1 /*
2  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 /* __ieee754_sqrt(x)
27  * Return correctly rounded sqrt.
28  *           ------------------------------------------
29  *           |  Use the hardware sqrt if you have one |
30  *           ------------------------------------------
31  * Method:
32  *   Bit by bit method using integer arithmetic. (Slow, but portable)
33  *   1. Normalization
34  *      Scale x to y in [1,4) with even powers of 2:
35  *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
36  *              sqrt(x) = 2^k * sqrt(y)
37  *   2. Bit by bit computation
38  *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
39  *           i                                                   0
40  *                                     i+1         2
41  *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
42  *           i      i            i                 i
43  *
44  *      To compute q    from q , one checks whether
45  *                  i+1       i
46  *
47  *                            -(i+1) 2
48  *                      (q + 2      ) <= y.                     (2)
49  *                        i
50  *                                                            -(i+1)
51  *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
52  *                             i+1   i             i+1   i
53  *
54  *      With some algebric manipulation, it is not difficult to see
55  *      that (2) is equivalent to
56  *                             -(i+1)
57  *                      s  +  2       <= y                      (3)
58  *                       i                i
59  *
60  *      The advantage of (3) is that s  and y  can be computed by
61  *                                    i      i
62  *      the following recurrence formula:
63  *          if (3) is false
64  *
65  *          s     =  s  ,       y    = y   ;                    (4)
66  *           i+1      i          i+1    i
67  *
68  *          otherwise,
69  *                         -i                     -(i+1)
70  *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
71  *           i+1      i          i+1    i     i
72  *
73  *      One may easily use induction to prove (4) and (5).
74  *      Note. Since the left hand side of (3) contain only i+2 bits,
75  *            it does not necessary to do a full (53-bit) comparison
76  *            in (3).
77  *   3. Final rounding
78  *      After generating the 53 bits result, we compute one more bit.
79  *      Together with the remainder, we can decide whether the
80  *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
81  *      (it will never equal to 1/2ulp).
82  *      The rounding mode can be detected by checking whether
83  *      huge + tiny is equal to huge, and whether huge - tiny is
84  *      equal to huge for some floating point number "huge" and "tiny".
85  *
86  * Special cases:
87  *      sqrt(+-0) = +-0         ... exact
88  *      sqrt(inf) = inf
89  *      sqrt(-ve) = NaN         ... with invalid signal
90  *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
91  *
92  * Other methods : see the appended file at the end of the program below.
93  *---------------
94  */
95 
96 #include "fdlibm.h"
97 
98 #ifdef __STDC__
99 static  const double    one     = 1.0, tiny=1.0e-300;
100 #else
101 static  double  one     = 1.0, tiny=1.0e-300;
102 #endif
103 
104 #ifdef __STDC__
__ieee754_sqrt(double x)105         double __ieee754_sqrt(double x)
106 #else
107         double __ieee754_sqrt(x)
108         double x;
109 #endif
110 {
111         double z;
112         int     sign = (int)0x80000000;
113         unsigned r,t1,s1,ix1,q1;
114         int ix0,s0,q,m,t,i;
115 
116         ix0 = __HI(x);                  /* high word of x */
117         ix1 = __LO(x);          /* low word of x */
118 
119     /* take care of Inf and NaN */
120         if((ix0&0x7ff00000)==0x7ff00000) {
121             return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
122                                            sqrt(-inf)=sNaN */
123         }
124     /* take care of zero */
125         if(ix0<=0) {
126             if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
127             else if(ix0<0)
128                 return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
129         }
130     /* normalize x */
131         m = (ix0>>20);
132         if(m==0) {                              /* subnormal x */
133             while(ix0==0) {
134                 m -= 21;
135                 ix0 |= (ix1>>11); ix1 <<= 21;
136             }
137             for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
138             m -= i-1;
139             ix0 |= (ix1>>(32-i));
140             ix1 <<= i;
141         }
142         m -= 1023;      /* unbias exponent */
143         ix0 = (ix0&0x000fffff)|0x00100000;
144         if(m&1){        /* odd m, double x to make it even */
145             ix0 += ix0 + ((ix1&sign)>>31);
146             ix1 += ix1;
147         }
148         m >>= 1;        /* m = [m/2] */
149 
150     /* generate sqrt(x) bit by bit */
151         ix0 += ix0 + ((ix1&sign)>>31);
152         ix1 += ix1;
153         q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
154         r = 0x00200000;         /* r = moving bit from right to left */
155 
156         while(r!=0) {
157             t = s0+r;
158             if(t<=ix0) {
159                 s0   = t+r;
160                 ix0 -= t;
161                 q   += r;
162             }
163             ix0 += ix0 + ((ix1&sign)>>31);
164             ix1 += ix1;
165             r>>=1;
166         }
167 
168         r = sign;
169         while(r!=0) {
170             t1 = s1+r;
171             t  = s0;
172             if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
173                 s1  = t1+r;
174                 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
175                 ix0 -= t;
176                 if (ix1 < t1) ix0 -= 1;
177                 ix1 -= t1;
178                 q1  += r;
179             }
180             ix0 += ix0 + ((ix1&sign)>>31);
181             ix1 += ix1;
182             r>>=1;
183         }
184 
185     /* use floating add to find out rounding direction */
186         if((ix0|ix1)!=0) {
187             z = one-tiny; /* trigger inexact flag */
188             if (z>=one) {
189                 z = one+tiny;
190                 if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
191                 else if (z>one) {
192                     if (q1==(unsigned)0xfffffffe) q+=1;
193                     q1+=2;
194                 } else
195                     q1 += (q1&1);
196             }
197         }
198         ix0 = (q>>1)+0x3fe00000;
199         ix1 =  q1>>1;
200         if ((q&1)==1) ix1 |= sign;
201         ix0 += (m <<20);
202         __HI(z) = ix0;
203         __LO(z) = ix1;
204         return z;
205 }
206 
207 /*
208 Other methods  (use floating-point arithmetic)
209 -------------
210 (This is a copy of a drafted paper by Prof W. Kahan
211 and K.C. Ng, written in May, 1986)
212 
213         Two algorithms are given here to implement sqrt(x)
214         (IEEE double precision arithmetic) in software.
