);
854   pop(rbp);
855 }
856 
print_state()857 void MacroAssembler::print_state() {
858   address rip = pc();
859   pusha();            // get regs on stack
860   push(rbp);
861   movq(rbp, rsp);
862   andq(rsp, -16);     // align stack as required by push_CPU_state and call
863   push_CPU_state();   // keeps alignment at 16 bytes
864 
865   lea(c_rarg0, InternalAddress(rip));
866   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
867   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
868 
869   pop_CPU_state();
870   mov(rsp, rbp);
871   pop(rbp);
872   popa();
873 }
874 
875 #ifndef PRODUCT
876 extern "C" void findpc(intptr_t x);
877 #endif
878 
debug64(char * msg,int64_t pc,int64_t regs[])879 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
880   // In order to get locks to work, we need to fake a in_VM state
881   if (ShowMessageBoxOnError) {
882     JavaThread* thread = JavaThread::current();
883     JavaThreadState saved_state = thread->thread_state();
884     thread->set_thread_state(_thread_in_vm);
885 #ifndef PRODUCT
886     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
887       ttyLocker ttyl;
888       BytecodeCounter::print();
889     }
890 #endif
891     // To see where a verify_oop failed, get $ebx+40/X for this frame.
892     // XXX correct this offset for amd64
893     // This is the value of eip which points to where verify_oop will return.
894     if (os::message_box(msg, "Execution stopped, print registers?")) {
895       print_state64(pc, regs);
896       BREAKPOINT;
897       assert(false, "start up GDB");
898     }
899     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
900   } else {
901     ttyLocker ttyl;
902     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
903                     msg);
904     assert(false, "DEBUG MESSAGE: %s", msg);
905   }
906 }
907 
print_state64(int64_t pc,int64_t regs[])908 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
909   ttyLocker ttyl;
910   FlagSetting fs(Debugging, true);
911   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
912 #ifndef PRODUCT
913   tty->cr();
914   findpc(pc);
915   tty->cr();
916 #endif
917 #define PRINT_REG(rax, value) \
918   { tty->print("%s = ", #rax); os::print_location(tty, value); }
919   PRINT_REG(rax, regs[15]);
920   PRINT_REG(rbx, regs[12]);
921   PRINT_REG(rcx, regs[14]);
922   PRINT_REG(rdx, regs[13]);
923   PRINT_REG(rdi, regs[8]);
924   PRINT_REG(rsi, regs[9]);
925   PRINT_REG(rbp, regs[10]);
926   PRINT_REG(rsp, regs[11]);
927   PRINT_REG(r8 , regs[7]);
928   PRINT_REG(r9 , regs[6]);
929   PRINT_REG(r10, regs[5]);
930   PRINT_REG(r11, regs[4]);
931   PRINT_REG(r12, regs[3]);
932   PRINT_REG(r13, regs[2]);
933   PRINT_REG(r14, regs[1]);
934   PRINT_REG(r15, regs[0]);
935 #undef PRINT_REG
936   // Print some words near top of staack.
937   int64_t* rsp = (int64_t*) regs[11];
938   int64_t* dump_sp = rsp;
939   for (int col1 = 0; col1 < 8; col1++) {
940     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
941     os::print_location(tty, *dump_sp++);
942   }
943   for (int row = 0; row < 25; row++) {
944     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
945     for (int col = 0; col < 4; col++) {
946       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
947     }
948     tty->cr();
949   }
950   // Print some instructions around pc:
951   Disassembler::decode((address)pc-64, (address)pc);
952   tty->print_cr("--------");
953   Disassembler::decode((address)pc, (address)pc+32);
954 }
955 
956 #endif // _LP64
957 
958 // Now versions that are common to 32/64 bit
959 
addptr(Register dst,int32_t imm32)960 void MacroAssembler::addptr(Register dst, int32_t imm32) {
961   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
962 }
963 
addptr(Register dst,Register src)964 void MacroAssembler::addptr(Register dst, Register src) {
965   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
966 }
967 
addptr(Address dst,Register src)968 void MacroAssembler::addptr(Address dst, Register src) {
969   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
970 }
971 
addsd(XMMRegister dst,AddressLiteral src)972 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
973   if (reachable(src)) {
974     Assembler::addsd(dst, as_Address(src));
975   } else {
976     lea(rscratch1, src);
977     Assembler::addsd(dst, Address(rscratch1, 0));
978   }
979 }
980 
addss(XMMRegister dst,AddressLiteral src)981 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
982   if (reachable(src)) {
983     addss(dst, as_Address(src));
984   } else {
985     lea(rscratch1, src);
986     addss(dst, Address(rscratch1, 0));
987   }
988 }
989 
addpd(XMMRegister dst,AddressLiteral src)990 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
991   if (reachable(src)) {
992     Assembler::addpd(dst, as_Address(src));
993   } else {
994     lea(rscratch1, src);
995     Assembler::addpd(dst, Address(rscratch1, 0));
996   }
997 }
998 
align(int modulus)999 void MacroAssembler::align(int modulus) {
1000   align(modulus, offset());
1001 }
1002 
align(int modulus,int target)1003 void MacroAssembler::align(int modulus, int target) {
1004   if (target % modulus != 0) {
1005     nop(modulus - (target % modulus));
1006   }
1007 }
1008 
andpd(XMMRegister dst,AddressLiteral src,Register scratch_reg)1009 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andpd(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andpd(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
andps(XMMRegister dst,AddressLiteral src,Register scratch_reg)1020 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1021   // Used in sign-masking with aligned address.
1022   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1023   if (reachable(src)) {
1024     Assembler::andps(dst, as_Address(src));
1025   } else {
1026     lea(scratch_reg, src);
1027     Assembler::andps(dst, Address(scratch_reg, 0));
1028   }
1029 }
1030 
andptr(Register dst,int32_t imm32)1031 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1032   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1033 }
1034 
atomic_incl(Address counter_addr)1035 void MacroAssembler::atomic_incl(Address counter_addr) {
1036   lock();
1037   incrementl(counter_addr);
1038 }
1039 
atomic_incl(AddressLiteral counter_addr,Register scr)1040 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1041   if (reachable(counter_addr)) {
1042     atomic_incl(as_Address(counter_addr));
1043   } else {
1044     lea(scr, counter_addr);
1045     atomic_incl(Address(scr, 0));
1046   }
1047 }
1048 
1049 #ifdef _LP64
atomic_incq(Address counter_addr)1050 void MacroAssembler::atomic_incq(Address counter_addr) {
1051   lock();
1052   incrementq(counter_addr);
1053 }
1054 
atomic_incq(AddressLiteral counter_addr,Register scr)1055 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1056   if (reachable(counter_addr)) {
1057     atomic_incq(as_Address(counter_addr));
1058   } else {
1059     lea(scr, counter_addr);
1060     atomic_incq(Address(scr, 0));
1061   }
1062 }
1063 #endif
1064 
1065 // Writes to stack successive pages until offset reached to check for
1066 // stack overflow + shadow pages.  This clobbers tmp.
bang_stack_size(Register size,Register tmp)1067 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1068   movptr(tmp, rsp);
1069   // Bang stack for total size given plus shadow page size.
1070   // Bang one page at a time because large size can bang beyond yellow and
1071   // red zones.
1072   Label loop;
1073   bind(loop);
1074   movl(Address(tmp, (-os::vm_page_size())), size );
1075   subptr(tmp, os::vm_page_size());
1076   subl(size, os::vm_page_size());
1077   jcc(Assembler::greater, loop);
1078 
1079   // Bang down shadow pages too.
1080   // At this point, (tmp-0) is the last address touched, so don't
1081   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1082   // was post-decremented.)  Skip this address by starting at i=1, and
1083   // touch a few more pages below.  N.B.  It is important to touch all
1084   // the way down including all pages in the shadow zone.
1085   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1086     // this could be any sized move but this is can be a debugging crumb
1087     // so the bigger the better.
1088     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1089   }
1090 }
1091 
reserved_stack_check()1092 void MacroAssembler::reserved_stack_check() {
1093     // testing if reserved zone needs to be enabled
1094     Label no_reserved_zone_enabling;
1095     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1096     NOT_LP64(get_thread(rsi);)
1097 
1098     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1099     jcc(Assembler::below, no_reserved_zone_enabling);
1100 
1101     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1102     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1103     should_not_reach_here();
1104 
1105     bind(no_reserved_zone_enabling);
1106 }
1107 
biased_locking_enter(Register lock_reg,Register obj_reg,Register swap_reg,Register tmp_reg,bool swap_reg_contains_mark,Label & done,Label * slow_case,BiasedLockingCounters * counters)1108 int MacroAssembler::biased_locking_enter(Register lock_reg,
1109                                          Register obj_reg,
1110                                          Register swap_reg,
1111                                          Register tmp_reg,
1112                                          bool swap_reg_contains_mark,
1113                                          Label& done,
1114                                          Label* slow_case,
1115                                          BiasedLockingCounters* counters) {
1116   assert(UseBiasedLocking, "why call this otherwise?");
1117   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1118   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1119   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1120   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1121   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1122   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1123 
1124   if (PrintBiasedLockingStatistics && counters == NULL) {
1125     counters = BiasedLocking::counters();
1126   }
1127   // Biased locking
1128   // See whether the lock is currently biased toward our thread and
1129   // whether the epoch is still valid
1130   // Note that the runtime guarantees sufficient alignment of JavaThread
1131   // pointers to allow age to be placed into low bits
1132   // First check to see whether biasing is even enabled for this object
1133   Label cas_label;
1134   int null_check_offset = -1;
1135   if (!swap_reg_contains_mark) {
1136     null_check_offset = offset();
1137     movptr(swap_reg, mark_addr);
1138   }
1139   movptr(tmp_reg, swap_reg);
1140   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1141   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1142   jcc(Assembler::notEqual, cas_label);
1143   // The bias pattern is present in the object's header. Need to check
1144   // whether the bias owner and the epoch are both still current.
1145 #ifndef _LP64
1146   // Note that because there is no current thread register on x86_32 we
1147   // need to store off the mark word we read out of the object to
1148   // avoid reloading it and needing to recheck invariants below. This
1149   // store is unfortunate but it makes the overall code shorter and
1150   // simpler.
1151   movptr(saved_mark_addr, swap_reg);
1152 #endif
1153   if (swap_reg_contains_mark) {
1154     null_check_offset = offset();
1155   }
1156   load_prototype_header(tmp_reg, obj_reg);
1157 #ifdef _LP64
1158   orptr(tmp_reg, r15_thread);
1159   xorptr(tmp_reg, swap_reg);
1160   Register header_reg = tmp_reg;
1161 #else
1162   xorptr(tmp_reg, swap_reg);
1163   get_thread(swap_reg);
1164   xorptr(swap_reg, tmp_reg);
1165   Register header_reg = swap_reg;
1166 #endif
1167   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1168   if (counters != NULL) {
1169     cond_inc32(Assembler::zero,
1170                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1171   }
1172   jcc(Assembler::equal, done);
1173 
1174   Label try_revoke_bias;
1175   Label try_rebias;
1176 
1177   // At this point we know that the header has the bias pattern and
1178   // that we are not the bias owner in the current epoch. We need to
1179   // figure out more details about the state of the header in order to
1180   // know what operations can be legally performed on the object's
1181   // header.
1182 
1183   // If the low three bits in the xor result aren't clear, that means
1184   // the prototype header is no longer biased and we have to revoke
1185   // the bias on this object.
1186   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1187   jccb(Assembler::notZero, try_revoke_bias);
1188 
1189   // Biasing is still enabled for this data type. See whether the
1190   // epoch of the current bias is still valid, meaning that the epoch
1191   // bits of the mark word are equal to the epoch bits of the
1192   // prototype header. (Note that the prototype header's epoch bits
1193   // only change at a safepoint.) If not, attempt to rebias the object
1194   // toward the current thread. Note that we must be absolutely sure
1195   // that the current epoch is invalid in order to do this because
1196   // otherwise the manipulations it performs on the mark word are
1197   // illegal.
1198   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1199   jccb(Assembler::notZero, try_rebias);
1200 
1201   // The epoch of the current bias is still valid but we know nothing
1202   // about the owner; it might be set or it might be clear. Try to
1203   // acquire the bias of the object using an atomic operation. If this
1204   // fails we will go in to the runtime to revoke the object's bias.
1205   // Note that we first construct the presumed unbiased header so we
1206   // don't accidentally blow away another thread's valid bias.
1207   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1208   andptr(swap_reg,
1209          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1210 #ifdef _LP64
1211   movptr(tmp_reg, swap_reg);
1212   orptr(tmp_reg, r15_thread);
1213 #else
1214   get_thread(tmp_reg);
1215   orptr(tmp_reg, swap_reg);
1216 #endif
1217   lock();
1218   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1219   // If the biasing toward our thread failed, this means that
1220   // another thread succeeded in biasing it toward itself and we
1221   // need to revoke that bias. The revocation will occur in the
1222   // interpreter runtime in the slow case.
1223   if (counters != NULL) {
1224     cond_inc32(Assembler::zero,
1225                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1226   }
1227   if (slow_case != NULL) {
1228     jcc(Assembler::notZero, *slow_case);
1229   }
1230   jmp(done);
1231 
1232   bind(try_rebias);
1233   // At this point we know the epoch has expired, meaning that the
1234   // current "bias owner", if any, is actually invalid. Under these
1235   // circumstances _only_, we are allowed to use the current header's
1236   // value as the comparison value when doing the cas to acquire the
1237   // bias in the current epoch. In other words, we allow transfer of
1238   // the bias from one thread to another directly in this situation.
1239   //
1240   // FIXME: due to a lack of registers we currently blow away the age
1241   // bits in this situation. Should attempt to preserve them.
1242   load_prototype_header(tmp_reg, obj_reg);
1243 #ifdef _LP64
1244   orptr(tmp_reg, r15_thread);
1245 #else
1246   get_thread(swap_reg);
1247   orptr(tmp_reg, swap_reg);
1248   movptr(swap_reg, saved_mark_addr);
1249 #endif
1250   lock();
1251   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1252   // If the biasing toward our thread failed, then another thread
1253   // succeeded in biasing it toward itself and we need to revoke that
1254   // bias. The revocation will occur in the runtime in the slow case.
1255   if (counters != NULL) {
1256     cond_inc32(Assembler::zero,
1257                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1258   }
1259   if (slow_case != NULL) {
1260     jcc(Assembler::notZero, *slow_case);
1261   }
1262   jmp(done);
1263 
1264   bind(try_revoke_bias);
1265   // The prototype mark in the klass doesn't have the bias bit set any
1266   // more, indicating that objects of this data type are not supposed
1267   // to be biased any more. We are going to try to reset the mark of
1268   // this object to the prototype value and fall through to the
1269   // CAS-based locking scheme. Note that if our CAS fails, it means
1270   // that another thread raced us for the privilege of revoking the
1271   // bias of this particular object, so it's okay to continue in the
1272   // normal locking code.
1273   //
1274   // FIXME: due to a lack of registers we currently blow away the age
1275   // bits in this situation. Should attempt to preserve them.
1276   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1277   load_prototype_header(tmp_reg, obj_reg);
1278   lock();
1279   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1280   // Fall through to the normal CAS-based lock, because no matter what
1281   // the result of the above CAS, some thread must have succeeded in
1282   // removing the bias bit from the object's header.
1283   if (counters != NULL) {
1284     cond_inc32(Assembler::zero,
1285                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1286   }
1287 
1288   bind(cas_label);
1289 
1290   return null_check_offset;
1291 }
1292 
biased_locking_exit(Register obj_reg,Register temp_reg,Label & done)1293 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1294   assert(UseBiasedLocking, "why call this otherwise?");
1295 
1296   // Check for biased locking unlock case, which is a no-op
1297   // Note: we do not have to check the thread ID for two reasons.
1298   // First, the interpreter checks for IllegalMonitorStateException at
1299   // a higher level. Second, if the bias was revoked while we held the
1300   // lock, the object could not be rebiased toward another thread, so
1301   // the bias bit would be clear.
1302   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1303   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1304   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1305   jcc(Assembler::equal, done);
1306 }
1307 
1308 #ifdef COMPILER2
1309 
1310 #if INCLUDE_RTM_OPT
1311 
1312 // Update rtm_counters based on abort status
1313 // input: abort_status
1314 //        rtm_counters (RTMLockingCounters*)
1315 // flags are killed
rtm_counters_update(Register abort_status,Register rtm_counters)1316 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1317 
1318   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1319   if (PrintPreciseRTMLockingStatistics) {
1320     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1321       Label check_abort;
1322       testl(abort_status, (1<<i));
1323       jccb(Assembler::equal, check_abort);
1324       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1325       bind(check_abort);
1326     }
1327   }
1328 }
1329 
1330 // Branch if (random & (count-1) != 0), count is 2^n
1331 // tmp, scr and flags are killed
branch_on_random_using_rdtsc(Register tmp,Register scr,int count,Label & brLabel)1332 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1333   assert(tmp == rax, "");
1334   assert(scr == rdx, "");
1335   rdtsc(); // modifies EDX:EAX
1336   andptr(tmp, count-1);
1337   jccb(Assembler::notZero, brLabel);
1338 }
1339 
1340 // Perform abort ratio calculation, set no_rtm bit if high ratio
1341 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1342 // tmpReg, rtm_counters_Reg and flags are killed
rtm_abort_ratio_calculation(Register tmpReg,Register rtm_counters_Reg,RTMLockingCounters * rtm_counters,Metadata * method_data)1343 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1344                                                  Register rtm_counters_Reg,
1345                                                  RTMLockingCounters* rtm_counters,
1346                                                  Metadata* method_data) {
1347   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1348 
1349   if (RTMLockingCalculationDelay > 0) {
1350     // Delay calculation
1351     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1352     testptr(tmpReg, tmpReg);
1353     jccb(Assembler::equal, L_done);
1354   }
1355   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1356   //   Aborted transactions = abort_count * 100
1357   //   All transactions = total_count *  RTMTotalCountIncrRate
1358   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1359 
1360   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1361   cmpptr(tmpReg, RTMAbortThreshold);
1362   jccb(Assembler::below, L_check_always_rtm2);
1363   imulptr(tmpReg, tmpReg, 100);
1364 
1365   Register scrReg = rtm_counters_Reg;
1366   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1367   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1368   imulptr(scrReg, scrReg, RTMAbortRatio);
1369   cmpptr(tmpReg, scrReg);
1370   jccb(Assembler::below, L_check_always_rtm1);
1371   if (method_data != NULL) {
1372     // set rtm_state to "no rtm" in MDO
1373     mov_metadata(tmpReg, method_data);
1374     lock();
1375     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1376   }
1377   jmpb(L_done);
1378   bind(L_check_always_rtm1);
1379   // Reload RTMLockingCounters* address
1380   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1381   bind(L_check_always_rtm2);
1382   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1383   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1384   jccb(Assembler::below, L_done);
1385   if (method_data != NULL) {
1386     // set rtm_state to "always rtm" in MDO
1387     mov_metadata(tmpReg, method_data);
1388     lock();
1389     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1390   }
1391   bind(L_done);
1392 }
1393 
1394 // Update counters and perform abort ratio calculation
1395 // input:  abort_status_Reg
1396 // rtm_counters_Reg, flags are killed
rtm_profiling(Register abort_status_Reg,Register rtm_counters_Reg,RTMLockingCounters * rtm_counters,Metadata * method_data,bool profile_rtm)1397 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1398                                    Register rtm_counters_Reg,
1399                                    RTMLockingCounters* rtm_counters,
1400                                    Metadata* method_data,
1401                                    bool profile_rtm) {
1402 
1403   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1404   // update rtm counters based on rax value at abort
1405   // reads abort_status_Reg, updates flags
1406   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1407   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1408   if (profile_rtm) {
1409     // Save abort status because abort_status_Reg is used by following code.
1410     if (RTMRetryCount > 0) {
1411       push(abort_status_Reg);
1412     }
1413     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1414     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1415     // restore abort status
1416     if (RTMRetryCount > 0) {
1417       pop(abort_status_Reg);
1418     }
1419   }
1420 }
1421 
1422 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1423 // inputs: retry_count_Reg
1424 //       : abort_status_Reg
1425 // output: retry_count_Reg decremented by 1
1426 // flags are killed
rtm_retry_lock_on_abort(Register retry_count_Reg,Register abort_status_Reg,Label & retryLabel)1427 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1428   Label doneRetry;
1429   assert(abort_status_Reg == rax, "");
1430   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1431   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1432   // if reason is in 0x6 and retry count != 0 then retry
1433   andptr(abort_status_Reg, 0x6);
1434   jccb(Assembler::zero, doneRetry);
1435   testl(retry_count_Reg, retry_count_Reg);
1436   jccb(Assembler::zero, doneRetry);
1437   pause();
1438   decrementl(retry_count_Reg);
1439   jmp(retryLabel);
1440   bind(doneRetry);
1441 }
1442 
1443 // Spin and retry if lock is busy,
1444 // inputs: box_Reg (monitor address)
1445 //       : retry_count_Reg
1446 // output: retry_count_Reg decremented by 1
1447 //       : clear z flag if retry count exceeded
1448 // tmp_Reg, scr_Reg, flags are killed
rtm_retry_lock_on_busy(Register retry_count_Reg,Register box_Reg,Register tmp_Reg,Register scr_Reg,Label & retryLabel)1449 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1450                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1451   Label SpinLoop, SpinExit, doneRetry;
1452   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1453 
1454   testl(retry_count_Reg, retry_count_Reg);
1455   jccb(Assembler::zero, doneRetry);
1456   decrementl(retry_count_Reg);
1457   movptr(scr_Reg, RTMSpinLoopCount);
1458 
1459   bind(SpinLoop);
1460   pause();
1461   decrementl(scr_Reg);
1462   jccb(Assembler::lessEqual, SpinExit);
1463   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1464   testptr(tmp_Reg, tmp_Reg);
1465   jccb(Assembler::notZero, SpinLoop);
1466 
1467   bind(SpinExit);
1468   jmp(retryLabel);
1469   bind(doneRetry);
1470   incrementl(retry_count_Reg); // clear z flag
1471 }
1472 
1473 // Use RTM for normal stack locks
1474 // Input: objReg (object to lock)
rtm_stack_locking(Register objReg,Register tmpReg,Register scrReg,Register retry_on_abort_count_Reg,RTMLockingCounters * stack_rtm_counters,Metadata * method_data,bool profile_rtm,Label & DONE_LABEL,Label & IsInflated)1475 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1476                                        Register retry_on_abort_count_Reg,
1477                                        RTMLockingCounters* stack_rtm_counters,
1478                                        Metadata* method_data, bool profile_rtm,
1479                                        Label& DONE_LABEL, Label& IsInflated) {
1480   assert(UseRTMForStackLocks, "why call this otherwise?");
1481   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1482   assert(tmpReg == rax, "");
1483   assert(scrReg == rdx, "");
1484   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1485 
1486   if (RTMRetryCount > 0) {
1487     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1488     bind(L_rtm_retry);
1489   }
1490   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1491   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1492   jcc(Assembler::notZero, IsInflated);
1493 
1494   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1495     Label L_noincrement;
1496     if (RTMTotalCountIncrRate > 1) {
1497       // tmpReg, scrReg and flags are killed
1498       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1499     }
1500     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1501     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1502     bind(L_noincrement);
1503   }
1504   xbegin(L_on_abort);
1505   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1506   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1507   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1508   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1509 
1510   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1511   if (UseRTMXendForLockBusy) {
1512     xend();
1513     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1514     jmp(L_decrement_retry);
1515   }
1516   else {
1517     xabort(0);
1518   }
1519   bind(L_on_abort);
1520   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1521     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1522   }
1523   bind(L_decrement_retry);
1524   if (RTMRetryCount > 0) {
1525     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1526     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1527   }
1528 }
1529 
1530 // Use RTM for inflating locks
1531 // inputs: objReg (object to lock)
1532 //         boxReg (on-stack box address (displaced header location) - KILLED)
1533 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
rtm_inflated_locking(Register objReg,Register boxReg,Register tmpReg,Register scrReg,Register retry_on_busy_count_Reg,Register retry_on_abort_count_Reg,RTMLockingCounters * rtm_counters,Metadata * method_data,bool profile_rtm,Label & DONE_LABEL)1534 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1535                                           Register scrReg, Register retry_on_busy_count_Reg,
1536                                           Register retry_on_abort_count_Reg,
1537                                           RTMLockingCounters* rtm_counters,
1538                                           Metadata* method_data, bool profile_rtm,
1539                                           Label& DONE_LABEL) {
1540   assert(UseRTMLocking, "why call this otherwise?");
1541   assert(tmpReg == rax, "");
1542   assert(scrReg == rdx, "");
1543   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1544   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1545 
1546   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1547   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1548   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1549 
1550   if (RTMRetryCount > 0) {
1551     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1552     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1553     bind(L_rtm_retry);
1554   }
1555   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1556     Label L_noincrement;
1557     if (RTMTotalCountIncrRate > 1) {
1558       // tmpReg, scrReg and flags are killed
1559       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1560     }
1561     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1562     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1563     bind(L_noincrement);
1564   }
1565   xbegin(L_on_abort);
1566   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1567   movptr(tmpReg, Address(tmpReg, owner_offset));
1568   testptr(tmpReg, tmpReg);
1569   jcc(Assembler::zero, DONE_LABEL);
1570   if (UseRTMXendForLockBusy) {
1571     xend();
1572     jmp(L_decrement_retry);
1573   }
1574   else {
1575     xabort(0);
1576   }
1577   bind(L_on_abort);
1578   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1579   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1580     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1581   }
1582   if (RTMRetryCount > 0) {
1583     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1584     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1585   }
1586 
1587   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1588   testptr(tmpReg, tmpReg) ;
1589   jccb(Assembler::notZero, L_decrement_retry) ;
1590 
1591   // Appears unlocked - try to swing _owner from null to non-null.
1592   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1593 #ifdef _LP64
1594   Register threadReg = r15_thread;
1595 #else
1596   get_thread(scrReg);
1597   Register threadReg = scrReg;
1598 #endif
1599   lock();
1600   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1601 
1602   if (RTMRetryCount > 0) {
1603     // success done else retry
1604     jccb(Assembler::equal, DONE_LABEL) ;
1605     bind(L_decrement_retry);
1606     // Spin and retry if lock is busy.
1607     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1608   }
1609   else {
1610     bind(L_decrement_retry);
1611   }
1612 }
1613 
1614 #endif //  INCLUDE_RTM_OPT
1615 
1616 // Fast_Lock and Fast_Unlock used by C2
1617 
1618 // Because the transitions from emitted code to the runtime
1619 // monitorenter/exit helper stubs are so slow it's critical that
1620 // we inline both the stack-locking fast-path and the inflated fast path.
1621 //
1622 // See also: cmpFastLock and cmpFastUnlock.
1623 //
1624 // What follows is a specialized inline transliteration of the code
1625 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1626 // another option would be to emit TrySlowEnter and TrySlowExit methods
1627 // at startup-time.  These methods would accept arguments as
1628 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1629 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1630 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1631 // In practice, however, the # of lock sites is bounded and is usually small.
1632 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1633 // if the processor uses simple bimodal branch predictors keyed by EIP
1634 // Since the helper routines would be called from multiple synchronization
1635 // sites.
1636 //
1637 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1638 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1639 // to those specialized methods.  That'd give us a mostly platform-independent
1640 // implementation that the JITs could optimize and inline at their pleasure.
1641 // Done correctly, the only time we'd need to cross to native could would be
1642 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1643 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1644 // (b) explicit barriers or fence operations.
1645 //
1646 // TODO:
1647 //
1648 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1649 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1650 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1651 //    the lock operators would typically be faster than reifying Self.
1652 //
1653 // *  Ideally I'd define the primitives as:
1654 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1655 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1656 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1657 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1658 //    Furthermore the register assignments are overconstrained, possibly resulting in
1659 //    sub-optimal code near the synchronization site.
1660 //
1661 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1662 //    Alternately, use a better sp-proximity test.
1663 //
1664 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1665 //    Either one is sufficient to uniquely identify a thread.
1666 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1667 //
1668 // *  Intrinsify notify() and notifyAll() for the common cases where the
1669 //    object is locked by the calling thread but the waitlist is empty.
1670 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1671 //
1672 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1673 //    But beware of excessive branch density on AMD Opterons.
1674 //
1675 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1676 //    or failure of the fast-path.  If the fast-path fails then we pass
1677 //    control to the slow-path, typically in C.  In Fast_Lock and
1678 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1679 //    will emit a conditional branch immediately after the node.
1680 //    So we have branches to branches and lots of ICC.ZF games.
1681 //    Instead, it might be better to have C2 pass a "FailureLabel"
1682 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1683 //    will drop through the node.  ICC.ZF is undefined at exit.
1684 //    In the case of failure, the node will branch directly to the
1685 //    FailureLabel
1686 
1687 
1688 // obj: object to lock
1689 // box: on-stack box address (displaced header location) - KILLED
1690 // rax,: tmp -- KILLED
1691 // scr: tmp -- KILLED
fast_lock(Register objReg,Register boxReg,Register tmpReg,Register scrReg,Register cx1Reg,Register cx2Reg,BiasedLockingCounters * counters,RTMLockingCounters * rtm_counters,RTMLockingCounters * stack_rtm_counters,Metadata * method_data,bool use_rtm,bool profile_rtm)1692 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1693                                Register scrReg, Register cx1Reg, Register cx2Reg,
1694                                BiasedLockingCounters* counters,
1695                                RTMLockingCounters* rtm_counters,
1696                                RTMLockingCounters* stack_rtm_counters,
1697                                Metadata* method_data,
1698                                bool use_rtm, bool profile_rtm) {
1699   // Ensure the register assignments are disjoint
1700   assert(tmpReg == rax, "");
1701 
1702   if (use_rtm) {
1703     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1704   } else {
1705     assert(cx1Reg == noreg, "");
1706     assert(cx2Reg == noreg, "");
1707     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1708   }
1709 
1710   if (counters != NULL) {
1711     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1712   }
1713 
1714   // Possible cases that we'll encounter in fast_lock
1715   // ------------------------------------------------
1716   // * Inflated
1717   //    -- unlocked
1718   //    -- Locked
1719   //       = by self
1720   //       = by other
1721   // * biased
1722   //    -- by Self
1723   //    -- by other
1724   // * neutral
1725   // * stack-locked
1726   //    -- by self
1727   //       = sp-proximity test hits
1728   //       = sp-proximity test generates false-negative
1729   //    -- by other
1730   //
1731 
1732   Label IsInflated, DONE_LABEL;
1733 
1734   // it's stack-locked, biased or neutral
1735   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1736   // order to reduce the number of conditional branches in the most common cases.
1737   // Beware -- there's a subtle invariant that fetch of the markword
1738   // at [FETCH], below, will never observe a biased encoding (*101b).
1739   // If this invariant is not held we risk exclusion (safety) failure.
1740   if (UseBiasedLocking && !UseOptoBiasInlining) {
1741     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1742   }
1743 
1744 #if INCLUDE_RTM_OPT
1745   if (UseRTMForStackLocks && use_rtm) {
1746     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1747                       stack_rtm_counters, method_data, profile_rtm,
1748                       DONE_LABEL, IsInflated);
1749   }
1750 #endif // INCLUDE_RTM_OPT
1751 
1752   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1753   testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1754   jccb(Assembler::notZero, IsInflated);
1755 
1756   // Attempt stack-locking ...
1757   orptr (tmpReg, markOopDesc::unlocked_value);
1758   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1759   lock();
1760   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1761   if (counters != NULL) {
1762     cond_inc32(Assembler::equal,
1763                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1764   }
1765   jcc(Assembler::equal, DONE_LABEL);           // Success
1766 
1767   // Recursive locking.
1768   // The object is stack-locked: markword contains stack pointer to BasicLock.
1769   // Locked by current thread if difference with current SP is less than one page.
1770   subptr(tmpReg, rsp);
1771   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1772   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1773   movptr(Address(boxReg, 0), tmpReg);
1774   if (counters != NULL) {
1775     cond_inc32(Assembler::equal,
1776                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1777   }
1778   jmp(DONE_LABEL);
1779 
1780   bind(IsInflated);
1781   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1782 
1783 #if INCLUDE_RTM_OPT
1784   // Use the same RTM locking code in 32- and 64-bit VM.
1785   if (use_rtm) {
1786     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1787                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1788   } else {
1789 #endif // INCLUDE_RTM_OPT
1790 
1791 #ifndef _LP64
1792   // The object is inflated.
1793 
1794   // boxReg refers to the on-stack BasicLock in the current frame.
1795   // We'd like to write:
1796   //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1797   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1798   // additional latency as we have another ST in the store buffer that must drain.
1799 
1800   // avoid ST-before-CAS
1801   // register juggle because we need tmpReg for cmpxchgptr below
1802   movptr(scrReg, boxReg);
1803   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1804 
1805   // Optimistic form: consider XORL tmpReg,tmpReg
1806   movptr(tmpReg, NULL_WORD);
1807 
1808   // Appears unlocked - try to swing _owner from null to non-null.
1809   // Ideally, I'd manifest "Self" with get_thread and then attempt
1810   // to CAS the register containing Self into m->Owner.
1811   // But we don't have enough registers, so instead we can either try to CAS
1812   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1813   // we later store "Self" into m->Owner.  Transiently storing a stack address
1814   // (rsp or the address of the box) into  m->owner is harmless.
1815   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1816   lock();
1817   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1818   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1819   // If we weren't able to swing _owner from NULL to the BasicLock
1820   // then take the slow path.
1821   jccb  (Assembler::notZero, DONE_LABEL);
1822   // update _owner from BasicLock to thread
1823   get_thread (scrReg);                    // beware: clobbers ICCs
1824   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1825   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1826 
1827   // If the CAS fails we can either retry or pass control to the slow-path.
1828   // We use the latter tactic.
1829   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1830   // If the CAS was successful ...
1831   //   Self has acquired the lock
1832   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1833   // Intentional fall-through into DONE_LABEL ...
1834 #else // _LP64
1835   // It's inflated
1836   movq(scrReg, tmpReg);
1837   xorq(tmpReg, tmpReg);
1838 
1839   lock();
1840   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1841   // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1842   // Without cast to int32_t movptr will destroy r10 which is typically obj.
1843   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1844   // Intentional fall-through into DONE_LABEL ...
1845   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1846 #endif // _LP64
1847 #if INCLUDE_RTM_OPT
1848   } // use_rtm()
1849 #endif
1850   // DONE_LABEL is a hot target - we'd really like to place it at the
1851   // start of cache line by padding with NOPs.
1852   // See the AMD and Intel software optimization manuals for the
1853   // most efficient "long" NOP encodings.
1854   // Unfortunately none of our alignment mechanisms suffice.
1855   bind(DONE_LABEL);
1856 
1857   // At DONE_LABEL the icc ZFlag is set as follows ...
1858   // Fast_Unlock uses the same protocol.
1859   // ZFlag == 1 -> Success
1860   // ZFlag == 0 -> Failure - force control through the slow-path
1861 }
1862 
1863 // obj: object to unlock
1864 // box: box address (displaced header location), killed.  Must be EAX.
1865 // tmp: killed, cannot be obj nor box.
1866 //
1867 // Some commentary on balanced locking:
1868 //
1869 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1870 // Methods that don't have provably balanced locking are forced to run in the
1871 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1872 // The interpreter provides two properties:
1873 // I1:  At return-time the interpreter automatically and quietly unlocks any
1874 //      objects acquired the current activation (frame).  Recall that the
1875 //      interpreter maintains an on-stack list of locks currently held by
1876 //      a frame.
1877 // I2:  If a method attempts to unlock an object that is not held by the
1878 //      the frame the interpreter throws IMSX.
1879 //
1880 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1881 // B() doesn't have provably balanced locking so it runs in the interpreter.
1882 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1883 // is still locked by A().
1884 //
1885 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1886 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1887 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1888 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1889 // Arguably given that the spec legislates the JNI case as undefined our implementation
1890 // could reasonably *avoid* checking owner in Fast_Unlock().
1891 // In the interest of performance we elide m->Owner==Self check in unlock.
1892 // A perfectly viable alternative is to elide the owner check except when
1893 // Xcheck:jni is enabled.
1894 
fast_unlock(Register objReg,Register boxReg,Register tmpReg,bool use_rtm)1895 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1896   assert(boxReg == rax, "");
1897   assert_different_registers(objReg, boxReg, tmpReg);
1898 
1899   Label DONE_LABEL, Stacked, CheckSucc;
1900 
1901   // Critically, the biased locking test must have precedence over
1902   // and appear before the (box->dhw == 0) recursive stack-lock test.
1903   if (UseBiasedLocking && !UseOptoBiasInlining) {
1904     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1905   }
1906 
1907 #if INCLUDE_RTM_OPT
1908   if (UseRTMForStackLocks && use_rtm) {
1909     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1910     Label L_regular_unlock;
1911     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1912     andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1913     cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1914     jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1915     xend();                                       // otherwise end...
1916     jmp(DONE_LABEL);                              // ... and we're done
1917     bind(L_regular_unlock);
1918   }
1919 #endif
1920 
1921   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1922   jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1923   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
1924   testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1925   jccb  (Assembler::zero, Stacked);
1926 
1927   // It's inflated.
1928 #if INCLUDE_RTM_OPT
1929   if (use_rtm) {
1930     Label L_regular_inflated_unlock;
1931     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1932     movptr(boxReg, Address(tmpReg, owner_offset));
1933     testptr(boxReg, boxReg);
1934     jccb(Assembler::notZero, L_regular_inflated_unlock);
1935     xend();
1936     jmpb(DONE_LABEL);
1937     bind(L_regular_inflated_unlock);
1938   }
1939 #endif
1940 
1941   // Despite our balanced locking property we still check that m->_owner == Self
1942   // as java routines or native JNI code called by this thread might
1943   // have released the lock.
1944   // Refer to the comments in synchronizer.cpp for how we might encode extra
1945   // state in _succ so we can avoid fetching EntryList|cxq.
1946   //
1947   // I'd like to add more cases in fast_lock() and fast_unlock() --
1948   // such as recursive enter and exit -- but we have to be wary of
1949   // I$ bloat, T$ effects and BP$ effects.
