1 /*
2  * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.invoke.MethodHandles;
29 import java.lang.constant.Constable;
30 import java.lang.constant.ConstantDesc;
31 import java.util.Optional;
32 
33 import jdk.internal.math.FloatingDecimal;
34 import jdk.internal.math.DoubleConsts;
35 import jdk.internal.HotSpotIntrinsicCandidate;
36 
37 /**
38  * The {@code Double} class wraps a value of the primitive type
39  * {@code double} in an object. An object of type
40  * {@code Double} contains a single field whose type is
41  * {@code double}.
42  *
43  * <p>In addition, this class provides several methods for converting a
44  * {@code double} to a {@code String} and a
45  * {@code String} to a {@code double}, as well as other
46  * constants and methods useful when dealing with a
47  * {@code double}.
48  *
49  * @author  Lee Boynton
50  * @author  Arthur van Hoff
51  * @author  Joseph D. Darcy
52  * @since 1.0
53  */
54 public final class Double extends Number
55         implements Comparable<Double>, Constable, ConstantDesc {
56     /**
57      * A constant holding the positive infinity of type
58      * {@code double}. It is equal to the value returned by
59      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
60      */
61     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
62 
63     /**
64      * A constant holding the negative infinity of type
65      * {@code double}. It is equal to the value returned by
66      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
67      */
68     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
69 
70     /**
71      * A constant holding a Not-a-Number (NaN) value of type
72      * {@code double}. It is equivalent to the value returned by
73      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
74      */
75     public static final double NaN = 0.0d / 0.0;
76 
77     /**
78      * A constant holding the largest positive finite value of type
79      * {@code double},
80      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
81      * the hexadecimal floating-point literal
82      * {@code 0x1.fffffffffffffP+1023} and also equal to
83      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
84      */
85     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
86 
87     /**
88      * A constant holding the smallest positive normal value of type
89      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
90      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
91      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
92      *
93      * @since 1.6
94      */
95     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
96 
97     /**
98      * A constant holding the smallest positive nonzero value of type
99      * {@code double}, 2<sup>-1074</sup>. It is equal to the
100      * hexadecimal floating-point literal
101      * {@code 0x0.0000000000001P-1022} and also equal to
102      * {@code Double.longBitsToDouble(0x1L)}.
103      */
104     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
105 
106     /**
107      * Maximum exponent a finite {@code double} variable may have.
108      * It is equal to the value returned by
109      * {@code Math.getExponent(Double.MAX_VALUE)}.
110      *
111      * @since 1.6
112      */
113     public static final int MAX_EXPONENT = 1023;
114 
115     /**
116      * Minimum exponent a normalized {@code double} variable may
117      * have.  It is equal to the value returned by
118      * {@code Math.getExponent(Double.MIN_NORMAL)}.
119      *
120      * @since 1.6
121      */
122     public static final int MIN_EXPONENT = -1022;
123 
124     /**
125      * The number of bits used to represent a {@code double} value.
126      *
127      * @since 1.5
128      */
129     public static final int SIZE = 64;
130 
131     /**
132      * The number of bytes used to represent a {@code double} value.
133      *
134      * @since 1.8
135      */
136     public static final int BYTES = SIZE / Byte.SIZE;
137 
138     /**
139      * The {@code Class} instance representing the primitive type
140      * {@code double}.
141      *
142      * @since 1.1
143      */
144     @SuppressWarnings("unchecked")
145     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
146 
147     /**
148      * Returns a string representation of the {@code double}
149      * argument. All characters mentioned below are ASCII characters.
150      * <ul>
151      * <li>If the argument is NaN, the result is the string
152      *     "{@code NaN}".
153      * <li>Otherwise, the result is a string that represents the sign and
154      * magnitude (absolute value) of the argument. If the sign is negative,
155      * the first character of the result is '{@code -}'
156      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
157      * appears in the result. As for the magnitude <i>m</i>:
158      * <ul>
159      * <li>If <i>m</i> is infinity, it is represented by the characters
160      * {@code "Infinity"}; thus, positive infinity produces the result
161      * {@code "Infinity"} and negative infinity produces the result
162      * {@code "-Infinity"}.
163      *
164      * <li>If <i>m</i> is zero, it is represented by the characters
165      * {@code "0.0"}; thus, negative zero produces the result
166      * {@code "-0.0"} and positive zero produces the result
167      * {@code "0.0"}.
168      *
169      * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
170      * than 10<sup>7</sup>, then it is represented as the integer part of
171      * <i>m</i>, in decimal form with no leading zeroes, followed by
172      * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
173      * more decimal digits representing the fractional part of <i>m</i>.