215         Both supply sqrt(x) correctly rounded. The first algorithm (in
216         Section A) uses newton iterations and involves four divisions.
217         The second one uses reciproot iterations to avoid division, but
218         requires more multiplications. Both algorithms need the ability
219         to chop results of arithmetic operations instead of round them,
220         and the INEXACT flag to indicate when an arithmetic operation
221         is executed exactly with no roundoff error, all part of the
222         standard (IEEE 754-1985). The ability to perform shift, add,
223         subtract and logical AND operations upon 32-bit words is needed
224         too, though not part of the standard.
225 
226 A.  sqrt(x) by Newton Iteration
227 
228    (1)  Initial approximation
229 
230         Let x0 and x1 be the leading and the trailing 32-bit words of
231         a floating point number x (in IEEE double format) respectively
232 
233             1    11                  52                           ...widths
234            ------------------------------------------------------
235         x: |s|    e     |             f                         |
236            ------------------------------------------------------
237               msb    lsb  msb                                 lsb ...order
238 
239 
240              ------------------------        ------------------------
241         x0:  |s|   e    |    f1     |    x1: |          f2           |
242              ------------------------        ------------------------
243 
244         By performing shifts and subtracts on x0 and x1 (both regarded
245         as integers), we obtain an 8-bit approximation of sqrt(x) as
246         follows.
247 
248                 k  := (x0>>1) + 0x1ff80000;
249                 y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
250         Here k is a 32-bit integer and T1[] is an integer array containing
251         correction terms. Now magically the floating value of y (y's
252         leading 32-bit word is y0, the value of its trailing word is 0)
253         approximates sqrt(x) to almost 8-bit.
254 
255         Value of T1:
256         static int T1[32]= {
257         0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
258         29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
259         83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
260         16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};
261 
262     (2) Iterative refinement
263 
264         Apply Heron's rule three times to y, we have y approximates
265         sqrt(x) to within 1 ulp (Unit in the Last Place):
266 
267                 y := (y+x/y)/2          ... almost 17 sig. bits
268                 y := (y+x/y)/2          ... almost 35 sig. bits
269                 y := y-(y-x/y)/2        ... within 1 ulp
270 
271 
272         Remark 1.
273             Another way to improve y to within 1 ulp is:
274 
275                 y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
276                 y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)
277 
278                                 2
279                             (x-y )*y
280                 y := y + 2* ----------  ...within 1 ulp
281                                2
282                              3y  + x
283 
284 
285         This formula has one division fewer than the one above; however,
286         it requires more multiplications and additions. Also x must be
287         scaled in advance to avoid spurious overflow in evaluating the
288         expression 3y*y+x. Hence it is not recommended uless division
289         is slow. If division is very slow, then one should use the
290         reciproot algorithm given in section B.
291 
292     (3) Final adjustment
293 
294         By twiddling y's last bit it is possible to force y to be
295         correctly rounded according to the prevailing rounding mode
296         as follows. Let r and i be copies of the rounding mode and
297         inexact flag before entering the square root program. Also we
298         use the expression y+-ulp for the next representable floating
299         numbers (up and down) of y. Note that y+-ulp = either fixed
300         point y+-1, or multiply y by nextafter(1,+-inf) in chopped
301         mode.
302 
303                 I := FALSE;     ... reset INEXACT flag I
304                 R := RZ;        ... set rounding mode to round-toward-zero
305                 z := x/y;       ... chopped quotient, possibly inexact
306                 If(not I) then {        ... if the quotient is exact
307                     if(z=y) {
308                         I := i;  ... restore inexact flag
309                         R := r;  ... restore rounded mode
310                         return sqrt(x):=y.