1950   //
1951   // If there's no contention try a 1-0 exit.  That is, exit without
1952   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1953   // we detect and recover from the race that the 1-0 exit admits.
1954   //
1955   // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1956   // before it STs null into _owner, releasing the lock.  Updates
1957   // to data protected by the critical section must be visible before
1958   // we drop the lock (and thus before any other thread could acquire
1959   // the lock and observe the fields protected by the lock).
1960   // IA32's memory-model is SPO, so STs are ordered with respect to
1961   // each other and there's no need for an explicit barrier (fence).
1962   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1963 #ifndef _LP64
1964   get_thread (boxReg);
1965 
1966   // Note that we could employ various encoding schemes to reduce
1967   // the number of loads below (currently 4) to just 2 or 3.
1968   // Refer to the comments in synchronizer.cpp.
1969   // In practice the chain of fetches doesn't seem to impact performance, however.
1970   xorptr(boxReg, boxReg);
1971   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1972   jccb  (Assembler::notZero, DONE_LABEL);
1973   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1974   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1975   jccb  (Assembler::notZero, CheckSucc);
1976   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1977   jmpb  (DONE_LABEL);
1978 
1979   bind (Stacked);
1980   // It's not inflated and it's not recursively stack-locked and it's not biased.
1981   // It must be stack-locked.
1982   // Try to reset the header to displaced header.
1983   // The "box" value on the stack is stable, so we can reload
1984   // and be assured we observe the same value as above.
1985   movptr(tmpReg, Address(boxReg, 0));
1986   lock();
1987   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1988   // Intention fall-thru into DONE_LABEL
1989 
1990   // DONE_LABEL is a hot target - we'd really like to place it at the
1991   // start of cache line by padding with NOPs.
1992   // See the AMD and Intel software optimization manuals for the
1993   // most efficient "long" NOP encodings.
1994   // Unfortunately none of our alignment mechanisms suffice.
1995   bind (CheckSucc);
1996 #else // _LP64
1997   // It's inflated
1998   xorptr(boxReg, boxReg);
1999   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2000   jccb  (Assembler::notZero, DONE_LABEL);
2001   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2002   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2003   jccb  (Assembler::notZero, CheckSucc);
2004   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2005   jmpb  (DONE_LABEL);
2006 
2007   // Try to avoid passing control into the slow_path ...
2008   Label LSuccess, LGoSlowPath ;
2009   bind  (CheckSucc);
2010 
2011   // The following optional optimization can be elided if necessary
2012   // Effectively: if (succ == null) goto SlowPath
2013   // The code reduces the window for a race, however,
2014   // and thus benefits performance.
2015   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2016   jccb  (Assembler::zero, LGoSlowPath);
2017 
2018   xorptr(boxReg, boxReg);
2019   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2020 
2021   // Memory barrier/fence
2022   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2023   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2024   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2025   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2026   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2027   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2028   lock(); addl(Address(rsp, 0), 0);
2029 
2030   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2031   jccb  (Assembler::notZero, LSuccess);
2032 
2033   // Rare inopportune interleaving - race.
2034   // The successor vanished in the small window above.
2035   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2036   // We need to ensure progress and succession.
2037   // Try to reacquire the lock.
2038   // If that fails then the new owner is responsible for succession and this
2039   // thread needs to take no further action and can exit via the fast path (success).
2040   // If the re-acquire succeeds then pass control into the slow path.
2041   // As implemented, this latter mode is horrible because we generated more
2042   // coherence traffic on the lock *and* artifically extended the critical section
2043   // length while by virtue of passing control into the slow path.
2044 
2045   // box is really RAX -- the following CMPXCHG depends on that binding
2046   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2047   lock();
2048   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2049   // There's no successor so we tried to regrab the lock.
2050   // If that didn't work, then another thread grabbed the
2051   // lock so we're done (and exit was a success).
2052   jccb  (Assembler::notEqual, LSuccess);
2053   // Intentional fall-through into slow-path
2054 
2055   bind  (LGoSlowPath);
2056   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2057   jmpb  (DONE_LABEL);
2058 
2059   bind  (LSuccess);
2060   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2061   jmpb  (DONE_LABEL);
2062 
2063   bind  (Stacked);
2064   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2065   lock();
2066   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2067 
2068 #endif
2069   bind(DONE_LABEL);
2070 }
2071 #endif // COMPILER2
2072 
c2bool(Register x)2073 void MacroAssembler::c2bool(Register x) {
2074   // implements x == 0 ? 0 : 1
2075   // note: must only look at least-significant byte of x
2076   //       since C-style booleans are stored in one byte
2077   //       only! (was bug)
2078   andl(x, 0xFF);
2079   setb(Assembler::notZero, x);
2080 }
2081 
2082 // Wouldn't need if AddressLiteral version had new name
call(Label & L,relocInfo::relocType rtype)2083 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2084   Assembler::call(L, rtype);
2085 }
2086 
call(Register entry)2087 void MacroAssembler::call(Register entry) {
2088   Assembler::call(entry);
2089 }
2090 
call(AddressLiteral entry)2091 void MacroAssembler::call(AddressLiteral entry) {
2092   if (reachable(entry)) {
2093     Assembler::call_literal(entry.target(), entry.rspec());
2094   } else {
2095     lea(rscratch1, entry);
2096     Assembler::call(rscratch1);
2097   }
2098 }
2099 
ic_call(address entry,jint method_index)2100 void MacroAssembler::ic_call(address entry, jint method_index) {
2101   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2102   movptr(rax, (intptr_t)Universe::non_oop_word());
2103   call(AddressLiteral(entry, rh));
2104 }
2105 
2106 // Implementation of call_VM versions
2107 
call_VM(Register oop_result,address entry_point,bool check_exceptions)2108 void MacroAssembler::call_VM(Register oop_result,
2109                              address entry_point,
2110                              bool check_exceptions) {
2111   Label C, E;
2112   call(C, relocInfo::none);
2113   jmp(E);
2114 
2115   bind(C);
2116   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2117   ret(0);
2118 
2119   bind(E);
2120 }
2121 
call_VM(Register oop_result,address entry_point,Register arg_1,bool check_exceptions)2122 void MacroAssembler::call_VM(Register oop_result,
2123                              address entry_point,
2124                              Register arg_1,
2125                              bool check_exceptions) {
2126   Label C, E;
2127   call(C, relocInfo::none);
2128   jmp(E);
2129 
2130   bind(C);
2131   pass_arg1(this, arg_1);
2132   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2133   ret(0);
2134 
2135   bind(E);
2136 }
2137 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)2138 void MacroAssembler::call_VM(Register oop_result,
2139                              address entry_point,
2140                              Register arg_1,
2141                              Register arg_2,
2142                              bool check_exceptions) {
2143   Label C, E;
2144   call(C, relocInfo::none);
2145   jmp(E);
2146 
2147   bind(C);
2148 
2149   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2150 
2151   pass_arg2(this, arg_2);
2152   pass_arg1(this, arg_1);
2153   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2154   ret(0);
2155 
2156   bind(E);
2157 }
2158 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2159 void MacroAssembler::call_VM(Register oop_result,
2160                              address entry_point,
2161                              Register arg_1,
2162                              Register arg_2,
2163                              Register arg_3,
2164                              bool check_exceptions) {
2165   Label C, E;
2166   call(C, relocInfo::none);
2167   jmp(E);
2168 
2169   bind(C);
2170 
2171   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2172   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2173   pass_arg3(this, arg_3);
2174 
2175   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2176   pass_arg2(this, arg_2);
2177 
2178   pass_arg1(this, arg_1);
2179   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2180   ret(0);
2181 
2182   bind(E);
2183 }
2184 
call_VM(Register oop_result,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)2185 void MacroAssembler::call_VM(Register oop_result,
2186                              Register last_java_sp,
2187                              address entry_point,
2188                              int number_of_arguments,
2189                              bool check_exceptions) {
2190   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2191   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2192 }
2193 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,bool check_exceptions)2194 void MacroAssembler::call_VM(Register oop_result,
2195                              Register last_java_sp,
2196                              address entry_point,
2197                              Register arg_1,
2198                              bool check_exceptions) {
2199   pass_arg1(this, arg_1);
2200   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2201 }
2202 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)2203 void MacroAssembler::call_VM(Register oop_result,
2204                              Register last_java_sp,
2205                              address entry_point,
2206                              Register arg_1,
2207                              Register arg_2,
2208                              bool check_exceptions) {
2209 
2210   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2211   pass_arg2(this, arg_2);
2212   pass_arg1(this, arg_1);
2213   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2214 }
2215 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2216 void MacroAssembler::call_VM(Register oop_result,
2217                              Register last_java_sp,
2218                              address entry_point,
2219                              Register arg_1,
2220                              Register arg_2,
2221                              Register arg_3,
2222                              bool check_exceptions) {
2223   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2224   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2225   pass_arg3(this, arg_3);
2226   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2227   pass_arg2(this, arg_2);
2228   pass_arg1(this, arg_1);
2229   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2230 }
2231 
super_call_VM(Register oop_result,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)2232 void MacroAssembler::super_call_VM(Register oop_result,
2233                                    Register last_java_sp,
2234                                    address entry_point,
2235                                    int number_of_arguments,
2236                                    bool check_exceptions) {
2237   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2238   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2239 }
2240 
super_call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,bool check_exceptions)2241 void MacroAssembler::super_call_VM(Register oop_result,
2242                                    Register last_java_sp,
2243                                    address entry_point,
2244                                    Register arg_1,
2245                                    bool check_exceptions) {
2246   pass_arg1(this, arg_1);
2247   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2248 }
2249 
super_call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)2250 void MacroAssembler::super_call_VM(Register oop_result,
2251                                    Register last_java_sp,
2252                                    address entry_point,
2253                                    Register arg_1,
2254                                    Register arg_2,
2255                                    bool check_exceptions) {
2256 
2257   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2258   pass_arg2(this, arg_2);
2259   pass_arg1(this, arg_1);
2260   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2261 }
2262 
super_call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)2263 void MacroAssembler::super_call_VM(Register oop_result,
2264                                    Register last_java_sp,
2265                                    address entry_point,
2266                                    Register arg_1,
2267                                    Register arg_2,
2268                                    Register arg_3,
2269                                    bool check_exceptions) {
2270   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2271   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2272   pass_arg3(this, arg_3);
2273   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2274   pass_arg2(this, arg_2);
2275   pass_arg1(this, arg_1);
2276   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2277 }
2278 
call_VM_base(Register oop_result,Register java_thread,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)2279 void MacroAssembler::call_VM_base(Register oop_result,
2280                                   Register java_thread,
2281                                   Register last_java_sp,
2282                                   address  entry_point,
2283                                   int      number_of_arguments,
2284                                   bool     check_exceptions) {
2285   // determine java_thread register
2286   if (!java_thread->is_valid()) {
2287 #ifdef _LP64
2288     java_thread = r15_thread;
2289 #else
2290     java_thread = rdi;
2291     get_thread(java_thread);
2292 #endif // LP64
2293   }
2294   // determine last_java_sp register
2295   if (!last_java_sp->is_valid()) {
2296     last_java_sp = rsp;
2297   }
2298   // debugging support
2299   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2300   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2301 #ifdef ASSERT
2302   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2303   // r12 is the heapbase.
2304   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2305 #endif // ASSERT
2306 
2307   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2308   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2309 
2310   // push java thread (becomes first argument of C function)
2311 
2312   NOT_LP64(push(java_thread); number_of_arguments++);
2313   LP64_ONLY(mov(c_rarg0, r15_thread));
2314 
2315   // set last Java frame before call
2316   assert(last_java_sp != rbp, "can't use ebp/rbp");
2317 
2318   // Only interpreter should have to set fp
2319   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2320 
2321   // do the call, remove parameters
2322   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2323 
2324   // restore the thread (cannot use the pushed argument since arguments
2325   // may be overwritten by C code generated by an optimizing compiler);
2326   // however can use the register value directly if it is callee saved.
2327   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2328     // rdi & rsi (also r15) are callee saved -> nothing to do
2329 #ifdef ASSERT
2330     guarantee(java_thread != rax, "change this code");
2331     push(rax);
2332     { Label L;
2333       get_thread(rax);
2334       cmpptr(java_thread, rax);
2335       jcc(Assembler::equal, L);
2336       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2337       bind(L);
2338     }
2339     pop(rax);
2340 #endif
2341   } else {
2342     get_thread(java_thread);
2343   }
2344   // reset last Java frame
2345   // Only interpreter should have to clear fp
2346   reset_last_Java_frame(java_thread, true);
2347 
2348    // C++ interp handles this in the interpreter
2349   check_and_handle_popframe(java_thread);
2350   check_and_handle_earlyret(java_thread);
2351 
2352   if (check_exceptions) {
2353     // check for pending exceptions (java_thread is set upon return)
2354     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2355 #ifndef _LP64
2356     jump_cc(Assembler::notEqual,
2357             RuntimeAddress(StubRoutines::forward_exception_entry()));
2358 #else
2359     // This used to conditionally jump to forward_exception however it is
2360     // possible if we relocate that the branch will not reach. So we must jump
2361     // around so we can always reach
2362 
2363     Label ok;
2364     jcc(Assembler::equal, ok);
2365     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2366     bind(ok);
2367 #endif // LP64
2368   }
2369 
2370   // get oop result if there is one and reset the value in the thread
2371   if (oop_result->is_valid()) {
2372     get_vm_result(oop_result, java_thread);
2373   }
2374 }
2375 
call_VM_helper(Register oop_result,address entry_point,int number_of_arguments,bool check_exceptions)2376 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2377 
2378   // Calculate the value for last_Java_sp
2379   // somewhat subtle. call_VM does an intermediate call
2380   // which places a return address on the stack just under the
2381   // stack pointer as the user finsihed with it. This allows
2382   // use to retrieve last_Java_pc from last_Java_sp[-1].
2383   // On 32bit we then have to push additional args on the stack to accomplish
2384   // the actual requested call. On 64bit call_VM only can use register args
2385   // so the only extra space is the return address that call_VM created.
2386   // This hopefully explains the calculations here.
2387 
2388 #ifdef _LP64
2389   // We've pushed one address, correct last_Java_sp
2390   lea(rax, Address(rsp, wordSize));
2391 #else
2392   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2393 #endif // LP64
2394 
2395   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2396 
2397 }
2398 
2399 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
call_VM_leaf0(address entry_point)2400 void MacroAssembler::call_VM_leaf0(address entry_point) {
2401   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2402 }
2403 
call_VM_leaf(address entry_point,int number_of_arguments)2404 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2405   call_VM_leaf_base(entry_point, number_of_arguments);
2406 }
2407 
call_VM_leaf(address entry_point,Register arg_0)2408 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2409   pass_arg0(this, arg_0);
2410   call_VM_leaf(entry_point, 1);
2411 }
2412 
call_VM_leaf(address entry_point,Register arg_0,Register arg_1)2413 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2414 
2415   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2416   pass_arg1(this, arg_1);
2417   pass_arg0(this, arg_0);
2418   call_VM_leaf(entry_point, 2);
2419 }
2420 
call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2)2421 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2422   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2423   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2424   pass_arg2(this, arg_2);
2425   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2426   pass_arg1(this, arg_1);
2427   pass_arg0(this, arg_0);
2428   call_VM_leaf(entry_point, 3);
2429 }
2430 
super_call_VM_leaf(address entry_point,Register arg_0)2431 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2432   pass_arg0(this, arg_0);
2433   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2434 }
2435 
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1)2436 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2437 
2438   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2439   pass_arg1(this, arg_1);
2440   pass_arg0(this, arg_0);
2441   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2442 }
2443 
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2)2444 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2445   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2446   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2447   pass_arg2(this, arg_2);
2448   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2449   pass_arg1(this, arg_1);
2450   pass_arg0(this, arg_0);
2451   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2452 }
2453 
super_call_VM_leaf(address entry_point,Register arg_0,Register arg_1,Register arg_2,Register arg_3)2454 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2455   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2456   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2457   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2458   pass_arg3(this, arg_3);
2459   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2460   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2461   pass_arg2(this, arg_2);
2462   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2463   pass_arg1(this, arg_1);
2464   pass_arg0(this, arg_0);
2465   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2466 }
2467 
get_vm_result(Register oop_result,Register java_thread)2468 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2469   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2470   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2471   verify_oop(oop_result, "broken oop in call_VM_base");
2472 }
2473 
get_vm_result_2(Register metadata_result,Register java_thread)2474 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2475   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2476   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2477 }
2478 
check_and_handle_earlyret(Register java_thread)2479 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2480 }
2481 
check_and_handle_popframe(Register java_thread)2482 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2483 }
2484 
cmp32(AddressLiteral src1,int32_t imm)2485 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2486   if (reachable(src1)) {
2487     cmpl(as_Address(src1), imm);
2488   } else {
2489     lea(rscratch1, src1);
2490     cmpl(Address(rscratch1, 0), imm);
2491   }
2492 }
2493 
cmp32(Register src1,AddressLiteral src2)2494 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2495   assert(!src2.is_lval(), "use cmpptr");
2496   if (reachable(src2)) {
2497     cmpl(src1, as_Address(src2));
2498   } else {
2499     lea(rscratch1, src2);
2500     cmpl(src1, Address(rscratch1, 0));
2501   }
2502 }
2503 
cmp32(Register src1,int32_t imm)2504 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2505   Assembler::cmpl(src1, imm);
2506 }
2507 
cmp32(Register src1,Address src2)2508 void MacroAssembler::cmp32(Register src1, Address src2) {
2509   Assembler::cmpl(src1, src2);
2510 }
2511 
cmpsd2int(XMMRegister opr1,XMMRegister opr2,Register dst,bool unordered_is_less)2512 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2513   ucomisd(opr1, opr2);
2514 
2515   Label L;
2516   if (unordered_is_less) {
2517     movl(dst, -1);
2518     jcc(Assembler::parity, L);
2519     jcc(Assembler::below , L);
2520     movl(dst, 0);
2521     jcc(Assembler::equal , L);
2522     increment(dst);
2523   } else { // unordered is greater
2524     movl(dst, 1);
2525     jcc(Assembler::parity, L);
2526     jcc(Assembler::above , L);
2527     movl(dst, 0);
2528     jcc(Assembler::equal , L);
2529     decrementl(dst);
2530   }
2531   bind(L);
2532 }
2533 
cmpss2int(XMMRegister opr1,XMMRegister opr2,Register dst,bool unordered_is_less)2534 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2535   ucomiss(opr1, opr2);
2536 
2537   Label L;
2538   if (unordered_is_less) {
2539     movl(dst, -1);
2540     jcc(Assembler::parity, L);
2541     jcc(Assembler::below , L);
2542     movl(dst, 0);
2543     jcc(Assembler::equal , L);
2544     increment(dst);
2545   } else { // unordered is greater
2546     movl(dst, 1);
2547     jcc(Assembler::parity, L);
2548     jcc(Assembler::above , L);
2549     movl(dst, 0);
2550     jcc(Assembler::equal , L);
2551     decrementl(dst);
2552   }
2553   bind(L);
2554 }
2555 
2556 
cmp8(AddressLiteral src1,int imm)2557 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2558   if (reachable(src1)) {
2559     cmpb(as_Address(src1), imm);
2560   } else {
2561     lea(rscratch1, src1);
2562     cmpb(Address(rscratch1, 0), imm);
2563   }
2564 }
2565 
cmpptr(Register src1,AddressLiteral src2)2566 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2567 #ifdef _LP64
2568   if (src2.is_lval()) {
2569     movptr(rscratch1, src2);
2570     Assembler::cmpq(src1, rscratch1);
2571   } else if (reachable(src2)) {
2572     cmpq(src1, as_Address(src2));
2573   } else {
2574     lea(rscratch1, src2);
2575     Assembler::cmpq(src1, Address(rscratch1, 0));
2576   }
2577 #else
2578   if (src2.is_lval()) {
2579     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2580   } else {
2581     cmpl(src1, as_Address(src2));
2582   }
2583 #endif // _LP64
2584 }
2585 
cmpptr(Address src1,AddressLiteral src2)2586 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2587   assert(src2.is_lval(), "not a mem-mem compare");
2588 #ifdef _LP64
2589   // moves src2's literal address
2590   movptr(rscratch1, src2);
2591   Assembler::cmpq(src1, rscratch1);
2592 #else
2593   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2594 #endif // _LP64
2595 }
2596 
cmpoop(Register src1,Register src2)2597 void MacroAssembler::cmpoop(Register src1, Register src2) {
2598   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2599   bs->obj_equals(this, src1, src2);
2600 }
2601 
cmpoop(Register src1,Address src2)2602 void MacroAssembler::cmpoop(Register src1, Address src2) {
2603   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2604   bs->obj_equals(this, src1, src2);
2605 }
2606 
2607 #ifdef _LP64
cmpoop(Register src1,jobject src2)2608 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2609   movoop(rscratch1, src2);
2610   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2611   bs->obj_equals(this, src1, rscratch1);
2612 }
2613 #endif
2614 
locked_cmpxchgptr(Register reg,AddressLiteral adr)2615 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2616   if (reachable(adr)) {
2617     lock();
2618     cmpxchgptr(reg, as_Address(adr));
2619   } else {
2620     lea(rscratch1, adr);
2621     lock();
2622     cmpxchgptr(reg, Address(rscratch1, 0));
2623   }
2624 }
2625 
cmpxchgptr(Register reg,Address adr)2626 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2627   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2628 }
2629 
comisd(XMMRegister dst,AddressLiteral src)2630 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2631   if (reachable(src)) {
2632     Assembler::comisd(dst, as_Address(src));
2633   } else {
2634     lea(rscratch1, src);
2635     Assembler::comisd(dst, Address(rscratch1, 0));
2636   }
2637 }
2638 
comiss(XMMRegister dst,AddressLiteral src)2639 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2640   if (reachable(src)) {
2641     Assembler::comiss(dst, as_Address(src));
2642   } else {
2643     lea(rscratch1, src);
2644     Assembler::comiss(dst, Address(rscratch1, 0));
2645   }
2646 }
2647 
2648 
cond_inc32(Condition cond,AddressLiteral counter_addr)2649 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2650   Condition negated_cond = negate_condition(cond);
2651   Label L;
2652   jcc(negated_cond, L);
2653   pushf(); // Preserve flags
2654   atomic_incl(counter_addr);
2655   popf();
2656   bind(L);
2657 }
2658 
corrected_idivl(Register reg)2659 int MacroAssembler::corrected_idivl(Register reg) {
2660   // Full implementation of Java idiv and irem; checks for
2661   // special case as described in JVM spec., p.243 & p.271.
2662   // The function returns the (pc) offset of the idivl
2663   // instruction - may be needed for implicit exceptions.
2664   //
2665   //         normal case                           special case
2666   //
2667   // input : rax,: dividend                         min_int
2668   //         reg: divisor   (may not be rax,/rdx)   -1
2669   //
2670   // output: rax,: quotient  (= rax, idiv reg)       min_int
2671   //         rdx: remainder (= rax, irem reg)       0
2672   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2673   const int min_int = 0x80000000;
2674   Label normal_case, special_case;
2675 
2676   // check for special case
2677   cmpl(rax, min_int);
2678   jcc(Assembler::notEqual, normal_case);
2679   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2680   cmpl(reg, -1);
2681   jcc(Assembler::equal, special_case);
2682 
2683   // handle normal case
2684   bind(normal_case);
2685   cdql();
2686   int idivl_offset = offset();
2687   idivl(reg);
2688 
2689   // normal and special case exit
2690   bind(special_case);
2691 
2692   return idivl_offset;
2693 }
2694 
2695 
2696 
decrementl(Register reg,int value)2697 void MacroAssembler::decrementl(Register reg, int value) {
2698   if (value == min_jint) {subl(reg, value) ; return; }
2699   if (value <  0) { incrementl(reg, -value); return; }
2700   if (value == 0) {                        ; return; }
2701   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2702   /* else */      { subl(reg, value)       ; return; }
2703 }
2704 
decrementl(Address dst,int value)2705 void MacroAssembler::decrementl(Address dst, int value) {
2706   if (value == min_jint) {subl(dst, value) ; return; }
2707   if (value <  0) { incrementl(dst, -value); return; }
2708   if (value == 0) {                        ; return; }
2709   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2710   /* else */      { subl(dst, value)       ; return; }
2711 }
2712 
division_with_shift(Register reg,int shift_value)2713 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2714   assert (shift_value > 0, "illegal shift value");
2715   Label _is_positive;
2716   testl (reg, reg);
2717   jcc (Assembler::positive, _is_positive);
2718   int offset = (1 << shift_value) - 1 ;
2719 
2720   if (offset == 1) {
2721     incrementl(reg);
2722   } else {
2723     addl(reg, offset);
2724   }
2725 
2726   bind (_is_positive);
2727   sarl(reg, shift_value);
2728 }
2729 
divsd(XMMRegister dst,AddressLiteral src)2730 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2731   if (reachable(src)) {
2732     Assembler::divsd(dst, as_Address(src));
2733   } else {
2734     lea(rscratch1, src);
2735     Assembler::divsd(dst, Address(rscratch1, 0));
2736   }
2737 }
2738 
divss(XMMRegister dst,AddressLiteral src)2739 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2740   if (reachable(src)) {
2741     Assembler::divss(dst, as_Address(src));
2742   } else {
2743     lea(rscratch1, src);
2744     Assembler::divss(dst, Address(rscratch1, 0));
2745   }
2746 }
2747 
2748 // !defined(COMPILER2) is because of stupid core builds
2749 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
empty_FPU_stack()2750 void MacroAssembler::empty_FPU_stack() {
2751   if (VM_Version::supports_mmx()) {
2752     emms();
2753   } else {
2754     for (int i = 8; i-- > 0; ) ffree(i);
2755   }
2756 }
2757 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2758 
2759 
enter()2760 void MacroAssembler::enter() {
2761   push(rbp);
2762   mov(rbp, rsp);
2763 }
2764 
2765 // A 5 byte nop that is safe for patching (see patch_verified_entry)
fat_nop()2766 void MacroAssembler::fat_nop() {
2767   if (UseAddressNop) {
2768     addr_nop_5();
2769   } else {
2770     emit_int8(0x26); // es:
2771     emit_int8(0x2e); // cs:
2772     emit_int8(0x64); // fs:
2773     emit_int8(0x65); // gs:
2774     emit_int8((unsigned char)0x90);
2775   }
2776 }
2777 
fcmp(Register tmp)2778 void MacroAssembler::fcmp(Register tmp) {
2779   fcmp(tmp, 1, true, true);
2780 }
2781 
fcmp(Register tmp,int index,bool pop_left,bool pop_right)2782 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2783   assert(!pop_right || pop_left, "usage error");
2784   if (VM_Version::supports_cmov()) {
2785     assert(tmp == noreg, "unneeded temp");
2786     if (pop_left) {
2787       fucomip(index);
2788     } else {
2789       fucomi(index);
2790     }
2791     if (pop_right) {
2792       fpop();
2793     }
2794   } else {
2795     assert(tmp != noreg, "need temp");
2796     if (pop_left) {
2797       if (pop_right) {
2798         fcompp();
2799       } else {
2800         fcomp(index);
2801       }
2802     } else {
2803       fcom(index);
2804     }
2805     // convert FPU condition into eflags condition via rax,
2806     save_rax(tmp);
2807     fwait(); fnstsw_ax();
2808     sahf();
2809     restore_rax(tmp);
2810   }
2811   // condition codes set as follows:
2812   //
2813   // CF (corresponds to C0) if x < y
2814   // PF (corresponds to C2) if unordered
2815   // ZF (corresponds to C3) if x = y
2816 }
2817 
fcmp2int(Register dst,bool unordered_is_less)2818 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2819   fcmp2int(dst, unordered_is_less, 1, true, true);
2820 }
2821 
fcmp2int(Register dst,bool unordered_is_less,int index,bool pop_left,bool pop_right)2822 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2823   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2824   Label L;
2825   if (unordered_is_less) {
2826     movl(dst, -1);
2827     jcc(Assembler::parity, L);
2828     jcc(Assembler::below , L);
2829     movl(dst, 0);
2830     jcc(Assembler::equal , L);
2831     increment(dst);
2832   } else { // unordered is greater
2833     movl(dst, 1);
2834     jcc(Assembler::parity, L);
2835     jcc(Assembler::above , L);
2836     movl(dst, 0);
2837     jcc(Assembler::equal , L);
2838     decrementl(dst);
2839   }
2840   bind(L);
2841 }
2842 
fld_d(AddressLiteral src)2843 void MacroAssembler::fld_d(AddressLiteral src) {
2844   fld_d(as_Address(src));
2845 }
2846 
fld_s(AddressLiteral src)2847 void MacroAssembler::fld_s(AddressLiteral src) {
2848   fld_s(as_Address(src));
2849 }
2850 
fld_x(AddressLiteral src)2851 void MacroAssembler::fld_x(AddressLiteral src) {
2852   Assembler::fld_x(as_Address(src));
2853 }
2854 
fldcw(AddressLiteral src)2855 void MacroAssembler::fldcw(AddressLiteral src) {
2856   Assembler::fldcw(as_Address(src));
2857 }
2858 
mulpd(XMMRegister dst,AddressLiteral src)2859 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2860   if (reachable(src)) {
2861     Assembler::mulpd(dst, as_Address(src));
2862   } else {
2863     lea(rscratch1, src);
2864     Assembler::mulpd(dst, Address(rscratch1, 0));
2865   }
2866 }
2867 
increase_precision()2868 void MacroAssembler::increase_precision() {
2869   subptr(rsp, BytesPerWord);
2870   fnstcw(Address(rsp, 0));
2871   movl(rax, Address(rsp, 0));
2872   orl(rax, 0x300);
2873   push(rax);
2874   fldcw(Address(rsp, 0));
2875   pop(rax);
2876 }
2877 
restore_precision()2878 void MacroAssembler::restore_precision() {
2879   fldcw(Address(rsp, 0));
2880   addptr(rsp, BytesPerWord);
2881 }
2882 
fpop()2883 void MacroAssembler::fpop() {
2884   ffree();
2885   fincstp();
2886 }
2887 
load_float(Address src)2888 void MacroAssembler::load_float(Address src) {
2889   if (UseSSE >= 1) {
2890     movflt(xmm0, src);
2891   } else {
2892     LP64_ONLY(ShouldNotReachHere());
2893     NOT_LP64(fld_s(src));
2894   }
2895 }
2896 
store_float(Address dst)2897 void MacroAssembler::store_float(Address dst) {
2898   if (UseSSE >= 1) {
2899     movflt(dst, xmm0);
2900   } else {
2901     LP64_ONLY(ShouldNotReachHere());
2902     NOT_LP64(fstp_s(dst));
2903   }
2904 }
2905 
load_double(Address src)2906 void MacroAssembler::load_double(Address src) {
2907   if (UseSSE >= 2) {
2908     movdbl(xmm0, src);
2909   } else {
2910     LP64_ONLY(ShouldNotReachHere());
2911     NOT_LP64(fld_d(src));
2912   }
2913 }
2914 
store_double(Address dst)2915 void MacroAssembler::store_double(Address dst) {
2916   if (UseSSE >= 2) {
2917     movdbl(dst, xmm0);
2918   } else {
2919     LP64_ONLY(ShouldNotReachHere());
2920     NOT_LP64(fstp_d(dst));
2921   }
2922 }
2923 
fremr(Register tmp)2924 void MacroAssembler::fremr(Register tmp) {
2925   save_rax(tmp);
2926   { Label L;
2927     bind(L);
2928     fprem();
2929     fwait(); fnstsw_ax();
2930 #ifdef _LP64
2931     testl(rax, 0x400);
2932     jcc(Assembler::notEqual, L);
2933 #else
2934     sahf();
2935     jcc(Assembler::parity, L);
2936 #endif // _LP64
2937   }
2938   restore_rax(tmp);
2939   // Result is in ST0.
2940   // Note: fxch & fpop to get rid of ST1
2941   // (otherwise FPU stack could overflow eventually)
2942   fxch(1);
2943   fpop();
2944 }
2945 
2946 // dst = c = a * b + c
fmad(XMMRegister dst,XMMRegister a,XMMRegister b,XMMRegister c)2947 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2948   Assembler::vfmadd231sd(c, a, b);
2949   if (dst != c) {
2950     movdbl(dst, c);
2951   }
2952 }
2953 
2954 // dst = c = a * b + c
fmaf(XMMRegister dst,XMMRegister a,XMMRegister b,XMMRegister c)2955 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2956   Assembler::vfmadd231ss(c, a, b);
2957   if (dst != c) {
2958     movflt(dst, c);
2959   }
2960 }
2961 
2962 // dst = c = a * b + c
vfmad(XMMRegister dst,XMMRegister a,XMMRegister b,XMMRegister c,int vector_len)2963 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2964   Assembler::vfmadd231pd(c, a, b, vector_len);
2965   if (dst != c) {
2966     vmovdqu(dst, c);
2967   }
2968 }
2969 
2970 // dst = c = a * b + c
vfmaf(XMMRegister dst,XMMRegister a,XMMRegister b,XMMRegister c,int vector_len)2971 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2972   Assembler::vfmadd231ps(c, a, b, vector_len);
2973   if (dst != c) {
2974     vmovdqu(dst, c);
2975   }
2976 }
2977 
2978 // dst = c = a * b + c
vfmad(XMMRegister dst,XMMRegister a,Address b,XMMRegister c,int vector_len)2979 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2980   Assembler::vfmadd231pd(c, a, b, vector_len);
2981   if (dst != c) {
2982     vmovdqu(dst, c);
2983   }
2984 }
2985 
2986 // dst = c = a * b + c
vfmaf(XMMRegister dst,XMMRegister a,Address b,XMMRegister c,int vector_len)2987 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2988   Assembler::vfmadd231ps(c, a, b, vector_len);
2989   if (dst != c) {
2990     vmovdqu(dst, c);
2991   }
2992 }
2993 
incrementl(AddressLiteral dst)2994 void MacroAssembler::incrementl(AddressLiteral dst) {
2995   if (reachable(dst)) {
2996     incrementl(as_Address(dst));
2997   } else {
2998     lea(rscratch1, dst);
2999     incrementl(Address(rscratch1, 0));
3000   }
3001 }
3002 
incrementl(ArrayAddress dst)3003 void MacroAssembler::incrementl(ArrayAddress dst) {
3004   incrementl(as_Address(dst));
3005 }
3006 
incrementl(Register reg,int value)3007 void MacroAssembler::incrementl(Register reg, int value) {
3008   if (value == min_jint) {addl(reg, value) ; return; }
3009   if (value <  0) { decrementl(reg, -value); return; }
3010   if (value == 0) {                        ; return; }
3011   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3012   /* else */      { addl(reg, value)       ; return; }
3013 }
3014 
incrementl(Address dst,int value)3015 void MacroAssembler::incrementl(Address dst, int value) {
3016   if (value == min_jint) {addl(dst, value) ; return; }
3017   if (value <  0) { decrementl(dst, -value); return; }
3018   if (value == 0) {                        ; return; }
3019   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3020   /* else */      { addl(dst, value)       ; return; }
3021 }
3022 
jump(AddressLiteral dst)3023 void MacroAssembler::jump(AddressLiteral dst) {
3024   if (reachable(dst)) {
3025     jmp_literal(dst.target(), dst.rspec());
3026   } else {
3027     lea(rscratch1, dst);
3028     jmp(rscratch1);
3029   }
3030 }
3031 
jump_cc(Condition cc,AddressLiteral dst)3032 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3033   if (reachable(dst)) {
3034     InstructionMark im(this);
3035     relocate(dst.reloc());
3036     const int short_size = 2;
3037     const int long_size = 6;
3038     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3039     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3040       // 0111 tttn #8-bit disp
3041       emit_int8(0x70 | cc);
3042       emit_int8((offs - short_size) & 0xFF);
3043     } else {
3044       // 0000 1111 1000 tttn #32-bit disp
3045       emit_int8(0x0F);
3046       emit_int8((unsigned char)(0x80 | cc));
3047       emit_int32(offs - long_size);
3048     }
3049   } else {
3050 #ifdef ASSERT
3051     warning("reversing conditional branch");
3052 #endif /* ASSERT */
3053     Label skip;
3054     jccb(reverse[cc], skip);
3055     lea(rscratch1, dst);
3056     Assembler::jmp(rscratch1);
3057     bind(skip);
3058   }
3059 }
3060 
ldmxcsr(AddressLiteral src)3061 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3062   if (reachable(src)) {
3063     Assembler::ldmxcsr(as_Address(src));
3064   } else {
3065     lea(rscratch1, src);
3066     Assembler::ldmxcsr(Address(rscratch1, 0));
3067   }
3068 }
3069 
load_signed_byte(Register dst,Address src)3070 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3071   int off;
3072   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3073     off = offset();
3074     movsbl(dst, src); // movsxb
3075   } else {
3076     off = load_unsigned_byte(dst, src);
3077     shll(dst, 24);
3078     sarl(dst, 24);
3079   }
3080   return off;
3081 }
3082 
3083 // Note: load_signed_short used to be called load_signed_word.
3084 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3085 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3086 // The term "word" in HotSpot means a 32- or 64-bit machine word.
load_signed_short(Register dst,Address src)3087 int MacroAssembler::load_signed_short(Register dst, Address src) {
3088   int off;
3089   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3090     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3091     // version but this is what 64bit has always done. This seems to imply
3092     // that users are only using 32bits worth.
3093     off = offset();
3094     movswl(dst, src); // movsxw
3095   } else {
3096     off = load_unsigned_short(dst, src);
3097     shll(dst, 16);
3098     sarl(dst, 16);
3099   }
3100   return off;
3101 }
3102 
load_unsigned_byte(Register dst,Address src)3103 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3104   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3105   // and "3.9 Partial Register Penalties", p. 22).
3106   int off;
3107   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3108     off = offset();
3109     movzbl(dst, src); // movzxb
3110   } else {
3111     xorl(dst, dst);
3112     off = offset();
3113     movb(dst, src);
3114   }
3115   return off;
3116 }
3117 
3118 // Note: load_unsigned_short used to be called load_unsigned_word.
load_unsigned_short(Register dst,Address src)3119 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3120   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3121   // and "3.9 Partial Register Penalties", p. 22).