174      *
175      * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
176      * equal to 10<sup>7</sup>, then it is represented in so-called
177      * "computerized scientific notation." Let <i>n</i> be the unique
178      * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
179      * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
180      * mathematically exact quotient of <i>m</i> and
181      * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
182      * magnitude is then represented as the integer part of <i>a</i>,
183      * as a single decimal digit, followed by '{@code .}'
184      * ({@code '\u005Cu002E'}), followed by decimal digits
185      * representing the fractional part of <i>a</i>, followed by the
186      * letter '{@code E}' ({@code '\u005Cu0045'}), followed
187      * by a representation of <i>n</i> as a decimal integer, as
188      * produced by the method {@link Integer#toString(int)}.
189      * </ul>
190      * </ul>
191      * How many digits must be printed for the fractional part of
192      * <i>m</i> or <i>a</i>? There must be at least one digit to represent
193      * the fractional part, and beyond that as many, but only as many, more
194      * digits as are needed to uniquely distinguish the argument value from
195      * adjacent values of type {@code double}. That is, suppose that
196      * <i>x</i> is the exact mathematical value represented by the decimal
197      * representation produced by this method for a finite nonzero argument
198      * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
199      * to <i>x</i>; or if two {@code double} values are equally close
200      * to <i>x</i>, then <i>d</i> must be one of them and the least
201      * significant bit of the significand of <i>d</i> must be {@code 0}.
202      *
203      * <p>To create localized string representations of a floating-point
204      * value, use subclasses of {@link java.text.NumberFormat}.
205      *
206      * @param   d   the {@code double} to be converted.
207      * @return a string representation of the argument.
208      */
toString(double d)209     public static String toString(double d) {
210         return FloatingDecimal.toJavaFormatString(d);
211     }
212 
213     /**
214      * Returns a hexadecimal string representation of the
215      * {@code double} argument. All characters mentioned below
216      * are ASCII characters.
217      *
218      * <ul>
219      * <li>If the argument is NaN, the result is the string
220      *     "{@code NaN}".
221      * <li>Otherwise, the result is a string that represents the sign
222      * and magnitude of the argument. If the sign is negative, the
223      * first character of the result is '{@code -}'
224      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
225      * character appears in the result. As for the magnitude <i>m</i>:
226      *
227      * <ul>
228      * <li>If <i>m</i> is infinity, it is represented by the string
229      * {@code "Infinity"}; thus, positive infinity produces the
230      * result {@code "Infinity"} and negative infinity produces
231      * the result {@code "-Infinity"}.
232      *
233      * <li>If <i>m</i> is zero, it is represented by the string
234      * {@code "0x0.0p0"}; thus, negative zero produces the result
235      * {@code "-0x0.0p0"} and positive zero produces the result
236      * {@code "0x0.0p0"}.
237      *
238      * <li>If <i>m</i> is a {@code double} value with a
239      * normalized representation, substrings are used to represent the
240      * significand and exponent fields.  The significand is
241      * represented by the characters {@code "0x1."}
242      * followed by a lowercase hexadecimal representation of the rest
243      * of the significand as a fraction.  Trailing zeros in the
244      * hexadecimal representation are removed unless all the digits
245      * are zero, in which case a single zero is used. Next, the
246      * exponent is represented by {@code "p"} followed
247      * by a decimal string of the unbiased exponent as if produced by
248      * a call to {@link Integer#toString(int) Integer.toString} on the
249      * exponent value.
250      *
251      * <li>If <i>m</i> is a {@code double} value with a subnormal
252      * representation, the significand is represented by the
253      * characters {@code "0x0."} followed by a
254      * hexadecimal representation of the rest of the significand as a
255      * fraction.  Trailing zeros in the hexadecimal representation are
256      * removed. Next, the exponent is represented by
257      * {@code "p-1022"}.  Note that there must be at
258      * least one nonzero digit in a subnormal significand.
259      *
260      * </ul>
261      *
262      * </ul>
263      *
264      * <table class="striped">
265      * <caption>Examples</caption>
266      * <thead>
267      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
268      * </thead>
269      * <tbody style="text-align:right">
270      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
271      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
272      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
273      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
274      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
275      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
276      * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
277      *     <td>{@code 0x1.fffffffffffffp1023}</td>
278      * <tr><th scope="row">{@code Minimum Normal Value}</th>
279      *     <td>{@code 0x1.0p-1022}</td>
280      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
281      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
282      * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
283      *     <td>{@code 0x0.0000000000001p-1022}</td>
284      * </tbody>
285      * </table>
286      * @param   d   the {@code double} to be converted.
287      * @return a hex string representation of the argument.
288      * @since 1.5
289      * @author Joseph D. Darcy
290      */
toHexString(double d)291     public static String toHexString(double d) {
292         /*
293          * Modeled after the "a" conversion specifier in C99, section
294          * 7.19.6.1; however, the output of this method is more
295          * tightly specified.
296          */
297         if (!isFinite(d) )
298             // For infinity and NaN, use the decimal output.
