1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 // This file is available under and governed by the GNU General Public
26 // License version 2 only, as published by the Free Software Foundation.
27 // However, the following notice accompanied the original version of this
28 // file:
29 //
30 //---------------------------------------------------------------------------------
31 //
32 //  Little Color Management System
33 //  Copyright (c) 1998-2020 Marti Maria Saguer
34 //
35 // Permission is hereby granted, free of charge, to any person obtaining
36 // a copy of this software and associated documentation files (the "Software"),
37 // to deal in the Software without restriction, including without limitation
38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
39 // and/or sell copies of the Software, and to permit persons to whom the Software
40 // is furnished to do so, subject to the following conditions:
41 //
42 // The above copyright notice and this permission notice shall be included in
43 // all copies or substantial portions of the Software.
44 //
45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52 //
53 //---------------------------------------------------------------------------------
54 //
55 
56 #include "lcms2_internal.h"
57 
58 // CIECAM 02 appearance model. Many thanks to Jordi Vilar for the debugging.
59 
60 // ---------- Implementation --------------------------------------------
61 
62 typedef struct  {
63 
64     cmsFloat64Number XYZ[3];
65     cmsFloat64Number RGB[3];
66     cmsFloat64Number RGBc[3];
67     cmsFloat64Number RGBp[3];
68     cmsFloat64Number RGBpa[3];
69     cmsFloat64Number a, b, h, e, H, A, J, Q, s, t, C, M;
70     cmsFloat64Number abC[2];
71     cmsFloat64Number abs[2];
72     cmsFloat64Number abM[2];
73 
74 } CAM02COLOR;
75 
76 typedef struct  {
77 
78     CAM02COLOR adoptedWhite;
79     cmsFloat64Number LA, Yb;
80     cmsFloat64Number F, c, Nc;
81     cmsUInt32Number surround;
82     cmsFloat64Number n, Nbb, Ncb, z, FL, D;
83 
84     cmsContext ContextID;
85 
86 } cmsCIECAM02;
87 
88 
89 static
compute_n(cmsCIECAM02 * pMod)90 cmsFloat64Number compute_n(cmsCIECAM02* pMod)
91 {
92     return (pMod -> Yb / pMod -> adoptedWhite.XYZ[1]);
93 }
94 
95 static
compute_z(cmsCIECAM02 * pMod)96 cmsFloat64Number compute_z(cmsCIECAM02* pMod)
97 {
98     return (1.48 + pow(pMod -> n, 0.5));
99 }
100 
101 static
computeNbb(cmsCIECAM02 * pMod)102 cmsFloat64Number computeNbb(cmsCIECAM02* pMod)
103 {
104     return (0.725 * pow((1.0 / pMod -> n), 0.2));
105 }
106 
107 static
computeFL(cmsCIECAM02 * pMod)108 cmsFloat64Number computeFL(cmsCIECAM02* pMod)
109 {
110     cmsFloat64Number k, FL;
111 
112     k = 1.0 / ((5.0 * pMod->LA) + 1.0);
113     FL = 0.2 * pow(k, 4.0) * (5.0 * pMod->LA) + 0.1 *
114         (pow((1.0 - pow(k, 4.0)), 2.0)) *
115         (pow((5.0 * pMod->LA), (1.0 / 3.0)));
116 
117     return FL;
118 }
119 
120 static
computeD(cmsCIECAM02 * pMod)121 cmsFloat64Number computeD(cmsCIECAM02* pMod)
122 {
123     cmsFloat64Number D;
124 
125     D = pMod->F - (1.0/3.6)*(exp(((-pMod ->LA-42) / 92.0)));
126 
127     return D;
128 }
129 
130 
131 static
XYZtoCAT02(CAM02COLOR clr)132 CAM02COLOR XYZtoCAT02(CAM02COLOR clr)
133 {
134     clr.RGB[0] = (clr.XYZ[0] *  0.7328) + (clr.XYZ[1] *  0.4296) + (clr.XYZ[2] * -0.1624);
135     clr.RGB[1] = (clr.XYZ[0] * -0.7036) + (clr.XYZ[1] *  1.6975) + (clr.XYZ[2] *  0.0061);
136     clr.RGB[2] = (clr.XYZ[0] *  0.0030) + (clr.XYZ[1] *  0.0136) + (clr.XYZ[2] *  0.9834);
137 
138     return clr;
139 }
140 
141 static
