1 /*
2  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 /* __ieee754_log(x)
27  * Return the logrithm of x
28  *
29  * Method :
30  *   1. Argument Reduction: find k and f such that
31  *                      x = 2^k * (1+f),
32  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
33  *
34  *   2. Approximation of log(1+f).
35  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
36  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
37  *               = 2s + s*R
38  *      We use a special Reme algorithm on [0,0.1716] to generate
39  *      a polynomial of degree 14 to approximate R The maximum error
40  *      of this polynomial approximation is bounded by 2**-58.45. In
41  *      other words,
42  *                      2      4      6      8      10      12      14
43  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
44  *      (the values of Lg1 to Lg7 are listed in the program)
45  *      and
46  *          |      2          14          |     -58.45
47  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
48  *          |                             |
49  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50  *      In order to guarantee error in log below 1ulp, we compute log
51  *      by
52  *              log(1+f) = f - s*(f - R)        (if f is not too large)
53  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
54  *
55  *      3. Finally,  log(x) = k*ln2 + log(1+f).
56  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
57  *         Here ln2 is split into two floating point number:
58  *                      ln2_hi + ln2_lo,
59  *         where n*ln2_hi is always exact for |n| < 2000.
60  *
61  * Special cases:
62  *      log(x) is NaN with signal if x < 0 (including -INF) ;
63  *      log(+INF) is +INF; log(0) is -INF with signal;
64  *      log(NaN) is that NaN with no signal.
65  *
66  * Accuracy:
67  *      according to an error analysis, the error is always less than
68  *      1 ulp (unit in the last place).
69  *
70  * Constants:
71  * The hexadecimal values are the intended ones for the following
72  * constants. The decimal values may be used, provided that the
73  * compiler will convert from decimal to binary accurately enough
74  * to produce the hexadecimal values shown.
75  */
76 
77 #include "fdlibm.h"
78 
79 #ifdef __STDC__
80 static const double
81 #else
82 static double
83 #endif
84 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
85 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
86 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
87 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
88 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
89 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
90 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
91 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
92 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
93 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
94 
95 static double zero   =  0.0;
96 
97 #ifdef __STDC__
__ieee754_log(double x)98         double __ieee754_log(double x)
99 #else
100         double __ieee754_log(x)
101         double x;
102 #endif
103 {
104         double hfsq,f,s,z,R,w,t1,t2,dk;
105         int k,hx,i,j;
106         unsigned lx;
107 
108         hx = __HI(x);           /* high word of x */
109         lx = __LO(x);           /* low  word of x */
110 
111         k=0;
112         if (hx < 0x00100000) {                  /* x < 2**-1022  */
113             if (((hx&0x7fffffff)|lx)==0)
114                 return -two54/zero;             /* log(+-0)=-inf */
115             if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
116             k -= 54; x *= two54; /* subnormal number, scale up x */
117             hx = __HI(x);               /* high word of x */
118         }
119         if (hx >= 0x7ff00000) return x+x;
120         k += (hx>>20)-1023;
121         hx &= 0x000fffff;
122         i = (hx+0x95f64)&0x100000;
123         __HI(x) = hx|(i^0x3ff00000);    /* normalize x or x/2 */
124         k += (i>>20);
125         f = x-1.0;
126         if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
127             if(f==zero) {
128                 if (k==0) return zero;
129                 else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
130             }
131             R = f*f*(0.5-0.33333333333333333*f);
132             if(k==0) return f-R; else {dk=(double)k;
133                      return dk*ln2_hi-((R-dk*ln2_lo)-f);}
134         }
135         s = f/(2.0+f);
136         dk = (double)k;
137         z = s*s;
138         i = hx-0x6147a;
139         w = z*z;
140         j = 0x6b851-hx;
141         t1= w*(Lg2+w*(Lg4+w*Lg6));
142         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
143         i |= j;
144         R = t2+t1;
145         if(i>0) {
146             hfsq=0.5*f*f;
147             if(k==0) return f-(hfsq-s*(hfsq+R)); else
148                      return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
149         } else {
150             if(k==0) return f-s*(f-R); else
151                      return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
152         }
153 }
154