3122   int off;
3123   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3124     off = offset();
3125     movzwl(dst, src); // movzxw
3126   } else {
3127     xorl(dst, dst);
3128     off = offset();
3129     movw(dst, src);
3130   }
3131   return off;
3132 }
3133 
load_sized_value(Register dst,Address src,size_t size_in_bytes,bool is_signed,Register dst2)3134 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3135   switch (size_in_bytes) {
3136 #ifndef _LP64
3137   case  8:
3138     assert(dst2 != noreg, "second dest register required");
3139     movl(dst,  src);
3140     movl(dst2, src.plus_disp(BytesPerInt));
3141     break;
3142 #else
3143   case  8:  movq(dst, src); break;
3144 #endif
3145   case  4:  movl(dst, src); break;
3146   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3147   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3148   default:  ShouldNotReachHere();
3149   }
3150 }
3151 
store_sized_value(Address dst,Register src,size_t size_in_bytes,Register src2)3152 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3153   switch (size_in_bytes) {
3154 #ifndef _LP64
3155   case  8:
3156     assert(src2 != noreg, "second source register required");
3157     movl(dst,                        src);
3158     movl(dst.plus_disp(BytesPerInt), src2);
3159     break;
3160 #else
3161   case  8:  movq(dst, src); break;
3162 #endif
3163   case  4:  movl(dst, src); break;
3164   case  2:  movw(dst, src); break;
3165   case  1:  movb(dst, src); break;
3166   default:  ShouldNotReachHere();
3167   }
3168 }
3169 
mov32(AddressLiteral dst,Register src)3170 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3171   if (reachable(dst)) {
3172     movl(as_Address(dst), src);
3173   } else {
3174     lea(rscratch1, dst);
3175     movl(Address(rscratch1, 0), src);
3176   }
3177 }
3178 
mov32(Register dst,AddressLiteral src)3179 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3180   if (reachable(src)) {
3181     movl(dst, as_Address(src));
3182   } else {
3183     lea(rscratch1, src);
3184     movl(dst, Address(rscratch1, 0));
3185   }
3186 }
3187 
3188 // C++ bool manipulation
3189 
movbool(Register dst,Address src)3190 void MacroAssembler::movbool(Register dst, Address src) {
3191   if(sizeof(bool) == 1)
3192     movb(dst, src);
3193   else if(sizeof(bool) == 2)
3194     movw(dst, src);
3195   else if(sizeof(bool) == 4)
3196     movl(dst, src);
3197   else
3198     // unsupported
3199     ShouldNotReachHere();
3200 }
3201 
movbool(Address dst,bool boolconst)3202 void MacroAssembler::movbool(Address dst, bool boolconst) {
3203   if(sizeof(bool) == 1)
3204     movb(dst, (int) boolconst);
3205   else if(sizeof(bool) == 2)
3206     movw(dst, (int) boolconst);
3207   else if(sizeof(bool) == 4)
3208     movl(dst, (int) boolconst);
3209   else
3210     // unsupported
3211     ShouldNotReachHere();
3212 }
3213 
movbool(Address dst,Register src)3214 void MacroAssembler::movbool(Address dst, Register src) {
3215   if(sizeof(bool) == 1)
3216     movb(dst, src);
3217   else if(sizeof(bool) == 2)
3218     movw(dst, src);
3219   else if(sizeof(bool) == 4)
3220     movl(dst, src);
3221   else
3222     // unsupported
3223     ShouldNotReachHere();
3224 }
3225 
movbyte(ArrayAddress dst,int src)3226 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3227   movb(as_Address(dst), src);
3228 }
3229 
movdl(XMMRegister dst,AddressLiteral src)3230 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3231   if (reachable(src)) {
3232     movdl(dst, as_Address(src));
3233   } else {
3234     lea(rscratch1, src);
3235     movdl(dst, Address(rscratch1, 0));
3236   }
3237 }
3238 
movq(XMMRegister dst,AddressLiteral src)3239 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3240   if (reachable(src)) {
3241     movq(dst, as_Address(src));
3242   } else {
3243     lea(rscratch1, src);
3244     movq(dst, Address(rscratch1, 0));
3245   }
3246 }
3247 
3248 #ifdef COMPILER2
setvectmask(Register dst,Register src)3249 void MacroAssembler::setvectmask(Register dst, Register src) {
3250   guarantee(PostLoopMultiversioning, "must be");
3251   Assembler::movl(dst, 1);
3252   Assembler::shlxl(dst, dst, src);
3253   Assembler::decl(dst);
3254   Assembler::kmovdl(k1, dst);
3255   Assembler::movl(dst, src);
3256 }
3257 
restorevectmask()3258 void MacroAssembler::restorevectmask() {
3259   guarantee(PostLoopMultiversioning, "must be");
3260   Assembler::knotwl(k1, k0);
3261 }
3262 #endif // COMPILER2
3263 
movdbl(XMMRegister dst,AddressLiteral src)3264 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3265   if (reachable(src)) {
3266     if (UseXmmLoadAndClearUpper) {
3267       movsd (dst, as_Address(src));
3268     } else {
3269       movlpd(dst, as_Address(src));
3270     }
3271   } else {
3272     lea(rscratch1, src);
3273     if (UseXmmLoadAndClearUpper) {
3274       movsd (dst, Address(rscratch1, 0));
3275     } else {
3276       movlpd(dst, Address(rscratch1, 0));
3277     }
3278   }
3279 }
3280 
movflt(XMMRegister dst,AddressLiteral src)3281 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3282   if (reachable(src)) {
3283     movss(dst, as_Address(src));
3284   } else {
3285     lea(rscratch1, src);
3286     movss(dst, Address(rscratch1, 0));
3287   }
3288 }
3289 
movptr(Register dst,Register src)3290 void MacroAssembler::movptr(Register dst, Register src) {
3291   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3292 }
3293 
movptr(Register dst,Address src)3294 void MacroAssembler::movptr(Register dst, Address src) {
3295   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3296 }
3297 
3298 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
movptr(Register dst,intptr_t src)3299 void MacroAssembler::movptr(Register dst, intptr_t src) {
3300   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3301 }
3302 
movptr(Address dst,Register src)3303 void MacroAssembler::movptr(Address dst, Register src) {
3304   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3305 }
3306 
movdqu(Address dst,XMMRegister src)3307 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3308     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3309     Assembler::movdqu(dst, src);
3310 }
3311 
movdqu(XMMRegister dst,Address src)3312 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3313     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3314     Assembler::movdqu(dst, src);
3315 }
3316 
movdqu(XMMRegister dst,XMMRegister src)3317 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3318     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3319     Assembler::movdqu(dst, src);
3320 }
3321 
movdqu(XMMRegister dst,AddressLiteral src,Register scratchReg)3322 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3323   if (reachable(src)) {
3324     movdqu(dst, as_Address(src));
3325   } else {
3326     lea(scratchReg, src);
3327     movdqu(dst, Address(scratchReg, 0));
3328   }
3329 }
3330 
vmovdqu(Address dst,XMMRegister src)3331 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3332     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3333     Assembler::vmovdqu(dst, src);
3334 }
3335 
vmovdqu(XMMRegister dst,Address src)3336 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3337     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3338     Assembler::vmovdqu(dst, src);
3339 }
3340 
vmovdqu(XMMRegister dst,XMMRegister src)3341 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3342     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3343     Assembler::vmovdqu(dst, src);
3344 }
3345 
vmovdqu(XMMRegister dst,AddressLiteral src,Register scratch_reg)3346 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3347   if (reachable(src)) {
3348     vmovdqu(dst, as_Address(src));
3349   }
3350   else {
3351     lea(scratch_reg, src);
3352     vmovdqu(dst, Address(scratch_reg, 0));
3353   }
3354 }
3355 
evmovdquq(XMMRegister dst,AddressLiteral src,int vector_len,Register rscratch)3356 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3357   if (reachable(src)) {
3358     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3359   } else {
3360     lea(rscratch, src);
3361     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3362   }
3363 }
3364 
movdqa(XMMRegister dst,AddressLiteral src)3365 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3366   if (reachable(src)) {
3367     Assembler::movdqa(dst, as_Address(src));
3368   } else {
3369     lea(rscratch1, src);
3370     Assembler::movdqa(dst, Address(rscratch1, 0));
3371   }
3372 }
3373 
movsd(XMMRegister dst,AddressLiteral src)3374 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3375   if (reachable(src)) {
3376     Assembler::movsd(dst, as_Address(src));
3377   } else {
3378     lea(rscratch1, src);
3379     Assembler::movsd(dst, Address(rscratch1, 0));
3380   }
3381 }
3382 
movss(XMMRegister dst,AddressLiteral src)3383 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3384   if (reachable(src)) {
3385     Assembler::movss(dst, as_Address(src));
3386   } else {
3387     lea(rscratch1, src);
3388     Assembler::movss(dst, Address(rscratch1, 0));
3389   }
3390 }
3391 
mulsd(XMMRegister dst,AddressLiteral src)3392 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3393   if (reachable(src)) {
3394     Assembler::mulsd(dst, as_Address(src));
3395   } else {
3396     lea(rscratch1, src);
3397     Assembler::mulsd(dst, Address(rscratch1, 0));
3398   }
3399 }
3400 
mulss(XMMRegister dst,AddressLiteral src)3401 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3402   if (reachable(src)) {
3403     Assembler::mulss(dst, as_Address(src));
3404   } else {
3405     lea(rscratch1, src);
3406     Assembler::mulss(dst, Address(rscratch1, 0));
3407   }
3408 }
3409 
null_check(Register reg,int offset)3410 void MacroAssembler::null_check(Register reg, int offset) {
3411   if (needs_explicit_null_check(offset)) {
3412     // provoke OS NULL exception if reg = NULL by
3413     // accessing M[reg] w/o changing any (non-CC) registers
3414     // NOTE: cmpl is plenty here to provoke a segv
3415     cmpptr(rax, Address(reg, 0));
3416     // Note: should probably use testl(rax, Address(reg, 0));
3417     //       may be shorter code (however, this version of
3418     //       testl needs to be implemented first)
3419   } else {
3420     // nothing to do, (later) access of M[reg + offset]
3421     // will provoke OS NULL exception if reg = NULL
3422   }
3423 }
3424 
os_breakpoint()3425 void MacroAssembler::os_breakpoint() {
3426   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3427   // (e.g., MSVC can't call ps() otherwise)
3428   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3429 }
3430 
unimplemented(const char * what)3431 void MacroAssembler::unimplemented(const char* what) {
3432   const char* buf = NULL;
3433   {
3434     ResourceMark rm;
3435     stringStream ss;
3436     ss.print("unimplemented: %s", what);
3437     buf = code_string(ss.as_string());
3438   }
3439   stop(buf);
3440 }
3441 
3442 #ifdef _LP64
3443 #define XSTATE_BV 0x200
3444 #endif
3445 
pop_CPU_state()3446 void MacroAssembler::pop_CPU_state() {
3447   pop_FPU_state();
3448   pop_IU_state();
3449 }
3450 
pop_FPU_state()3451 void MacroAssembler::pop_FPU_state() {
3452 #ifndef _LP64
3453   frstor(Address(rsp, 0));
3454 #else
3455   fxrstor(Address(rsp, 0));
3456 #endif
3457   addptr(rsp, FPUStateSizeInWords * wordSize);
3458 }
3459 
pop_IU_state()3460 void MacroAssembler::pop_IU_state() {
3461   popa();
3462   LP64_ONLY(addq(rsp, 8));
3463   popf();
3464 }
3465 
3466 // Save Integer and Float state
3467 // Warning: Stack must be 16 byte aligned (64bit)
push_CPU_state()3468 void MacroAssembler::push_CPU_state() {
3469   push_IU_state();
3470   push_FPU_state();
3471 }
3472 
push_FPU_state()3473 void MacroAssembler::push_FPU_state() {
3474   subptr(rsp, FPUStateSizeInWords * wordSize);
3475 #ifndef _LP64
3476   fnsave(Address(rsp, 0));
3477   fwait();
3478 #else
3479   fxsave(Address(rsp, 0));
3480 #endif // LP64
3481 }
3482 
push_IU_state()3483 void MacroAssembler::push_IU_state() {
3484   // Push flags first because pusha kills them
3485   pushf();
3486   // Make sure rsp stays 16-byte aligned
3487   LP64_ONLY(subq(rsp, 8));
3488   pusha();
3489 }
3490 
reset_last_Java_frame(Register java_thread,bool clear_fp)3491 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3492   if (!java_thread->is_valid()) {
3493     java_thread = rdi;
3494     get_thread(java_thread);
3495   }
3496   // we must set sp to zero to clear frame
3497   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3498   if (clear_fp) {
3499     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3500   }
3501 
3502   // Always clear the pc because it could have been set by make_walkable()
3503   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3504 
3505   vzeroupper();
3506 }
3507 
restore_rax(Register tmp)3508 void MacroAssembler::restore_rax(Register tmp) {
3509   if (tmp == noreg) pop(rax);
3510   else if (tmp != rax) mov(rax, tmp);
3511 }
3512 
round_to(Register reg,int modulus)3513 void MacroAssembler::round_to(Register reg, int modulus) {
3514   addptr(reg, modulus - 1);
3515   andptr(reg, -modulus);
3516 }
3517 
save_rax(Register tmp)3518 void MacroAssembler::save_rax(Register tmp) {
3519   if (tmp == noreg) push(rax);
3520   else if (tmp != rax) mov(tmp, rax);
3521 }
3522 
safepoint_poll(Label & slow_path,Register thread_reg,Register temp_reg)3523 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3524   if (SafepointMechanism::uses_thread_local_poll()) {
3525 #ifdef _LP64
3526     assert(thread_reg == r15_thread, "should be");
3527 #else
3528     if (thread_reg == noreg) {
3529       thread_reg = temp_reg;
3530       get_thread(thread_reg);
3531     }
3532 #endif
3533     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3534     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3535   } else {
3536     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3537         SafepointSynchronize::_not_synchronized);
3538     jcc(Assembler::notEqual, slow_path);
3539   }
3540 }
3541 
3542 // Calls to C land
3543 //
3544 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3545 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3546 // has to be reset to 0. This is required to allow proper stack traversal.
set_last_Java_frame(Register java_thread,Register last_java_sp,Register last_java_fp,address last_java_pc)3547 void MacroAssembler::set_last_Java_frame(Register java_thread,
3548                                          Register last_java_sp,
3549                                          Register last_java_fp,
3550                                          address  last_java_pc) {
3551   vzeroupper();
3552   // determine java_thread register
3553   if (!java_thread->is_valid()) {
3554     java_thread = rdi;
3555     get_thread(java_thread);
3556   }
3557   // determine last_java_sp register
3558   if (!last_java_sp->is_valid()) {
3559     last_java_sp = rsp;
3560   }
3561 
3562   // last_java_fp is optional
3563 
3564   if (last_java_fp->is_valid()) {
3565     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3566   }
3567 
3568   // last_java_pc is optional
3569 
3570   if (last_java_pc != NULL) {
3571     lea(Address(java_thread,
3572                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3573         InternalAddress(last_java_pc));
3574 
3575   }
3576   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3577 }
3578 
shlptr(Register dst,int imm8)3579 void MacroAssembler::shlptr(Register dst, int imm8) {
3580   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3581 }
3582 
shrptr(Register dst,int imm8)3583 void MacroAssembler::shrptr(Register dst, int imm8) {
3584   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3585 }
3586 
sign_extend_byte(Register reg)3587 void MacroAssembler::sign_extend_byte(Register reg) {
3588   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3589     movsbl(reg, reg); // movsxb
3590   } else {
3591     shll(reg, 24);
3592     sarl(reg, 24);
3593   }
3594 }
3595 
sign_extend_short(Register reg)3596 void MacroAssembler::sign_extend_short(Register reg) {
3597   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3598     movswl(reg, reg); // movsxw
3599   } else {
3600     shll(reg, 16);
3601     sarl(reg, 16);
3602   }
3603 }
3604 
testl(Register dst,AddressLiteral src)3605 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3606   assert(reachable(src), "Address should be reachable");
3607   testl(dst, as_Address(src));
3608 }
3609 
pcmpeqb(XMMRegister dst,XMMRegister src)3610 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3611   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3612   Assembler::pcmpeqb(dst, src);
3613 }
3614 
pcmpeqw(XMMRegister dst,XMMRegister src)3615 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3616   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3617   Assembler::pcmpeqw(dst, src);
3618 }
3619 
pcmpestri(XMMRegister dst,Address src,int imm8)3620 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3621   assert((dst->encoding() < 16),"XMM register should be 0-15");
3622   Assembler::pcmpestri(dst, src, imm8);
3623 }
3624 
pcmpestri(XMMRegister dst,XMMRegister src,int imm8)3625 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3626   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3627   Assembler::pcmpestri(dst, src, imm8);
3628 }
3629 
pmovzxbw(XMMRegister dst,XMMRegister src)3630 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3631   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3632   Assembler::pmovzxbw(dst, src);
3633 }
3634 
pmovzxbw(XMMRegister dst,Address src)3635 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3636   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3637   Assembler::pmovzxbw(dst, src);
3638 }
3639 
pmovmskb(Register dst,XMMRegister src)3640 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3641   assert((src->encoding() < 16),"XMM register should be 0-15");
3642   Assembler::pmovmskb(dst, src);
3643 }
3644 
ptest(XMMRegister dst,XMMRegister src)3645 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3646   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3647   Assembler::ptest(dst, src);
3648 }
3649 
sqrtsd(XMMRegister dst,AddressLiteral src)3650 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3651   if (reachable(src)) {
3652     Assembler::sqrtsd(dst, as_Address(src));
3653   } else {
3654     lea(rscratch1, src);
3655     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3656   }
3657 }
3658 
sqrtss(XMMRegister dst,AddressLiteral src)3659 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3660   if (reachable(src)) {
3661     Assembler::sqrtss(dst, as_Address(src));
3662   } else {
3663     lea(rscratch1, src);
3664     Assembler::sqrtss(dst, Address(rscratch1, 0));
3665   }
3666 }
3667 
subsd(XMMRegister dst,AddressLiteral src)3668 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3669   if (reachable(src)) {
3670     Assembler::subsd(dst, as_Address(src));
3671   } else {
3672     lea(rscratch1, src);
3673     Assembler::subsd(dst, Address(rscratch1, 0));
3674   }
3675 }
3676 
roundsd(XMMRegister dst,AddressLiteral src,int32_t rmode,Register scratch_reg)3677 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3678   if (reachable(src)) {
3679     Assembler::roundsd(dst, as_Address(src), rmode);
3680   } else {
3681     lea(scratch_reg, src);
3682     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3683   }
3684 }
3685 
subss(XMMRegister dst,AddressLiteral src)3686 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3687   if (reachable(src)) {
3688     Assembler::subss(dst, as_Address(src));
3689   } else {
3690     lea(rscratch1, src);
3691     Assembler::subss(dst, Address(rscratch1, 0));
3692   }
3693 }
3694 
ucomisd(XMMRegister dst,AddressLiteral src)3695 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3696   if (reachable(src)) {
3697     Assembler::ucomisd(dst, as_Address(src));
3698   } else {
3699     lea(rscratch1, src);
3700     Assembler::ucomisd(dst, Address(rscratch1, 0));
3701   }
3702 }
3703 
ucomiss(XMMRegister dst,AddressLiteral src)3704 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3705   if (reachable(src)) {
3706     Assembler::ucomiss(dst, as_Address(src));
3707   } else {
3708     lea(rscratch1, src);
3709     Assembler::ucomiss(dst, Address(rscratch1, 0));
3710   }
3711 }
3712 
xorpd(XMMRegister dst,AddressLiteral src,Register scratch_reg)3713 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3714   // Used in sign-bit flipping with aligned address.
3715   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3716   if (reachable(src)) {
3717     Assembler::xorpd(dst, as_Address(src));
3718   } else {
3719     lea(scratch_reg, src);
3720     Assembler::xorpd(dst, Address(scratch_reg, 0));
3721   }
3722 }
3723 
xorpd(XMMRegister dst,XMMRegister src)3724 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3725   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3726     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3727   }
3728   else {
3729     Assembler::xorpd(dst, src);
3730   }
3731 }
3732 
xorps(XMMRegister dst,XMMRegister src)3733 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3734   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3735     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3736   } else {
3737     Assembler::xorps(dst, src);
3738   }
3739 }
3740 
xorps(XMMRegister dst,AddressLiteral src,Register scratch_reg)3741 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3742   // Used in sign-bit flipping with aligned address.
3743   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3744   if (reachable(src)) {
3745     Assembler::xorps(dst, as_Address(src));
3746   } else {
3747     lea(scratch_reg, src);
3748     Assembler::xorps(dst, Address(scratch_reg, 0));
3749   }
3750 }
3751 
pshufb(XMMRegister dst,AddressLiteral src)3752 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3753   // Used in sign-bit flipping with aligned address.
3754   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3755   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3756   if (reachable(src)) {
3757     Assembler::pshufb(dst, as_Address(src));
3758   } else {
3759     lea(rscratch1, src);
3760     Assembler::pshufb(dst, Address(rscratch1, 0));
3761   }
3762 }
3763 
3764 // AVX 3-operands instructions
3765 
vaddsd(XMMRegister dst,XMMRegister nds,AddressLiteral src)3766 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3767   if (reachable(src)) {
3768     vaddsd(dst, nds, as_Address(src));
3769   } else {
3770     lea(rscratch1, src);
3771     vaddsd(dst, nds, Address(rscratch1, 0));
3772   }
3773 }
3774 
vaddss(XMMRegister dst,XMMRegister nds,AddressLiteral src)3775 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3776   if (reachable(src)) {
3777     vaddss(dst, nds, as_Address(src));
3778   } else {
3779     lea(rscratch1, src);
3780     vaddss(dst, nds, Address(rscratch1, 0));
3781   }
3782 }
3783 
vabsss(XMMRegister dst,XMMRegister nds,XMMRegister src,AddressLiteral negate_field,int vector_len)3784 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3785   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3786   vandps(dst, nds, negate_field, vector_len);
3787 }
3788 
vabssd(XMMRegister dst,XMMRegister nds,XMMRegister src,AddressLiteral negate_field,int vector_len)3789 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3790   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3791   vandpd(dst, nds, negate_field, vector_len);
3792 }
3793 
vpaddb(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3794 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3795   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3796   Assembler::vpaddb(dst, nds, src, vector_len);
3797 }
3798 
vpaddb(XMMRegister dst,XMMRegister nds,Address src,int vector_len)3799 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3800   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3801   Assembler::vpaddb(dst, nds, src, vector_len);
3802 }
3803 
vpaddw(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3804 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3805   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3806   Assembler::vpaddw(dst, nds, src, vector_len);
3807 }
3808 
vpaddw(XMMRegister dst,XMMRegister nds,Address src,int vector_len)3809 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3810   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3811   Assembler::vpaddw(dst, nds, src, vector_len);
3812 }
3813 
vpand(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)3814 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3815   if (reachable(src)) {
3816     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3817   } else {
3818     lea(scratch_reg, src);
3819     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3820   }
3821 }
3822 
vpbroadcastw(XMMRegister dst,XMMRegister src,int vector_len)3823 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3824   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3825   Assembler::vpbroadcastw(dst, src, vector_len);
3826 }
3827 
vpcmpeqb(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3828 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3829   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3830   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3831 }
3832 
vpcmpeqw(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3833 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3834   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3835   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3836 }
3837 
vpmovzxbw(XMMRegister dst,Address src,int vector_len)3838 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3839   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3840   Assembler::vpmovzxbw(dst, src, vector_len);
3841 }
3842 
vpmovmskb(Register dst,XMMRegister src)3843 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3844   assert((src->encoding() < 16),"XMM register should be 0-15");
3845   Assembler::vpmovmskb(dst, src);
3846 }
3847 
vpmullw(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3848 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3849   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3850   Assembler::vpmullw(dst, nds, src, vector_len);
3851 }
3852 
vpmullw(XMMRegister dst,XMMRegister nds,Address src,int vector_len)3853 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3854   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3855   Assembler::vpmullw(dst, nds, src, vector_len);
3856 }
3857 
vpsubb(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3858 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3859   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3860   Assembler::vpsubb(dst, nds, src, vector_len);
3861 }
3862 
vpsubb(XMMRegister dst,XMMRegister nds,Address src,int vector_len)3863 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3864   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3865   Assembler::vpsubb(dst, nds, src, vector_len);
3866 }
3867 
vpsubw(XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)3868 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3869   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3870   Assembler::vpsubw(dst, nds, src, vector_len);
3871 }
3872 
vpsubw(XMMRegister dst,XMMRegister nds,Address src,int vector_len)3873 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3874   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3875   Assembler::vpsubw(dst, nds, src, vector_len);
3876 }
3877 
vpsraw(XMMRegister dst,XMMRegister nds,XMMRegister shift,int vector_len)3878 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3879   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3880   Assembler::vpsraw(dst, nds, shift, vector_len);
3881 }
3882 
vpsraw(XMMRegister dst,XMMRegister nds,int shift,int vector_len)3883 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3884   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3885   Assembler::vpsraw(dst, nds, shift, vector_len);
3886 }
3887 
evpsraq(XMMRegister dst,XMMRegister nds,XMMRegister shift,int vector_len)3888 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3889   assert(UseAVX > 2,"");
3890   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3891      vector_len = 2;
3892   }
3893   Assembler::evpsraq(dst, nds, shift, vector_len);
3894 }
3895 
evpsraq(XMMRegister dst,XMMRegister nds,int shift,int vector_len)3896 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3897   assert(UseAVX > 2,"");
3898   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3899      vector_len = 2;
3900   }
3901   Assembler::evpsraq(dst, nds, shift, vector_len);
3902 }
3903 
vpsrlw(XMMRegister dst,XMMRegister nds,XMMRegister shift,int vector_len)3904 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3905   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3906   Assembler::vpsrlw(dst, nds, shift, vector_len);
3907 }
3908 
vpsrlw(XMMRegister dst,XMMRegister nds,int shift,int vector_len)3909 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3910   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3911   Assembler::vpsrlw(dst, nds, shift, vector_len);
3912 }
3913 
vpsllw(XMMRegister dst,XMMRegister nds,XMMRegister shift,int vector_len)3914 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3915   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3916   Assembler::vpsllw(dst, nds, shift, vector_len);
3917 }
3918 
vpsllw(XMMRegister dst,XMMRegister nds,int shift,int vector_len)3919 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3920   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3921   Assembler::vpsllw(dst, nds, shift, vector_len);
3922 }
3923 
vptest(XMMRegister dst,XMMRegister src)3924 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3925   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3926   Assembler::vptest(dst, src);
3927 }
3928 
punpcklbw(XMMRegister dst,XMMRegister src)3929 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3930   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3931   Assembler::punpcklbw(dst, src);
3932 }
3933 
pshufd(XMMRegister dst,Address src,int mode)3934 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3935   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3936   Assembler::pshufd(dst, src, mode);
3937 }
3938 
pshuflw(XMMRegister dst,XMMRegister src,int mode)3939 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3940   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3941   Assembler::pshuflw(dst, src, mode);
3942 }
3943 
vandpd(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)3944 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3945   if (reachable(src)) {
3946     vandpd(dst, nds, as_Address(src), vector_len);
3947   } else {
3948     lea(scratch_reg, src);
3949     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3950   }
3951 }
3952 
vandps(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)3953 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3954   if (reachable(src)) {
3955     vandps(dst, nds, as_Address(src), vector_len);
3956   } else {
3957     lea(scratch_reg, src);
3958     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3959   }
3960 }
3961 
vdivsd(XMMRegister dst,XMMRegister nds,AddressLiteral src)3962 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3963   if (reachable(src)) {
3964     vdivsd(dst, nds, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     vdivsd(dst, nds, Address(rscratch1, 0));
3968   }
3969 }
3970 
vdivss(XMMRegister dst,XMMRegister nds,AddressLiteral src)3971 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3972   if (reachable(src)) {
3973     vdivss(dst, nds, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     vdivss(dst, nds, Address(rscratch1, 0));
3977   }
3978 }
3979 
vmulsd(XMMRegister dst,XMMRegister nds,AddressLiteral src)3980 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vmulsd(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vmulsd(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
vmulss(XMMRegister dst,XMMRegister nds,AddressLiteral src)3989 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3990   if (reachable(src)) {
3991     vmulss(dst, nds, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     vmulss(dst, nds, Address(rscratch1, 0));
3995   }
3996 }
3997 
vsubsd(XMMRegister dst,XMMRegister nds,AddressLiteral src)3998 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3999   if (reachable(src)) {
4000     vsubsd(dst, nds, as_Address(src));
4001   } else {
4002     lea(rscratch1, src);
4003     vsubsd(dst, nds, Address(rscratch1, 0));
4004   }
4005 }
4006 
vsubss(XMMRegister dst,XMMRegister nds,AddressLiteral src)4007 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4008   if (reachable(src)) {
4009     vsubss(dst, nds, as_Address(src));
4010   } else {
4011     lea(rscratch1, src);
4012     vsubss(dst, nds, Address(rscratch1, 0));
4013   }
4014 }
4015 
vnegatess(XMMRegister dst,XMMRegister nds,AddressLiteral src)4016 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4017   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4018   vxorps(dst, nds, src, Assembler::AVX_128bit);
4019 }
4020 
vnegatesd(XMMRegister dst,XMMRegister nds,AddressLiteral src)4021 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4022   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4023   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4024 }
4025 
vxorpd(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)4026 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4027   if (reachable(src)) {
4028     vxorpd(dst, nds, as_Address(src), vector_len);
4029   } else {
4030     lea(scratch_reg, src);
4031     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4032   }
4033 }
4034 
vxorps(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)4035 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4036   if (reachable(src)) {
4037     vxorps(dst, nds, as_Address(src), vector_len);
4038   } else {
4039     lea(scratch_reg, src);
4040     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4041   }
4042 }
4043 
vpxor(XMMRegister dst,XMMRegister nds,AddressLiteral src,int vector_len,Register scratch_reg)4044 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4045   if (UseAVX > 1 || (vector_len < 1)) {
4046     if (reachable(src)) {
4047       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4048     } else {
4049       lea(scratch_reg, src);
4050       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4051     }
4052   }
4053   else {
4054     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4055   }
4056 }
4057 
4058 //-------------------------------------------------------------------------------------------
4059 #ifdef COMPILER2
4060 // Generic instructions support for use in .ad files C2 code generation
4061 
vabsnegd(int opcode,XMMRegister dst,Register scr)4062 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4063   if (opcode == Op_AbsVD) {
4064     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4065   } else {
4066     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4067     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4068   }
4069 }
4070 
vabsnegd(int opcode,XMMRegister dst,XMMRegister src,int vector_len,Register scr)4071 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4072   if (opcode == Op_AbsVD) {
4073     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4074   } else {
4075     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4076     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4077   }
4078 }
4079 
vabsnegf(int opcode,XMMRegister dst,Register scr)4080 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4081   if (opcode == Op_AbsVF) {
4082     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4083   } else {
4084     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4085     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4086   }
4087 }
4088 
vabsnegf(int opcode,XMMRegister dst,XMMRegister src,int vector_len,Register scr)4089 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4090   if (opcode == Op_AbsVF) {
4091     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4092   } else {
4093     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4094     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4095   }
4096 }
4097 
vextendbw(bool sign,XMMRegister dst,XMMRegister src)4098 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4099   if (sign) {
4100     pmovsxbw(dst, src);
4101   } else {
4102     pmovzxbw(dst, src);
4103   }
4104 }
4105 
vextendbw(bool sign,XMMRegister dst,XMMRegister src,int vector_len)4106 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4107   if (sign) {
4108     vpmovsxbw(dst, src, vector_len);
4109   } else {
4110     vpmovzxbw(dst, src, vector_len);
4111   }
4112 }
4113 
vshiftd(int opcode,XMMRegister dst,XMMRegister src)4114 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4115   if (opcode == Op_RShiftVI) {
4116     psrad(dst, src);
4117   } else if (opcode == Op_LShiftVI) {
4118     pslld(dst, src);
4119   } else {
4120     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4121     psrld(dst, src);
4122   }
4123 }
4124 
vshiftd(int opcode,XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)4125 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4126   if (opcode == Op_RShiftVI) {
4127     vpsrad(dst, nds, src, vector_len);
4128   } else if (opcode == Op_LShiftVI) {
4129     vpslld(dst, nds, src, vector_len);
4130   } else {
4131     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4132     vpsrld(dst, nds, src, vector_len);
4133   }
4134 }
4135 
vshiftw(int opcode,XMMRegister dst,XMMRegister src)4136 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4137   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4138     psraw(dst, src);
4139   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4140     psllw(dst, src);
4141   } else {
4142     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4143     psrlw(dst, src);
4144   }
4145 }
4146 
vshiftw(int opcode,XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)4147 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4148   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4149     vpsraw(dst, nds, src, vector_len);
4150   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4151     vpsllw(dst, nds, src, vector_len);
4152   } else {
4153     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4154     vpsrlw(dst, nds, src, vector_len);
4155   }
4156 }
4157 
vshiftq(int opcode,XMMRegister dst,XMMRegister src)4158 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4159   if (opcode == Op_RShiftVL) {
4160     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4161   } else if (opcode == Op_LShiftVL) {
4162     psllq(dst, src);
4163   } else {
4164     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4165     psrlq(dst, src);
4166   }
4167 }
4168 
vshiftq(int opcode,XMMRegister dst,XMMRegister nds,XMMRegister src,int vector_len)4169 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4170   if (opcode == Op_RShiftVL) {
4171     evpsraq(dst, nds, src, vector_len);
4172   } else if (opcode == Op_LShiftVL) {
4173     vpsllq(dst, nds, src, vector_len);
4174   } else {
4175     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4176     vpsrlq(dst, nds, src, vector_len);
4177   }
4178 }
4179 #endif
4180 //-------------------------------------------------------------------------------------------
4181 
clear_jweak_tag(Register possibly_jweak)4182 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4183   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4184   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4185   // The inverted mask is sign-extended
4186   andptr(possibly_jweak, inverted_jweak_mask);
4187 }
4188 
resolve_jobject(Register value,Register thread,Register tmp)4189 void MacroAssembler::resolve_jobject(Register value,
4190                                      Register thread,
4191                                      Register tmp) {
4192   assert_different_registers(value, thread, tmp);
4193   Label done, not_weak;
4194   testptr(value, value);
4195   jcc(Assembler::zero, done);                // Use NULL as-is.
4196   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4197   jcc(Assembler::zero, not_weak);
4198   // Resolve jweak.
4199   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4200                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4201   verify_oop(value);
4202   jmp(done);
4203   bind(not_weak);
4204   // Resolve (untagged) jobject.
4205   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4206   verify_oop(value);
4207   bind(done);
4208 }
4209 
subptr(Register dst,int32_t imm32)4210 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4211   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4212 }
4213 
4214 // Force generation of a 4 byte immediate value even if it fits into 8bit
subptr_imm32(Register dst,int32_t imm32)4215 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4216   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4217 }
4218 
subptr(Register dst,Register src)4219 void MacroAssembler::subptr(Register dst, Register src) {
4220   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4221 }
4222 
4223 // C++ bool manipulation
testbool(Register dst)4224 void MacroAssembler::testbool(Register dst) {
4225   if(sizeof(bool) == 1)
4226     testb(dst, 0xff);
4227   else if(sizeof(bool) == 2) {
4228     // testw implementation needed for two byte bools
4229     ShouldNotReachHere();
4230   } else if(sizeof(bool) == 4)
4231     testl(dst, dst);
4232   else
4233     // unsupported
4234     ShouldNotReachHere();
4235 }
4236 
testptr(Register dst,Register src)4237 void MacroAssembler::testptr(Register dst, Register src) {
4238   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4239 }
4240 
4241 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
tlab_allocate(Register thread,Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Register t2,Label & slow_case)4242 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4243                                    Register var_size_in_bytes,
4244                                    int con_size_in_bytes,
4245                                    Register t1,
4246                                    Register t2,
4247                                    Label& slow_case) {
4248   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4249   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4250 }
4251 
4252 // Defines obj, preserves var_size_in_bytes
eden_allocate(Register thread,Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Label & slow_case)4253 void MacroAssembler::eden_allocate(Register thread, Register obj,
4254                                    Register var_size_in_bytes,
4255                                    int con_size_in_bytes,
4256                                    Register t1,
4257                                    Label& slow_case) {
4258   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4259   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4260 }
4261 
4262 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
zero_memory(Register address,Register length_in_bytes,int offset_in_bytes,Register temp)4263 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4264   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4265   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4266   Label done;
4267 
4268   testptr(length_in_bytes, length_in_bytes);
4269   jcc(Assembler::zero, done);
4270 
4271   // initialize topmost word, divide index by 2, check if odd and test if zero
4272   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4273 #ifdef ASSERT
4274   {
4275     Label L;
4276     testptr(length_in_bytes, BytesPerWord - 1);
4277     jcc(Assembler::zero, L);
4278     stop("length must be a multiple of BytesPerWord");
4279     bind(L);
4280   }
4281 #endif
4282   Register index = length_in_bytes;
4283   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4284   if (UseIncDec) {
4285     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4286   } else {
4287     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4288     shrptr(index, 1);
4289   }
4290 #ifndef _LP64
4291   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4292   {
4293     Label even;
4294     // note: if index was a multiple of 8, then it cannot
4295     //       be 0 now otherwise it must have been 0 before
4296     //       => if it is even, we don't need to check for 0 again
4297     jcc(Assembler::carryClear, even);
4298     // clear topmost word (no jump would be needed if conditional assignment worked here)
4299     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4300     // index could be 0 now, must check again
4301     jcc(Assembler::zero, done);
4302     bind(even);
4303   }
4304 #endif // !_LP64
4305   // initialize remaining object fields: index is a multiple of 2 now
4306   {
4307     Label loop;
4308     bind(loop);
4309     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4310     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4311     decrement(index);
4312     jcc(Assembler::notZero, loop);
4313   }
4314 
4315   bind(done);
4316 }
4317 
4318 // Look up the method for a megamorphic invokeinterface call.