299             return Double.toString(d);
300         else {
301             // Initialized to maximum size of output.
302             StringBuilder answer = new StringBuilder(24);
303 
304             if (Math.copySign(1.0, d) == -1.0)    // value is negative,
305                 answer.append("-");                  // so append sign info
306 
307             answer.append("0x");
308 
309             d = Math.abs(d);
310 
311             if(d == 0.0) {
312                 answer.append("0.0p0");
313             } else {
314                 boolean subnormal = (d < Double.MIN_NORMAL);
315 
316                 // Isolate significand bits and OR in a high-order bit
317                 // so that the string representation has a known
318                 // length.
319                 long signifBits = (Double.doubleToLongBits(d)
320                                    & DoubleConsts.SIGNIF_BIT_MASK) |
321                     0x1000000000000000L;
322 
323                 // Subnormal values have a 0 implicit bit; normal
324                 // values have a 1 implicit bit.
325                 answer.append(subnormal ? "0." : "1.");
326 
327                 // Isolate the low-order 13 digits of the hex
328                 // representation.  If all the digits are zero,
329                 // replace with a single 0; otherwise, remove all
330                 // trailing zeros.
331                 String signif = Long.toHexString(signifBits).substring(3,16);
332                 answer.append(signif.equals("0000000000000") ? // 13 zeros
333                               "0":
334                               signif.replaceFirst("0{1,12}$", ""));
335 
336                 answer.append('p');
337                 // If the value is subnormal, use the E_min exponent
338                 // value for double; otherwise, extract and report d's
339                 // exponent (the representation of a subnormal uses
340                 // E_min -1).
341                 answer.append(subnormal ?
342                               Double.MIN_EXPONENT:
343                               Math.getExponent(d));
344             }
345             return answer.toString();
346         }
347     }
348 
349     /**
350      * Returns a {@code Double} object holding the
351      * {@code double} value represented by the argument string
352      * {@code s}.
353      *
354      * <p>If {@code s} is {@code null}, then a
355      * {@code NullPointerException} is thrown.
356      *
357      * <p>Leading and trailing whitespace characters in {@code s}
358      * are ignored.  Whitespace is removed as if by the {@link
359      * String#trim} method; that is, both ASCII space and control
360      * characters are removed. The rest of {@code s} should
361      * constitute a <i>FloatValue</i> as described by the lexical
362      * syntax rules:
363      *
364      * <blockquote>
365      * <dl>
366      * <dt><i>FloatValue:</i>
367      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
368      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
369      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
370      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
371      * <dd><i>SignedInteger</i>
372      * </dl>
373      *
374      * <dl>
375      * <dt><i>HexFloatingPointLiteral</i>:
376      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
377      * </dl>
378      *
379      * <dl>
380      * <dt><i>HexSignificand:</i>
381      * <dd><i>HexNumeral</i>
382      * <dd><i>HexNumeral</i> {@code .}
383      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
384      *     </i>{@code .}<i> HexDigits</i>
385      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
386      *     </i>{@code .} <i>HexDigits</i>
387      * </dl>
388      *
389      * <dl>
390      * <dt><i>BinaryExponent:</i>
391      * <dd><i>BinaryExponentIndicator SignedInteger</i>
392      * </dl>
393      *
394      * <dl>
395      * <dt><i>BinaryExponentIndicator:</i>
396      * <dd>{@code p}
397      * <dd>{@code P}
398      * </dl>
399      *
400      * </blockquote>
401      *
402      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
403      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
404      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
405      * sections of
406      * <cite>The Java&trade; Language Specification</cite>,
407      * except that underscores are not accepted between digits.
408      * If {@code s} does not have the form of
409      * a <i>FloatValue</i>, then a {@code NumberFormatException}
410      * is thrown. Otherwise, {@code s} is regarded as
411      * representing an exact decimal value in the usual
412      * "computerized scientific notation" or as an exact
413      * hexadecimal value; this exact numerical value is then
414      * conceptually converted to an "infinitely precise"
415      * binary value that is then rounded to type {@code double}
416      * by the usual round-to-nearest rule of IEEE 754 floating-point
417      * arithmetic, which includes preserving the sign of a zero
418      * value.
419      *
420      * Note that the round-to-nearest rule also implies overflow and
421      * underflow behaviour; if the exact value of {@code s} is large
422      * enough in magnitude (greater than or equal to ({@link
423      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
424      * rounding to {@code double} will result in an infinity and if the
425      * exact value of {@code s} is small enough in magnitude (less
426      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
427      * result in a zero.
428      *
429      * Finally, after rounding a {@code Double} object representing
430      * this {@code double} value is returned.
431      *
432      * <p> To interpret localized string representations of a
433      * floating-point value, use subclasses of {@link
434      * java.text.NumberFormat}.