ChromaticAdaptation(CAM02COLOR clr,cmsCIECAM02 * pMod)142 CAM02COLOR ChromaticAdaptation(CAM02COLOR clr, cmsCIECAM02* pMod)
143 {
144     cmsUInt32Number i;
145 
146     for (i = 0; i < 3; i++) {
147         clr.RGBc[i] = ((pMod -> adoptedWhite.XYZ[1] *
148             (pMod->D / pMod -> adoptedWhite.RGB[i])) +
149             (1.0 - pMod->D)) * clr.RGB[i];
150     }
151 
152     return clr;
153 }
154 
155 
156 static
CAT02toHPE(CAM02COLOR clr)157 CAM02COLOR CAT02toHPE(CAM02COLOR clr)
158 {
159     cmsFloat64Number M[9];
160 
161     M[0] =(( 0.38971 *  1.096124) + (0.68898 * 0.454369) + (-0.07868 * -0.009628));
162     M[1] =(( 0.38971 * -0.278869) + (0.68898 * 0.473533) + (-0.07868 * -0.005698));
163     M[2] =(( 0.38971 *  0.182745) + (0.68898 * 0.072098) + (-0.07868 *  1.015326));
164     M[3] =((-0.22981 *  1.096124) + (1.18340 * 0.454369) + ( 0.04641 * -0.009628));
165     M[4] =((-0.22981 * -0.278869) + (1.18340 * 0.473533) + ( 0.04641 * -0.005698));
166     M[5] =((-0.22981 *  0.182745) + (1.18340 * 0.072098) + ( 0.04641 *  1.015326));
167     M[6] =(-0.009628);
168     M[7] =(-0.005698);
169     M[8] =( 1.015326);
170 
171     clr.RGBp[0] = (clr.RGBc[0] * M[0]) +  (clr.RGBc[1] * M[1]) + (clr.RGBc[2] * M[2]);
172     clr.RGBp[1] = (clr.RGBc[0] * M[3]) +  (clr.RGBc[1] * M[4]) + (clr.RGBc[2] * M[5]);
173     clr.RGBp[2] = (clr.RGBc[0] * M[6]) +  (clr.RGBc[1] * M[7]) + (clr.RGBc[2] * M[8]);
174 
175     return  clr;
176 }
177 
178 static
NonlinearCompression(CAM02COLOR clr,cmsCIECAM02 * pMod)179 CAM02COLOR NonlinearCompression(CAM02COLOR clr, cmsCIECAM02* pMod)
180 {
181     cmsUInt32Number i;
182     cmsFloat64Number temp;
183 
184     for (i = 0; i < 3; i++) {
185         if (clr.RGBp[i] < 0) {
186 
187             temp = pow((-1.0 * pMod->FL * clr.RGBp[i] / 100.0), 0.42);
188             clr.RGBpa[i] = (-1.0 * 400.0 * temp) / (temp + 27.13) + 0.1;
189         }
190         else {
191             temp = pow((pMod->FL * clr.RGBp[i] / 100.0), 0.42);
192             clr.RGBpa[i] = (400.0 * temp) / (temp + 27.13) + 0.1;
193         }
194     }
195 
196     clr.A = (((2.0 * clr.RGBpa[0]) + clr.RGBpa[1] +
197         (clr.RGBpa[2] / 20.0)) - 0.305) * pMod->Nbb;
198 
199     return clr;
200 }
201 
202 static
ComputeCorrelates(CAM02COLOR clr,cmsCIECAM02 * pMod)203 CAM02COLOR ComputeCorrelates(CAM02COLOR clr, cmsCIECAM02* pMod)
204 {
205     cmsFloat64Number a, b, temp, e, t, r2d, d2r;
206 
207     a = clr.RGBpa[0] - (12.0 * clr.RGBpa[1] / 11.0) + (clr.RGBpa[2] / 11.0);
208     b = (clr.RGBpa[0] + clr.RGBpa[1] - (2.0 * clr.RGBpa[2])) / 9.0;
209 
210     r2d = (180.0 / 3.141592654);
211     if (a == 0) {
212         if (b == 0)     clr.h = 0;
213         else if (b > 0) clr.h = 90;
214         else            clr.h = 270;
215     }
216     else if (a > 0) {
217         temp = b / a;
218         if (b > 0)       clr.h = (r2d * atan(temp));
219         else if (b == 0) clr.h = 0;
220         else             clr.h = (r2d * atan(temp)) + 360;
221     }
222     else {
223         temp = b / a;
224         clr.h = (r2d * atan(temp)) + 180;
225     }
226 
227     d2r = (3.141592654 / 180.0);
228     e = ((12500.0 / 13.0) * pMod->Nc * pMod->Ncb) *
229         (cos((clr.h * d2r + 2.0)) + 3.8);
230 
231     if (clr.h < 20.14) {
232         temp = ((clr.h + 122.47)/1.2) + ((20.14 - clr.h)/0.8);
233         clr.H = 300 + (100*((clr.h + 122.47)/1.2)) / temp;
234     }
235     else if (clr.h < 90.0) {
236         temp = ((clr.h - 20.14)/0.8) + ((90.00 - clr.h)/0.7);
237         clr.H = (100*((clr.h - 20.14)/0.8)) / temp;
238     }
239     else if (clr.h < 164.25) {