4319 // The target method is determined by <intf_klass, itable_index>.
4320 // The receiver klass is in recv_klass.
4321 // On success, the result will be in method_result, and execution falls through.
4322 // On failure, execution transfers to the given label.
lookup_interface_method(Register recv_klass,Register intf_klass,RegisterOrConstant itable_index,Register method_result,Register scan_temp,Label & L_no_such_interface,bool return_method)4323 void MacroAssembler::lookup_interface_method(Register recv_klass,
4324                                              Register intf_klass,
4325                                              RegisterOrConstant itable_index,
4326                                              Register method_result,
4327                                              Register scan_temp,
4328                                              Label& L_no_such_interface,
4329                                              bool return_method) {
4330   assert_different_registers(recv_klass, intf_klass, scan_temp);
4331   assert_different_registers(method_result, intf_klass, scan_temp);
4332   assert(recv_klass != method_result || !return_method,
4333          "recv_klass can be destroyed when method isn't needed");
4334 
4335   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4336          "caller must use same register for non-constant itable index as for method");
4337 
4338   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4339   int vtable_base = in_bytes(Klass::vtable_start_offset());
4340   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4341   int scan_step   = itableOffsetEntry::size() * wordSize;
4342   int vte_size    = vtableEntry::size_in_bytes();
4343   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4344   assert(vte_size == wordSize, "else adjust times_vte_scale");
4345 
4346   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4347 
4348   // %%% Could store the aligned, prescaled offset in the klassoop.
4349   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4350 
4351   if (return_method) {
4352     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4353     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4354     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4355   }
4356 
4357   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4358   //   if (scan->interface() == intf) {
4359   //     result = (klass + scan->offset() + itable_index);
4360   //   }
4361   // }
4362   Label search, found_method;
4363 
4364   for (int peel = 1; peel >= 0; peel--) {
4365     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4366     cmpptr(intf_klass, method_result);
4367 
4368     if (peel) {
4369       jccb(Assembler::equal, found_method);
4370     } else {
4371       jccb(Assembler::notEqual, search);
4372       // (invert the test to fall through to found_method...)
4373     }
4374 
4375     if (!peel)  break;
4376 
4377     bind(search);
4378 
4379     // Check that the previous entry is non-null.  A null entry means that
4380     // the receiver class doesn't implement the interface, and wasn't the
4381     // same as when the caller was compiled.
4382     testptr(method_result, method_result);
4383     jcc(Assembler::zero, L_no_such_interface);
4384     addptr(scan_temp, scan_step);
4385   }
4386 
4387   bind(found_method);
4388 
4389   if (return_method) {
4390     // Got a hit.
4391     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4392     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4393   }
4394 }
4395 
4396 
4397 // virtual method calling
lookup_virtual_method(Register recv_klass,RegisterOrConstant vtable_index,Register method_result)4398 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4399                                            RegisterOrConstant vtable_index,
4400                                            Register method_result) {
4401   const int base = in_bytes(Klass::vtable_start_offset());
4402   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4403   Address vtable_entry_addr(recv_klass,
4404                             vtable_index, Address::times_ptr,
4405                             base + vtableEntry::method_offset_in_bytes());
4406   movptr(method_result, vtable_entry_addr);
4407 }
4408 
4409 
check_klass_subtype(Register sub_klass,Register super_klass,Register temp_reg,Label & L_success)4410 void MacroAssembler::check_klass_subtype(Register sub_klass,
4411                            Register super_klass,
4412                            Register temp_reg,
4413                            Label& L_success) {
4414   Label L_failure;
4415   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4416   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4417   bind(L_failure);
4418 }
4419 
4420 
check_klass_subtype_fast_path(Register sub_klass,Register super_klass,Register temp_reg,Label * L_success,Label * L_failure,Label * L_slow_path,RegisterOrConstant super_check_offset)4421 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4422                                                    Register super_klass,
4423                                                    Register temp_reg,
4424                                                    Label* L_success,
4425                                                    Label* L_failure,
4426                                                    Label* L_slow_path,
4427                                         RegisterOrConstant super_check_offset) {
4428   assert_different_registers(sub_klass, super_klass, temp_reg);
4429   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4430   if (super_check_offset.is_register()) {
4431     assert_different_registers(sub_klass, super_klass,
4432                                super_check_offset.as_register());
4433   } else if (must_load_sco) {
4434     assert(temp_reg != noreg, "supply either a temp or a register offset");
4435   }
4436 
4437   Label L_fallthrough;
4438   int label_nulls = 0;
4439   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4440   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4441   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4442   assert(label_nulls <= 1, "at most one NULL in the batch");
4443 
4444   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4445   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4446   Address super_check_offset_addr(super_klass, sco_offset);
4447 
4448   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4449   // range of a jccb.  If this routine grows larger, reconsider at
4450   // least some of these.
4451 #define local_jcc(assembler_cond, label)                                \
4452   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4453   else                             jcc( assembler_cond, label) /*omit semi*/
4454 
4455   // Hacked jmp, which may only be used just before L_fallthrough.
4456 #define final_jmp(label)                                                \
4457   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4458   else                            jmp(label)                /*omit semi*/
4459 
4460   // If the pointers are equal, we are done (e.g., String[] elements).
4461   // This self-check enables sharing of secondary supertype arrays among
4462   // non-primary types such as array-of-interface.  Otherwise, each such
4463   // type would need its own customized SSA.
4464   // We move this check to the front of the fast path because many
4465   // type checks are in fact trivially successful in this manner,
4466   // so we get a nicely predicted branch right at the start of the check.
4467   cmpptr(sub_klass, super_klass);
4468   local_jcc(Assembler::equal, *L_success);
4469 
4470   // Check the supertype display:
4471   if (must_load_sco) {
4472     // Positive movl does right thing on LP64.
4473     movl(temp_reg, super_check_offset_addr);
4474     super_check_offset = RegisterOrConstant(temp_reg);
4475   }
4476   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4477   cmpptr(super_klass, super_check_addr); // load displayed supertype
4478 
4479   // This check has worked decisively for primary supers.
4480   // Secondary supers are sought in the super_cache ('super_cache_addr').
4481   // (Secondary supers are interfaces and very deeply nested subtypes.)
4482   // This works in the same check above because of a tricky aliasing
4483   // between the super_cache and the primary super display elements.
4484   // (The 'super_check_addr' can address either, as the case requires.)
4485   // Note that the cache is updated below if it does not help us find
4486   // what we need immediately.
4487   // So if it was a primary super, we can just fail immediately.
4488   // Otherwise, it's the slow path for us (no success at this point).
4489 
4490   if (super_check_offset.is_register()) {
4491     local_jcc(Assembler::equal, *L_success);
4492     cmpl(super_check_offset.as_register(), sc_offset);
4493     if (L_failure == &L_fallthrough) {
4494       local_jcc(Assembler::equal, *L_slow_path);
4495     } else {
4496       local_jcc(Assembler::notEqual, *L_failure);
4497       final_jmp(*L_slow_path);
4498     }
4499   } else if (super_check_offset.as_constant() == sc_offset) {
4500     // Need a slow path; fast failure is impossible.
4501     if (L_slow_path == &L_fallthrough) {
4502       local_jcc(Assembler::equal, *L_success);
4503     } else {
4504       local_jcc(Assembler::notEqual, *L_slow_path);
4505       final_jmp(*L_success);
4506     }
4507   } else {
4508     // No slow path; it's a fast decision.
4509     if (L_failure == &L_fallthrough) {
4510       local_jcc(Assembler::equal, *L_success);
4511     } else {
4512       local_jcc(Assembler::notEqual, *L_failure);
4513       final_jmp(*L_success);
4514     }
4515   }
4516 
4517   bind(L_fallthrough);
4518 
4519 #undef local_jcc
4520 #undef final_jmp
4521 }
4522 
4523 
check_klass_subtype_slow_path(Register sub_klass,Register super_klass,Register temp_reg,Register temp2_reg,Label * L_success,Label * L_failure,bool set_cond_codes)4524 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4525                                                    Register super_klass,
4526                                                    Register temp_reg,
4527                                                    Register temp2_reg,
4528                                                    Label* L_success,
4529                                                    Label* L_failure,
4530                                                    bool set_cond_codes) {
4531   assert_different_registers(sub_klass, super_klass, temp_reg);
4532   if (temp2_reg != noreg)
4533     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4534 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4535 
4536   Label L_fallthrough;
4537   int label_nulls = 0;
4538   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4539   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4540   assert(label_nulls <= 1, "at most one NULL in the batch");
4541 
4542   // a couple of useful fields in sub_klass:
4543   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4544   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4545   Address secondary_supers_addr(sub_klass, ss_offset);
4546   Address super_cache_addr(     sub_klass, sc_offset);
4547 
4548   // Do a linear scan of the secondary super-klass chain.
4549   // This code is rarely used, so simplicity is a virtue here.
4550   // The repne_scan instruction uses fixed registers, which we must spill.
4551   // Don't worry too much about pre-existing connections with the input regs.
4552 
4553   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4554   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4555 
4556   // Get super_klass value into rax (even if it was in rdi or rcx).
4557   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4558   if (super_klass != rax || UseCompressedOops) {
4559     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4560     mov(rax, super_klass);
4561   }
4562   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4563   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4564 
4565 #ifndef PRODUCT
4566   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4567   ExternalAddress pst_counter_addr((address) pst_counter);
4568   NOT_LP64(  incrementl(pst_counter_addr) );
4569   LP64_ONLY( lea(rcx, pst_counter_addr) );
4570   LP64_ONLY( incrementl(Address(rcx, 0)) );
4571 #endif //PRODUCT
4572 
4573   // We will consult the secondary-super array.
4574   movptr(rdi, secondary_supers_addr);
4575   // Load the array length.  (Positive movl does right thing on LP64.)
4576   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4577   // Skip to start of data.
4578   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4579 
4580   // Scan RCX words at [RDI] for an occurrence of RAX.
4581   // Set NZ/Z based on last compare.
4582   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4583   // not change flags (only scas instruction which is repeated sets flags).
4584   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4585 
4586     testptr(rax,rax); // Set Z = 0
4587     repne_scan();
4588 
4589   // Unspill the temp. registers:
4590   if (pushed_rdi)  pop(rdi);
4591   if (pushed_rcx)  pop(rcx);
4592   if (pushed_rax)  pop(rax);
4593 
4594   if (set_cond_codes) {
4595     // Special hack for the AD files:  rdi is guaranteed non-zero.
4596     assert(!pushed_rdi, "rdi must be left non-NULL");
4597     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4598   }
4599 
4600   if (L_failure == &L_fallthrough)
4601         jccb(Assembler::notEqual, *L_failure);
4602   else  jcc(Assembler::notEqual, *L_failure);
4603 
4604   // Success.  Cache the super we found and proceed in triumph.
4605   movptr(super_cache_addr, super_klass);
4606 
4607   if (L_success != &L_fallthrough) {
4608     jmp(*L_success);
4609   }
4610 
4611 #undef IS_A_TEMP
4612 
4613   bind(L_fallthrough);
4614 }
4615 
clinit_barrier(Register klass,Register thread,Label * L_fast_path,Label * L_slow_path)4616 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4617   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4618 
4619   Label L_fallthrough;
4620   if (L_fast_path == NULL) {
4621     L_fast_path = &L_fallthrough;
4622   } else if (L_slow_path == NULL) {
4623     L_slow_path = &L_fallthrough;
4624   }
4625 
4626   // Fast path check: class is fully initialized
4627   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4628   jcc(Assembler::equal, *L_fast_path);
4629 
4630   // Fast path check: current thread is initializer thread
4631   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4632   if (L_slow_path == &L_fallthrough) {
4633     jcc(Assembler::equal, *L_fast_path);
4634     bind(*L_slow_path);
4635   } else if (L_fast_path == &L_fallthrough) {
4636     jcc(Assembler::notEqual, *L_slow_path);
4637     bind(*L_fast_path);
4638   } else {
4639     Unimplemented();
4640   }
4641 }
4642 
cmov32(Condition cc,Register dst,Address src)4643 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4644   if (VM_Version::supports_cmov()) {
4645     cmovl(cc, dst, src);
4646   } else {
4647     Label L;
4648     jccb(negate_condition(cc), L);
4649     movl(dst, src);
4650     bind(L);
4651   }
4652 }
4653 
cmov32(Condition cc,Register dst,Register src)4654 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4655   if (VM_Version::supports_cmov()) {
4656     cmovl(cc, dst, src);
4657   } else {
4658     Label L;
4659     jccb(negate_condition(cc), L);
4660     movl(dst, src);
4661     bind(L);
4662   }
4663 }
4664 
verify_oop(Register reg,const char * s)4665 void MacroAssembler::verify_oop(Register reg, const char* s) {
4666   if (!VerifyOops) return;
4667 
4668   // Pass register number to verify_oop_subroutine
4669   const char* b = NULL;
4670   {
4671     ResourceMark rm;
4672     stringStream ss;
4673     ss.print("verify_oop: %s: %s", reg->name(), s);
4674     b = code_string(ss.as_string());
4675   }
4676   BLOCK_COMMENT("verify_oop {");
4677 #ifdef _LP64
4678   push(rscratch1);                    // save r10, trashed by movptr()
4679 #endif
4680   push(rax);                          // save rax,
4681   push(reg);                          // pass register argument
4682   ExternalAddress buffer((address) b);
4683   // avoid using pushptr, as it modifies scratch registers
4684   // and our contract is not to modify anything
4685   movptr(rax, buffer.addr());
4686   push(rax);
4687   // call indirectly to solve generation ordering problem
4688   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4689   call(rax);
4690   // Caller pops the arguments (oop, message) and restores rax, r10
4691   BLOCK_COMMENT("} verify_oop");
4692 }
4693 
4694 
delayed_value_impl(intptr_t * delayed_value_addr,Register tmp,int offset)4695 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4696                                                       Register tmp,
4697                                                       int offset) {
4698   intptr_t value = *delayed_value_addr;
4699   if (value != 0)
4700     return RegisterOrConstant(value + offset);
4701 
4702   // load indirectly to solve generation ordering problem
4703   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4704 
4705 #ifdef ASSERT
4706   { Label L;
4707     testptr(tmp, tmp);
4708     if (WizardMode) {
4709       const char* buf = NULL;
4710       {
4711         ResourceMark rm;
4712         stringStream ss;
4713         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4714         buf = code_string(ss.as_string());
4715       }
4716       jcc(Assembler::notZero, L);
4717       STOP(buf);
4718     } else {
4719       jccb(Assembler::notZero, L);
4720       hlt();
4721     }
4722     bind(L);
4723   }
4724 #endif
4725 
4726   if (offset != 0)
4727     addptr(tmp, offset);
4728 
4729   return RegisterOrConstant(tmp);
4730 }
4731 
4732 
argument_address(RegisterOrConstant arg_slot,int extra_slot_offset)4733 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4734                                          int extra_slot_offset) {
4735   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4736   int stackElementSize = Interpreter::stackElementSize;
4737   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4738 #ifdef ASSERT
4739   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4740   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4741 #endif
4742   Register             scale_reg    = noreg;
4743   Address::ScaleFactor scale_factor = Address::no_scale;
4744   if (arg_slot.is_constant()) {
4745     offset += arg_slot.as_constant() * stackElementSize;
4746   } else {
4747     scale_reg    = arg_slot.as_register();
4748     scale_factor = Address::times(stackElementSize);
4749   }
4750   offset += wordSize;           // return PC is on stack
4751   return Address(rsp, scale_reg, scale_factor, offset);
4752 }
4753 
4754 
verify_oop_addr(Address addr,const char * s)4755 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4756   if (!VerifyOops) return;
4757 
4758   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4759   // Pass register number to verify_oop_subroutine
4760   const char* b = NULL;
4761   {
4762     ResourceMark rm;
4763     stringStream ss;
4764     ss.print("verify_oop_addr: %s", s);
4765     b = code_string(ss.as_string());
4766   }
4767 #ifdef _LP64
4768   push(rscratch1);                    // save r10, trashed by movptr()
4769 #endif
4770   push(rax);                          // save rax,
4771   // addr may contain rsp so we will have to adjust it based on the push
4772   // we just did (and on 64 bit we do two pushes)
4773   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4774   // stores rax into addr which is backwards of what was intended.
4775   if (addr.uses(rsp)) {
4776     lea(rax, addr);
4777     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4778   } else {
4779     pushptr(addr);
4780   }
4781 
4782   ExternalAddress buffer((address) b);
4783   // pass msg argument
4784   // avoid using pushptr, as it modifies scratch registers
4785   // and our contract is not to modify anything
4786   movptr(rax, buffer.addr());
4787   push(rax);
4788 
4789   // call indirectly to solve generation ordering problem
4790   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4791   call(rax);
4792   // Caller pops the arguments (addr, message) and restores rax, r10.
4793 }
4794 
verify_tlab()4795 void MacroAssembler::verify_tlab() {
4796 #ifdef ASSERT
4797   if (UseTLAB && VerifyOops) {
4798     Label next, ok;
4799     Register t1 = rsi;
4800     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4801 
4802     push(t1);
4803     NOT_LP64(push(thread_reg));
4804     NOT_LP64(get_thread(thread_reg));
4805 
4806     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4807     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4808     jcc(Assembler::aboveEqual, next);
4809     STOP("assert(top >= start)");
4810     should_not_reach_here();
4811 
4812     bind(next);
4813     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4814     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4815     jcc(Assembler::aboveEqual, ok);
4816     STOP("assert(top <= end)");
4817     should_not_reach_here();
4818 
4819     bind(ok);
4820     NOT_LP64(pop(thread_reg));
4821     pop(t1);
4822   }
4823 #endif
4824 }
4825 
4826 class ControlWord {
4827  public:
4828   int32_t _value;
4829 
rounding_control() const4830   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
precision_control() const4831   int  precision_control() const       { return  (_value >>  8) & 3      ; }
precision() const4832   bool precision() const               { return ((_value >>  5) & 1) != 0; }
underflow() const4833   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
overflow() const4834   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
zero_divide() const4835   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
denormalized() const4836   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
invalid() const4837   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4838 
print() const4839   void print() const {
4840     // rounding control
4841     const char* rc;
4842     switch (rounding_control()) {
4843       case 0: rc = "round near"; break;
4844       case 1: rc = "round down"; break;
4845       case 2: rc = "round up  "; break;
4846       case 3: rc = "chop      "; break;
4847     };
4848     // precision control
4849     const char* pc;
4850     switch (precision_control()) {
4851       case 0: pc = "24 bits "; break;
4852       case 1: pc = "reserved"; break;
4853       case 2: pc = "53 bits "; break;
4854       case 3: pc = "64 bits "; break;
4855     };
4856     // flags
4857     char f[9];
4858     f[0] = ' ';
4859     f[1] = ' ';
4860     f[2] = (precision   ()) ? 'P' : 'p';
4861     f[3] = (underflow   ()) ? 'U' : 'u';
4862     f[4] = (overflow    ()) ? 'O' : 'o';
4863     f[5] = (zero_divide ()) ? 'Z' : 'z';
4864     f[6] = (denormalized()) ? 'D' : 'd';
4865     f[7] = (invalid     ()) ? 'I' : 'i';
4866     f[8] = '\x0';
4867     // output
4868     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4869   }
4870 
4871 };
4872 
4873 class StatusWord {
4874  public:
4875   int32_t _value;
4876 
busy() const4877   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
C3() const4878   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
C2() const4879   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
C1() const4880   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
C0() const4881   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
top() const4882   int  top() const                     { return  (_value >> 11) & 7      ; }
error_status() const4883   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
stack_fault() const4884   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
precision() const4885   bool precision() const               { return ((_value >>  5) & 1) != 0; }
underflow() const4886   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
overflow() const4887   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
zero_divide() const4888   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
denormalized() const4889   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
invalid() const4890   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4891 
print() const4892   void print() const {
4893     // condition codes
4894     char c[5];
4895     c[0] = (C3()) ? '3' : '-';
4896     c[1] = (C2()) ? '2' : '-';
4897     c[2] = (C1()) ? '1' : '-';
4898     c[3] = (C0()) ? '0' : '-';
4899     c[4] = '\x0';
4900     // flags
4901     char f[9];
4902     f[0] = (error_status()) ? 'E' : '-';
4903     f[1] = (stack_fault ()) ? 'S' : '-';
4904     f[2] = (precision   ()) ? 'P' : '-';
4905     f[3] = (underflow   ()) ? 'U' : '-';
4906     f[4] = (overflow    ()) ? 'O' : '-';
4907     f[5] = (zero_divide ()) ? 'Z' : '-';
4908     f[6] = (denormalized()) ? 'D' : '-';
4909     f[7] = (invalid     ()) ? 'I' : '-';
4910     f[8] = '\x0';
4911     // output
4912     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4913   }
4914 
4915 };
4916 
4917 class TagWord {
4918  public:
4919   int32_t _value;
4920 
tag_at(int i) const4921   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4922 
print() const4923   void print() const {
4924     printf("%04x", _value & 0xFFFF);
4925   }
4926 
4927 };
4928 
4929 class FPU_Register {
4930  public:
4931   int32_t _m0;
4932   int32_t _m1;
4933   int16_t _ex;
4934 
is_indefinite() const4935   bool is_indefinite() const           {
4936     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4937   }
4938 
print() const4939   void print() const {
4940     char  sign = (_ex < 0) ? '-' : '+';
4941     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4942     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4943   };
4944 
4945 };
4946 
4947 class FPU_State {
4948  public:
4949   enum {
4950     register_size       = 10,
4951     number_of_registers =  8,
4952     register_mask       =  7
4953   };
4954 
4955   ControlWord  _control_word;
4956   StatusWord   _status_word;
4957   TagWord      _tag_word;
4958   int32_t      _error_offset;
4959   int32_t      _error_selector;
4960   int32_t      _data_offset;
4961   int32_t      _data_selector;
4962   int8_t       _register[register_size * number_of_registers];
4963 
tag_for_st(int i) const4964   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
st(int i) const4965   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4966 
tag_as_string(int tag) const4967   const char* tag_as_string(int tag) const {
4968     switch (tag) {
4969       case 0: return "valid";
4970       case 1: return "zero";
4971       case 2: return "special";
4972       case 3: return "empty";
4973     }
4974     ShouldNotReachHere();
4975     return NULL;
4976   }
4977 
print() const4978   void print() const {
4979     // print computation registers
4980     { int t = _status_word.top();
4981       for (int i = 0; i < number_of_registers; i++) {
4982         int j = (i - t) & register_mask;
4983         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4984         st(j)->print();
4985         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4986       }
4987     }
4988     printf("\n");
4989     // print control registers
4990     printf("ctrl = "); _control_word.print(); printf("\n");
4991     printf("stat = "); _status_word .print(); printf("\n");
4992     printf("tags = "); _tag_word    .print(); printf("\n");
4993   }
4994 
4995 };
4996 
4997 class Flag_Register {
4998  public:
4999   int32_t _value;
5000 
overflow() const5001   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
direction() const5002   bool direction() const               { return ((_value >> 10) & 1) != 0; }
sign() const5003   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
zero() const5004   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
auxiliary_carry() const5005   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
parity() const5006   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
carry() const5007   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5008 
print() const5009   void print() const {
5010     // flags
5011     char f[8];
5012     f[0] = (overflow       ()) ? 'O' : '-';
5013     f[1] = (direction      ()) ? 'D' : '-';
5014     f[2] = (sign           ()) ? 'S' : '-';
5015     f[3] = (zero           ()) ? 'Z' : '-';
5016     f[4] = (auxiliary_carry()) ? 'A' : '-';
5017     f[5] = (parity         ()) ? 'P' : '-';
5018     f[6] = (carry          ()) ? 'C' : '-';
5019     f[7] = '\x0';
5020     // output
5021     printf("%08x  flags = %s", _value, f);
5022   }
5023 
5024 };
5025 
5026 class IU_Register {
5027  public:
5028   int32_t _value;
5029 
print() const5030   void print() const {
5031     printf("%08x  %11d", _value, _value);
5032   }
5033 
5034 };
5035 
5036 class IU_State {
5037  public:
5038   Flag_Register _eflags;
5039   IU_Register   _rdi;
5040   IU_Register   _rsi;
5041   IU_Register   _rbp;
5042   IU_Register   _rsp;
5043   IU_Register   _rbx;
5044   IU_Register   _rdx;
5045   IU_Register   _rcx;
5046   IU_Register   _rax;
5047 
print() const5048   void print() const {
5049     // computation registers
5050     printf("rax,  = "); _rax.print(); printf("\n");
5051     printf("rbx,  = "); _rbx.print(); printf("\n");
5052     printf("rcx  = "); _rcx.print(); printf("\n");
5053     printf("rdx  = "); _rdx.print(); printf("\n");
5054     printf("rdi  = "); _rdi.print(); printf("\n");
5055     printf("rsi  = "); _rsi.print(); printf("\n");
5056     printf("rbp,  = "); _rbp.print(); printf("\n");
5057     printf("rsp  = "); _rsp.print(); printf("\n");
5058     printf("\n");
5059     // control registers
5060     printf("flgs = "); _eflags.print(); printf("\n");
5061   }
5062 };
5063 
5064 
5065 class CPU_State {
5066  public:
5067   FPU_State _fpu_state;
5068   IU_State  _iu_state;
5069 
print() const5070   void print() const {
5071     printf("--------------------------------------------------\n");
5072     _iu_state .print();
5073     printf("\n");
5074     _fpu_state.print();
5075     printf("--------------------------------------------------\n");
5076   }
5077 
5078 };
5079 
5080 
_print_CPU_state(CPU_State * state)5081 static void _print_CPU_state(CPU_State* state) {
5082   state->print();
5083 };
5084 
5085 
print_CPU_state()5086 void MacroAssembler::print_CPU_state() {
5087   push_CPU_state();
5088   push(rsp);                // pass CPU state
5089   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5090   addptr(rsp, wordSize);       // discard argument
5091   pop_CPU_state();
5092 }
5093 
5094 
_verify_FPU(int stack_depth,char * s,CPU_State * state)5095 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5096   static int counter = 0;
5097   FPU_State* fs = &state->_fpu_state;
5098   counter++;
5099   // For leaf calls, only verify that the top few elements remain empty.
5100   // We only need 1 empty at the top for C2 code.
5101   if( stack_depth < 0 ) {
5102     if( fs->tag_for_st(7) != 3 ) {
5103       printf("FPR7 not empty\n");
5104       state->print();
5105       assert(false, "error");
5106       return false;
5107     }
5108     return true;                // All other stack states do not matter
5109   }
5110 
5111   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5112          "bad FPU control word");
5113 
5114   // compute stack depth
5115   int i = 0;
5116   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5117   int d = i;
5118   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5119   // verify findings
5120   if (i != FPU_State::number_of_registers) {
5121     // stack not contiguous
5122     printf("%s: stack not contiguous at ST%d\n", s, i);
5123     state->print();
5124     assert(false, "error");
5125     return false;
5126   }
5127   // check if computed stack depth corresponds to expected stack depth
5128   if (stack_depth < 0) {
5129     // expected stack depth is -stack_depth or less
5130     if (d > -stack_depth) {
5131       // too many elements on the stack
5132       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5133       state->print();
5134       assert(false, "error");
5135       return false;
5136     }
5137   } else {
5138     // expected stack depth is stack_depth
5139     if (d != stack_depth) {
5140       // wrong stack depth
5141       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5142       state->print();
5143       assert(false, "error");
5144       return false;
5145     }
5146   }
5147   // everything is cool
5148   return true;
5149 }
5150 
5151 
verify_FPU(int stack_depth,const char * s)5152 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5153   if (!VerifyFPU) return;
5154   push_CPU_state();
5155   push(rsp);                // pass CPU state
5156   ExternalAddress msg((address) s);
5157   // pass message string s
5158   pushptr(msg.addr());
5159   push(stack_depth);        // pass stack depth
5160   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5161   addptr(rsp, 3 * wordSize);   // discard arguments
5162   // check for error
5163   { Label L;
5164     testl(rax, rax);
5165     jcc(Assembler::notZero, L);
5166     int3();                  // break if error condition
5167     bind(L);
5168   }
5169   pop_CPU_state();
5170 }
5171 
restore_cpu_control_state_after_jni()5172 void MacroAssembler::restore_cpu_control_state_after_jni() {
5173   // Either restore the MXCSR register after returning from the JNI Call
5174   // or verify that it wasn't changed (with -Xcheck:jni flag).
5175   if (VM_Version::supports_sse()) {
5176     if (RestoreMXCSROnJNICalls) {
5177       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5178     } else if (CheckJNICalls) {
5179       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5180     }
5181   }
5182   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5183   vzeroupper();
5184   // Reset k1 to 0xffff.
5185 
5186 #ifdef COMPILER2
5187   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5188     push(rcx);
5189     movl(rcx, 0xffff);
5190     kmovwl(k1, rcx);
5191     pop(rcx);
5192   }
5193 #endif // COMPILER2
5194 
5195 #ifndef _LP64
5196   // Either restore the x87 floating pointer control word after returning
5197   // from the JNI call or verify that it wasn't changed.
5198   if (CheckJNICalls) {
5199     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5200   }
5201 #endif // _LP64
5202 }
5203 
5204 // ((OopHandle)result).resolve();
resolve_oop_handle(Register result,Register tmp)5205 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5206   assert_different_registers(result, tmp);
5207 
5208   // Only 64 bit platforms support GCs that require a tmp register
5209   // Only IN_HEAP loads require a thread_tmp register
5210   // OopHandle::resolve is an indirection like jobject.
5211   access_load_at(T_OBJECT, IN_NATIVE,
5212                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5213 }
5214 
5215 // ((WeakHandle)result).resolve();
resolve_weak_handle(Register rresult,Register rtmp)5216 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5217   assert_different_registers(rresult, rtmp);
5218   Label resolved;
5219 
5220   // A null weak handle resolves to null.
5221   cmpptr(rresult, 0);
5222   jcc(Assembler::equal, resolved);
5223 
5224   // Only 64 bit platforms support GCs that require a tmp register
5225   // Only IN_HEAP loads require a thread_tmp register
5226   // WeakHandle::resolve is an indirection like jweak.
5227   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5228                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5229   bind(resolved);
5230 }
5231 
load_mirror(Register mirror,Register method,Register tmp)5232 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5233   // get mirror
5234   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5235   load_method_holder(mirror, method);
5236   movptr(mirror, Address(mirror, mirror_offset));
5237   resolve_oop_handle(mirror, tmp);
5238 }
5239 
load_method_holder_cld(Register rresult,Register rmethod)5240 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5241   load_method_holder(rresult, rmethod);
5242   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5243 }
5244 
load_method_holder(Register holder,Register method)5245 void MacroAssembler::load_method_holder(Register holder, Register method) {
5246   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5247   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5248   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5249 }
5250 
load_klass(Register dst,Register src)5251 void MacroAssembler::load_klass(Register dst, Register src) {
5252 #ifdef _LP64
5253   if (UseCompressedClassPointers) {
5254     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5255     decode_klass_not_null(dst);
5256   } else
5257 #endif
5258     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5259 }
5260 
load_prototype_header(Register dst,Register src)5261 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5262   load_klass(dst, src);
5263   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5264 }
5265 
store_klass(Register dst,Register src)5266 void MacroAssembler::store_klass(Register dst, Register src) {
5267 #ifdef _LP64
5268   if (UseCompressedClassPointers) {
5269     encode_klass_not_null(src);
5270     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5271   } else
5272 #endif
5273     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5274 }
5275 
access_load_at(BasicType type,DecoratorSet decorators,Register dst,Address src,Register tmp1,Register thread_tmp)5276 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5277                                     Register tmp1, Register thread_tmp) {
5278   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5279   decorators = AccessInternal::decorator_fixup(decorators);
5280   bool as_raw = (decorators & AS_RAW) != 0;
5281   if (as_raw) {
5282     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5283   } else {
5284     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5285   }
5286 }
5287 
access_store_at(BasicType type,DecoratorSet decorators,Address dst,Register src,Register tmp1,Register tmp2)5288 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5289                                      Register tmp1, Register tmp2) {
5290   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5291   decorators = AccessInternal::decorator_fixup(decorators);
5292   bool as_raw = (decorators & AS_RAW) != 0;
5293   if (as_raw) {
5294     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5295   } else {
5296     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5297   }
5298 }
5299 
resolve(DecoratorSet decorators,Register obj)5300 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5301   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5302   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5303     decorators |= ACCESS_READ | ACCESS_WRITE;
5304   }
5305   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5306   return bs->resolve(this, decorators, obj);
5307 }
5308 
load_heap_oop(Register dst,Address src,Register tmp1,Register thread_tmp,DecoratorSet decorators)5309 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5310                                    Register thread_tmp, DecoratorSet decorators) {
5311   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5312 }
5313 
5314 // Doesn't do verfication, generates fixed size code
load_heap_oop_not_null(Register dst,Address src,Register tmp1,Register thread_tmp,DecoratorSet decorators)5315 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5316                                             Register thread_tmp, DecoratorSet decorators) {
5317   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5318 }
5319 
store_heap_oop(Address dst,Register src,Register tmp1,Register tmp2,DecoratorSet decorators)5320 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5321                                     Register tmp2, DecoratorSet decorators) {
5322   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5323 }
5324 
5325 // Used for storing NULLs.
store_heap_oop_null(Address dst)5326 void MacroAssembler::store_heap_oop_null(Address dst) {
5327   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5328 }
5329 
5330 #ifdef _LP64
store_klass_gap(Register dst,Register src)5331 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5332   if (UseCompressedClassPointers) {
5333     // Store to klass gap in destination
5334     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5335   }
5336 }
5337 
5338 #ifdef ASSERT
verify_heapbase(const char * msg)5339 void MacroAssembler::verify_heapbase(const char* msg) {
5340   assert (UseCompressedOops, "should be compressed");
5341   assert (Universe::heap() != NULL, "java heap should be initialized");
5342   if (CheckCompressedOops) {
5343     Label ok;
5344     push(rscratch1); // cmpptr trashes rscratch1
5345     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5346     jcc(Assembler::equal, ok);
5347     STOP(msg);
5348     bind(ok);
5349     pop(rscratch1);
5350   }
5351 }
5352 #endif
5353 
5354 // Algorithm must match oop.inline.hpp encode_heap_oop.
encode_heap_oop(Register r)5355 void MacroAssembler::encode_heap_oop(Register r) {
5356 #ifdef ASSERT
5357   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5358 #endif
5359   verify_oop(r, "broken oop in encode_heap_oop");
5360   if (CompressedOops::base() == NULL) {
5361     if (CompressedOops::shift() != 0) {
5362       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5363       shrq(r, LogMinObjAlignmentInBytes);
5364     }
5365     return;
5366   }
5367   testq(r, r);
5368   cmovq(Assembler::equal, r, r12_heapbase);
5369   subq(r, r12_heapbase);
5370   shrq(r, LogMinObjAlignmentInBytes);
5371 }
5372 
encode_heap_oop_not_null(Register r)5373 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5374 #ifdef ASSERT
5375   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5376   if (CheckCompressedOops) {
5377     Label ok;
5378     testq(r, r);
5379     jcc(Assembler::notEqual, ok);
5380     STOP("null oop passed to encode_heap_oop_not_null");
5381     bind(ok);
5382   }
5383 #endif
5384   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5385   if (CompressedOops::base() != NULL) {
5386     subq(r, r12_heapbase);
5387   }
5388   if (CompressedOops::shift() != 0) {
5389     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5390     shrq(r, LogMinObjAlignmentInBytes);
5391   }
5392 }
5393 
encode_heap_oop_not_null(Register dst,Register src)5394 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5395 #ifdef ASSERT
5396   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5397   if (CheckCompressedOops) {
5398     Label ok;
5399     testq(src, src);
5400     jcc(Assembler::notEqual, ok);
5401     STOP("null oop passed to encode_heap_oop_not_null2");
5402     bind(ok);
5403   }
5404 #endif
5405   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5406   if (dst != src) {
5407     movq(dst, src);
5408   }
5409   if (CompressedOops::base() != NULL) {
5410     subq(dst, r12_heapbase);
5411   }
5412   if (CompressedOops::shift() != 0) {
5413     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5414     shrq(dst, LogMinObjAlignmentInBytes);
5415   }
5416 }
5417 
decode_heap_oop(Register r)5418 void  MacroAssembler::decode_heap_oop(Register r) {
5419 #ifdef ASSERT
5420   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5421 #endif
5422   if (CompressedOops::base() == NULL) {
5423     if (CompressedOops::shift() != 0) {
5424       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5425       shlq(r, LogMinObjAlignmentInBytes);
5426     }
5427   } else {
5428     Label done;
5429     shlq(r, LogMinObjAlignmentInBytes);
5430     jccb(Assembler::equal, done);
5431     addq(r, r12_heapbase);
5432     bind(done);
5433   }
5434   verify_oop(r, "broken oop in decode_heap_oop");
5435 }
5436 
decode_heap_oop_not_null(Register r)5437 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5438   // Note: it will change flags
5439   assert (UseCompressedOops, "should only be used for compressed headers");
5440   assert (Universe::heap() != NULL, "java heap should be initialized");
5441   // Cannot assert, unverified entry point counts instructions (see .ad file)
5442   // vtableStubs also counts instructions in pd_code_size_limit.
5443   // Also do not verify_oop as this is called by verify_oop.
5444   if (CompressedOops::shift() != 0) {
5445     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5446     shlq(r, LogMinObjAlignmentInBytes);
5447     if (CompressedOops::base() != NULL) {
5448       addq(r, r12_heapbase);
5449     }
5450   } else {
5451     assert (CompressedOops::base() == NULL, "sanity");
5452   }
5453 }
5454 
decode_heap_oop_not_null(Register dst,Register src)5455 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5456   // Note: it will change flags
5457   assert (UseCompressedOops, "should only be used for compressed headers");
5458   assert (Universe::heap() != NULL, "java heap should be initialized");
5459   // Cannot assert, unverified entry point counts instructions (see .ad file)
5460   // vtableStubs also counts instructions in pd_code_size_limit.
5461   // Also do not verify_oop as this is called by verify_oop.