435      *
436      * <p>Note that trailing format specifiers, specifiers that
437      * determine the type of a floating-point literal
438      * ({@code 1.0f} is a {@code float} value;
439      * {@code 1.0d} is a {@code double} value), do
440      * <em>not</em> influence the results of this method.  In other
441      * words, the numerical value of the input string is converted
442      * directly to the target floating-point type.  The two-step
443      * sequence of conversions, string to {@code float} followed
444      * by {@code float} to {@code double}, is <em>not</em>
445      * equivalent to converting a string directly to
446      * {@code double}. For example, the {@code float}
447      * literal {@code 0.1f} is equal to the {@code double}
448      * value {@code 0.10000000149011612}; the {@code float}
449      * literal {@code 0.1f} represents a different numerical
450      * value than the {@code double} literal
451      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
452      * represented in a binary floating-point number.)
453      *
454      * <p>To avoid calling this method on an invalid string and having
455      * a {@code NumberFormatException} be thrown, the regular
456      * expression below can be used to screen the input string:
457      *
458      * <pre>{@code
459      *  final String Digits     = "(\\p{Digit}+)";
460      *  final String HexDigits  = "(\\p{XDigit}+)";
461      *  // an exponent is 'e' or 'E' followed by an optionally
462      *  // signed decimal integer.
463      *  final String Exp        = "[eE][+-]?"+Digits;
464      *  final String fpRegex    =
465      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
466      *       "[+-]?(" + // Optional sign character
467      *       "NaN|" +           // "NaN" string
468      *       "Infinity|" +      // "Infinity" string
469      *
470      *       // A decimal floating-point string representing a finite positive
471      *       // number without a leading sign has at most five basic pieces:
472      *       // Digits . Digits ExponentPart FloatTypeSuffix
473      *       //
474      *       // Since this method allows integer-only strings as input
475      *       // in addition to strings of floating-point literals, the
476      *       // two sub-patterns below are simplifications of the grammar
477      *       // productions from section 3.10.2 of
478      *       // The Java Language Specification.
479      *
480      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
481      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
482      *
483      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
484      *       "(\\.("+Digits+")("+Exp+")?)|"+
485      *
486      *       // Hexadecimal strings
487      *       "((" +
488      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
489      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
490      *
491      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
492      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
493      *
494      *        ")[pP][+-]?" + Digits + "))" +
495      *       "[fFdD]?))" +
496      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
497      *
498      *  if (Pattern.matches(fpRegex, myString))
499      *      Double.valueOf(myString); // Will not throw NumberFormatException
500      *  else {
501      *      // Perform suitable alternative action
502      *  }
503      * }</pre>
504      *
505      * @param      s   the string to be parsed.
506      * @return     a {@code Double} object holding the value
507      *             represented by the {@code String} argument.
508      * @throws     NumberFormatException  if the string does not contain a
509      *             parsable number.
510      */
valueOf(String s)511     public static Double valueOf(String s) throws NumberFormatException {
512         return new Double(parseDouble(s));
513     }
514 
515     /**
516      * Returns a {@code Double} instance representing the specified
517      * {@code double} value.
518      * If a new {@code Double} instance is not required, this method
519      * should generally be used in preference to the constructor
520      * {@link #Double(double)}, as this method is likely to yield
521      * significantly better space and time performance by caching
522      * frequently requested values.
523      *
524      * @param  d a double value.
525      * @return a {@code Double} instance representing {@code d}.
526      * @since  1.5
527      */
528     @HotSpotIntrinsicCandidate
valueOf(double d)529     public static Double valueOf(double d) {
530         return new Double(d);
531     }
532 
533     /**
534      * Returns a new {@code double} initialized to the value
535      * represented by the specified {@code String}, as performed
536      * by the {@code valueOf} method of class
537      * {@code Double}.
538      *
539      * @param  s   the string to be parsed.
540      * @return the {@code double} value represented by the string
541      *         argument.
542      * @throws NullPointerException  if the string is null
543      * @throws NumberFormatException if the string does not contain
544      *         a parsable {@code double}.
545      * @see    java.lang.Double#valueOf(String)
546      * @since 1.2
547      */
parseDouble(String s)548     public static double parseDouble(String s) throws NumberFormatException {
549         return FloatingDecimal.parseDouble(s);
550     }
551 
552     /**
553      * Returns {@code true} if the specified number is a
554      * Not-a-Number (NaN) value, {@code false} otherwise.
555      *
556      * @param   v   the value to be tested.
557      * @return  {@code true} if the value of the argument is NaN;
558      *          {@code false} otherwise.
559      */
isNaN(double v)560     public static boolean isNaN(double v) {
561         return (v != v);
562     }
563 
564     /**
565      * Returns {@code true} if the specified number is infinitely
566      * large in magnitude, {@code false} otherwise.
567      *
568      * @param   v   the value to be tested.