311                     } else {
312                         z := z - ulp;   ... special rounding
313                     }
314                 }
315                 i := TRUE;              ... sqrt(x) is inexact
316                 If (r=RN) then z=z+ulp  ... rounded-to-nearest
317                 If (r=RP) then {        ... round-toward-+inf
318                     y = y+ulp; z=z+ulp;
319                 }
320                 y := y+z;               ... chopped sum
321                 y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
322                 I := i;                 ... restore inexact flag
323                 R := r;                 ... restore rounded mode
324                 return sqrt(x):=y.
325 
326     (4) Special cases
327 
328         Square root of +inf, +-0, or NaN is itself;
329         Square root of a negative number is NaN with invalid signal.
330 
331 
332 B.  sqrt(x) by Reciproot Iteration
333 
334    (1)  Initial approximation
335 
336         Let x0 and x1 be the leading and the trailing 32-bit words of
337         a floating point number x (in IEEE double format) respectively
338         (see section A). By performing shifs and subtracts on x0 and y0,
339         we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
340 
341             k := 0x5fe80000 - (x0>>1);
342             y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits
343 
344         Here k is a 32-bit integer and T2[] is an integer array
345         containing correction terms. Now magically the floating
346         value of y (y's leading 32-bit word is y0, the value of
347         its trailing word y1 is set to zero) approximates 1/sqrt(x)
348         to almost 7.8-bit.
349 
350         Value of T2:
351         static int T2[64]= {
352         0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
353         0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
354         0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
355         0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
356         0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
357         0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
358         0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
359         0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
360 
361     (2) Iterative refinement
362 
363         Apply Reciproot iteration three times to y and multiply the
364         result by x to get an approximation z that matches sqrt(x)
365         to about 1 ulp. To be exact, we will have
366                 -1ulp < sqrt(x)-z<1.0625ulp.
367 
368         ... set rounding mode to Round-to-nearest
369            y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
370            y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
371         ... special arrangement for better accuracy
372            z := x*y                     ... 29 bits to sqrt(x), with z*y<1
373            z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)
374 
375         Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
376         (a) the term z*y in the final iteration is always less than 1;
377         (b) the error in the final result is biased upward so that
378                 -1 ulp < sqrt(x) - z < 1.0625 ulp
379             instead of |sqrt(x)-z|<1.03125ulp.
380 
381     (3) Final adjustment
382 
383         By twiddling y's last bit it is possible to force y to be
384         correctly rounded according to the prevailing rounding mode
385         as follows. Let r and i be copies of the rounding mode and
386         inexact flag before entering the square root program. Also we
387         use the expression y+-ulp for the next representable floating
388         numbers (up and down) of y. Note that y+-ulp = either fixed
389         point y+-1, or multiply y by nextafter(1,+-inf) in chopped
390         mode.
391 
392         R := RZ;                ... set rounding mode to round-toward-zero
393         switch(r) {
394             case RN:            ... round-to-nearest
395                if(x<= z*(z-ulp)...chopped) z = z - ulp; else
396                if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
397                break;
398             case RZ:case RM:    ... round-to-zero or round-to--inf
399                R:=RP;           ... reset rounding mod to round-to-+inf
400                if(x<z*z ... rounded up) z = z - ulp; else
401                if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
402                break;
403             case RP:            ... round-to-+inf
404                if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
405                if(x>z*z ...chopped) z = z+ulp;
406                break;
407         }
408 
409         Remark 3. The above comparisons can be done in fixed point. For
410         example, to compare x and w=z*z chopped, it suffices to compare
411         x1 and w1 (the trailing parts of x and w), regarding them as
412         two's complement integers.
413 
414         ...Is z an exact square root?
415         To determine whether z is an exact square root of x, let z1 be the
416         trailing part of z, and also let x0 and x1 be the leading and
417         trailing parts of x.
418 
419         If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
420             I := 1;             ... Raise Inexact flag: z is not exact
421         else {
422             j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
423             k := z1 >> 26;              ... get z's 25-th and 26-th
424                                             fraction bits
425             I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
426         }
427         R:= r           ... restore rounded mode
428         return sqrt(x):=z.
429 
430         If multiplication is cheaper then the foregoing red tape, the
431         Inexact flag can be evaluated by
432 
433             I := i;
434             I := (z*z!=x) or I.
435 
436         Note that z*z can overwrite I; this value must be sensed if it is
437         True.
438 
439         Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
440         zero.
441 
442                     --------------------
443                 z1: |        f2        |
444                     --------------------
445                 bit 31             bit 0
446 
447         Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
448         or even of logb(x) have the following relations:
449 
450         -------------------------------------------------
451         bit 27,26 of z1         bit 1,0 of x1   logb(x)
452         -------------------------------------------------
453         00                      00              odd and even
454         01                      01              even
455         10                      10              odd
456         10                      00              even
457         11                      01              even
458         -------------------------------------------------
459 
460     (4) Special cases (see (4) of Section A).
461 
462  */
463