5462   if (CompressedOops::shift() != 0) {
5463     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5464     if (LogMinObjAlignmentInBytes == Address::times_8) {
5465       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5466     } else {
5467       if (dst != src) {
5468         movq(dst, src);
5469       }
5470       shlq(dst, LogMinObjAlignmentInBytes);
5471       if (CompressedOops::base() != NULL) {
5472         addq(dst, r12_heapbase);
5473       }
5474     }
5475   } else {
5476     assert (CompressedOops::base() == NULL, "sanity");
5477     if (dst != src) {
5478       movq(dst, src);
5479     }
5480   }
5481 }
5482 
encode_klass_not_null(Register r)5483 void MacroAssembler::encode_klass_not_null(Register r) {
5484   if (CompressedKlassPointers::base() != NULL) {
5485     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5486     assert(r != r12_heapbase, "Encoding a klass in r12");
5487     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5488     subq(r, r12_heapbase);
5489   }
5490   if (CompressedKlassPointers::shift() != 0) {
5491     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5492     shrq(r, LogKlassAlignmentInBytes);
5493   }
5494   if (CompressedKlassPointers::base() != NULL) {
5495     reinit_heapbase();
5496   }
5497 }
5498 
encode_klass_not_null(Register dst,Register src)5499 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5500   if (dst == src) {
5501     encode_klass_not_null(src);
5502   } else {
5503     if (CompressedKlassPointers::base() != NULL) {
5504       mov64(dst, (int64_t)CompressedKlassPointers::base());
5505       negq(dst);
5506       addq(dst, src);
5507     } else {
5508       movptr(dst, src);
5509     }
5510     if (CompressedKlassPointers::shift() != 0) {
5511       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5512       shrq(dst, LogKlassAlignmentInBytes);
5513     }
5514   }
5515 }
5516 
5517 // Function instr_size_for_decode_klass_not_null() counts the instructions
5518 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5519 // when (Universe::heap() != NULL).  Hence, if the instructions they
5520 // generate change, then this method needs to be updated.
instr_size_for_decode_klass_not_null()5521 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5522   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5523   if (CompressedKlassPointers::base() != NULL) {
5524     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5525     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5526   } else {
5527     // longest load decode klass function, mov64, leaq
5528     return 16;
5529   }
5530 }
5531 
5532 // !!! If the instructions that get generated here change then function
5533 // instr_size_for_decode_klass_not_null() needs to get updated.
decode_klass_not_null(Register r)5534 void  MacroAssembler::decode_klass_not_null(Register r) {
5535   // Note: it will change flags
5536   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5537   assert(r != r12_heapbase, "Decoding a klass in r12");
5538   // Cannot assert, unverified entry point counts instructions (see .ad file)
5539   // vtableStubs also counts instructions in pd_code_size_limit.
5540   // Also do not verify_oop as this is called by verify_oop.
5541   if (CompressedKlassPointers::shift() != 0) {
5542     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5543     shlq(r, LogKlassAlignmentInBytes);
5544   }
5545   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5546   if (CompressedKlassPointers::base() != NULL) {
5547     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5548     addq(r, r12_heapbase);
5549     reinit_heapbase();
5550   }
5551 }
5552 
decode_klass_not_null(Register dst,Register src)5553 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5554   // Note: it will change flags
5555   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5556   if (dst == src) {
5557     decode_klass_not_null(dst);
5558   } else {
5559     // Cannot assert, unverified entry point counts instructions (see .ad file)
5560     // vtableStubs also counts instructions in pd_code_size_limit.
5561     // Also do not verify_oop as this is called by verify_oop.
5562     mov64(dst, (int64_t)CompressedKlassPointers::base());
5563     if (CompressedKlassPointers::shift() != 0) {
5564       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5565       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5566       leaq(dst, Address(dst, src, Address::times_8, 0));
5567     } else {
5568       addq(dst, src);
5569     }
5570   }
5571 }
5572 
set_narrow_oop(Register dst,jobject obj)5573 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5574   assert (UseCompressedOops, "should only be used for compressed headers");
5575   assert (Universe::heap() != NULL, "java heap should be initialized");
5576   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5577   int oop_index = oop_recorder()->find_index(obj);
5578   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5579   mov_narrow_oop(dst, oop_index, rspec);
5580 }
5581 
set_narrow_oop(Address dst,jobject obj)5582 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5583   assert (UseCompressedOops, "should only be used for compressed headers");
5584   assert (Universe::heap() != NULL, "java heap should be initialized");
5585   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5586   int oop_index = oop_recorder()->find_index(obj);
5587   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5588   mov_narrow_oop(dst, oop_index, rspec);
5589 }
5590 
set_narrow_klass(Register dst,Klass * k)5591 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5592   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5593   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5594   int klass_index = oop_recorder()->find_index(k);
5595   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5596   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5597 }
5598 
set_narrow_klass(Address dst,Klass * k)5599 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5600   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5601   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5602   int klass_index = oop_recorder()->find_index(k);
5603   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5604   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5605 }
5606 
cmp_narrow_oop(Register dst,jobject obj)5607 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5608   assert (UseCompressedOops, "should only be used for compressed headers");
5609   assert (Universe::heap() != NULL, "java heap should be initialized");
5610   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5611   int oop_index = oop_recorder()->find_index(obj);
5612   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5613   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5614 }
5615 
cmp_narrow_oop(Address dst,jobject obj)5616 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5617   assert (UseCompressedOops, "should only be used for compressed headers");
5618   assert (Universe::heap() != NULL, "java heap should be initialized");
5619   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5620   int oop_index = oop_recorder()->find_index(obj);
5621   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5622   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5623 }
5624 
cmp_narrow_klass(Register dst,Klass * k)5625 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5626   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5627   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5628   int klass_index = oop_recorder()->find_index(k);
5629   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5630   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5631 }
5632 
cmp_narrow_klass(Address dst,Klass * k)5633 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5634   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5635   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5636   int klass_index = oop_recorder()->find_index(k);
5637   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5638   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5639 }
5640 
reinit_heapbase()5641 void MacroAssembler::reinit_heapbase() {
5642   if (UseCompressedOops || UseCompressedClassPointers) {
5643     if (Universe::heap() != NULL) {
5644       if (CompressedOops::base() == NULL) {
5645         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5646       } else {
5647         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5648       }
5649     } else {
5650       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5651     }
5652   }
5653 }
5654 
5655 #endif // _LP64
5656 
5657 // C2 compiled method's prolog code.
verified_entry(int framesize,int stack_bang_size,bool fp_mode_24b,bool is_stub)5658 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5659 
5660   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5661   // NativeJump::patch_verified_entry will be able to patch out the entry
5662   // code safely. The push to verify stack depth is ok at 5 bytes,
5663   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5664   // stack bang then we must use the 6 byte frame allocation even if
5665   // we have no frame. :-(
5666   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5667 
5668   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5669   // Remove word for return addr
5670   framesize -= wordSize;
5671   stack_bang_size -= wordSize;
5672 
5673   // Calls to C2R adapters often do not accept exceptional returns.
5674   // We require that their callers must bang for them.  But be careful, because
5675   // some VM calls (such as call site linkage) can use several kilobytes of
5676   // stack.  But the stack safety zone should account for that.
5677   // See bugs 4446381, 4468289, 4497237.
5678   if (stack_bang_size > 0) {
5679     generate_stack_overflow_check(stack_bang_size);
5680 
5681     // We always push rbp, so that on return to interpreter rbp, will be
5682     // restored correctly and we can correct the stack.
5683     push(rbp);
5684     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5685     if (PreserveFramePointer) {
5686       mov(rbp, rsp);
5687     }
5688     // Remove word for ebp
5689     framesize -= wordSize;
5690 
5691     // Create frame
5692     if (framesize) {
5693       subptr(rsp, framesize);
5694     }
5695   } else {
5696     // Create frame (force generation of a 4 byte immediate value)
5697     subptr_imm32(rsp, framesize);
5698 
5699     // Save RBP register now.
5700     framesize -= wordSize;
5701     movptr(Address(rsp, framesize), rbp);
5702     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5703     if (PreserveFramePointer) {
5704       movptr(rbp, rsp);
5705       if (framesize > 0) {
5706         addptr(rbp, framesize);
5707       }
5708     }
5709   }
5710 
5711   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5712     framesize -= wordSize;
5713     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5714   }
5715 
5716 #ifndef _LP64
5717   // If method sets FPU control word do it now
5718   if (fp_mode_24b) {
5719     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5720   }
5721   if (UseSSE >= 2 && VerifyFPU) {
5722     verify_FPU(0, "FPU stack must be clean on entry");
5723   }
5724 #endif
5725 
5726 #ifdef ASSERT
5727   if (VerifyStackAtCalls) {
5728     Label L;
5729     push(rax);
5730     mov(rax, rsp);
5731     andptr(rax, StackAlignmentInBytes-1);
5732     cmpptr(rax, StackAlignmentInBytes-wordSize);
5733     pop(rax);
5734     jcc(Assembler::equal, L);
5735     STOP("Stack is not properly aligned!");
5736     bind(L);
5737   }
5738 #endif
5739 
5740   if (!is_stub) {
5741     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5742     bs->nmethod_entry_barrier(this);
5743   }
5744 }
5745 
5746 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
xmm_clear_mem(Register base,Register cnt,XMMRegister xtmp)5747 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5748   // cnt - number of qwords (8-byte words).
5749   // base - start address, qword aligned.
5750   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5751   if (UseAVX >= 2) {
5752     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5753   } else {
5754     pxor(xtmp, xtmp);
5755   }
5756   jmp(L_zero_64_bytes);
5757 
5758   BIND(L_loop);
5759   if (UseAVX >= 2) {
5760     vmovdqu(Address(base,  0), xtmp);
5761     vmovdqu(Address(base, 32), xtmp);
5762   } else {
5763     movdqu(Address(base,  0), xtmp);
5764     movdqu(Address(base, 16), xtmp);
5765     movdqu(Address(base, 32), xtmp);
5766     movdqu(Address(base, 48), xtmp);
5767   }
5768   addptr(base, 64);
5769 
5770   BIND(L_zero_64_bytes);
5771   subptr(cnt, 8);
5772   jccb(Assembler::greaterEqual, L_loop);
5773   addptr(cnt, 4);
5774   jccb(Assembler::less, L_tail);
5775   // Copy trailing 32 bytes
5776   if (UseAVX >= 2) {
5777     vmovdqu(Address(base, 0), xtmp);
5778   } else {
5779     movdqu(Address(base,  0), xtmp);
5780     movdqu(Address(base, 16), xtmp);
5781   }
5782   addptr(base, 32);
5783   subptr(cnt, 4);
5784 
5785   BIND(L_tail);
5786   addptr(cnt, 4);
5787   jccb(Assembler::lessEqual, L_end);
5788   decrement(cnt);
5789 
5790   BIND(L_sloop);
5791   movq(Address(base, 0), xtmp);
5792   addptr(base, 8);
5793   decrement(cnt);
5794   jccb(Assembler::greaterEqual, L_sloop);
5795   BIND(L_end);
5796 }
5797 
clear_mem(Register base,Register cnt,Register tmp,XMMRegister xtmp,bool is_large)5798 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5799   // cnt - number of qwords (8-byte words).
5800   // base - start address, qword aligned.
5801   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5802   assert(base==rdi, "base register must be edi for rep stos");
5803   assert(tmp==rax,   "tmp register must be eax for rep stos");
5804   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5805   assert(InitArrayShortSize % BytesPerLong == 0,
5806     "InitArrayShortSize should be the multiple of BytesPerLong");
5807 
5808   Label DONE;
5809 
5810   if (!is_large || !UseXMMForObjInit) {
5811     xorptr(tmp, tmp);
5812   }
5813 
5814   if (!is_large) {
5815     Label LOOP, LONG;
5816     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5817     jccb(Assembler::greater, LONG);
5818 
5819     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5820 
5821     decrement(cnt);
5822     jccb(Assembler::negative, DONE); // Zero length
5823 
5824     // Use individual pointer-sized stores for small counts:
5825     BIND(LOOP);
5826     movptr(Address(base, cnt, Address::times_ptr), tmp);
5827     decrement(cnt);
5828     jccb(Assembler::greaterEqual, LOOP);
5829     jmpb(DONE);
5830 
5831     BIND(LONG);
5832   }
5833 
5834   // Use longer rep-prefixed ops for non-small counts:
5835   if (UseFastStosb) {
5836     shlptr(cnt, 3); // convert to number of bytes
5837     rep_stosb();
5838   } else if (UseXMMForObjInit) {
5839     movptr(tmp, base);
5840     xmm_clear_mem(tmp, cnt, xtmp);
5841   } else {
5842     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5843     rep_stos();
5844   }
5845 
5846   BIND(DONE);
5847 }
5848 
5849 #ifdef COMPILER2
5850 
5851 // IndexOf for constant substrings with size >= 8 chars
5852 // which don't need to be loaded through stack.
string_indexofC8(Register str1,Register str2,Register cnt1,Register cnt2,int int_cnt2,Register result,XMMRegister vec,Register tmp,int ae)5853 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5854                                       Register cnt1, Register cnt2,
5855                                       int int_cnt2,  Register result,
5856                                       XMMRegister vec, Register tmp,
5857                                       int ae) {
5858   ShortBranchVerifier sbv(this);
5859   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5860   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5861 
5862   // This method uses the pcmpestri instruction with bound registers
5863   //   inputs:
5864   //     xmm - substring
5865   //     rax - substring length (elements count)
5866   //     mem - scanned string
5867   //     rdx - string length (elements count)
5868   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5869   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5870   //   outputs:
5871   //     rcx - matched index in string
5872   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5873   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5874   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5875   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5876   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5877 
5878   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5879         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5880         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5881 
5882   // Note, inline_string_indexOf() generates checks:
5883   // if (substr.count > string.count) return -1;
5884   // if (substr.count == 0) return 0;
5885   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5886 
5887   // Load substring.
5888   if (ae == StrIntrinsicNode::UL) {
5889     pmovzxbw(vec, Address(str2, 0));
5890   } else {
5891     movdqu(vec, Address(str2, 0));
5892   }
5893   movl(cnt2, int_cnt2);
5894   movptr(result, str1); // string addr
5895 
5896   if (int_cnt2 > stride) {
5897     jmpb(SCAN_TO_SUBSTR);
5898 
5899     // Reload substr for rescan, this code
5900     // is executed only for large substrings (> 8 chars)
5901     bind(RELOAD_SUBSTR);
5902     if (ae == StrIntrinsicNode::UL) {
5903       pmovzxbw(vec, Address(str2, 0));
5904     } else {
5905       movdqu(vec, Address(str2, 0));
5906     }
5907     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5908 
5909     bind(RELOAD_STR);
5910     // We came here after the beginning of the substring was
5911     // matched but the rest of it was not so we need to search
5912     // again. Start from the next element after the previous match.
5913 
5914     // cnt2 is number of substring reminding elements and
5915     // cnt1 is number of string reminding elements when cmp failed.
5916     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5917     subl(cnt1, cnt2);
5918     addl(cnt1, int_cnt2);
5919     movl(cnt2, int_cnt2); // Now restore cnt2
5920 
5921     decrementl(cnt1);     // Shift to next element
5922     cmpl(cnt1, cnt2);
5923     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5924 
5925     addptr(result, (1<<scale1));
5926 
5927   } // (int_cnt2 > 8)
5928 
5929   // Scan string for start of substr in 16-byte vectors
5930   bind(SCAN_TO_SUBSTR);
5931   pcmpestri(vec, Address(result, 0), mode);
5932   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5933   subl(cnt1, stride);
5934   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5935   cmpl(cnt1, cnt2);
5936   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5937   addptr(result, 16);
5938   jmpb(SCAN_TO_SUBSTR);
5939 
5940   // Found a potential substr
5941   bind(FOUND_CANDIDATE);
5942   // Matched whole vector if first element matched (tmp(rcx) == 0).
5943   if (int_cnt2 == stride) {
5944     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5945   } else { // int_cnt2 > 8
5946     jccb(Assembler::overflow, FOUND_SUBSTR);
5947   }
5948   // After pcmpestri tmp(rcx) contains matched element index
5949   // Compute start addr of substr
5950   lea(result, Address(result, tmp, scale1));
5951 
5952   // Make sure string is still long enough
5953   subl(cnt1, tmp);
5954   cmpl(cnt1, cnt2);
5955   if (int_cnt2 == stride) {
5956     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5957   } else { // int_cnt2 > 8
5958     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5959   }
5960   // Left less then substring.
5961 
5962   bind(RET_NOT_FOUND);
5963   movl(result, -1);
5964   jmp(EXIT);
5965 
5966   if (int_cnt2 > stride) {
5967     // This code is optimized for the case when whole substring
5968     // is matched if its head is matched.
5969     bind(MATCH_SUBSTR_HEAD);
5970     pcmpestri(vec, Address(result, 0), mode);
5971     // Reload only string if does not match
5972     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5973 
5974     Label CONT_SCAN_SUBSTR;
5975     // Compare the rest of substring (> 8 chars).
5976     bind(FOUND_SUBSTR);
5977     // First 8 chars are already matched.
5978     negptr(cnt2);
5979     addptr(cnt2, stride);
5980 
5981     bind(SCAN_SUBSTR);
5982     subl(cnt1, stride);
5983     cmpl(cnt2, -stride); // Do not read beyond substring
5984     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5985     // Back-up strings to avoid reading beyond substring:
5986     // cnt1 = cnt1 - cnt2 + 8
5987     addl(cnt1, cnt2); // cnt2 is negative
5988     addl(cnt1, stride);
5989     movl(cnt2, stride); negptr(cnt2);
5990     bind(CONT_SCAN_SUBSTR);
5991     if (int_cnt2 < (int)G) {
5992       int tail_off1 = int_cnt2<<scale1;
5993       int tail_off2 = int_cnt2<<scale2;
5994       if (ae == StrIntrinsicNode::UL) {
5995         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5996       } else {
5997         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5998       }
5999       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6000     } else {
6001       // calculate index in register to avoid integer overflow (int_cnt2*2)
6002       movl(tmp, int_cnt2);
6003       addptr(tmp, cnt2);
6004       if (ae == StrIntrinsicNode::UL) {
6005         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6006       } else {
6007         movdqu(vec, Address(str2, tmp, scale2, 0));
6008       }
6009       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6010     }
6011     // Need to reload strings pointers if not matched whole vector
6012     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6013     addptr(cnt2, stride);
6014     jcc(Assembler::negative, SCAN_SUBSTR);
6015     // Fall through if found full substring
6016 
6017   } // (int_cnt2 > 8)
6018 
6019   bind(RET_FOUND);
6020   // Found result if we matched full small substring.
6021   // Compute substr offset
6022   subptr(result, str1);
6023   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6024     shrl(result, 1); // index
6025   }
6026   bind(EXIT);
6027 
6028 } // string_indexofC8
6029 
6030 // Small strings are loaded through stack if they cross page boundary.
string_indexof(Register str1,Register str2,Register cnt1,Register cnt2,int int_cnt2,Register result,XMMRegister vec,Register tmp,int ae)6031 void MacroAssembler::string_indexof(Register str1, Register str2,
6032                                     Register cnt1, Register cnt2,
6033                                     int int_cnt2,  Register result,
6034                                     XMMRegister vec, Register tmp,
6035                                     int ae) {
6036   ShortBranchVerifier sbv(this);
6037   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6038   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6039 
6040   //
6041   // int_cnt2 is length of small (< 8 chars) constant substring
6042   // or (-1) for non constant substring in which case its length
6043   // is in cnt2 register.
6044   //
6045   // Note, inline_string_indexOf() generates checks:
6046   // if (substr.count > string.count) return -1;
6047   // if (substr.count == 0) return 0;
6048   //
6049   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6050   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6051   // This method uses the pcmpestri instruction with bound registers
6052   //   inputs:
6053   //     xmm - substring
6054   //     rax - substring length (elements count)
6055   //     mem - scanned string
6056   //     rdx - string length (elements count)
6057   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6058   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6059   //   outputs:
6060   //     rcx - matched index in string
6061   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6062   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6063   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6064   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6065 
6066   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6067         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6068         FOUND_CANDIDATE;
6069 
6070   { //========================================================
6071     // We don't know where these strings are located
6072     // and we can't read beyond them. Load them through stack.
6073     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6074 
6075     movptr(tmp, rsp); // save old SP
6076 
6077     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6078       if (int_cnt2 == (1>>scale2)) { // One byte
6079         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6080         load_unsigned_byte(result, Address(str2, 0));
6081         movdl(vec, result); // move 32 bits
6082       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6083         // Not enough header space in 32-bit VM: 12+3 = 15.
6084         movl(result, Address(str2, -1));
6085         shrl(result, 8);
6086         movdl(vec, result); // move 32 bits
6087       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6088         load_unsigned_short(result, Address(str2, 0));
6089         movdl(vec, result); // move 32 bits
6090       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6091         movdl(vec, Address(str2, 0)); // move 32 bits
6092       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6093         movq(vec, Address(str2, 0));  // move 64 bits
6094       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6095         // Array header size is 12 bytes in 32-bit VM
6096         // + 6 bytes for 3 chars == 18 bytes,
6097         // enough space to load vec and shift.
6098         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6099         if (ae == StrIntrinsicNode::UL) {
6100           int tail_off = int_cnt2-8;
6101           pmovzxbw(vec, Address(str2, tail_off));
6102           psrldq(vec, -2*tail_off);
6103         }
6104         else {
6105           int tail_off = int_cnt2*(1<<scale2);
6106           movdqu(vec, Address(str2, tail_off-16));
6107           psrldq(vec, 16-tail_off);
6108         }
6109       }
6110     } else { // not constant substring
6111       cmpl(cnt2, stride);
6112       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6113 
6114       // We can read beyond string if srt+16 does not cross page boundary
6115       // since heaps are aligned and mapped by pages.
6116       assert(os::vm_page_size() < (int)G, "default page should be small");
6117       movl(result, str2); // We need only low 32 bits
6118       andl(result, (os::vm_page_size()-1));
6119       cmpl(result, (os::vm_page_size()-16));
6120       jccb(Assembler::belowEqual, CHECK_STR);
6121 
6122       // Move small strings to stack to allow load 16 bytes into vec.
6123       subptr(rsp, 16);
6124       int stk_offset = wordSize-(1<<scale2);
6125       push(cnt2);
6126 
6127       bind(COPY_SUBSTR);
6128       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6129         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6130         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6131       } else if (ae == StrIntrinsicNode::UU) {
6132         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6133         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6134       }
6135       decrement(cnt2);
6136       jccb(Assembler::notZero, COPY_SUBSTR);
6137 
6138       pop(cnt2);
6139       movptr(str2, rsp);  // New substring address
6140     } // non constant
6141 
6142     bind(CHECK_STR);
6143     cmpl(cnt1, stride);
6144     jccb(Assembler::aboveEqual, BIG_STRINGS);
6145 
6146     // Check cross page boundary.
6147     movl(result, str1); // We need only low 32 bits
6148     andl(result, (os::vm_page_size()-1));
6149     cmpl(result, (os::vm_page_size()-16));
6150     jccb(Assembler::belowEqual, BIG_STRINGS);
6151 
6152     subptr(rsp, 16);
6153     int stk_offset = -(1<<scale1);
6154     if (int_cnt2 < 0) { // not constant
6155       push(cnt2);
6156       stk_offset += wordSize;
6157     }
6158     movl(cnt2, cnt1);
6159 
6160     bind(COPY_STR);
6161     if (ae == StrIntrinsicNode::LL) {
6162       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6163       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6164     } else {
6165       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6166       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6167     }
6168     decrement(cnt2);
6169     jccb(Assembler::notZero, COPY_STR);
6170 
6171     if (int_cnt2 < 0) { // not constant
6172       pop(cnt2);
6173     }
6174     movptr(str1, rsp);  // New string address
6175 
6176     bind(BIG_STRINGS);
6177     // Load substring.
6178     if (int_cnt2 < 0) { // -1
6179       if (ae == StrIntrinsicNode::UL) {
6180         pmovzxbw(vec, Address(str2, 0));
6181       } else {
6182         movdqu(vec, Address(str2, 0));
6183       }
6184       push(cnt2);       // substr count
6185       push(str2);       // substr addr
6186       push(str1);       // string addr
6187     } else {
6188       // Small (< 8 chars) constant substrings are loaded already.
6189       movl(cnt2, int_cnt2);
6190     }
6191     push(tmp);  // original SP
6192 
6193   } // Finished loading
6194 
6195   //========================================================
6196   // Start search
6197   //
6198 
6199   movptr(result, str1); // string addr
6200 
6201   if (int_cnt2  < 0) {  // Only for non constant substring
6202     jmpb(SCAN_TO_SUBSTR);
6203 
6204     // SP saved at sp+0
6205     // String saved at sp+1*wordSize
6206     // Substr saved at sp+2*wordSize
6207     // Substr count saved at sp+3*wordSize
6208 
6209     // Reload substr for rescan, this code
6210     // is executed only for large substrings (> 8 chars)
6211     bind(RELOAD_SUBSTR);
6212     movptr(str2, Address(rsp, 2*wordSize));
6213     movl(cnt2, Address(rsp, 3*wordSize));
6214     if (ae == StrIntrinsicNode::UL) {
6215       pmovzxbw(vec, Address(str2, 0));
6216     } else {
6217       movdqu(vec, Address(str2, 0));
6218     }
6219     // We came here after the beginning of the substring was
6220     // matched but the rest of it was not so we need to search
6221     // again. Start from the next element after the previous match.
6222     subptr(str1, result); // Restore counter
6223     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6224       shrl(str1, 1);
6225     }
6226     addl(cnt1, str1);
6227     decrementl(cnt1);   // Shift to next element
6228     cmpl(cnt1, cnt2);
6229     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6230 
6231     addptr(result, (1<<scale1));
6232   } // non constant
6233 
6234   // Scan string for start of substr in 16-byte vectors
6235   bind(SCAN_TO_SUBSTR);
6236   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6237   pcmpestri(vec, Address(result, 0), mode);
6238   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6239   subl(cnt1, stride);
6240   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6241   cmpl(cnt1, cnt2);
6242   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6243   addptr(result, 16);
6244 
6245   bind(ADJUST_STR);
6246   cmpl(cnt1, stride); // Do not read beyond string
6247   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6248   // Back-up string to avoid reading beyond string.
6249   lea(result, Address(result, cnt1, scale1, -16));
6250   movl(cnt1, stride);
6251   jmpb(SCAN_TO_SUBSTR);
6252 
6253   // Found a potential substr
6254   bind(FOUND_CANDIDATE);
6255   // After pcmpestri tmp(rcx) contains matched element index
6256 
6257   // Make sure string is still long enough
6258   subl(cnt1, tmp);
6259   cmpl(cnt1, cnt2);
6260   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6261   // Left less then substring.
6262 
6263   bind(RET_NOT_FOUND);
6264   movl(result, -1);
6265   jmp(CLEANUP);
6266 
6267   bind(FOUND_SUBSTR);
6268   // Compute start addr of substr
6269   lea(result, Address(result, tmp, scale1));
6270   if (int_cnt2 > 0) { // Constant substring
6271     // Repeat search for small substring (< 8 chars)
6272     // from new point without reloading substring.
6273     // Have to check that we don't read beyond string.
6274     cmpl(tmp, stride-int_cnt2);
6275     jccb(Assembler::greater, ADJUST_STR);
6276     // Fall through if matched whole substring.
6277   } else { // non constant
6278     assert(int_cnt2 == -1, "should be != 0");
6279 
6280     addl(tmp, cnt2);
6281     // Found result if we matched whole substring.
6282     cmpl(tmp, stride);
6283     jcc(Assembler::lessEqual, RET_FOUND);
6284 
6285     // Repeat search for small substring (<= 8 chars)
6286     // from new point 'str1' without reloading substring.
6287     cmpl(cnt2, stride);
6288     // Have to check that we don't read beyond string.
6289     jccb(Assembler::lessEqual, ADJUST_STR);
6290 
6291     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6292     // Compare the rest of substring (> 8 chars).
6293     movptr(str1, result);
6294 
6295     cmpl(tmp, cnt2);
6296     // First 8 chars are already matched.
6297     jccb(Assembler::equal, CHECK_NEXT);
6298 
6299     bind(SCAN_SUBSTR);
6300     pcmpestri(vec, Address(str1, 0), mode);
6301     // Need to reload strings pointers if not matched whole vector
6302     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6303 
6304     bind(CHECK_NEXT);
6305     subl(cnt2, stride);
6306     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6307     addptr(str1, 16);
6308     if (ae == StrIntrinsicNode::UL) {
6309       addptr(str2, 8);
6310     } else {
6311       addptr(str2, 16);
6312     }
6313     subl(cnt1, stride);
6314     cmpl(cnt2, stride); // Do not read beyond substring
6315     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6316     // Back-up strings to avoid reading beyond substring.
6317 
6318     if (ae == StrIntrinsicNode::UL) {
6319       lea(str2, Address(str2, cnt2, scale2, -8));
6320       lea(str1, Address(str1, cnt2, scale1, -16));
6321     } else {
6322       lea(str2, Address(str2, cnt2, scale2, -16));
6323       lea(str1, Address(str1, cnt2, scale1, -16));
6324     }
6325     subl(cnt1, cnt2);
6326     movl(cnt2, stride);
6327     addl(cnt1, stride);
6328     bind(CONT_SCAN_SUBSTR);
6329     if (ae == StrIntrinsicNode::UL) {
6330       pmovzxbw(vec, Address(str2, 0));
6331     } else {
6332       movdqu(vec, Address(str2, 0));
6333     }
6334     jmp(SCAN_SUBSTR);
6335 
6336     bind(RET_FOUND_LONG);
6337     movptr(str1, Address(rsp, wordSize));
6338   } // non constant
6339 
6340   bind(RET_FOUND);
6341   // Compute substr offset
6342   subptr(result, str1);
6343   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6344     shrl(result, 1); // index
6345   }
6346   bind(CLEANUP);
6347   pop(rsp); // restore SP
6348 
6349 } // string_indexof
6350 
string_indexof_char(Register str1,Register cnt1,Register ch,Register result,XMMRegister vec1,XMMRegister vec2,XMMRegister vec3,Register tmp)6351 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6352                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6353   ShortBranchVerifier sbv(this);
6354   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6355 
6356   int stride = 8;
6357 
6358   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6359         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6360         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6361         FOUND_SEQ_CHAR, DONE_LABEL;
6362 
6363   movptr(result, str1);
6364   if (UseAVX >= 2) {
6365     cmpl(cnt1, stride);
6366     jcc(Assembler::less, SCAN_TO_CHAR);
6367     cmpl(cnt1, 2*stride);
6368     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6369     movdl(vec1, ch);
6370     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6371     vpxor(vec2, vec2);
6372     movl(tmp, cnt1);
6373     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6374     andl(cnt1,0x0000000F);  //tail count (in chars)
6375 
6376     bind(SCAN_TO_16_CHAR_LOOP);
6377     vmovdqu(vec3, Address(result, 0));
6378     vpcmpeqw(vec3, vec3, vec1, 1);
6379     vptest(vec2, vec3);
6380     jcc(Assembler::carryClear, FOUND_CHAR);
6381     addptr(result, 32);
6382     subl(tmp, 2*stride);
6383     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6384     jmp(SCAN_TO_8_CHAR);
6385     bind(SCAN_TO_8_CHAR_INIT);
6386     movdl(vec1, ch);
6387     pshuflw(vec1, vec1, 0x00);
6388     pshufd(vec1, vec1, 0);
6389     pxor(vec2, vec2);
6390   }
6391   bind(SCAN_TO_8_CHAR);
6392   cmpl(cnt1, stride);
6393   jcc(Assembler::less, SCAN_TO_CHAR);
6394   if (UseAVX < 2) {
6395     movdl(vec1, ch);
6396     pshuflw(vec1, vec1, 0x00);
6397     pshufd(vec1, vec1, 0);
6398     pxor(vec2, vec2);
6399   }
6400   movl(tmp, cnt1);
6401   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6402   andl(cnt1,0x00000007);  //tail count (in chars)
6403 
6404   bind(SCAN_TO_8_CHAR_LOOP);
6405   movdqu(vec3, Address(result, 0));
6406   pcmpeqw(vec3, vec1);
6407   ptest(vec2, vec3);
6408   jcc(Assembler::carryClear, FOUND_CHAR);
6409   addptr(result, 16);
6410   subl(tmp, stride);
6411   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6412   bind(SCAN_TO_CHAR);
6413   testl(cnt1, cnt1);
6414   jcc(Assembler::zero, RET_NOT_FOUND);
6415   bind(SCAN_TO_CHAR_LOOP);
6416   load_unsigned_short(tmp, Address(result, 0));
6417   cmpl(ch, tmp);
6418   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6419   addptr(result, 2);
6420   subl(cnt1, 1);
6421   jccb(Assembler::zero, RET_NOT_FOUND);
6422   jmp(SCAN_TO_CHAR_LOOP);
6423 
6424   bind(RET_NOT_FOUND);
6425   movl(result, -1);
6426   jmpb(DONE_LABEL);
6427 
6428   bind(FOUND_CHAR);
6429   if (UseAVX >= 2) {
6430     vpmovmskb(tmp, vec3);
6431   } else {
6432     pmovmskb(tmp, vec3);
6433   }
6434   bsfl(ch, tmp);
6435   addptr(result, ch);
6436 
6437   bind(FOUND_SEQ_CHAR);
6438   subptr(result, str1);
6439   shrl(result, 1);
6440 
6441   bind(DONE_LABEL);
6442 } // string_indexof_char
6443 
6444 // helper function for string_compare
load_next_elements(Register elem1,Register elem2,Register str1,Register str2,Address::ScaleFactor scale,Address::ScaleFactor scale1,Address::ScaleFactor scale2,Register index,int ae)6445 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6446                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6447                                         Address::ScaleFactor scale2, Register index, int ae) {
6448   if (ae == StrIntrinsicNode::LL) {
6449     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6450     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6451   } else if (ae == StrIntrinsicNode::UU) {
6452     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6453     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6454   } else {
6455     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6456     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6457   }
6458 }
6459 
6460 // Compare strings, used for char[] and byte[].
string_compare(Register str1,Register str2,Register cnt1,Register cnt2,Register result,XMMRegister vec1,int ae)6461 void MacroAssembler::string_compare(Register str1, Register str2,
6462                                     Register cnt1, Register cnt2, Register result,
6463                                     XMMRegister vec1, int ae) {
6464   ShortBranchVerifier sbv(this);
6465   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6466   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6467   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6468   int stride2x2 = 0x40;
6469   Address::ScaleFactor scale = Address::no_scale;
6470   Address::ScaleFactor scale1 = Address::no_scale;
6471   Address::ScaleFactor scale2 = Address::no_scale;
6472 
6473   if (ae != StrIntrinsicNode::LL) {
6474     stride2x2 = 0x20;
6475   }
6476 
6477   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6478     shrl(cnt2, 1);
6479   }
6480   // Compute the minimum of the string lengths and the
6481   // difference of the string lengths (stack).
6482   // Do the conditional move stuff
6483   movl(result, cnt1);
6484   subl(cnt1, cnt2);
6485   push(cnt1);
6486   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6487 
6488   // Is the minimum length zero?
6489   testl(cnt2, cnt2);
6490   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6491   if (ae == StrIntrinsicNode::LL) {
6492     // Load first bytes
6493     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6494     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6495   } else if (ae == StrIntrinsicNode::UU) {
6496     // Load first characters
6497     load_unsigned_short(result, Address(str1, 0));
6498     load_unsigned_short(cnt1, Address(str2, 0));
6499   } else {
6500     load_unsigned_byte(result, Address(str1, 0));
6501     load_unsigned_short(cnt1, Address(str2, 0));
6502   }
6503   subl(result, cnt1);
6504   jcc(Assembler::notZero,  POP_LABEL);
6505 
6506   if (ae == StrIntrinsicNode::UU) {
6507     // Divide length by 2 to get number of chars
6508     shrl(cnt2, 1);
6509   }
6510   cmpl(cnt2, 1);
6511   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6512 
6513   // Check if the strings start at the same location and setup scale and stride
6514   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6515     cmpptr(str1, str2);
6516     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6517     if (ae == StrIntrinsicNode::LL) {
6518       scale = Address::times_1;
6519       stride = 16;
6520     } else {
6521       scale = Address::times_2;
6522       stride = 8;
6523     }
6524   } else {
6525     scale1 = Address::times_1;
6526     scale2 = Address::times_2;
6527     // scale not used
6528     stride = 8;
6529   }
6530 
6531   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6532     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6533     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6534     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6535     Label COMPARE_TAIL_LONG;
6536     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6537 
6538     int pcmpmask = 0x19;
6539     if (ae == StrIntrinsicNode::LL) {
6540       pcmpmask &= ~0x01;
6541     }
6542 
6543     // Setup to compare 16-chars (32-bytes) vectors,
6544     // start from first character again because it has aligned address.
6545     if (ae == StrIntrinsicNode::LL) {
6546       stride2 = 32;
6547     } else {
6548       stride2 = 16;
6549     }
6550     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6551       adr_stride = stride << scale;
6552     } else {
6553       adr_stride1 = 8;  //stride << scale1;
6554       adr_stride2 = 16; //stride << scale2;
6555     }
6556 
6557     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6558     // rax and rdx are used by pcmpestri as elements counters
6559     movl(result, cnt2);
6560     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6561     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6562 
6563     // fast path : compare first 2 8-char vectors.