569      * @return  {@code true} if the value of the argument is positive
570      *          infinity or negative infinity; {@code false} otherwise.
571      */
isInfinite(double v)572     public static boolean isInfinite(double v) {
573         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
574     }
575 
576     /**
577      * Returns {@code true} if the argument is a finite floating-point
578      * value; returns {@code false} otherwise (for NaN and infinity
579      * arguments).
580      *
581      * @param d the {@code double} value to be tested
582      * @return {@code true} if the argument is a finite
583      * floating-point value, {@code false} otherwise.
584      * @since 1.8
585      */
isFinite(double d)586     public static boolean isFinite(double d) {
587         return Math.abs(d) <= Double.MAX_VALUE;
588     }
589 
590     /**
591      * The value of the Double.
592      *
593      * @serial
594      */
595     private final double value;
596 
597     /**
598      * Constructs a newly allocated {@code Double} object that
599      * represents the primitive {@code double} argument.
600      *
601      * @param   value   the value to be represented by the {@code Double}.
602      *
603      * @deprecated
604      * It is rarely appropriate to use this constructor. The static factory
605      * {@link #valueOf(double)} is generally a better choice, as it is
606      * likely to yield significantly better space and time performance.
607      */
608     @Deprecated(since="9")
Double(double value)609     public Double(double value) {
610         this.value = value;
611     }
612 
613     /**
614      * Constructs a newly allocated {@code Double} object that
615      * represents the floating-point value of type {@code double}
616      * represented by the string. The string is converted to a
617      * {@code double} value as if by the {@code valueOf} method.
618      *
619      * @param  s  a string to be converted to a {@code Double}.
620      * @throws    NumberFormatException if the string does not contain a
621      *            parsable number.
622      *
623      * @deprecated
624      * It is rarely appropriate to use this constructor.
625      * Use {@link #parseDouble(String)} to convert a string to a
626      * {@code double} primitive, or use {@link #valueOf(String)}
627      * to convert a string to a {@code Double} object.
628      */
629     @Deprecated(since="9")
Double(String s)630     public Double(String s) throws NumberFormatException {
631         value = parseDouble(s);
632     }
633 
634     /**
635      * Returns {@code true} if this {@code Double} value is
636      * a Not-a-Number (NaN), {@code false} otherwise.
637      *
638      * @return  {@code true} if the value represented by this object is
639      *          NaN; {@code false} otherwise.
640      */
isNaN()641     public boolean isNaN() {
642         return isNaN(value);
643     }
644 
645     /**
646      * Returns {@code true} if this {@code Double} value is
647      * infinitely large in magnitude, {@code false} otherwise.
648      *
649      * @return  {@code true} if the value represented by this object is
650      *          positive infinity or negative infinity;
651      *          {@code false} otherwise.
652      */
isInfinite()653     public boolean isInfinite() {
654         return isInfinite(value);
655     }
656 
657     /**
658      * Returns a string representation of this {@code Double} object.
659      * The primitive {@code double} value represented by this
660      * object is converted to a string exactly as if by the method
661      * {@code toString} of one argument.
662      *
663      * @return  a {@code String} representation of this object.
664      * @see java.lang.Double#toString(double)
665      */
toString()666     public String toString() {
667         return toString(value);
668     }
669 
670     /**
671      * Returns the value of this {@code Double} as a {@code byte}
672      * after a narrowing primitive conversion.
673      *
674      * @return  the {@code double} value represented by this object
675      *          converted to type {@code byte}
676      * @jls 5.1.3 Narrowing Primitive Conversion
677      * @since 1.1
678      */
byteValue()679     public byte byteValue() {
680         return (byte)value;
681     }
682 
683     /**
684      * Returns the value of this {@code Double} as a {@code short}
685      * after a narrowing primitive conversion.
686      *
687      * @return  the {@code double} value represented by this object
688      *          converted to type {@code short}
689      * @jls 5.1.3 Narrowing Primitive Conversion
690      * @since 1.1
691      */
shortValue()692     public short shortValue() {
693         return (short)value;
694     }
695 
696     /**
697      * Returns the value of this {@code Double} as an {@code int}
698      * after a narrowing primitive conversion.
699      * @jls 5.1.3 Narrowing Primitive Conversion
700      *
701      * @return  the {@code double} value represented by this object
702      *          converted to type {@code int}
703      */
intValue()704     public int intValue() {
705         return (int)value;
706     }
707 
708     /**
709      * Returns the value of this {@code Double} as a {@code long}
710      * after a narrowing primitive conversion.
711      *
712      * @return  the {@code double} value represented by this object
713      *          converted to type {@code long}
714      * @jls 5.1.3 Narrowing Primitive Conversion
715      */
longValue()716     public long longValue() {
717         return (long)value;
718     }
719 
720     /**
721      * Returns the value of this {@code Double} as a {@code float}
722      * after a narrowing primitive conversion.