6564     bind(COMPARE_16_CHARS);
6565     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6566       movdqu(vec1, Address(str1, 0));
6567     } else {
6568       pmovzxbw(vec1, Address(str1, 0));
6569     }
6570     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6571     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6572 
6573     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6574       movdqu(vec1, Address(str1, adr_stride));
6575       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6576     } else {
6577       pmovzxbw(vec1, Address(str1, adr_stride1));
6578       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6579     }
6580     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6581     addl(cnt1, stride);
6582 
6583     // Compare the characters at index in cnt1
6584     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6585     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6586     subl(result, cnt2);
6587     jmp(POP_LABEL);
6588 
6589     // Setup the registers to start vector comparison loop
6590     bind(COMPARE_WIDE_VECTORS);
6591     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6592       lea(str1, Address(str1, result, scale));
6593       lea(str2, Address(str2, result, scale));
6594     } else {
6595       lea(str1, Address(str1, result, scale1));
6596       lea(str2, Address(str2, result, scale2));
6597     }
6598     subl(result, stride2);
6599     subl(cnt2, stride2);
6600     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6601     negptr(result);
6602 
6603     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6604     bind(COMPARE_WIDE_VECTORS_LOOP);
6605 
6606 #ifdef _LP64
6607     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6608       cmpl(cnt2, stride2x2);
6609       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6610       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6611       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6612 
6613       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6614       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6615         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6616         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6617       } else {
6618         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6619         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6620       }
6621       kortestql(k7, k7);
6622       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6623       addptr(result, stride2x2);  // update since we already compared at this addr
6624       subl(cnt2, stride2x2);      // and sub the size too
6625       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6626 
6627       vpxor(vec1, vec1);
6628       jmpb(COMPARE_WIDE_TAIL);
6629     }//if (VM_Version::supports_avx512vlbw())
6630 #endif // _LP64
6631 
6632 
6633     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6634     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6635       vmovdqu(vec1, Address(str1, result, scale));
6636       vpxor(vec1, Address(str2, result, scale));
6637     } else {
6638       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6639       vpxor(vec1, Address(str2, result, scale2));
6640     }
6641     vptest(vec1, vec1);
6642     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6643     addptr(result, stride2);
6644     subl(cnt2, stride2);
6645     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6646     // clean upper bits of YMM registers
6647     vpxor(vec1, vec1);
6648 
6649     // compare wide vectors tail
6650     bind(COMPARE_WIDE_TAIL);
6651     testptr(result, result);
6652     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6653 
6654     movl(result, stride2);
6655     movl(cnt2, result);
6656     negptr(result);
6657     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6658 
6659     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6660     bind(VECTOR_NOT_EQUAL);
6661     // clean upper bits of YMM registers
6662     vpxor(vec1, vec1);
6663     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6664       lea(str1, Address(str1, result, scale));
6665       lea(str2, Address(str2, result, scale));
6666     } else {
6667       lea(str1, Address(str1, result, scale1));
6668       lea(str2, Address(str2, result, scale2));
6669     }
6670     jmp(COMPARE_16_CHARS);
6671 
6672     // Compare tail chars, length between 1 to 15 chars
6673     bind(COMPARE_TAIL_LONG);
6674     movl(cnt2, result);
6675     cmpl(cnt2, stride);
6676     jcc(Assembler::less, COMPARE_SMALL_STR);
6677 
6678     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6679       movdqu(vec1, Address(str1, 0));
6680     } else {
6681       pmovzxbw(vec1, Address(str1, 0));
6682     }
6683     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6684     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6685     subptr(cnt2, stride);
6686     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6687     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6688       lea(str1, Address(str1, result, scale));
6689       lea(str2, Address(str2, result, scale));
6690     } else {
6691       lea(str1, Address(str1, result, scale1));
6692       lea(str2, Address(str2, result, scale2));
6693     }
6694     negptr(cnt2);
6695     jmpb(WHILE_HEAD_LABEL);
6696 
6697     bind(COMPARE_SMALL_STR);
6698   } else if (UseSSE42Intrinsics) {
6699     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6700     int pcmpmask = 0x19;
6701     // Setup to compare 8-char (16-byte) vectors,
6702     // start from first character again because it has aligned address.
6703     movl(result, cnt2);
6704     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6705     if (ae == StrIntrinsicNode::LL) {
6706       pcmpmask &= ~0x01;
6707     }
6708     jcc(Assembler::zero, COMPARE_TAIL);
6709     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6710       lea(str1, Address(str1, result, scale));
6711       lea(str2, Address(str2, result, scale));
6712     } else {
6713       lea(str1, Address(str1, result, scale1));
6714       lea(str2, Address(str2, result, scale2));
6715     }
6716     negptr(result);
6717 
6718     // pcmpestri
6719     //   inputs:
6720     //     vec1- substring
6721     //     rax - negative string length (elements count)
6722     //     mem - scanned string
6723     //     rdx - string length (elements count)
6724     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6725     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6726     //   outputs:
6727     //     rcx - first mismatched element index
6728     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6729 
6730     bind(COMPARE_WIDE_VECTORS);
6731     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6732       movdqu(vec1, Address(str1, result, scale));
6733       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6734     } else {
6735       pmovzxbw(vec1, Address(str1, result, scale1));
6736       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6737     }
6738     // After pcmpestri cnt1(rcx) contains mismatched element index
6739 
6740     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6741     addptr(result, stride);
6742     subptr(cnt2, stride);
6743     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6744 
6745     // compare wide vectors tail
6746     testptr(result, result);
6747     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6748 
6749     movl(cnt2, stride);
6750     movl(result, stride);
6751     negptr(result);
6752     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6753       movdqu(vec1, Address(str1, result, scale));
6754       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6755     } else {
6756       pmovzxbw(vec1, Address(str1, result, scale1));
6757       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6758     }
6759     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6760 
6761     // Mismatched characters in the vectors
6762     bind(VECTOR_NOT_EQUAL);
6763     addptr(cnt1, result);
6764     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6765     subl(result, cnt2);
6766     jmpb(POP_LABEL);
6767 
6768     bind(COMPARE_TAIL); // limit is zero
6769     movl(cnt2, result);
6770     // Fallthru to tail compare
6771   }
6772   // Shift str2 and str1 to the end of the arrays, negate min
6773   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6774     lea(str1, Address(str1, cnt2, scale));
6775     lea(str2, Address(str2, cnt2, scale));
6776   } else {
6777     lea(str1, Address(str1, cnt2, scale1));
6778     lea(str2, Address(str2, cnt2, scale2));
6779   }
6780   decrementl(cnt2);  // first character was compared already
6781   negptr(cnt2);
6782 
6783   // Compare the rest of the elements
6784   bind(WHILE_HEAD_LABEL);
6785   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6786   subl(result, cnt1);
6787   jccb(Assembler::notZero, POP_LABEL);
6788   increment(cnt2);
6789   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6790 
6791   // Strings are equal up to min length.  Return the length difference.
6792   bind(LENGTH_DIFF_LABEL);
6793   pop(result);
6794   if (ae == StrIntrinsicNode::UU) {
6795     // Divide diff by 2 to get number of chars
6796     sarl(result, 1);
6797   }
6798   jmpb(DONE_LABEL);
6799 
6800 #ifdef _LP64
6801   if (VM_Version::supports_avx512vlbw()) {
6802 
6803     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6804 
6805     kmovql(cnt1, k7);
6806     notq(cnt1);
6807     bsfq(cnt2, cnt1);
6808     if (ae != StrIntrinsicNode::LL) {
6809       // Divide diff by 2 to get number of chars
6810       sarl(cnt2, 1);
6811     }
6812     addq(result, cnt2);
6813     if (ae == StrIntrinsicNode::LL) {
6814       load_unsigned_byte(cnt1, Address(str2, result));
6815       load_unsigned_byte(result, Address(str1, result));
6816     } else if (ae == StrIntrinsicNode::UU) {
6817       load_unsigned_short(cnt1, Address(str2, result, scale));
6818       load_unsigned_short(result, Address(str1, result, scale));
6819     } else {
6820       load_unsigned_short(cnt1, Address(str2, result, scale2));
6821       load_unsigned_byte(result, Address(str1, result, scale1));
6822     }
6823     subl(result, cnt1);
6824     jmpb(POP_LABEL);
6825   }//if (VM_Version::supports_avx512vlbw())
6826 #endif // _LP64
6827 
6828   // Discard the stored length difference
6829   bind(POP_LABEL);
6830   pop(cnt1);
6831 
6832   // That's it
6833   bind(DONE_LABEL);
6834   if(ae == StrIntrinsicNode::UL) {
6835     negl(result);
6836   }
6837 
6838 }
6839 
6840 // Search for Non-ASCII character (Negative byte value) in a byte array,
6841 // return true if it has any and false otherwise.
6842 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6843 //   @HotSpotIntrinsicCandidate
6844 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6845 //     for (int i = off; i < off + len; i++) {
6846 //       if (ba[i] < 0) {
6847 //         return true;
6848 //       }
6849 //     }
6850 //     return false;
6851 //   }
has_negatives(Register ary1,Register len,Register result,Register tmp1,XMMRegister vec1,XMMRegister vec2)6852 void MacroAssembler::has_negatives(Register ary1, Register len,
6853   Register result, Register tmp1,
6854   XMMRegister vec1, XMMRegister vec2) {
6855   // rsi: byte array
6856   // rcx: len
6857   // rax: result
6858   ShortBranchVerifier sbv(this);
6859   assert_different_registers(ary1, len, result, tmp1);
6860   assert_different_registers(vec1, vec2);
6861   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6862 
6863   // len == 0
6864   testl(len, len);
6865   jcc(Assembler::zero, FALSE_LABEL);
6866 
6867   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6868     VM_Version::supports_avx512vlbw() &&
6869     VM_Version::supports_bmi2()) {
6870 
6871     Label test_64_loop, test_tail;
6872     Register tmp3_aliased = len;
6873 
6874     movl(tmp1, len);
6875     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6876 
6877     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6878     andl(len, ~(64 - 1));    // vector count (in chars)
6879     jccb(Assembler::zero, test_tail);
6880 
6881     lea(ary1, Address(ary1, len, Address::times_1));
6882     negptr(len);
6883 
6884     bind(test_64_loop);
6885     // Check whether our 64 elements of size byte contain negatives
6886     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6887     kortestql(k2, k2);
6888     jcc(Assembler::notZero, TRUE_LABEL);
6889 
6890     addptr(len, 64);
6891     jccb(Assembler::notZero, test_64_loop);
6892 
6893 
6894     bind(test_tail);
6895     // bail out when there is nothing to be done
6896     testl(tmp1, -1);
6897     jcc(Assembler::zero, FALSE_LABEL);
6898 
6899     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6900 #ifdef _LP64
6901     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6902     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6903     notq(tmp3_aliased);
6904     kmovql(k3, tmp3_aliased);
6905 #else
6906     Label k_init;
6907     jmp(k_init);
6908 
6909     // We could not read 64-bits from a general purpose register thus we move
6910     // data required to compose 64 1's to the instruction stream
6911     // We emit 64 byte wide series of elements from 0..63 which later on would
6912     // be used as a compare targets with tail count contained in tmp1 register.
6913     // Result would be a k register having tmp1 consecutive number or 1
6914     // counting from least significant bit.
6915     address tmp = pc();
6916     emit_int64(0x0706050403020100);
6917     emit_int64(0x0F0E0D0C0B0A0908);
6918     emit_int64(0x1716151413121110);
6919     emit_int64(0x1F1E1D1C1B1A1918);
6920     emit_int64(0x2726252423222120);
6921     emit_int64(0x2F2E2D2C2B2A2928);
6922     emit_int64(0x3736353433323130);
6923     emit_int64(0x3F3E3D3C3B3A3938);
6924 
6925     bind(k_init);
6926     lea(len, InternalAddress(tmp));
6927     // create mask to test for negative byte inside a vector
6928     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6929     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6930 
6931 #endif
6932     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6933     ktestq(k2, k3);
6934     jcc(Assembler::notZero, TRUE_LABEL);
6935 
6936     jmp(FALSE_LABEL);
6937   } else {
6938     movl(result, len); // copy
6939 
6940     if (UseAVX >= 2 && UseSSE >= 2) {
6941       // With AVX2, use 32-byte vector compare
6942       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6943 
6944       // Compare 32-byte vectors
6945       andl(result, 0x0000001f);  //   tail count (in bytes)
6946       andl(len, 0xffffffe0);   // vector count (in bytes)
6947       jccb(Assembler::zero, COMPARE_TAIL);
6948 
6949       lea(ary1, Address(ary1, len, Address::times_1));
6950       negptr(len);
6951 
6952       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6953       movdl(vec2, tmp1);
6954       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6955 
6956       bind(COMPARE_WIDE_VECTORS);
6957       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6958       vptest(vec1, vec2);
6959       jccb(Assembler::notZero, TRUE_LABEL);
6960       addptr(len, 32);
6961       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6962 
6963       testl(result, result);
6964       jccb(Assembler::zero, FALSE_LABEL);
6965 
6966       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6967       vptest(vec1, vec2);
6968       jccb(Assembler::notZero, TRUE_LABEL);
6969       jmpb(FALSE_LABEL);
6970 
6971       bind(COMPARE_TAIL); // len is zero
6972       movl(len, result);
6973       // Fallthru to tail compare
6974     } else if (UseSSE42Intrinsics) {
6975       // With SSE4.2, use double quad vector compare
6976       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6977 
6978       // Compare 16-byte vectors
6979       andl(result, 0x0000000f);  //   tail count (in bytes)
6980       andl(len, 0xfffffff0);   // vector count (in bytes)
6981       jcc(Assembler::zero, COMPARE_TAIL);
6982 
6983       lea(ary1, Address(ary1, len, Address::times_1));
6984       negptr(len);
6985 
6986       movl(tmp1, 0x80808080);
6987       movdl(vec2, tmp1);
6988       pshufd(vec2, vec2, 0);
6989 
6990       bind(COMPARE_WIDE_VECTORS);
6991       movdqu(vec1, Address(ary1, len, Address::times_1));
6992       ptest(vec1, vec2);
6993       jcc(Assembler::notZero, TRUE_LABEL);
6994       addptr(len, 16);
6995       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6996 
6997       testl(result, result);
6998       jcc(Assembler::zero, FALSE_LABEL);
6999 
7000       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7001       ptest(vec1, vec2);
7002       jccb(Assembler::notZero, TRUE_LABEL);
7003       jmpb(FALSE_LABEL);
7004 
7005       bind(COMPARE_TAIL); // len is zero
7006       movl(len, result);
7007       // Fallthru to tail compare
7008     }
7009   }
7010   // Compare 4-byte vectors
7011   andl(len, 0xfffffffc); // vector count (in bytes)
7012   jccb(Assembler::zero, COMPARE_CHAR);
7013 
7014   lea(ary1, Address(ary1, len, Address::times_1));
7015   negptr(len);
7016 
7017   bind(COMPARE_VECTORS);
7018   movl(tmp1, Address(ary1, len, Address::times_1));
7019   andl(tmp1, 0x80808080);
7020   jccb(Assembler::notZero, TRUE_LABEL);
7021   addptr(len, 4);
7022   jcc(Assembler::notZero, COMPARE_VECTORS);
7023 
7024   // Compare trailing char (final 2 bytes), if any
7025   bind(COMPARE_CHAR);
7026   testl(result, 0x2);   // tail  char
7027   jccb(Assembler::zero, COMPARE_BYTE);
7028   load_unsigned_short(tmp1, Address(ary1, 0));
7029   andl(tmp1, 0x00008080);
7030   jccb(Assembler::notZero, TRUE_LABEL);
7031   subptr(result, 2);
7032   lea(ary1, Address(ary1, 2));
7033 
7034   bind(COMPARE_BYTE);
7035   testl(result, 0x1);   // tail  byte
7036   jccb(Assembler::zero, FALSE_LABEL);
7037   load_unsigned_byte(tmp1, Address(ary1, 0));
7038   andl(tmp1, 0x00000080);
7039   jccb(Assembler::notEqual, TRUE_LABEL);
7040   jmpb(FALSE_LABEL);
7041 
7042   bind(TRUE_LABEL);
7043   movl(result, 1);   // return true
7044   jmpb(DONE);
7045 
7046   bind(FALSE_LABEL);
7047   xorl(result, result); // return false
7048 
7049   // That's it
7050   bind(DONE);
7051   if (UseAVX >= 2 && UseSSE >= 2) {
7052     // clean upper bits of YMM registers
7053     vpxor(vec1, vec1);
7054     vpxor(vec2, vec2);
7055   }
7056 }
7057 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
arrays_equals(bool is_array_equ,Register ary1,Register ary2,Register limit,Register result,Register chr,XMMRegister vec1,XMMRegister vec2,bool is_char)7058 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7059                                    Register limit, Register result, Register chr,
7060                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7061   ShortBranchVerifier sbv(this);
7062   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7063 
7064   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7065   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7066 
7067   if (is_array_equ) {
7068     // Check the input args
7069     cmpoop(ary1, ary2);
7070     jcc(Assembler::equal, TRUE_LABEL);
7071 
7072     // Need additional checks for arrays_equals.
7073     testptr(ary1, ary1);
7074     jcc(Assembler::zero, FALSE_LABEL);
7075     testptr(ary2, ary2);
7076     jcc(Assembler::zero, FALSE_LABEL);
7077 
7078     // Check the lengths
7079     movl(limit, Address(ary1, length_offset));
7080     cmpl(limit, Address(ary2, length_offset));
7081     jcc(Assembler::notEqual, FALSE_LABEL);
7082   }
7083 
7084   // count == 0
7085   testl(limit, limit);
7086   jcc(Assembler::zero, TRUE_LABEL);
7087 
7088   if (is_array_equ) {
7089     // Load array address
7090     lea(ary1, Address(ary1, base_offset));
7091     lea(ary2, Address(ary2, base_offset));
7092   }
7093 
7094   if (is_array_equ && is_char) {
7095     // arrays_equals when used for char[].
7096     shll(limit, 1);      // byte count != 0
7097   }
7098   movl(result, limit); // copy
7099 
7100   if (UseAVX >= 2) {
7101     // With AVX2, use 32-byte vector compare
7102     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7103 
7104     // Compare 32-byte vectors
7105     andl(result, 0x0000001f);  //   tail count (in bytes)
7106     andl(limit, 0xffffffe0);   // vector count (in bytes)
7107     jcc(Assembler::zero, COMPARE_TAIL);
7108 
7109     lea(ary1, Address(ary1, limit, Address::times_1));
7110     lea(ary2, Address(ary2, limit, Address::times_1));
7111     negptr(limit);
7112 
7113 #ifdef _LP64
7114     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7115       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7116 
7117       cmpl(limit, -64);
7118       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7119 
7120       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7121 
7122       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7123       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7124       kortestql(k7, k7);
7125       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7126       addptr(limit, 64);  // update since we already compared at this addr
7127       cmpl(limit, -64);
7128       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7129 
7130       // At this point we may still need to compare -limit+result bytes.
7131       // We could execute the next two instruction and just continue via non-wide path:
7132       //  cmpl(limit, 0);
7133       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7134       // But since we stopped at the points ary{1,2}+limit which are
7135       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7136       // (|limit| <= 32 and result < 32),
7137       // we may just compare the last 64 bytes.
7138       //
7139       addptr(result, -64);   // it is safe, bc we just came from this area
7140       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7141       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7142       kortestql(k7, k7);
7143       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7144 
7145       jmp(TRUE_LABEL);
7146 
7147       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7148 
7149     }//if (VM_Version::supports_avx512vlbw())
7150 #endif //_LP64
7151     bind(COMPARE_WIDE_VECTORS);
7152     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7153     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7154     vpxor(vec1, vec2);
7155 
7156     vptest(vec1, vec1);
7157     jcc(Assembler::notZero, FALSE_LABEL);
7158     addptr(limit, 32);
7159     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7160 
7161     testl(result, result);
7162     jcc(Assembler::zero, TRUE_LABEL);
7163 
7164     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7165     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7166     vpxor(vec1, vec2);
7167 
7168     vptest(vec1, vec1);
7169     jccb(Assembler::notZero, FALSE_LABEL);
7170     jmpb(TRUE_LABEL);
7171 
7172     bind(COMPARE_TAIL); // limit is zero
7173     movl(limit, result);
7174     // Fallthru to tail compare
7175   } else if (UseSSE42Intrinsics) {
7176     // With SSE4.2, use double quad vector compare
7177     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7178 
7179     // Compare 16-byte vectors
7180     andl(result, 0x0000000f);  //   tail count (in bytes)
7181     andl(limit, 0xfffffff0);   // vector count (in bytes)
7182     jcc(Assembler::zero, COMPARE_TAIL);
7183 
7184     lea(ary1, Address(ary1, limit, Address::times_1));
7185     lea(ary2, Address(ary2, limit, Address::times_1));
7186     negptr(limit);
7187 
7188     bind(COMPARE_WIDE_VECTORS);
7189     movdqu(vec1, Address(ary1, limit, Address::times_1));
7190     movdqu(vec2, Address(ary2, limit, Address::times_1));
7191     pxor(vec1, vec2);
7192 
7193     ptest(vec1, vec1);
7194     jcc(Assembler::notZero, FALSE_LABEL);
7195     addptr(limit, 16);
7196     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7197 
7198     testl(result, result);
7199     jcc(Assembler::zero, TRUE_LABEL);
7200 
7201     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7202     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7203     pxor(vec1, vec2);
7204 
7205     ptest(vec1, vec1);
7206     jccb(Assembler::notZero, FALSE_LABEL);
7207     jmpb(TRUE_LABEL);
7208 
7209     bind(COMPARE_TAIL); // limit is zero
7210     movl(limit, result);
7211     // Fallthru to tail compare
7212   }
7213 
7214   // Compare 4-byte vectors
7215   andl(limit, 0xfffffffc); // vector count (in bytes)
7216   jccb(Assembler::zero, COMPARE_CHAR);
7217 
7218   lea(ary1, Address(ary1, limit, Address::times_1));
7219   lea(ary2, Address(ary2, limit, Address::times_1));
7220   negptr(limit);
7221 
7222   bind(COMPARE_VECTORS);
7223   movl(chr, Address(ary1, limit, Address::times_1));
7224   cmpl(chr, Address(ary2, limit, Address::times_1));
7225   jccb(Assembler::notEqual, FALSE_LABEL);
7226   addptr(limit, 4);
7227   jcc(Assembler::notZero, COMPARE_VECTORS);
7228 
7229   // Compare trailing char (final 2 bytes), if any
7230   bind(COMPARE_CHAR);
7231   testl(result, 0x2);   // tail  char
7232   jccb(Assembler::zero, COMPARE_BYTE);
7233   load_unsigned_short(chr, Address(ary1, 0));
7234   load_unsigned_short(limit, Address(ary2, 0));
7235   cmpl(chr, limit);
7236   jccb(Assembler::notEqual, FALSE_LABEL);
7237 
7238   if (is_array_equ && is_char) {
7239     bind(COMPARE_BYTE);
7240   } else {
7241     lea(ary1, Address(ary1, 2));
7242     lea(ary2, Address(ary2, 2));
7243 
7244     bind(COMPARE_BYTE);
7245     testl(result, 0x1);   // tail  byte
7246     jccb(Assembler::zero, TRUE_LABEL);
7247     load_unsigned_byte(chr, Address(ary1, 0));
7248     load_unsigned_byte(limit, Address(ary2, 0));
7249     cmpl(chr, limit);
7250     jccb(Assembler::notEqual, FALSE_LABEL);
7251   }
7252   bind(TRUE_LABEL);
7253   movl(result, 1);   // return true
7254   jmpb(DONE);
7255 
7256   bind(FALSE_LABEL);
7257   xorl(result, result); // return false
7258 
7259   // That's it
7260   bind(DONE);
7261   if (UseAVX >= 2) {
7262     // clean upper bits of YMM registers
7263     vpxor(vec1, vec1);
7264     vpxor(vec2, vec2);
7265   }
7266 }
7267 
7268 #endif
7269 
generate_fill(BasicType t,bool aligned,Register to,Register value,Register count,Register rtmp,XMMRegister xtmp)7270 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7271                                    Register to, Register value, Register count,
7272                                    Register rtmp, XMMRegister xtmp) {
7273   ShortBranchVerifier sbv(this);
7274   assert_different_registers(to, value, count, rtmp);
7275   Label L_exit;
7276   Label L_fill_2_bytes, L_fill_4_bytes;
7277 
7278   int shift = -1;
7279   switch (t) {
7280     case T_BYTE:
7281       shift = 2;
7282       break;
7283     case T_SHORT:
7284       shift = 1;
7285       break;
7286     case T_INT:
7287       shift = 0;
7288       break;
7289     default: ShouldNotReachHere();
7290   }
7291 
7292   if (t == T_BYTE) {
7293     andl(value, 0xff);
7294     movl(rtmp, value);
7295     shll(rtmp, 8);
7296     orl(value, rtmp);
7297   }
7298   if (t == T_SHORT) {
7299     andl(value, 0xffff);
7300   }
7301   if (t == T_BYTE || t == T_SHORT) {
7302     movl(rtmp, value);
7303     shll(rtmp, 16);
7304     orl(value, rtmp);
7305   }
7306 
7307   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7308   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7309   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7310     Label L_skip_align2;
7311     // align source address at 4 bytes address boundary
7312     if (t == T_BYTE) {
7313       Label L_skip_align1;
7314       // One byte misalignment happens only for byte arrays
7315       testptr(to, 1);
7316       jccb(Assembler::zero, L_skip_align1);
7317       movb(Address(to, 0), value);
7318       increment(to);
7319       decrement(count);
7320       BIND(L_skip_align1);
7321     }
7322     // Two bytes misalignment happens only for byte and short (char) arrays
7323     testptr(to, 2);
7324     jccb(Assembler::zero, L_skip_align2);
7325     movw(Address(to, 0), value);
7326     addptr(to, 2);
7327     subl(count, 1<<(shift-1));
7328     BIND(L_skip_align2);
7329   }
7330   if (UseSSE < 2) {
7331     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7332     // Fill 32-byte chunks
7333     subl(count, 8 << shift);
7334     jcc(Assembler::less, L_check_fill_8_bytes);
7335     align(16);
7336 
7337     BIND(L_fill_32_bytes_loop);
7338 
7339     for (int i = 0; i < 32; i += 4) {
7340       movl(Address(to, i), value);
7341     }
7342 
7343     addptr(to, 32);
7344     subl(count, 8 << shift);
7345     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7346     BIND(L_check_fill_8_bytes);
7347     addl(count, 8 << shift);
7348     jccb(Assembler::zero, L_exit);
7349     jmpb(L_fill_8_bytes);
7350 
7351     //
7352     // length is too short, just fill qwords
7353     //
7354     BIND(L_fill_8_bytes_loop);
7355     movl(Address(to, 0), value);
7356     movl(Address(to, 4), value);
7357     addptr(to, 8);
7358     BIND(L_fill_8_bytes);
7359     subl(count, 1 << (shift + 1));
7360     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7361     // fall through to fill 4 bytes
7362   } else {
7363     Label L_fill_32_bytes;
7364     if (!UseUnalignedLoadStores) {
7365       // align to 8 bytes, we know we are 4 byte aligned to start
7366       testptr(to, 4);
7367       jccb(Assembler::zero, L_fill_32_bytes);
7368       movl(Address(to, 0), value);
7369       addptr(to, 4);
7370       subl(count, 1<<shift);
7371     }
7372     BIND(L_fill_32_bytes);
7373     {
7374       assert( UseSSE >= 2, "supported cpu only" );
7375       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7376       movdl(xtmp, value);
7377       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7378         Label L_check_fill_32_bytes;
7379         if (UseAVX > 2) {
7380           // Fill 64-byte chunks
7381           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7382 
7383           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7384           cmpl(count, AVX3Threshold);
7385           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7386 
7387           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7388 
7389           subl(count, 16 << shift);
7390           jccb(Assembler::less, L_check_fill_32_bytes);
7391           align(16);
7392 
7393           BIND(L_fill_64_bytes_loop_avx3);
7394           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7395           addptr(to, 64);
7396           subl(count, 16 << shift);
7397           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7398           jmpb(L_check_fill_32_bytes);
7399 
7400           BIND(L_check_fill_64_bytes_avx2);
7401         }
7402         // Fill 64-byte chunks
7403         Label L_fill_64_bytes_loop;
7404         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7405 
7406         subl(count, 16 << shift);
7407         jcc(Assembler::less, L_check_fill_32_bytes);
7408         align(16);
7409 
7410         BIND(L_fill_64_bytes_loop);
7411         vmovdqu(Address(to, 0), xtmp);
7412         vmovdqu(Address(to, 32), xtmp);
7413         addptr(to, 64);
7414         subl(count, 16 << shift);
7415         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7416 
7417         BIND(L_check_fill_32_bytes);
7418         addl(count, 8 << shift);
7419         jccb(Assembler::less, L_check_fill_8_bytes);
7420         vmovdqu(Address(to, 0), xtmp);
7421         addptr(to, 32);
7422         subl(count, 8 << shift);
7423 
7424         BIND(L_check_fill_8_bytes);
7425         // clean upper bits of YMM registers
7426         movdl(xtmp, value);
7427         pshufd(xtmp, xtmp, 0);
7428       } else {
7429         // Fill 32-byte chunks
7430         pshufd(xtmp, xtmp, 0);
7431 
7432         subl(count, 8 << shift);
7433         jcc(Assembler::less, L_check_fill_8_bytes);
7434         align(16);
7435 
7436         BIND(L_fill_32_bytes_loop);
7437 
7438         if (UseUnalignedLoadStores) {
7439           movdqu(Address(to, 0), xtmp);
7440           movdqu(Address(to, 16), xtmp);
7441         } else {
7442           movq(Address(to, 0), xtmp);
7443           movq(Address(to, 8), xtmp);
7444           movq(Address(to, 16), xtmp);
7445           movq(Address(to, 24), xtmp);
7446         }
7447 
7448         addptr(to, 32);
7449         subl(count, 8 << shift);
7450         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7451 
7452         BIND(L_check_fill_8_bytes);
7453       }
7454       addl(count, 8 << shift);
7455       jccb(Assembler::zero, L_exit);
7456       jmpb(L_fill_8_bytes);
7457 
7458       //
7459       // length is too short, just fill qwords
7460       //
7461       BIND(L_fill_8_bytes_loop);
7462       movq(Address(to, 0), xtmp);
7463       addptr(to, 8);
7464       BIND(L_fill_8_bytes);
7465       subl(count, 1 << (shift + 1));
7466       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7467     }
7468   }
7469   // fill trailing 4 bytes
7470   BIND(L_fill_4_bytes);
7471   testl(count, 1<<shift);
7472   jccb(Assembler::zero, L_fill_2_bytes);
7473   movl(Address(to, 0), value);
7474   if (t == T_BYTE || t == T_SHORT) {
7475     Label L_fill_byte;
7476     addptr(to, 4);
7477     BIND(L_fill_2_bytes);
7478     // fill trailing 2 bytes
7479     testl(count, 1<<(shift-1));
7480     jccb(Assembler::zero, L_fill_byte);
7481     movw(Address(to, 0), value);
7482     if (t == T_BYTE) {
7483       addptr(to, 2);
7484       BIND(L_fill_byte);
7485       // fill trailing byte
7486       testl(count, 1);
7487       jccb(Assembler::zero, L_exit);
7488       movb(Address(to, 0), value);
7489     } else {
7490       BIND(L_fill_byte);
7491     }
7492   } else {
7493     BIND(L_fill_2_bytes);
7494   }
7495   BIND(L_exit);
7496 }
7497 
7498 // encode char[] to byte[] in ISO_8859_1
7499    //@HotSpotIntrinsicCandidate
7500    //private static int implEncodeISOArray(byte[] sa, int sp,
7501    //byte[] da, int dp, int len) {
7502    //  int i = 0;
7503    //  for (; i < len; i++) {
7504    //    char c = StringUTF16.getChar(sa, sp++);
7505    //    if (c > '\u00FF')
7506    //      break;
7507    //    da[dp++] = (byte)c;
7508    //  }
7509    //  return i;
7510    //}
encode_iso_array(Register src,Register dst,Register len,XMMRegister tmp1Reg,XMMRegister tmp2Reg,XMMRegister tmp3Reg,XMMRegister tmp4Reg,Register tmp5,Register result)7511 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7512   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7513   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7514   Register tmp5, Register result) {
7515 
7516   // rsi: src
7517   // rdi: dst
7518   // rdx: len
7519   // rcx: tmp5
7520   // rax: result
7521   ShortBranchVerifier sbv(this);
7522   assert_different_registers(src, dst, len, tmp5, result);
7523   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7524 
7525   // set result
7526   xorl(result, result);
7527   // check for zero length
7528   testl(len, len);
7529   jcc(Assembler::zero, L_done);
7530 
7531   movl(result, len);
7532 
7533   // Setup pointers
7534   lea(src, Address(src, len, Address::times_2)); // char[]
7535   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7536   negptr(len);
7537 
7538   if (UseSSE42Intrinsics || UseAVX >= 2) {
7539     Label L_copy_8_chars, L_copy_8_chars_exit;
7540     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7541 
7542     if (UseAVX >= 2) {
7543       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7544       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7545       movdl(tmp1Reg, tmp5);
7546       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7547       jmp(L_chars_32_check);
7548 
7549       bind(L_copy_32_chars);
7550       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7551       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7552       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7553       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7554       jccb(Assembler::notZero, L_copy_32_chars_exit);
7555       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7556       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7557       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7558 
7559       bind(L_chars_32_check);
7560       addptr(len, 32);
7561       jcc(Assembler::lessEqual, L_copy_32_chars);
7562 
7563       bind(L_copy_32_chars_exit);
7564       subptr(len, 16);
7565       jccb(Assembler::greater, L_copy_16_chars_exit);
7566 
7567     } else if (UseSSE42Intrinsics) {
7568       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7569       movdl(tmp1Reg, tmp5);
7570       pshufd(tmp1Reg, tmp1Reg, 0);
7571       jmpb(L_chars_16_check);
7572     }
7573 
7574     bind(L_copy_16_chars);
7575     if (UseAVX >= 2) {
7576       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7577       vptest(tmp2Reg, tmp1Reg);
7578       jcc(Assembler::notZero, L_copy_16_chars_exit);
7579       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7580       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7581     } else {
7582       if (UseAVX > 0) {
7583         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7584         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7585         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7586       } else {
7587         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7588         por(tmp2Reg, tmp3Reg);
7589         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7590         por(tmp2Reg, tmp4Reg);
7591       }
7592       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7593       jccb(Assembler::notZero, L_copy_16_chars_exit);
7594       packuswb(tmp3Reg, tmp4Reg);
7595     }
7596     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7597 
7598     bind(L_chars_16_check);
7599     addptr(len, 16);
7600     jcc(Assembler::lessEqual, L_copy_16_chars);
7601 
7602     bind(L_copy_16_chars_exit);
7603     if (UseAVX >= 2) {
7604       // clean upper bits of YMM registers
7605       vpxor(tmp2Reg, tmp2Reg);
7606       vpxor(tmp3Reg, tmp3Reg);
7607       vpxor(tmp4Reg, tmp4Reg);
7608       movdl(tmp1Reg, tmp5);
7609       pshufd(tmp1Reg, tmp1Reg, 0);
7610     }
7611     subptr(len, 8);
7612     jccb(Assembler::greater, L_copy_8_chars_exit);
7613 
7614     bind(L_copy_8_chars);
7615     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7616     ptest(tmp3Reg, tmp1Reg);
7617     jccb(Assembler::notZero, L_copy_8_chars_exit);
7618     packuswb(tmp3Reg, tmp1Reg);
7619     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7620     addptr(len, 8);
7621     jccb(Assembler::lessEqual, L_copy_8_chars);
7622 
7623     bind(L_copy_8_chars_exit);
7624     subptr(len, 8);
7625     jccb(Assembler::zero, L_done);
7626   }
7627 
7628   bind(L_copy_1_char);
7629   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7630   testl(tmp5, 0xff00);      // check if Unicode char
7631   jccb(Assembler::notZero, L_copy_1_char_exit);
7632   movb(Address(dst, len, Address::times_1, 0), tmp5);
7633   addptr(len, 1);
7634   jccb(Assembler::less, L_copy_1_char);
7635 
7636   bind(L_copy_1_char_exit);
7637   addptr(result, len); // len is negative count of not processed elements
7638 
7639   bind(L_done);
7640 }
7641 
7642 #ifdef _LP64
7643 /**
7644  * Helper for multiply_to_len().
7645  */
add2_with_carry(Register dest_hi,Register dest_lo,Register src1,Register src2)7646 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7647   addq(dest_lo, src1);
7648   adcq(dest_hi, 0);
7649   addq(dest_lo, src2);
7650   adcq(dest_hi, 0);
7651 }
7652 
7653 /**
7654  * Multiply 64 bit by 64 bit first loop.
7655  */
multiply_64_x_64_loop(Register x,Register xstart,Register x_xstart,Register y,Register y_idx,Register z,Register carry,Register product,Register idx,Register kdx)7656 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7657                                            Register y, Register y_idx, Register z,
7658                                            Register carry, Register product,
7659                                            Register idx, Register kdx) {
7660   //
7661   //  jlong carry, x[], y[], z[];
7662   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7663   //    huge_128 product = y[idx] * x[xstart] + carry;
7664   //    z[kdx] = (jlong)product;
7665   //    carry  = (jlong)(product >>> 64);
7666   //  }
7667   //  z[xstart] = carry;
7668   //
7669 
7670   Label L_first_loop, L_first_loop_exit;
7671   Label L_one_x, L_one_y, L_multiply;
7672 
7673   decrementl(xstart);
7674   jcc(Assembler::negative, L_one_x);
7675 
7676   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7677   rorq(x_xstart, 32); // convert big-endian to little-endian
7678 
7679   bind(L_first_loop);
7680   decrementl(idx);
7681   jcc(Assembler::negative, L_first_loop_exit);
7682   decrementl(idx);
7683   jcc(Assembler::negative, L_one_y);
7684   movq(y_idx, Address(y, idx, Address::times_4,  0));
7685   rorq(y_idx, 32); // convert big-endian to little-endian
7686   bind(L_multiply);
7687   movq(product, x_xstart);
7688   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7689   addq(product, carry);
7690   adcq(rdx, 0);
7691   subl(kdx, 2);
7692   movl(Address(z, kdx, Address::times_4,  4), product);
7693   shrq(product, 32);
7694   movl(Address(z, kdx, Address::times_4,  0), product);
7695   movq(carry, rdx);
7696   jmp(L_first_loop);
7697 
7698   bind(L_one_y);
7699   movl(y_idx, Address(y,  0));
7700   jmp(L_multiply);
7701 
7702   bind(L_one_x);
7703   movl(x_xstart, Address(x,  0));
7704   jmp(L_first_loop);
7705 
7706   bind(L_first_loop_exit);
7707 }
7708 
7709 /**
7710  * Multiply 64 bit by 64 bit and add 128 bit.
7711  */
multiply_add_128_x_128(Register x_xstart,Register y,Register z,Register yz_idx,Register idx,Register carry,Register product,int offset)7712 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7713                                             Register yz_idx, Register idx,
7714                                             Register carry, Register product, int offset) {
7715   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7716   //     z[kdx] = (jlong)product;
7717 
7718   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7719   rorq(yz_idx, 32); // convert big-endian to little-endian
7720   movq(product, x_xstart);
7721   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7722   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7723   rorq(yz_idx, 32); // convert big-endian to little-endian
7724 
7725   add2_with_carry(rdx, product, carry, yz_idx);
7726 
7727   movl(Address(z, idx, Address::times_4,  offset+4), product);
7728   shrq(product, 32);
7729   movl(Address(z, idx, Address::times_4,  offset), product);
7730 
7731 }
7732 
7733 /**
7734  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7735  */
multiply_128_x_128_loop(Register x_xstart,Register y,Register z,Register yz_idx,Register idx,Register jdx,Register carry,Register product,Register carry2)7736 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7737                                              Register yz_idx, Register idx, Register jdx,
7738                                              Register carry, Register product,
7739                                              Register carry2) {
7740   //   jlong carry, x[], y[], z[];
7741   //   int kdx = ystart+1;
7742   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7743   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7744   //     z[kdx+idx+1] = (jlong)product;
7745   //     jlong carry2  = (jlong)(product >>> 64);
7746   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7747   //     z[kdx+idx] = (jlong)product;
7748   //     carry  = (jlong)(product >>> 64);
7749   //   }
7750   //   idx += 2;
7751   //   if (idx > 0) {
7752   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7753   //     z[kdx+idx] = (jlong)product;
7754   //     carry  = (jlong)(product >>> 64);
7755   //   }
7756   //
7757 
7758   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7759 
7760   movl(jdx, idx);
7761   andl(jdx, 0xFFFFFFFC);
7762   shrl(jdx, 2);
7763 
7764   bind(L_third_loop);
7765   subl(jdx, 1);
7766   jcc(Assembler::negative, L_third_loop_exit);
7767   subl(idx, 4);
7768 
7769   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7770   movq(carry2, rdx);
7771 
7772   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7773   movq(carry, rdx);
7774   jmp(L_third_loop);
7775 
7776   bind (L_third_loop_exit);
7777 
7778   andl (idx, 0x3);
7779   jcc(Assembler::zero, L_post_third_loop_done);
7780 
7781   Label L_check_1;
7782   subl(idx, 2);
7783   jcc(Assembler::negative, L_check_1);
7784 
7785   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7786   movq(carry, rdx);
7787 
7788   bind (L_check_1);
7789   addl (idx, 0x2);
7790   andl (idx, 0x1);
7791   subl(idx, 1);
7792   jcc(Assembler::negative, L_post_third_loop_done);
7793 
7794   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7795   movq(product, x_xstart);
7796   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7797   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7798 
7799   add2_with_carry(rdx, product, yz_idx, carry);
7800 
7801   movl(Address(z, idx, Address::times_4,  0), product);
7802   shrq(product, 32);
7803 
7804   shlq(rdx, 32);
7805   orq(product, rdx);
7806   movq(carry, product);
7807 
7808   bind(L_post_third_loop_done);
7809 }
7810 
7811 /**
7812  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7813  *
7814  */
multiply_128_x_128_bmi2_loop(Register y,Register z,Register carry,Register carry2,Register idx,Register jdx,Register yz_idx1,Register yz_idx2,Register tmp,Register tmp3,Register tmp4)7815 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7816                                                   Register carry, Register carry2,
7817                                                   Register idx, Register jdx,
7818                                                   Register yz_idx1, Register yz_idx2,
7819                                                   Register tmp, Register tmp3, Register tmp4) {
7820   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7821 
7822   //   jlong carry, x[], y[], z[];
7823   //   int kdx = ystart+1;
7824   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7825   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7826   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7827   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7828   //     carry  = (jlong)(tmp4 >>> 64);
7829   //     z[kdx+idx+1] = (jlong)tmp3;
7830   //     z[kdx+idx] = (jlong)tmp4;
7831   //   }
7832   //   idx += 2;
7833   //   if (idx > 0) {
7834   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7835   //     z[kdx+idx] = (jlong)yz_idx1;
7836   //     carry  = (jlong)(yz_idx1 >>> 64);
7837   //   }
7838   //
7839 
7840   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7841 
7842   movl(jdx, idx);
7843   andl(jdx, 0xFFFFFFFC);
7844   shrl(jdx, 2);
7845 
7846   bind(L_third_loop);
7847   subl(jdx, 1);
7848   jcc(Assembler::negative, L_third_loop_exit);
7849   subl(idx, 4);
7850 
7851   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7852   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7853   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7854   rorxq(yz_idx2, yz_idx2, 32);
7855 
7856   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7857   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7858 
7859   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7860   rorxq(yz_idx1, yz_idx1, 32);
7861   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7862   rorxq(yz_idx2, yz_idx2, 32);
7863 
7864   if (VM_Version::supports_adx()) {
7865     adcxq(tmp3, carry);
7866     adoxq(tmp3, yz_idx1);
7867 
7868     adcxq(tmp4, tmp);
7869     adoxq(tmp4, yz_idx2);
7870 
7871     movl(carry, 0); // does not affect flags
7872     adcxq(carry2, carry);
7873     adoxq(carry2, carry);
7874   } else {
7875     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7876     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7877   }
7878   movq(carry, carry2);
7879 
7880   movl(Address(z, idx, Address::times_4, 12), tmp3);
7881   shrq(tmp3, 32);
7882   movl(Address(z, idx, Address::times_4,  8), tmp3);
7883 
7884   movl(Address(z, idx, Address::times_4,  4), tmp4);
7885   shrq(tmp4, 32);
7886   movl(Address(z, idx, Address::times_4,  0), tmp4);
7887 
7888   jmp(L_third_loop);
7889 
7890   bind (L_third_loop_exit);
7891 
7892   andl (idx, 0x3);
7893   jcc(Assembler::zero, L_post_third_loop_done);
7894 
7895   Label L_check_1;
7896   subl(idx, 2);
7897   jcc(Assembler::negative, L_check_1);
7898 
7899   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7900   rorxq(yz_idx1, yz_idx1, 32);
7901   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7902   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7903   rorxq(yz_idx2, yz_idx2, 32);
7904 
7905   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7906 
7907   movl(Address(z, idx, Address::times_4,  4), tmp3);
7908   shrq(tmp3, 32);
7909   movl(Address(z, idx, Address::times_4,  0), tmp3);
7910   movq(carry, tmp4);
7911 
7912   bind (L_check_1);
7913   addl (idx, 0x2);
7914   andl (idx, 0x1);
7915   subl(idx, 1);
7916   jcc(Assembler::negative, L_post_third_loop_done);
7917   movl(tmp4, Address(y, idx, Address::times_4,  0));
7918   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7919   movl(tmp4, Address(z, idx, Address::times_4,  0));
7920 
7921   add2_with_carry(carry2, tmp3, tmp4, carry);
7922 
7923   movl(Address(z, idx, Address::times_4,  0), tmp3);
7924   shrq(tmp3, 32);
7925 
7926   shlq(carry2, 32);
7927   orq(tmp3, carry2);
7928   movq(carry, tmp3);
7929 
7930   bind(L_post_third_loop_done);
7931 }
7932 
7933 /**
7934  * Code for BigInteger::multiplyToLen() instrinsic.
7935  *
7936  * rdi: x
7937  * rax: xlen
7938  * rsi: y
7939  * rcx: ylen
7940  * r8:  z
7941  * r11: zlen
7942  * r12: tmp1
7943  * r13: tmp2
7944  * r14: tmp3
7945  * r15: tmp4
7946  * rbx: tmp5
7947  *
7948  */
multiply_to_len(Register x,Register xlen,Register y,Register ylen,Register z,Register zlen,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5)7949 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7950                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7951   ShortBranchVerifier sbv(this);
7952   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7953 
7954   push(tmp1);
7955   push(tmp2);
7956   push(tmp3);
7957   push(tmp4);
7958   push(tmp5);
7959 
7960   push(xlen);
7961   push(zlen);
7962 
7963   const Register idx = tmp1;
7964   const Register kdx = tmp2;
7965   const Register xstart = tmp3;
7966 
7967   const Register y_idx = tmp4;
7968   const Register carry = tmp5;
7969   const Register product  = xlen;
7970   const Register x_xstart = zlen;  // reuse register
7971 
7972   // First Loop.
7973   //
7974   //  final static long LONG_MASK = 0xffffffffL;
7975   //  int xstart = xlen - 1;
7976   //  int ystart = ylen - 1;
7977   //  long carry = 0;
7978   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7979   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7980   //    z[kdx] = (int)product;
7981   //    carry = product >>> 32;
7982   //  }
7983   //  z[xstart] = (int)carry;
7984   //
7985 
7986   movl(idx, ylen);      // idx = ylen;
7987   movl(kdx, zlen);      // kdx = xlen+ylen;
7988   xorq(carry, carry);   // carry = 0;
7989 
7990   Label L_done;
7991 
7992   movl(xstart, xlen);
7993   decrementl(xstart);
7994   jcc(Assembler::negative, L_done);
7995 
7996   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7997 
7998   Label L_second_loop;
7999   testl(kdx, kdx);
8000   jcc(Assembler::zero, L_second_loop);
8001 
8002   Label L_carry;
8003   subl(kdx, 1);
8004   jcc(Assembler::zero, L_carry);
8005 
8006   movl(Address(z, kdx, Address::times_4,  0), carry);
8007   shrq(carry, 32);
8008   subl(kdx, 1);
8009 
8010   bind(L_carry);
8011   movl(Address(z, kdx, Address::times_4,  0), carry);
8012 
8013   // Second and third (nested) loops.
8014   //
8015   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8016   //   carry = 0;
8017   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8018   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8019   //                    (z[k] & LONG_MASK) + carry;
8020   //     z[k] = (int)product;
8021   //     carry = product >>> 32;
8022   //   }
8023   //   z[i] = (int)carry;
8024   // }
8025   //
8026   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8027 
8028   const Register jdx = tmp1;
8029 
8030   bind(L_second_loop);
8031   xorl(carry, carry);    // carry = 0;
8032   movl(jdx, ylen);       // j = ystart+1
8033 
8034   subl(xstart, 1);       // i = xstart-1;
8035   jcc(Assembler::negative, L_done);
8036 
8037   push (z);
8038 
8039   Label L_last_x;
8040   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8041   subl(xstart, 1);       // i = xstart-1;
8042   jcc(Assembler::negative, L_last_x);
8043 
8044   if (UseBMI2Instructions) {
8045     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8046     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8047   } else {
8048     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8049     rorq(x_xstart, 32);  // convert big-endian to little-endian
8050   }
8051 
8052   Label L_third_loop_prologue;
8053   bind(L_third_loop_prologue);
8054 
8055   push (x);
8056   push (xstart);
8057   push (ylen);
8058 
8059 
8060   if (UseBMI2Instructions) {
8061     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8062   } else { // !UseBMI2Instructions
8063     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8064   }
8065 
8066   pop(ylen);
8067   pop(xlen);
8068   pop(x);
8069   pop(z);
8070 
8071   movl(tmp3, xlen);
8072   addl(tmp3, 1);
8073   movl(Address(z, tmp3, Address::times_4,  0), carry);
8074   subl(tmp3, 1);
8075   jccb(Assembler::negative, L_done);
8076 
8077   shrq(carry, 32);
8078   movl(Address(z, tmp3, Address::times_4,  0), carry);
8079   jmp(L_second_loop);
8080 
8081   // Next infrequent code is moved outside loops.
8082   bind(L_last_x);
8083   if (UseBMI2Instructions) {
8084     movl(rdx, Address(x,  0));
8085   } else {
8086     movl(x_xstart, Address(x,  0));
8087   }
8088   jmp(L_third_loop_prologue);
8089 
8090   bind(L_done);
8091 
8092   pop(zlen);
8093   pop(xlen);
8094 
8095   pop(tmp5);
8096   pop(tmp4);
8097   pop(tmp3);
8098   pop(tmp2);
8099   pop(tmp1);
8100 }
8101 
vectorized_mismatch(Register obja,Register objb,Register length,Register log2_array_indxscale,Register result,Register tmp1,Register tmp2,XMMRegister rymm0,XMMRegister rymm1,XMMRegister rymm2)8102 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8103   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8104   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8105   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8106   Label VECTOR8_TAIL, VECTOR4_TAIL;
8107   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8108   Label SAME_TILL_END, DONE;
8109   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8110 
8111   //scale is in rcx in both Win64 and Unix
8112   ShortBranchVerifier sbv(this);
8113 
8114   shlq(length);
8115   xorq(result, result);
8116 
8117   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8118       VM_Version::supports_avx512vlbw()) {
8119     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8120 
8121     cmpq(length, 64);
8122     jcc(Assembler::less, VECTOR32_TAIL);
8123 
8124     movq(tmp1, length);
8125     andq(tmp1, 0x3F);      // tail count
8126     andq(length, ~(0x3F)); //vector count
8127 
8128     bind(VECTOR64_LOOP);
8129     // AVX512 code to compare 64 byte vectors.
8130     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8131     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8132     kortestql(k7, k7);
8133     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8134     addq(result, 64);
8135     subq(length, 64);
8136     jccb(Assembler::notZero, VECTOR64_LOOP);
8137 
8138     //bind(VECTOR64_TAIL);
8139     testq(tmp1, tmp1);
8140     jcc(Assembler::zero, SAME_TILL_END);
8141 
8142     //bind(VECTOR64_TAIL);
8143     // AVX512 code to compare upto 63 byte vectors.
8144     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8145     shlxq(tmp2, tmp2, tmp1);
8146     notq(tmp2);
8147     kmovql(k3, tmp2);
8148 
8149     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8150     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8151 
8152     ktestql(k7, k3);
8153     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8154 
8155     bind(VECTOR64_NOT_EQUAL);
8156     kmovql(tmp1, k7);
8157     notq(tmp1);
8158     tzcntq(tmp1, tmp1);
8159     addq(result, tmp1);
8160     shrq(result);
8161     jmp(DONE);
8162     bind(VECTOR32_TAIL);
8163   }
8164 
8165   cmpq(length, 8);
8166   jcc(Assembler::equal, VECTOR8_LOOP);
8167   jcc(Assembler::less, VECTOR4_TAIL);
8168 
8169   if (UseAVX >= 2) {
8170     Label VECTOR16_TAIL, VECTOR32_LOOP;
8171 
8172     cmpq(length, 16);
8173     jcc(Assembler::equal, VECTOR16_LOOP);
8174     jcc(Assembler::less, VECTOR8_LOOP);
8175 
8176     cmpq(length, 32);
8177     jccb(Assembler::less, VECTOR16_TAIL);
8178 
8179     subq(length, 32);
8180     bind(VECTOR32_LOOP);
8181     vmovdqu(rymm0, Address(obja, result));
8182     vmovdqu(rymm1, Address(objb, result));
8183     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8184     vptest(rymm2, rymm2);
8185     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8186     addq(result, 32);
8187     subq(length, 32);
8188     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8189     addq(length, 32);
8190     jcc(Assembler::equal, SAME_TILL_END);
8191     //falling through if less than 32 bytes left //close the branch here.
8192 
8193     bind(VECTOR16_TAIL);
8194     cmpq(length, 16);
8195     jccb(Assembler::less, VECTOR8_TAIL);
8196     bind(VECTOR16_LOOP);
8197     movdqu(rymm0, Address(obja, result));
8198     movdqu(rymm1, Address(objb, result));
8199     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8200     ptest(rymm2, rymm2);
8201     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8202     addq(result, 16);
8203     subq(length, 16);
8204     jcc(Assembler::equal, SAME_TILL_END);
8205     //falling through if less than 16 bytes left
8206   } else {//regular intrinsics
8207 
8208     cmpq(length, 16);
8209     jccb(Assembler::less, VECTOR8_TAIL);
8210 
8211     subq(length, 16);
8212     bind(VECTOR16_LOOP);
8213     movdqu(rymm0, Address(obja, result));
8214     movdqu(rymm1, Address(objb, result));
8215     pxor(rymm0, rymm1);
8216     ptest(rymm0, rymm0);
8217     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8218     addq(result, 16);
8219     subq(length, 16);
8220     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8221     addq(length, 16);
8222     jcc(Assembler::equal, SAME_TILL_END);
8223     //falling through if less than 16 bytes left
8224   }
8225 
8226   bind(VECTOR8_TAIL);
8227   cmpq(length, 8);
8228   jccb(Assembler::less, VECTOR4_TAIL);
8229   bind(VECTOR8_LOOP);
8230   movq(tmp1, Address(obja, result));
8231   movq(tmp2, Address(objb, result));
8232   xorq(tmp1, tmp2);
8233   testq(tmp1, tmp1);
8234   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8235   addq(result, 8);
8236   subq(length, 8);
8237   jcc(Assembler::equal, SAME_TILL_END);
8238   //falling through if less than 8 bytes left
8239 
8240   bind(VECTOR4_TAIL);
8241   cmpq(length, 4);
8242   jccb(Assembler::less, BYTES_TAIL);
8243   bind(VECTOR4_LOOP);
8244   movl(tmp1, Address(obja, result));
8245   xorl(tmp1, Address(objb, result));
8246   testl(tmp1, tmp1);
8247   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8248   addq(result, 4);
8249   subq(length, 4);
8250   jcc(Assembler::equal, SAME_TILL_END);
8251   //falling through if less than 4 bytes left
8252 
8253   bind(BYTES_TAIL);
8254   bind(BYTES_LOOP);
8255   load_unsigned_byte(tmp1, Address(obja, result));
8256   load_unsigned_byte(tmp2, Address(objb, result));
8257   xorl(tmp1, tmp2);
8258   testl(tmp1, tmp1);
8259   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8260   decq(length);
8261   jcc(Assembler::zero, SAME_TILL_END);
8262   incq(result);
8263   load_unsigned_byte(tmp1, Address(obja, result));
8264   load_unsigned_byte(tmp2, Address(objb, result));
8265   xorl(tmp1, tmp2);
8266   testl(tmp1, tmp1);
8267   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8268   decq(length);
8269   jcc(Assembler::zero, SAME_TILL_END);
8270   incq(result);
8271   load_unsigned_byte(tmp1, Address(obja, result));
8272   load_unsigned_byte(tmp2, Address(objb, result));
8273   xorl(tmp1, tmp2);
8274   testl(tmp1, tmp1);
8275   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8276   jmp(SAME_TILL_END);
8277 
8278   if (UseAVX >= 2) {
8279     bind(VECTOR32_NOT_EQUAL);
8280     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8281     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8282     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8283     vpmovmskb(tmp1, rymm0);
8284     bsfq(tmp1, tmp1);
8285     addq(result, tmp1);
8286     shrq(result);
8287     jmp(DONE);
8288   }
8289 
8290   bind(VECTOR16_NOT_EQUAL);
8291   if (UseAVX >= 2) {
8292     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8293     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8294     pxor(rymm0, rymm2);
8295   } else {
8296     pcmpeqb(rymm2, rymm2);
8297     pxor(rymm0, rymm1);
8298     pcmpeqb(rymm0, rymm1);
8299     pxor(rymm0, rymm2);
8300   }
8301   pmovmskb(tmp1, rymm0);
8302   bsfq(tmp1, tmp1);
8303   addq(result, tmp1);
8304   shrq(result);
8305   jmpb(DONE);
8306 
8307   bind(VECTOR8_NOT_EQUAL);
8308   bind(VECTOR4_NOT_EQUAL);
8309   bsfq(tmp1, tmp1);
8310   shrq(tmp1, 3);
8311   addq(result, tmp1);
8312   bind(BYTES_NOT_EQUAL);
8313   shrq(result);
8314   jmpb(DONE);
8315 
8316   bind(SAME_TILL_END);
8317   mov64(result, -1);
8318 
8319   bind(DONE);
8320 }
8321 
8322 //Helper functions for square_to_len()
8323 
8324 /**
8325  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8326  * Preserves x and z and modifies rest of the registers.
8327  */
square_rshift(Register x,Register xlen,Register z,Register tmp1,Register tmp3,Register tmp4,Register tmp5,Register rdxReg,Register raxReg)8328 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8329   // Perform square and right shift by 1
8330   // Handle odd xlen case first, then for even xlen do the following
8331   // jlong carry = 0;
8332   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8333   //     huge_128 product = x[j:j+1] * x[j:j+1];
8334   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8335   //     z[i+2:i+3] = (jlong)(product >>> 1);
8336   //     carry = (jlong)product;
8337   // }
8338 
8339   xorq(tmp5, tmp5);     // carry
8340   xorq(rdxReg, rdxReg);
8341   xorl(tmp1, tmp1);     // index for x
8342   xorl(tmp4, tmp4);     // index for z
8343 
8344   Label L_first_loop, L_first_loop_exit;
8345 
8346   testl(xlen, 1);
8347   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8348 
8349   // Square and right shift by 1 the odd element using 32 bit multiply
8350   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8351   imulq(raxReg, raxReg);
8352   shrq(raxReg, 1);
8353   adcq(tmp5, 0);
8354   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8355   incrementl(tmp1);
8356   addl(tmp4, 2);
8357 
8358   // Square and  right shift by 1 the rest using 64 bit multiply
8359   bind(L_first_loop);
8360   cmpptr(tmp1, xlen);
8361   jccb(Assembler::equal, L_first_loop_exit);
8362 
8363   // Square
8364   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8365   rorq(raxReg, 32);    // convert big-endian to little-endian
8366   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8367 
8368   // Right shift by 1 and save carry
8369   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8370   rcrq(rdxReg, 1);
8371   rcrq(raxReg, 1);
8372   adcq(tmp5, 0);
8373 
8374   // Store result in z
8375   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8376   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8377 
8378   // Update indices for x and z
8379   addl(tmp1, 2);
8380   addl(tmp4, 4);
8381   jmp(L_first_loop);
8382 
8383   bind(L_first_loop_exit);
8384 }
8385 
8386 
8387 /**
8388  * Perform the following multiply add operation using BMI2 instructions
8389  * carry:sum = sum + op1*op2 + carry
8390  * op2 should be in rdx
8391  * op2 is preserved, all other registers are modified
8392  */
multiply_add_64_bmi2(Register sum,Register op1,Register op2,Register carry,Register tmp2)8393 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8394   // assert op2 is rdx
8395   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8396   addq(sum, carry);
8397   adcq(tmp2, 0);
8398   addq(sum, op1);
8399   adcq(tmp2, 0);
8400   movq(carry, tmp2);
8401 }
8402 
8403 /**
8404  * Perform the following multiply add operation:
8405  * carry:sum = sum + op1*op2 + carry
8406  * Preserves op1, op2 and modifies rest of registers
8407  */
multiply_add_64(Register sum,Register op1,Register op2,Register carry,Register rdxReg,Register raxReg)8408 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8409   // rdx:rax = op1 * op2
8410   movq(raxReg, op2);
8411   mulq(op1);
8412 
8413   //  rdx:rax = sum + carry + rdx:rax
8414   addq(sum, carry);
8415   adcq(rdxReg, 0);
8416   addq(sum, raxReg);
8417   adcq(rdxReg, 0);
8418 
8419   // carry:sum = rdx:sum
8420   movq(carry, rdxReg);
8421 }
8422 
8423 /**
8424  * Add 64 bit long carry into z[] with carry propogation.
8425  * Preserves z and carry register values and modifies rest of registers.
8426  *
8427  */
add_one_64(Register z,Register zlen,Register carry,Register tmp1)8428 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8429   Label L_fourth_loop, L_fourth_loop_exit;
8430 
8431   movl(tmp1, 1);
8432   subl(zlen, 2);
8433   addq(Address(z, zlen, Address::times_4, 0), carry);
8434 
8435   bind(L_fourth_loop);
8436   jccb(Assembler::carryClear, L_fourth_loop_exit);
8437   subl(zlen, 2);
8438   jccb(Assembler::negative, L_fourth_loop_exit);
8439   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8440   jmp(L_fourth_loop);
8441   bind(L_fourth_loop_exit);
8442 }
8443 
8444 /**
8445  * Shift z[] left by 1 bit.
8446  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8447  *
8448  */
lshift_by_1(Register x,Register len,Register z,Register zlen,Register tmp1,Register tmp2,Register tmp3,Register tmp4)8449 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8450 
8451   Label L_fifth_loop, L_fifth_loop_exit;
8452 
8453   // Fifth loop
8454   // Perform primitiveLeftShift(z, zlen, 1)
8455 
8456   const Register prev_carry = tmp1;
8457   const Register new_carry = tmp4;
8458   const Register value = tmp2;
8459   const Register zidx = tmp3;
8460 
8461   // int zidx, carry;
8462   // long value;
8463   // carry = 0;
8464   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8465   //    (carry:value)  = (z[i] << 1) | carry ;
8466   //    z[i] = value;
8467   // }
8468 
8469   movl(zidx, zlen);
8470   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8471 
8472   bind(L_fifth_loop);
8473   decl(zidx);  // Use decl to preserve carry flag
8474   decl(zidx);
8475   jccb(Assembler::negative, L_fifth_loop_exit);
8476 
8477   if (UseBMI2Instructions) {
8478      movq(value, Address(z, zidx, Address::times_4, 0));
8479      rclq(value, 1);
8480      rorxq(value, value, 32);
8481      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8482   }
8483   else {
8484     // clear new_carry
8485     xorl(new_carry, new_carry);
8486 
8487     // Shift z[i] by 1, or in previous carry and save new carry
8488     movq(value, Address(z, zidx, Address::times_4, 0));
8489     shlq(value, 1);
8490     adcl(new_carry, 0);
8491 
8492     orq(value, prev_carry);
8493     rorq(value, 0x20);
8494     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8495 
8496     // Set previous carry = new carry
8497     movl(prev_carry, new_carry);
8498   }
8499   jmp(L_fifth_loop);
8500 
8501   bind(L_fifth_loop_exit);
8502 }
8503 
8504 
8505 /**
8506  * Code for BigInteger::squareToLen() intrinsic
8507  *
8508  * rdi: x
8509  * rsi: len
8510  * r8:  z
8511  * rcx: zlen
8512  * r12: tmp1
8513  * r13: tmp2
8514  * r14: tmp3
8515  * r15: tmp4
8516  * rbx: tmp5
8517  *
8518  */
square_to_len(Register x,Register len,Register z,Register zlen,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register rdxReg,Register raxReg)8519 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8520 
8521   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8522   push(tmp1);
8523   push(tmp2);
8524   push(tmp3);
8525   push(tmp4);
8526   push(tmp5);
8527 
8528   // First loop
8529   // Store the squares, right shifted one bit (i.e., divided by 2).
8530   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8531 
8532   // Add in off-diagonal sums.
8533   //
8534   // Second, third (nested) and fourth loops.
8535   // zlen +=2;
8536   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8537   //    carry = 0;
8538   //    long op2 = x[xidx:xidx+1];
8539   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8540   //       k -= 2;
8541   //       long op1 = x[j:j+1];
8542   //       long sum = z[k:k+1];
8543   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8544   //       z[k:k+1] = sum;
8545   //    }
8546   //    add_one_64(z, k, carry, tmp_regs);
8547   // }
8548 
8549   const Register carry = tmp5;
8550   const Register sum = tmp3;
8551   const Register op1 = tmp4;
8552   Register op2 = tmp2;
8553 
8554   push(zlen);
8555   push(len);
8556   addl(zlen,2);
8557   bind(L_second_loop);
8558   xorq(carry, carry);
8559   subl(zlen, 4);
8560   subl(len, 2);
8561   push(zlen);
8562   push(len);
8563   cmpl(len, 0);
8564   jccb(Assembler::lessEqual, L_second_loop_exit);
8565 
8566   // Multiply an array by one 64 bit long.
8567   if (UseBMI2Instructions) {
8568     op2 = rdxReg;
8569     movq(op2, Address(x, len, Address::times_4,  0));
8570     rorxq(op2, op2, 32);
8571   }
8572   else {
8573     movq(op2, Address(x, len, Address::times_4,  0));
8574     rorq(op2, 32);
8575   }
8576 
8577   bind(L_third_loop);
8578   decrementl(len);
8579   jccb(Assembler::negative, L_third_loop_exit);
8580   decrementl(len);
8581   jccb(Assembler::negative, L_last_x);
8582 
8583   movq(op1, Address(x, len, Address::times_4,  0));
8584   rorq(op1, 32);
8585 
8586   bind(L_multiply);
8587   subl(zlen, 2);
8588   movq(sum, Address(z, zlen, Address::times_4,  0));
8589 
8590   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8591   if (UseBMI2Instructions) {
8592     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8593   }
8594   else {
8595     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8596   }
8597 
8598   movq(Address(z, zlen, Address::times_4, 0), sum);
8599 
8600   jmp(L_third_loop);
8601   bind(L_third_loop_exit);
8602 
8603   // Fourth loop
8604   // Add 64 bit long carry into z with carry propogation.
8605   // Uses offsetted zlen.
8606   add_one_64(z, zlen, carry, tmp1);
8607 
8608   pop(len);
8609   pop(zlen);
8610   jmp(L_second_loop);
8611 
8612   // Next infrequent code is moved outside loops.
8613   bind(L_last_x);
8614   movl(op1, Address(x, 0));
8615   jmp(L_multiply);
8616 
8617   bind(L_second_loop_exit);
8618   pop(len);
8619   pop(zlen);
8620   pop(len);
8621   pop(zlen);
8622 
8623   // Fifth loop
8624   // Shift z left 1 bit.
8625   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8626 
8627   // z[zlen-1] |= x[len-1] & 1;
8628   movl(tmp3, Address(x, len, Address::times_4, -4));
8629   andl(tmp3, 1);
8630   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8631 
8632   pop(tmp5);
8633   pop(tmp4);
8634   pop(tmp3);
8635   pop(tmp2);
8636   pop(tmp1);
8637 }
8638 
8639 /**
8640  * Helper function for mul_add()
8641  * Multiply the in[] by int k and add to out[] starting at offset offs using
8642  * 128 bit by 32 bit multiply and return the carry in tmp5.
8643  * Only quad int aligned length of in[] is operated on in this function.
8644  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8645  * This function preserves out, in and k registers.
8646  * len and offset point to the appropriate index in "in" & "out" correspondingly
8647  * tmp5 has the carry.
8648  * other registers are temporary and are modified.
8649  *
8650  */
mul_add_128_x_32_loop(Register out,Register in,Register offset,Register len,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register rdxReg,Register raxReg)8651 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8652   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8653   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8654 
8655   Label L_first_loop, L_first_loop_exit;
8656 
8657   movl(tmp1, len);
8658   shrl(tmp1, 2);
8659 
8660   bind(L_first_loop);
8661   subl(tmp1, 1);
8662   jccb(Assembler::negative, L_first_loop_exit);
8663 
8664   subl(len, 4);
8665   subl(offset, 4);
8666 
8667   Register op2 = tmp2;
8668   const Register sum = tmp3;
8669   const Register op1 = tmp4;
8670   const Register carry = tmp5;
8671 
8672   if (UseBMI2Instructions) {
8673     op2 = rdxReg;
8674   }
8675 
8676   movq(op1, Address(in, len, Address::times_4,  8));
8677   rorq(op1, 32);
8678   movq(sum, Address(out, offset, Address::times_4,  8));
8679   rorq(sum, 32);
8680   if (UseBMI2Instructions) {
8681     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8682   }
8683   else {
8684     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8685   }
8686   // Store back in big endian from little endian
8687   rorq(sum, 0x20);
8688   movq(Address(out, offset, Address::times_4,  8), sum);
8689 
8690   movq(op1, Address(in, len, Address::times_4,  0));
8691   rorq(op1, 32);
8692   movq(sum, Address(out, offset, Address::times_4,  0));
8693   rorq(sum, 32);
8694   if (UseBMI2Instructions) {
8695     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8696   }
8697   else {
8698     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8699   }
8700   // Store back in big endian from little endian
8701   rorq(sum, 0x20);
8702   movq(Address(out, offset, Address::times_4,  0), sum);
8703 
8704   jmp(L_first_loop);
8705   bind(L_first_loop_exit);
8706 }
8707 
8708 /**
8709  * Code for BigInteger::mulAdd() intrinsic
8710  *
8711  * rdi: out
8712  * rsi: in
8713  * r11: offs (out.length - offset)
8714  * rcx: len
8715  * r8:  k
8716  * r12: tmp1
8717  * r13: tmp2
8718  * r14: tmp3
8719  * r15: tmp4
8720  * rbx: tmp5
8721  * Multiply the in[] by word k and add to out[], return the carry in rax
8722  */
mul_add(Register out,Register in,Register offs,Register len,Register k,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register rdxReg,Register raxReg)8723 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8724    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8725    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8726 
8727   Label L_carry, L_last_in, L_done;
8728 
8729 // carry = 0;
8730 // for (int j=len-1; j >= 0; j--) {
8731 //    long product = (in[j] & LONG_MASK) * kLong +
8732 //                   (out[offs] & LONG_MASK) + carry;
8733 //    out[offs--] = (int)product;
8734 //    carry = product >>> 32;
8735 // }
8736 //
8737   push(tmp1);
8738   push(tmp2);
8739   push(tmp3);
8740   push(tmp4);
8741   push(tmp5);
8742 
8743   Register op2 = tmp2;
8744   const Register sum = tmp3;
8745   const Register op1 = tmp4;
8746   const Register carry =  tmp5;
8747 
8748   if (UseBMI2Instructions) {
8749     op2 = rdxReg;
8750     movl(op2, k);
8751   }
8752   else {
8753     movl(op2, k);
8754   }
8755 
8756   xorq(carry, carry);
8757 
8758   //First loop
8759 
8760   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8761   //The carry is in tmp5
8762   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8763 
8764   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8765   decrementl(len);
8766   jccb(Assembler::negative, L_carry);
8767   decrementl(len);
8768   jccb(Assembler::negative, L_last_in);
8769 
8770   movq(op1, Address(in, len, Address::times_4,  0));
8771   rorq(op1, 32);
8772 
8773   subl(offs, 2);
8774   movq(sum, Address(out, offs, Address::times_4,  0));
8775   rorq(sum, 32);
8776 
8777   if (UseBMI2Instructions) {
8778     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8779   }
8780   else {
8781     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8782   }
8783 
8784   // Store back in big endian from little endian
8785   rorq(sum, 0x20);
8786   movq(Address(out, offs, Address::times_4,  0), sum);
8787 
8788   testl(len, len);
8789   jccb(Assembler::zero, L_carry);
8790 
8791   //Multiply the last in[] entry, if any
8792   bind(L_last_in);
8793   movl(op1, Address(in, 0));
8794   movl(sum, Address(out, offs, Address::times_4,  -4));
8795 
8796   movl(raxReg, k);
8797   mull(op1); //tmp4 * eax -> edx:eax
8798   addl(sum, carry);
8799   adcl(rdxReg, 0);
8800   addl(sum, raxReg);
8801   adcl(rdxReg, 0);
8802   movl(carry, rdxReg);
8803 
8804   movl(Address(out, offs, Address::times_4,  -4), sum);
8805 
8806   bind(L_carry);
8807   //return tmp5/carry as carry in rax
8808   movl(rax, carry);
8809 
8810   bind(L_done);
8811   pop(tmp5);
8812   pop(tmp4);
8813   pop(tmp3);
8814   pop(tmp2);
8815   pop(tmp1);
8816 }
8817 #endif
8818 
8819 /**
8820  * Emits code to update CRC-32 with a byte value according to constants in table
8821  *
8822  * @param [in,out]crc   Register containing the crc.
8823  * @param [in]val       Register containing the byte to fold into the CRC.
8824  * @param [in]table     Register containing the table of crc constants.
8825  *
8826  * uint32_t crc;
8827  * val = crc_table[(val ^ crc) & 0xFF];
8828  * crc = val ^ (crc >> 8);
8829  *
8830  */
update_byte_crc32(Register crc,Register val,Register table)8831 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8832   xorl(val, crc);
8833   andl(val, 0xFF);
8834   shrl(crc, 8); // unsigned shift
8835   xorl(crc, Address(table, val, Address::times_4, 0));
8836 }
8837 
8838 /**
8839 * Fold four 128-bit data chunks
8840 */
fold_128bit_crc32_avx512(XMMRegister xcrc,XMMRegister xK,XMMRegister xtmp,Register buf,int offset)8841 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8842   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8843   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8844   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8845   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8846 }
8847 
8848 /**
8849  * Fold 128-bit data chunk
8850  */
fold_128bit_crc32(XMMRegister xcrc,XMMRegister xK,XMMRegister xtmp,Register buf,int offset)8851 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8852   if (UseAVX > 0) {
8853     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8854     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8855     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8856     pxor(xcrc, xtmp);
8857   } else {
8858     movdqa(xtmp, xcrc);
8859     pclmulhdq(xtmp, xK);   // [123:64]
8860     pclmulldq(xcrc, xK);   // [63:0]
8861     pxor(xcrc, xtmp);
8862     movdqu(xtmp, Address(buf, offset));
8863     pxor(xcrc, xtmp);
8864   }
8865 }
8866 
fold_128bit_crc32(XMMRegister xcrc,XMMRegister xK,XMMRegister xtmp,XMMRegister xbuf)8867 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8868   if (UseAVX > 0) {
8869     vpclmulhdq(xtmp, xK, xcrc);
8870     vpclmulldq(xcrc, xK, xcrc);
8871     pxor(xcrc, xbuf);
8872     pxor(xcrc, xtmp);
8873   } else {
8874     movdqa(xtmp, xcrc);
8875     pclmulhdq(xtmp, xK);
8876     pclmulldq(xcrc, xK);
8877     pxor(xcrc, xbuf);
8878     pxor(xcrc, xtmp);
8879   }
8880 }
8881 
8882 /**
8883  * 8-bit folds to compute 32-bit CRC
8884  *
8885  * uint64_t xcrc;
8886  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8887  */
fold_8bit_crc32(XMMRegister xcrc,Register table,XMMRegister xtmp,Register tmp)8888 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8889   movdl(tmp, xcrc);
8890   andl(tmp, 0xFF);
8891   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8892   psrldq(xcrc, 1); // unsigned shift one byte
8893   pxor(xcrc, xtmp);
8894 }
8895 
8896 /**
8897  * uint32_t crc;
8898  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8899  */
fold_8bit_crc32(Register crc,Register table,Register tmp)8900 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8901   movl(tmp, crc);
8902   andl(tmp, 0xFF);
8903   shrl(crc, 8);
8904   xorl(crc, Address(table, tmp, Address::times_4, 0));
8905 }
8906 
8907 /**
8908  * @param crc   register containing existing CRC (32-bit)
8909  * @param buf   register pointing to input byte buffer (byte*)
8910  * @param len   register containing number of bytes
8911  * @param table register that will contain address of CRC table
8912  * @param tmp   scratch register
8913  */
kernel_crc32(Register crc,Register buf,Register len,Register table,Register tmp)8914 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8915   assert_different_registers(crc, buf, len, table, tmp, rax);
8916 
8917   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8918   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8919 
8920   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8921   // context for the registers used, where all instructions below are using 128-bit mode
8922   // On EVEX without VL and BW, these instructions will all be AVX.