723      *
724      * @return  the {@code double} value represented by this object
725      *          converted to type {@code float}
726      * @jls 5.1.3 Narrowing Primitive Conversion
727      * @since 1.0
728      */
floatValue()729     public float floatValue() {
730         return (float)value;
731     }
732 
733     /**
734      * Returns the {@code double} value of this {@code Double} object.
735      *
736      * @return the {@code double} value represented by this object
737      */
738     @HotSpotIntrinsicCandidate
doubleValue()739     public double doubleValue() {
740         return value;
741     }
742 
743     /**
744      * Returns a hash code for this {@code Double} object. The
745      * result is the exclusive OR of the two halves of the
746      * {@code long} integer bit representation, exactly as
747      * produced by the method {@link #doubleToLongBits(double)}, of
748      * the primitive {@code double} value represented by this
749      * {@code Double} object. That is, the hash code is the value
750      * of the expression:
751      *
752      * <blockquote>
753      *  {@code (int)(v^(v>>>32))}
754      * </blockquote>
755      *
756      * where {@code v} is defined by:
757      *
758      * <blockquote>
759      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
760      * </blockquote>
761      *
762      * @return  a {@code hash code} value for this object.
763      */
764     @Override
hashCode()765     public int hashCode() {
766         return Double.hashCode(value);
767     }
768 
769     /**
770      * Returns a hash code for a {@code double} value; compatible with
771      * {@code Double.hashCode()}.
772      *
773      * @param value the value to hash
774      * @return a hash code value for a {@code double} value.
775      * @since 1.8
776      */
hashCode(double value)777     public static int hashCode(double value) {
778         long bits = doubleToLongBits(value);
779         return (int)(bits ^ (bits >>> 32));
780     }
781 
782     /**
783      * Compares this object against the specified object.  The result
784      * is {@code true} if and only if the argument is not
785      * {@code null} and is a {@code Double} object that
786      * represents a {@code double} that has the same value as the
787      * {@code double} represented by this object. For this
788      * purpose, two {@code double} values are considered to be
789      * the same if and only if the method {@link
790      * #doubleToLongBits(double)} returns the identical
791      * {@code long} value when applied to each.
792      *
793      * <p>Note that in most cases, for two instances of class
794      * {@code Double}, {@code d1} and {@code d2}, the
795      * value of {@code d1.equals(d2)} is {@code true} if and
796      * only if
797      *
798      * <blockquote>
799      *  {@code d1.doubleValue() == d2.doubleValue()}
800      * </blockquote>
801      *
802      * <p>also has the value {@code true}. However, there are two
803      * exceptions:
804      * <ul>
805      * <li>If {@code d1} and {@code d2} both represent
806      *     {@code Double.NaN}, then the {@code equals} method
807      *     returns {@code true}, even though
808      *     {@code Double.NaN==Double.NaN} has the value
809      *     {@code false}.
810      * <li>If {@code d1} represents {@code +0.0} while
811      *     {@code d2} represents {@code -0.0}, or vice versa,
812      *     the {@code equal} test has the value {@code false},
813      *     even though {@code +0.0==-0.0} has the value {@code true}.
814      * </ul>
815      * This definition allows hash tables to operate properly.
816      * @param   obj   the object to compare with.
817      * @return  {@code true} if the objects are the same;
818      *          {@code false} otherwise.
819      * @see java.lang.Double#doubleToLongBits(double)
820      */
equals(Object obj)821     public boolean equals(Object obj) {
822         return (obj instanceof Double)
823                && (doubleToLongBits(((Double)obj).value) ==
824                       doubleToLongBits(value));
825     }
826 
827     /**
828      * Returns a representation of the specified floating-point value
829      * according to the IEEE 754 floating-point "double
830      * format" bit layout.
831      *
832      * <p>Bit 63 (the bit that is selected by the mask
833      * {@code 0x8000000000000000L}) represents the sign of the
834      * floating-point number. Bits
835      * 62-52 (the bits that are selected by the mask
836      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
837      * (the bits that are selected by the mask
838      * {@code 0x000fffffffffffffL}) represent the significand
839      * (sometimes called the mantissa) of the floating-point number.
840      *
841      * <p>If the argument is positive infinity, the result is
842      * {@code 0x7ff0000000000000L}.
843      *
844      * <p>If the argument is negative infinity, the result is
845      * {@code 0xfff0000000000000L}.
846      *
847      * <p>If the argument is NaN, the result is
848      * {@code 0x7ff8000000000000L}.
849      *
850      * <p>In all cases, the result is a {@code long} integer that, when
851      * given to the {@link #longBitsToDouble(long)} method, will produce a
852      * floating-point value the same as the argument to
853      * {@code doubleToLongBits} (except all NaN values are
854      * collapsed to a single "canonical" NaN value).
855      *
856      * @param   value   a {@code double} precision floating-point number.