8923   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8924   notl(crc); // ~crc
8925   cmpl(len, 16);
8926   jcc(Assembler::less, L_tail);
8927 
8928   // Align buffer to 16 bytes
8929   movl(tmp, buf);
8930   andl(tmp, 0xF);
8931   jccb(Assembler::zero, L_aligned);
8932   subl(tmp,  16);
8933   addl(len, tmp);
8934 
8935   align(4);
8936   BIND(L_align_loop);
8937   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8938   update_byte_crc32(crc, rax, table);
8939   increment(buf);
8940   incrementl(tmp);
8941   jccb(Assembler::less, L_align_loop);
8942 
8943   BIND(L_aligned);
8944   movl(tmp, len); // save
8945   shrl(len, 4);
8946   jcc(Assembler::zero, L_tail_restore);
8947 
8948   // Fold crc into first bytes of vector
8949   movdqa(xmm1, Address(buf, 0));
8950   movdl(rax, xmm1);
8951   xorl(crc, rax);
8952   if (VM_Version::supports_sse4_1()) {
8953     pinsrd(xmm1, crc, 0);
8954   } else {
8955     pinsrw(xmm1, crc, 0);
8956     shrl(crc, 16);
8957     pinsrw(xmm1, crc, 1);
8958   }
8959   addptr(buf, 16);
8960   subl(len, 4); // len > 0
8961   jcc(Assembler::less, L_fold_tail);
8962 
8963   movdqa(xmm2, Address(buf,  0));
8964   movdqa(xmm3, Address(buf, 16));
8965   movdqa(xmm4, Address(buf, 32));
8966   addptr(buf, 48);
8967   subl(len, 3);
8968   jcc(Assembler::lessEqual, L_fold_512b);
8969 
8970   // Fold total 512 bits of polynomial on each iteration,
8971   // 128 bits per each of 4 parallel streams.
8972   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8973 
8974   align(32);
8975   BIND(L_fold_512b_loop);
8976   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8977   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8978   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8979   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8980   addptr(buf, 64);
8981   subl(len, 4);
8982   jcc(Assembler::greater, L_fold_512b_loop);
8983 
8984   // Fold 512 bits to 128 bits.
8985   BIND(L_fold_512b);
8986   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8987   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8988   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8989   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8990 
8991   // Fold the rest of 128 bits data chunks
8992   BIND(L_fold_tail);
8993   addl(len, 3);
8994   jccb(Assembler::lessEqual, L_fold_128b);
8995   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8996 
8997   BIND(L_fold_tail_loop);
8998   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8999   addptr(buf, 16);
9000   decrementl(len);
9001   jccb(Assembler::greater, L_fold_tail_loop);
9002 
9003   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9004   BIND(L_fold_128b);
9005   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9006   if (UseAVX > 0) {
9007     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9008     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9009     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9010   } else {
9011     movdqa(xmm2, xmm0);
9012     pclmulqdq(xmm2, xmm1, 0x1);
9013     movdqa(xmm3, xmm0);
9014     pand(xmm3, xmm2);
9015     pclmulqdq(xmm0, xmm3, 0x1);
9016   }
9017   psrldq(xmm1, 8);
9018   psrldq(xmm2, 4);
9019   pxor(xmm0, xmm1);
9020   pxor(xmm0, xmm2);
9021 
9022   // 8 8-bit folds to compute 32-bit CRC.
9023   for (int j = 0; j < 4; j++) {
9024     fold_8bit_crc32(xmm0, table, xmm1, rax);
9025   }
9026   movdl(crc, xmm0); // mov 32 bits to general register
9027   for (int j = 0; j < 4; j++) {
9028     fold_8bit_crc32(crc, table, rax);
9029   }
9030 
9031   BIND(L_tail_restore);
9032   movl(len, tmp); // restore
9033   BIND(L_tail);
9034   andl(len, 0xf);
9035   jccb(Assembler::zero, L_exit);
9036 
9037   // Fold the rest of bytes
9038   align(4);
9039   BIND(L_tail_loop);
9040   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9041   update_byte_crc32(crc, rax, table);
9042   increment(buf);
9043   decrementl(len);
9044   jccb(Assembler::greater, L_tail_loop);
9045 
9046   BIND(L_exit);
9047   notl(crc); // ~c
9048 }
9049 
9050 #ifdef _LP64
9051 // S. Gueron / Information Processing Letters 112 (2012) 184
9052 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9053 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9054 // Output: the 64-bit carry-less product of B * CONST
crc32c_ipl_alg4(Register in,uint32_t n,Register tmp1,Register tmp2,Register tmp3)9055 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9056                                      Register tmp1, Register tmp2, Register tmp3) {
9057   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9058   if (n > 0) {
9059     addq(tmp3, n * 256 * 8);
9060   }
9061   //    Q1 = TABLEExt[n][B & 0xFF];
9062   movl(tmp1, in);
9063   andl(tmp1, 0x000000FF);
9064   shll(tmp1, 3);
9065   addq(tmp1, tmp3);
9066   movq(tmp1, Address(tmp1, 0));
9067 
9068   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9069   movl(tmp2, in);
9070   shrl(tmp2, 8);
9071   andl(tmp2, 0x000000FF);
9072   shll(tmp2, 3);
9073   addq(tmp2, tmp3);
9074   movq(tmp2, Address(tmp2, 0));
9075 
9076   shlq(tmp2, 8);
9077   xorq(tmp1, tmp2);
9078 
9079   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9080   movl(tmp2, in);
9081   shrl(tmp2, 16);
9082   andl(tmp2, 0x000000FF);
9083   shll(tmp2, 3);
9084   addq(tmp2, tmp3);
9085   movq(tmp2, Address(tmp2, 0));
9086 
9087   shlq(tmp2, 16);
9088   xorq(tmp1, tmp2);
9089 
9090   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9091   shrl(in, 24);
9092   andl(in, 0x000000FF);
9093   shll(in, 3);
9094   addq(in, tmp3);
9095   movq(in, Address(in, 0));
9096 
9097   shlq(in, 24);
9098   xorq(in, tmp1);
9099   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9100 }
9101 
crc32c_pclmulqdq(XMMRegister w_xtmp1,Register in_out,uint32_t const_or_pre_comp_const_index,bool is_pclmulqdq_supported,XMMRegister w_xtmp2,Register tmp1,Register n_tmp2,Register n_tmp3)9102 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9103                                       Register in_out,
9104                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9105                                       XMMRegister w_xtmp2,
9106                                       Register tmp1,
9107                                       Register n_tmp2, Register n_tmp3) {
9108   if (is_pclmulqdq_supported) {
9109     movdl(w_xtmp1, in_out); // modified blindly
9110 
9111     movl(tmp1, const_or_pre_comp_const_index);
9112     movdl(w_xtmp2, tmp1);
9113     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9114 
9115     movdq(in_out, w_xtmp1);
9116   } else {
9117     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9118   }
9119 }
9120 
9121 // Recombination Alternative 2: No bit-reflections
9122 // T1 = (CRC_A * U1) << 1
9123 // T2 = (CRC_B * U2) << 1
9124 // C1 = T1 >> 32
9125 // C2 = T2 >> 32
9126 // T1 = T1 & 0xFFFFFFFF
9127 // T2 = T2 & 0xFFFFFFFF
9128 // T1 = CRC32(0, T1)
9129 // T2 = CRC32(0, T2)
9130 // C1 = C1 ^ T1
9131 // C2 = C2 ^ T2
9132 // CRC = C1 ^ C2 ^ CRC_C
crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1,uint32_t const_or_pre_comp_const_index_u2,bool is_pclmulqdq_supported,Register in_out,Register in1,Register in2,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,Register tmp1,Register tmp2,Register n_tmp3)9133 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9134                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9135                                      Register tmp1, Register tmp2,
9136                                      Register n_tmp3) {
9137   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9138   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9139   shlq(in_out, 1);
9140   movl(tmp1, in_out);
9141   shrq(in_out, 32);
9142   xorl(tmp2, tmp2);
9143   crc32(tmp2, tmp1, 4);
9144   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9145   shlq(in1, 1);
9146   movl(tmp1, in1);
9147   shrq(in1, 32);
9148   xorl(tmp2, tmp2);
9149   crc32(tmp2, tmp1, 4);
9150   xorl(in1, tmp2);
9151   xorl(in_out, in1);
9152   xorl(in_out, in2);
9153 }
9154 
9155 // Set N to predefined value
9156 // Subtract from a lenght of a buffer
9157 // execute in a loop:
9158 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9159 // for i = 1 to N do
9160 //  CRC_A = CRC32(CRC_A, A[i])
9161 //  CRC_B = CRC32(CRC_B, B[i])
9162 //  CRC_C = CRC32(CRC_C, C[i])
9163 // end for
9164 // Recombine
crc32c_proc_chunk(uint32_t size,uint32_t const_or_pre_comp_const_index_u1,uint32_t const_or_pre_comp_const_index_u2,bool is_pclmulqdq_supported,Register in_out1,Register in_out2,Register in_out3,Register tmp1,Register tmp2,Register tmp3,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,Register tmp4,Register tmp5,Register n_tmp6)9165 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9166                                        Register in_out1, Register in_out2, Register in_out3,
9167                                        Register tmp1, Register tmp2, Register tmp3,
9168                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9169                                        Register tmp4, Register tmp5,
9170                                        Register n_tmp6) {
9171   Label L_processPartitions;
9172   Label L_processPartition;
9173   Label L_exit;
9174 
9175   bind(L_processPartitions);
9176   cmpl(in_out1, 3 * size);
9177   jcc(Assembler::less, L_exit);
9178     xorl(tmp1, tmp1);
9179     xorl(tmp2, tmp2);
9180     movq(tmp3, in_out2);
9181     addq(tmp3, size);
9182 
9183     bind(L_processPartition);
9184       crc32(in_out3, Address(in_out2, 0), 8);
9185       crc32(tmp1, Address(in_out2, size), 8);
9186       crc32(tmp2, Address(in_out2, size * 2), 8);
9187       addq(in_out2, 8);
9188       cmpq(in_out2, tmp3);
9189       jcc(Assembler::less, L_processPartition);
9190     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9191             w_xtmp1, w_xtmp2, w_xtmp3,
9192             tmp4, tmp5,
9193             n_tmp6);
9194     addq(in_out2, 2 * size);
9195     subl(in_out1, 3 * size);
9196     jmp(L_processPartitions);
9197 
9198   bind(L_exit);
9199 }
9200 #else
crc32c_ipl_alg4(Register in_out,uint32_t n,Register tmp1,Register tmp2,Register tmp3,XMMRegister xtmp1,XMMRegister xtmp2)9201 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9202                                      Register tmp1, Register tmp2, Register tmp3,
9203                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9204   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9205   if (n > 0) {
9206     addl(tmp3, n * 256 * 8);
9207   }
9208   //    Q1 = TABLEExt[n][B & 0xFF];
9209   movl(tmp1, in_out);
9210   andl(tmp1, 0x000000FF);
9211   shll(tmp1, 3);
9212   addl(tmp1, tmp3);
9213   movq(xtmp1, Address(tmp1, 0));
9214 
9215   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9216   movl(tmp2, in_out);
9217   shrl(tmp2, 8);
9218   andl(tmp2, 0x000000FF);
9219   shll(tmp2, 3);
9220   addl(tmp2, tmp3);
9221   movq(xtmp2, Address(tmp2, 0));
9222 
9223   psllq(xtmp2, 8);
9224   pxor(xtmp1, xtmp2);
9225 
9226   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9227   movl(tmp2, in_out);
9228   shrl(tmp2, 16);
9229   andl(tmp2, 0x000000FF);
9230   shll(tmp2, 3);
9231   addl(tmp2, tmp3);
9232   movq(xtmp2, Address(tmp2, 0));
9233 
9234   psllq(xtmp2, 16);
9235   pxor(xtmp1, xtmp2);
9236 
9237   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9238   shrl(in_out, 24);
9239   andl(in_out, 0x000000FF);
9240   shll(in_out, 3);
9241   addl(in_out, tmp3);
9242   movq(xtmp2, Address(in_out, 0));
9243 
9244   psllq(xtmp2, 24);
9245   pxor(xtmp1, xtmp2); // Result in CXMM
9246   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9247 }
9248 
crc32c_pclmulqdq(XMMRegister w_xtmp1,Register in_out,uint32_t const_or_pre_comp_const_index,bool is_pclmulqdq_supported,XMMRegister w_xtmp2,Register tmp1,Register n_tmp2,Register n_tmp3)9249 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9250                                       Register in_out,
9251                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9252                                       XMMRegister w_xtmp2,
9253                                       Register tmp1,
9254                                       Register n_tmp2, Register n_tmp3) {
9255   if (is_pclmulqdq_supported) {
9256     movdl(w_xtmp1, in_out);
9257 
9258     movl(tmp1, const_or_pre_comp_const_index);
9259     movdl(w_xtmp2, tmp1);
9260     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9261     // Keep result in XMM since GPR is 32 bit in length
9262   } else {
9263     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9264   }
9265 }
9266 
crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1,uint32_t const_or_pre_comp_const_index_u2,bool is_pclmulqdq_supported,Register in_out,Register in1,Register in2,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,Register tmp1,Register tmp2,Register n_tmp3)9267 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9268                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9269                                      Register tmp1, Register tmp2,
9270                                      Register n_tmp3) {
9271   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9272   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9273 
9274   psllq(w_xtmp1, 1);
9275   movdl(tmp1, w_xtmp1);
9276   psrlq(w_xtmp1, 32);
9277   movdl(in_out, w_xtmp1);
9278 
9279   xorl(tmp2, tmp2);
9280   crc32(tmp2, tmp1, 4);
9281   xorl(in_out, tmp2);
9282 
9283   psllq(w_xtmp2, 1);
9284   movdl(tmp1, w_xtmp2);
9285   psrlq(w_xtmp2, 32);
9286   movdl(in1, w_xtmp2);
9287 
9288   xorl(tmp2, tmp2);
9289   crc32(tmp2, tmp1, 4);
9290   xorl(in1, tmp2);
9291   xorl(in_out, in1);
9292   xorl(in_out, in2);
9293 }
9294 
crc32c_proc_chunk(uint32_t size,uint32_t const_or_pre_comp_const_index_u1,uint32_t const_or_pre_comp_const_index_u2,bool is_pclmulqdq_supported,Register in_out1,Register in_out2,Register in_out3,Register tmp1,Register tmp2,Register tmp3,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,Register tmp4,Register tmp5,Register n_tmp6)9295 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9296                                        Register in_out1, Register in_out2, Register in_out3,
9297                                        Register tmp1, Register tmp2, Register tmp3,
9298                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9299                                        Register tmp4, Register tmp5,
9300                                        Register n_tmp6) {
9301   Label L_processPartitions;
9302   Label L_processPartition;
9303   Label L_exit;
9304 
9305   bind(L_processPartitions);
9306   cmpl(in_out1, 3 * size);
9307   jcc(Assembler::less, L_exit);
9308     xorl(tmp1, tmp1);
9309     xorl(tmp2, tmp2);
9310     movl(tmp3, in_out2);
9311     addl(tmp3, size);
9312 
9313     bind(L_processPartition);
9314       crc32(in_out3, Address(in_out2, 0), 4);
9315       crc32(tmp1, Address(in_out2, size), 4);
9316       crc32(tmp2, Address(in_out2, size*2), 4);
9317       crc32(in_out3, Address(in_out2, 0+4), 4);
9318       crc32(tmp1, Address(in_out2, size+4), 4);
9319       crc32(tmp2, Address(in_out2, size*2+4), 4);
9320       addl(in_out2, 8);
9321       cmpl(in_out2, tmp3);
9322       jcc(Assembler::less, L_processPartition);
9323 
9324         push(tmp3);
9325         push(in_out1);
9326         push(in_out2);
9327         tmp4 = tmp3;
9328         tmp5 = in_out1;
9329         n_tmp6 = in_out2;
9330 
9331       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9332             w_xtmp1, w_xtmp2, w_xtmp3,
9333             tmp4, tmp5,
9334             n_tmp6);
9335 
9336         pop(in_out2);
9337         pop(in_out1);
9338         pop(tmp3);
9339 
9340     addl(in_out2, 2 * size);
9341     subl(in_out1, 3 * size);
9342     jmp(L_processPartitions);
9343 
9344   bind(L_exit);
9345 }
9346 #endif //LP64
9347 
9348 #ifdef _LP64
9349 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9350 // Input: A buffer I of L bytes.
9351 // Output: the CRC32C value of the buffer.
9352 // Notations:
9353 // Write L = 24N + r, with N = floor (L/24).
9354 // r = L mod 24 (0 <= r < 24).
9355 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9356 // N quadwords, and R consists of r bytes.
9357 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9358 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9359 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9360 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
crc32c_ipl_alg2_alt2(Register in_out,Register in1,Register in2,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register tmp6,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,bool is_pclmulqdq_supported)9361 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9362                                           Register tmp1, Register tmp2, Register tmp3,
9363                                           Register tmp4, Register tmp5, Register tmp6,
9364                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9365                                           bool is_pclmulqdq_supported) {
9366   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9367   Label L_wordByWord;
9368   Label L_byteByByteProlog;
9369   Label L_byteByByte;
9370   Label L_exit;
9371 
9372   if (is_pclmulqdq_supported ) {
9373     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9374     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9375 
9376     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9377     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9378 
9379     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9380     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9381     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9382   } else {
9383     const_or_pre_comp_const_index[0] = 1;
9384     const_or_pre_comp_const_index[1] = 0;
9385 
9386     const_or_pre_comp_const_index[2] = 3;
9387     const_or_pre_comp_const_index[3] = 2;
9388 
9389     const_or_pre_comp_const_index[4] = 5;
9390     const_or_pre_comp_const_index[5] = 4;
9391    }
9392   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9393                     in2, in1, in_out,
9394                     tmp1, tmp2, tmp3,
9395                     w_xtmp1, w_xtmp2, w_xtmp3,
9396                     tmp4, tmp5,
9397                     tmp6);
9398   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9399                     in2, in1, in_out,
9400                     tmp1, tmp2, tmp3,
9401                     w_xtmp1, w_xtmp2, w_xtmp3,
9402                     tmp4, tmp5,
9403                     tmp6);
9404   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9405                     in2, in1, in_out,
9406                     tmp1, tmp2, tmp3,
9407                     w_xtmp1, w_xtmp2, w_xtmp3,
9408                     tmp4, tmp5,
9409                     tmp6);
9410   movl(tmp1, in2);
9411   andl(tmp1, 0x00000007);
9412   negl(tmp1);
9413   addl(tmp1, in2);
9414   addq(tmp1, in1);
9415 
9416   BIND(L_wordByWord);
9417   cmpq(in1, tmp1);
9418   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9419     crc32(in_out, Address(in1, 0), 4);
9420     addq(in1, 4);
9421     jmp(L_wordByWord);
9422 
9423   BIND(L_byteByByteProlog);
9424   andl(in2, 0x00000007);
9425   movl(tmp2, 1);
9426 
9427   BIND(L_byteByByte);
9428   cmpl(tmp2, in2);
9429   jccb(Assembler::greater, L_exit);
9430     crc32(in_out, Address(in1, 0), 1);
9431     incq(in1);
9432     incl(tmp2);
9433     jmp(L_byteByByte);
9434 
9435   BIND(L_exit);
9436 }
9437 #else
crc32c_ipl_alg2_alt2(Register in_out,Register in1,Register in2,Register tmp1,Register tmp2,Register tmp3,Register tmp4,Register tmp5,Register tmp6,XMMRegister w_xtmp1,XMMRegister w_xtmp2,XMMRegister w_xtmp3,bool is_pclmulqdq_supported)9438 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9439                                           Register tmp1, Register  tmp2, Register tmp3,
9440                                           Register tmp4, Register  tmp5, Register tmp6,
9441                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9442                                           bool is_pclmulqdq_supported) {
9443   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9444   Label L_wordByWord;
9445   Label L_byteByByteProlog;
9446   Label L_byteByByte;
9447   Label L_exit;
9448 
9449   if (is_pclmulqdq_supported) {
9450     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9451     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9452 
9453     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9454     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9455 
9456     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9457     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9458   } else {
9459     const_or_pre_comp_const_index[0] = 1;
9460     const_or_pre_comp_const_index[1] = 0;
9461 
9462     const_or_pre_comp_const_index[2] = 3;
9463     const_or_pre_comp_const_index[3] = 2;
9464 
9465     const_or_pre_comp_const_index[4] = 5;
9466     const_or_pre_comp_const_index[5] = 4;
9467   }
9468   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9469                     in2, in1, in_out,
9470                     tmp1, tmp2, tmp3,
9471                     w_xtmp1, w_xtmp2, w_xtmp3,
9472                     tmp4, tmp5,
9473                     tmp6);
9474   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9475                     in2, in1, in_out,
9476                     tmp1, tmp2, tmp3,
9477                     w_xtmp1, w_xtmp2, w_xtmp3,
9478                     tmp4, tmp5,
9479                     tmp6);
9480   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9481                     in2, in1, in_out,
9482                     tmp1, tmp2, tmp3,
9483                     w_xtmp1, w_xtmp2, w_xtmp3,
9484                     tmp4, tmp5,
9485                     tmp6);
9486   movl(tmp1, in2);
9487   andl(tmp1, 0x00000007);
9488   negl(tmp1);
9489   addl(tmp1, in2);
9490   addl(tmp1, in1);
9491 
9492   BIND(L_wordByWord);
9493   cmpl(in1, tmp1);
9494   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9495     crc32(in_out, Address(in1,0), 4);
9496     addl(in1, 4);
9497     jmp(L_wordByWord);
9498 
9499   BIND(L_byteByByteProlog);
9500   andl(in2, 0x00000007);
9501   movl(tmp2, 1);
9502 
9503   BIND(L_byteByByte);
9504   cmpl(tmp2, in2);
9505   jccb(Assembler::greater, L_exit);
9506     movb(tmp1, Address(in1, 0));
9507     crc32(in_out, tmp1, 1);
9508     incl(in1);
9509     incl(tmp2);
9510     jmp(L_byteByByte);
9511 
9512   BIND(L_exit);
9513 }
9514 #endif // LP64
9515 #undef BIND
9516 #undef BLOCK_COMMENT
9517 
9518 // Compress char[] array to byte[].
9519 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9520 //   @HotSpotIntrinsicCandidate
9521 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9522 //     for (int i = 0; i < len; i++) {
9523 //       int c = src[srcOff++];
9524 //       if (c >>> 8 != 0) {
9525 //         return 0;
9526 //       }
9527 //       dst[dstOff++] = (byte)c;
9528 //     }
9529 //     return len;
9530 //   }
char_array_compress(Register src,Register dst,Register len,XMMRegister tmp1Reg,XMMRegister tmp2Reg,XMMRegister tmp3Reg,XMMRegister tmp4Reg,Register tmp5,Register result)9531 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9532   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9533   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9534   Register tmp5, Register result) {
9535   Label copy_chars_loop, return_length, return_zero, done;
9536 
9537   // rsi: src
9538   // rdi: dst
9539   // rdx: len
9540   // rcx: tmp5
9541   // rax: result
9542 
9543   // rsi holds start addr of source char[] to be compressed
9544   // rdi holds start addr of destination byte[]
9545   // rdx holds length
9546 
9547   assert(len != result, "");
9548 
9549   // save length for return
9550   push(len);
9551 
9552   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9553     VM_Version::supports_avx512vlbw() &&
9554     VM_Version::supports_bmi2()) {
9555 
9556     Label copy_32_loop, copy_loop_tail, below_threshold;
9557 
9558     // alignment
9559     Label post_alignment;
9560 
9561     // if length of the string is less than 16, handle it in an old fashioned way
9562     testl(len, -32);
9563     jcc(Assembler::zero, below_threshold);
9564 
9565     // First check whether a character is compressable ( <= 0xFF).
9566     // Create mask to test for Unicode chars inside zmm vector
9567     movl(result, 0x00FF);
9568     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9569 
9570     testl(len, -64);
9571     jcc(Assembler::zero, post_alignment);
9572 
9573     movl(tmp5, dst);
9574     andl(tmp5, (32 - 1));
9575     negl(tmp5);
9576     andl(tmp5, (32 - 1));
9577 
9578     // bail out when there is nothing to be done
9579     testl(tmp5, 0xFFFFFFFF);
9580     jcc(Assembler::zero, post_alignment);
9581 
9582     // ~(~0 << len), where len is the # of remaining elements to process
9583     movl(result, 0xFFFFFFFF);
9584     shlxl(result, result, tmp5);
9585     notl(result);
9586     kmovdl(k3, result);
9587 
9588     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9589     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9590     ktestd(k2, k3);
9591     jcc(Assembler::carryClear, return_zero);
9592 
9593     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9594 
9595     addptr(src, tmp5);
9596     addptr(src, tmp5);
9597     addptr(dst, tmp5);
9598     subl(len, tmp5);
9599 
9600     bind(post_alignment);
9601     // end of alignment
9602 
9603     movl(tmp5, len);
9604     andl(tmp5, (32 - 1));    // tail count (in chars)
9605     andl(len, ~(32 - 1));    // vector count (in chars)
9606     jcc(Assembler::zero, copy_loop_tail);
9607 
9608     lea(src, Address(src, len, Address::times_2));
9609     lea(dst, Address(dst, len, Address::times_1));
9610     negptr(len);
9611 
9612     bind(copy_32_loop);
9613     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9614     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9615     kortestdl(k2, k2);
9616     jcc(Assembler::carryClear, return_zero);
9617 
9618     // All elements in current processed chunk are valid candidates for
9619     // compression. Write a truncated byte elements to the memory.
9620     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9621     addptr(len, 32);
9622     jcc(Assembler::notZero, copy_32_loop);
9623 
9624     bind(copy_loop_tail);
9625     // bail out when there is nothing to be done
9626     testl(tmp5, 0xFFFFFFFF);
9627     jcc(Assembler::zero, return_length);
9628 
9629     movl(len, tmp5);
9630 
9631     // ~(~0 << len), where len is the # of remaining elements to process
9632     movl(result, 0xFFFFFFFF);
9633     shlxl(result, result, len);
9634     notl(result);
9635 
9636     kmovdl(k3, result);
9637 
9638     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9639     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9640     ktestd(k2, k3);
9641     jcc(Assembler::carryClear, return_zero);
9642 
9643     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9644     jmp(return_length);
9645 
9646     bind(below_threshold);
9647   }
9648 
9649   if (UseSSE42Intrinsics) {
9650     Label copy_32_loop, copy_16, copy_tail;
9651 
9652     movl(result, len);
9653 
9654     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9655 
9656     // vectored compression
9657     andl(len, 0xfffffff0);    // vector count (in chars)
9658     andl(result, 0x0000000f);    // tail count (in chars)
9659     testl(len, len);
9660     jcc(Assembler::zero, copy_16);
9661 
9662     // compress 16 chars per iter
9663     movdl(tmp1Reg, tmp5);
9664     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9665     pxor(tmp4Reg, tmp4Reg);
9666 
9667     lea(src, Address(src, len, Address::times_2));
9668     lea(dst, Address(dst, len, Address::times_1));
9669     negptr(len);
9670 
9671     bind(copy_32_loop);
9672     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9673     por(tmp4Reg, tmp2Reg);
9674     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9675     por(tmp4Reg, tmp3Reg);
9676     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9677     jcc(Assembler::notZero, return_zero);
9678     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9679     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9680     addptr(len, 16);
9681     jcc(Assembler::notZero, copy_32_loop);
9682 
9683     // compress next vector of 8 chars (if any)
9684     bind(copy_16);
9685     movl(len, result);
9686     andl(len, 0xfffffff8);    // vector count (in chars)
9687     andl(result, 0x00000007);    // tail count (in chars)
9688     testl(len, len);
9689     jccb(Assembler::zero, copy_tail);
9690 
9691     movdl(tmp1Reg, tmp5);
9692     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9693     pxor(tmp3Reg, tmp3Reg);
9694 
9695     movdqu(tmp2Reg, Address(src, 0));
9696     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9697     jccb(Assembler::notZero, return_zero);
9698     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9699     movq(Address(dst, 0), tmp2Reg);
9700     addptr(src, 16);
9701     addptr(dst, 8);
9702 
9703     bind(copy_tail);
9704     movl(len, result);
9705   }
9706   // compress 1 char per iter
9707   testl(len, len);
9708   jccb(Assembler::zero, return_length);
9709   lea(src, Address(src, len, Address::times_2));
9710   lea(dst, Address(dst, len, Address::times_1));
9711   negptr(len);
9712 
9713   bind(copy_chars_loop);
9714   load_unsigned_short(result, Address(src, len, Address::times_2));
9715   testl(result, 0xff00);      // check if Unicode char
9716   jccb(Assembler::notZero, return_zero);
9717   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9718   increment(len);
9719   jcc(Assembler::notZero, copy_chars_loop);
9720 
9721   // if compression succeeded, return length
9722   bind(return_length);
9723   pop(result);
9724   jmpb(done);
9725 
9726   // if compression failed, return 0
9727   bind(return_zero);
9728   xorl(result, result);
9729   addptr(rsp, wordSize);
9730 
9731   bind(done);
9732 }
9733 
9734 // Inflate byte[] array to char[].
9735 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9736 //   @HotSpotIntrinsicCandidate
9737 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9738 //     for (int i = 0; i < len; i++) {
9739 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9740 //     }
9741 //   }
byte_array_inflate(Register src,Register dst,Register len,XMMRegister tmp1,Register tmp2)9742 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9743   XMMRegister tmp1, Register tmp2) {
9744   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9745   // rsi: src
9746   // rdi: dst
9747   // rdx: len
9748   // rcx: tmp2
9749 
9750   // rsi holds start addr of source byte[] to be inflated
9751   // rdi holds start addr of destination char[]
9752   // rdx holds length
9753   assert_different_registers(src, dst, len, tmp2);
9754   movl(tmp2, len);
9755   if ((UseAVX > 2) && // AVX512
9756     VM_Version::supports_avx512vlbw() &&
9757     VM_Version::supports_bmi2()) {
9758 
9759     Label copy_32_loop, copy_tail;
9760     Register tmp3_aliased = len;
9761 
9762     // if length of the string is less than 16, handle it in an old fashioned way
9763     testl(len, -16);
9764     jcc(Assembler::zero, below_threshold);
9765 
9766     testl(len, -1 * AVX3Threshold);
9767     jcc(Assembler::zero, avx3_threshold);
9768 
9769     // In order to use only one arithmetic operation for the main loop we use
9770     // this pre-calculation
9771     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9772     andl(len, -32);     // vector count
9773     jccb(Assembler::zero, copy_tail);
9774 
9775     lea(src, Address(src, len, Address::times_1));
9776     lea(dst, Address(dst, len, Address::times_2));
9777     negptr(len);
9778 
9779 
9780     // inflate 32 chars per iter
9781     bind(copy_32_loop);
9782     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9783     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9784     addptr(len, 32);
9785     jcc(Assembler::notZero, copy_32_loop);
9786 
9787     bind(copy_tail);
9788     // bail out when there is nothing to be done
9789     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9790     jcc(Assembler::zero, done);
9791 
9792     // ~(~0 << length), where length is the # of remaining elements to process
9793     movl(tmp3_aliased, -1);
9794     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9795     notl(tmp3_aliased);
9796     kmovdl(k2, tmp3_aliased);
9797     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9798     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9799 
9800     jmp(done);
9801     bind(avx3_threshold);
9802   }
9803   if (UseSSE42Intrinsics) {
9804     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9805 
9806     if (UseAVX > 1) {
9807       andl(tmp2, (16 - 1));
9808       andl(len, -16);
9809       jccb(Assembler::zero, copy_new_tail);
9810     } else {
9811       andl(tmp2, 0x00000007);   // tail count (in chars)
9812       andl(len, 0xfffffff8);    // vector count (in chars)
9813       jccb(Assembler::zero, copy_tail);
9814     }
9815 
9816     // vectored inflation
9817     lea(src, Address(src, len, Address::times_1));
9818     lea(dst, Address(dst, len, Address::times_2));
9819     negptr(len);
9820 
9821     if (UseAVX > 1) {
9822       bind(copy_16_loop);
9823       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9824       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9825       addptr(len, 16);
9826       jcc(Assembler::notZero, copy_16_loop);
9827 
9828       bind(below_threshold);
9829       bind(copy_new_tail);
9830       movl(len, tmp2);
9831       andl(tmp2, 0x00000007);
9832       andl(len, 0xFFFFFFF8);
9833       jccb(Assembler::zero, copy_tail);
9834 
9835       pmovzxbw(tmp1, Address(src, 0));
9836       movdqu(Address(dst, 0), tmp1);
9837       addptr(src, 8);
9838       addptr(dst, 2 * 8);
9839 
9840       jmp(copy_tail, true);
9841     }
9842 
9843     // inflate 8 chars per iter
9844     bind(copy_8_loop);
9845     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9846     movdqu(Address(dst, len, Address::times_2), tmp1);
9847     addptr(len, 8);
9848     jcc(Assembler::notZero, copy_8_loop);
9849 
9850     bind(copy_tail);
9851     movl(len, tmp2);
9852 
9853     cmpl(len, 4);
9854     jccb(Assembler::less, copy_bytes);
9855 
9856     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9857     pmovzxbw(tmp1, tmp1);
9858     movq(Address(dst, 0), tmp1);
9859     subptr(len, 4);
9860     addptr(src, 4);
9861     addptr(dst, 8);
9862 
9863     bind(copy_bytes);
9864   } else {
9865     bind(below_threshold);
9866   }
9867 
9868   testl(len, len);
9869   jccb(Assembler::zero, done);
9870   lea(src, Address(src, len, Address::times_1));
9871   lea(dst, Address(dst, len, Address::times_2));
9872   negptr(len);
9873 
9874   // inflate 1 char per iter
9875   bind(copy_chars_loop);
9876   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9877   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9878   increment(len);
9879   jcc(Assembler::notZero, copy_chars_loop);
9880 
9881   bind(done);
9882 }
9883 
negate_condition(Assembler::Condition cond)9884 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9885   switch (cond) {
9886     // Note some conditions are synonyms for others
9887     case Assembler::zero:         return Assembler::notZero;
9888     case Assembler::notZero:      return Assembler::zero;
9889     case Assembler::less:         return Assembler::greaterEqual;
9890     case Assembler::lessEqual:    return Assembler::greater;
9891     case Assembler::greater:      return Assembler::lessEqual;
9892     case Assembler::greaterEqual: return Assembler::less;
9893     case Assembler::below:        return Assembler::aboveEqual;
9894     case Assembler::belowEqual:   return Assembler::above;
9895     case Assembler::above:        return Assembler::belowEqual;
9896     case Assembler::aboveEqual:   return Assembler::below;
9897     case Assembler::overflow:     return Assembler::noOverflow;
9898     case Assembler::noOverflow:   return Assembler::overflow;
9899     case Assembler::negative:     return Assembler::positive;
9900     case Assembler::positive:     return Assembler::negative;
9901     case Assembler::parity:       return Assembler::noParity;
9902     case Assembler::noParity:     return Assembler::parity;
9903   }
9904   ShouldNotReachHere(); return Assembler::overflow;
9905 }
9906 
SkipIfEqual(MacroAssembler * masm,const bool * flag_addr,bool value)9907 SkipIfEqual::SkipIfEqual(
9908     MacroAssembler* masm, const bool* flag_addr, bool value) {
9909   _masm = masm;
9910   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9911   _masm->jcc(Assembler::equal, _label);
9912 }
9913 
~SkipIfEqual()9914 SkipIfEqual::~SkipIfEqual() {
9915   _masm->bind(_label);
9916 }
9917 
9918 // 32-bit Windows has its own fast-path implementation
9919 // of get_thread
9920 #if !defined(WIN32) || defined(_LP64)
9921 
9922 // This is simply a call to Thread::current()
get_thread(Register thread)9923 void MacroAssembler::get_thread(Register thread) {
9924   if (thread != rax) {
9925     push(rax);
9926   }
9927   LP64_ONLY(push(rdi);)
9928   LP64_ONLY(push(rsi);)
9929   push(rdx);
9930   push(rcx);
9931 #ifdef _LP64
9932   push(r8);
9933   push(r9);
9934   push(r10);
9935   push(r11);
9936 #endif
9937 
9938   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9939 
9940 #ifdef _LP64
9941   pop(r11);
9942   pop(r10);
9943   pop(r9);
9944   pop(r8);
9945 #endif
9946   pop(rcx);
9947   pop(rdx);
9948   LP64_ONLY(pop(rsi);)
9949   LP64_ONLY(pop(rdi);)
9950   if (thread != rax) {
9951     mov(thread, rax);
9952     pop(rax);
9953   }
9954 }
9955 
9956 #endif
9957