857      * @return the bits that represent the floating-point number.
858      */
859     @HotSpotIntrinsicCandidate
doubleToLongBits(double value)860     public static long doubleToLongBits(double value) {
861         if (!isNaN(value)) {
862             return doubleToRawLongBits(value);
863         }
864         return 0x7ff8000000000000L;
865     }
866 
867     /**
868      * Returns a representation of the specified floating-point value
869      * according to the IEEE 754 floating-point "double
870      * format" bit layout, preserving Not-a-Number (NaN) values.
871      *
872      * <p>Bit 63 (the bit that is selected by the mask
873      * {@code 0x8000000000000000L}) represents the sign of the
874      * floating-point number. Bits
875      * 62-52 (the bits that are selected by the mask
876      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
877      * (the bits that are selected by the mask
878      * {@code 0x000fffffffffffffL}) represent the significand
879      * (sometimes called the mantissa) of the floating-point number.
880      *
881      * <p>If the argument is positive infinity, the result is
882      * {@code 0x7ff0000000000000L}.
883      *
884      * <p>If the argument is negative infinity, the result is
885      * {@code 0xfff0000000000000L}.
886      *
887      * <p>If the argument is NaN, the result is the {@code long}
888      * integer representing the actual NaN value.  Unlike the
889      * {@code doubleToLongBits} method,
890      * {@code doubleToRawLongBits} does not collapse all the bit
891      * patterns encoding a NaN to a single "canonical" NaN
892      * value.
893      *
894      * <p>In all cases, the result is a {@code long} integer that,
895      * when given to the {@link #longBitsToDouble(long)} method, will
896      * produce a floating-point value the same as the argument to
897      * {@code doubleToRawLongBits}.
898      *
899      * @param   value   a {@code double} precision floating-point number.
900      * @return the bits that represent the floating-point number.
901      * @since 1.3
902      */
903     @HotSpotIntrinsicCandidate
doubleToRawLongBits(double value)904     public static native long doubleToRawLongBits(double value);
905 
906     /**
907      * Returns the {@code double} value corresponding to a given
908      * bit representation.
909      * The argument is considered to be a representation of a
910      * floating-point value according to the IEEE 754 floating-point
911      * "double format" bit layout.
912      *
913      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
914      * is positive infinity.
915      *
916      * <p>If the argument is {@code 0xfff0000000000000L}, the result
917      * is negative infinity.
918      *
919      * <p>If the argument is any value in the range
920      * {@code 0x7ff0000000000001L} through
921      * {@code 0x7fffffffffffffffL} or in the range
922      * {@code 0xfff0000000000001L} through
923      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
924      * 754 floating-point operation provided by Java can distinguish
925      * between two NaN values of the same type with different bit
926      * patterns.  Distinct values of NaN are only distinguishable by
927      * use of the {@code Double.doubleToRawLongBits} method.
928      *
929      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
930      * values that can be computed from the argument:
931      *
932      * <blockquote><pre>{@code
933      * int s = ((bits >> 63) == 0) ? 1 : -1;
934      * int e = (int)((bits >> 52) & 0x7ffL);
935      * long m = (e == 0) ?
936      *                 (bits & 0xfffffffffffffL) << 1 :
937      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
938      * }</pre></blockquote>
939      *
940      * Then the floating-point result equals the value of the mathematical
941      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
942      *
943      * <p>Note that this method may not be able to return a
944      * {@code double} NaN with exactly same bit pattern as the
945      * {@code long} argument.  IEEE 754 distinguishes between two
946      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
947      * differences between the two kinds of NaN are generally not
948      * visible in Java.  Arithmetic operations on signaling NaNs turn
949      * them into quiet NaNs with a different, but often similar, bit
950      * pattern.  However, on some processors merely copying a
951      * signaling NaN also performs that conversion.  In particular,
952      * copying a signaling NaN to return it to the calling method
953      * may perform this conversion.  So {@code longBitsToDouble}
954      * may not be able to return a {@code double} with a
955      * signaling NaN bit pattern.  Consequently, for some
956      * {@code long} values,
957      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
958      * <i>not</i> equal {@code start}.  Moreover, which
959      * particular bit patterns represent signaling NaNs is platform
960      * dependent; although all NaN bit patterns, quiet or signaling,
961      * must be in the NaN range identified above.
962      *
963      * @param   bits   any {@code long} integer.
964      * @return  the {@code double} floating-point value with the same
965      *          bit pattern.
966      */
967     @HotSpotIntrinsicCandidate
longBitsToDouble(long bits)968     public static native double longBitsToDouble(long bits);
969 
970     /**
971      * Compares two {@code Double} objects numerically.  There
972      * are two ways in which comparisons performed by this method
973      * differ from those performed by the Java language numerical
974      * comparison operators ({@code <, <=, ==, >=, >})
975      * when applied to primitive {@code double} values:
976      * <ul><li>
977      *          {@code Double.NaN} is considered by this method
978      *          to be equal to itself and greater than all other
979      *          {@code double} values (including
980      *          {@code Double.POSITIVE_INFINITY}).
981      * <li>
982      *          {@code 0.0d} is considered by this method to be greater
983      *          than {@code -0.0d}.
984      * </ul>
985      * This ensures that the <i>natural ordering</i> of
986      * {@code Double} objects imposed by this method is <i>consistent
987      * with equals</i>.
988      *
989      * @param   anotherDouble   the {@code Double} to be compared.
990      * @return  the value {@code 0} if {@code anotherDouble} is
991      *          numerically equal to this {@code Double}; a value
992      *          less than {@code 0} if this {@code Double}
993      *          is numerically less than {@code anotherDouble};
994      *          and a value greater than {@code 0} if this
995      *          {@code Double} is numerically greater than
996      *          {@code anotherDouble}.
997      *
998      * @since   1.2
999      */
compareTo(Double anotherDouble)1000     public int compareTo(Double anotherDouble) {
1001         return Double.compare(value, anotherDouble.value);
1002     }
1003 
1004     /**
1005      * Compares the two specified {@code double} values. The sign
1006      * of the integer value returned is the same as that of the
1007      * integer that would be returned by the call:
1008      * <pre>
1009      *    new Double(d1).compareTo(new Double(d2))
1010      * </pre>
1011      *
1012      * @param   d1        the first {@code double} to compare
1013      * @param   d2        the second {@code double} to compare
1014      * @return  the value {@code 0} if {@code d1} is
1015      *          numerically equal to {@code d2}; a value less than
1016      *          {@code 0} if {@code d1} is numerically less than
1017      *          {@code d2}; and a value greater than {@code 0}
1018      *          if {@code d1} is numerically greater than
1019      *          {@code d2}.
1020      * @since 1.4
1021      */
compare(double d1, double d2)1022     public static int compare(double d1, double d2) {
1023         if (d1 < d2)
1024             return -1;           // Neither val is NaN, thisVal is smaller
1025         if (d1 > d2)
1026             return 1;            // Neither val is NaN, thisVal is larger
1027 
1028         // Cannot use doubleToRawLongBits because of possibility of NaNs.
1029         long thisBits    = Double.doubleToLongBits(d1);
1030         long anotherBits = Double.doubleToLongBits(d2);
1031 
1032         return (thisBits == anotherBits ?  0 : // Values are equal
1033                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1034                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1035     }
1036 
1037     /**
1038      * Adds two {@code double} values together as per the + operator.
1039      *
1040      * @param a the first operand
1041      * @param b the second operand
1042      * @return the sum of {@code a} and {@code b}
1043      * @jls 4.2.4 Floating-Point Operations
1044      * @see java.util.function.BinaryOperator
1045      * @since 1.8
1046      */
sum(double a, double b)1047     public static double sum(double a, double b) {
1048         return a + b;
1049     }
1050 
1051     /**
1052      * Returns the greater of two {@code double} values
1053      * as if by calling {@link Math#max(double, double) Math.max}.
1054      *
1055      * @param a the first operand
1056      * @param b the second operand
1057      * @return the greater of {@code a} and {@code b}
1058      * @see java.util.function.BinaryOperator
1059      * @since 1.8
1060      */
max(double a, double b)1061     public static double max(double a, double b) {
1062         return Math.max(a, b);
1063     }
1064 
1065     /**
1066      * Returns the smaller of two {@code double} values
1067      * as if by calling {@link Math#min(double, double) Math.min}.
1068      *
1069      * @param a the first operand
1070      * @param b the second operand
1071      * @return the smaller of {@code a} and {@code b}.
1072      * @see java.util.function.BinaryOperator
1073      * @since 1.8
1074      */
min(double a, double b)1075     public static double min(double a, double b) {
1076         return Math.min(a, b);
1077     }
1078 
1079     /**
1080      * Returns an {@link Optional} containing the nominal descriptor for this
1081      * instance, which is the instance itself.
1082      *
1083      * @return an {@link Optional} describing the {@linkplain Double} instance
1084      * @since 12
1085      */
1086     @Override
describeConstable()1087     public Optional<Double> describeConstable() {
1088         return Optional.of(this);
1089     }
1090 
1091     /**
1092      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1093      * the instance itself.
1094      *
1095      * @param lookup ignored
1096      * @return the {@linkplain Double} instance
1097      * @since 12
1098      */
1099     @Override
resolveConstantDesc(MethodHandles.Lookup lookup)1100     public Double resolveConstantDesc(MethodHandles.Lookup lookup) {
1101         return this;
1102     }
1103 
1104     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1105     private static final long serialVersionUID = -9172774392245257468L;
1106 }
1107