240         temp = ((clr.h - 90.00)/0.7) + ((164.25 - clr.h)/1.0);
241         clr.H = 100 + ((100*((clr.h - 90.00)/0.7)) / temp);
242     }
243     else if (clr.h < 237.53) {
244         temp = ((clr.h - 164.25)/1.0) + ((237.53 - clr.h)/1.2);
245         clr.H = 200 + ((100*((clr.h - 164.25)/1.0)) / temp);
246     }
247     else {
248         temp = ((clr.h - 237.53)/1.2) + ((360 - clr.h + 20.14)/0.8);
249         clr.H = 300 + ((100*((clr.h - 237.53)/1.2)) / temp);
250     }
251 
252     clr.J = 100.0 * pow((clr.A / pMod->adoptedWhite.A),
253         (pMod->c * pMod->z));
254 
255     clr.Q = (4.0 / pMod->c) * pow((clr.J / 100.0), 0.5) *
256         (pMod->adoptedWhite.A + 4.0) * pow(pMod->FL, 0.25);
257 
258     t = (e * pow(((a * a) + (b * b)), 0.5)) /
259         (clr.RGBpa[0] + clr.RGBpa[1] +
260         ((21.0 / 20.0) * clr.RGBpa[2]));
261 
262     clr.C = pow(t, 0.9) * pow((clr.J / 100.0), 0.5) *
263         pow((1.64 - pow(0.29, pMod->n)), 0.73);
264 
265     clr.M = clr.C * pow(pMod->FL, 0.25);
266     clr.s = 100.0 * pow((clr.M / clr.Q), 0.5);
267 
268     return clr;
269 }
270 
271 
272 static
InverseCorrelates(CAM02COLOR clr,cmsCIECAM02 * pMod)273 CAM02COLOR InverseCorrelates(CAM02COLOR clr, cmsCIECAM02* pMod)
274 {
275 
276     cmsFloat64Number t, e, p1, p2, p3, p4, p5, hr, d2r;
277     d2r = 3.141592654 / 180.0;
278 
279     t = pow( (clr.C / (pow((clr.J / 100.0), 0.5) *
280         (pow((1.64 - pow(0.29, pMod->n)), 0.73)))),
281         (1.0 / 0.9) );
282     e = ((12500.0 / 13.0) * pMod->Nc * pMod->Ncb) *
283         (cos((clr.h * d2r + 2.0)) + 3.8);
284 
285     clr.A = pMod->adoptedWhite.A * pow(
286            (clr.J / 100.0),
287            (1.0 / (pMod->c * pMod->z)));
288 
289     p1 = e / t;
290     p2 = (clr.A / pMod->Nbb) + 0.305;
291     p3 = 21.0 / 20.0;
292 
293     hr = clr.h * d2r;
294 
295     if (fabs(sin(hr)) >= fabs(cos(hr))) {
296         p4 = p1 / sin(hr);
297         clr.b = (p2 * (2.0 + p3) * (460.0 / 1403.0)) /
298             (p4 + (2.0 + p3) * (220.0 / 1403.0) *
299             (cos(hr) / sin(hr)) - (27.0 / 1403.0) +
300             p3 * (6300.0 / 1403.0));
301         clr.a = clr.b * (cos(hr) / sin(hr));
302     }
303     else {
304         p5 = p1 / cos(hr);
305         clr.a = (p2 * (2.0 + p3) * (460.0 / 1403.0)) /
306             (p5 + (2.0 + p3) * (220.0 / 1403.0) -
307             ((27.0 / 1403.0) - p3 * (6300.0 / 1403.0)) *
308             (sin(hr) / cos(hr)));
309         clr.b = clr.a * (sin(hr) / cos(hr));
310     }
311 
312     clr.RGBpa[0] = ((460.0 / 1403.0) * p2) +
313               ((451.0 / 1403.0) * clr.a) +
314               ((288.0 / 1403.0) * clr.b);
315     clr.RGBpa[1] = ((460.0 / 1403.0) * p2) -
316               ((891.0 / 1403.0) * clr.a) -
317               ((261.0 / 1403.0) * clr.b);
318     clr.RGBpa[2] = ((460.0 / 1403.0) * p2) -
319               ((220.0 / 1403.0) * clr.a) -
320               ((6300.0 / 1403.0) * clr.b);
321 
322     return clr;
323 }
324 
325 static
InverseNonlinearity(CAM02COLOR clr,cmsCIECAM02 * pMod)326 CAM02COLOR InverseNonlinearity(CAM02COLOR clr, cmsCIECAM02* pMod)
327 {
328     cmsUInt32Number i;
329     cmsFloat64Number c1;
330 
331     for (i = 0; i < 3; i++) {
332         if ((clr.RGBpa[i] - 0.1) < 0) c1 = -1;
333         else                               c1 = 1;
334         clr.RGBp[i] = c1 * (100.0 / pMod->FL) *
335             pow(((27.13 * fabs(clr.RGBpa[i] - 0.1)) /
336             (400.0 - fabs(clr.RGBpa[i] - 0.1))),
337             (1.0 / 0.42));
338     }
339 
340     return clr;
341 }
342 
343 static
HPEtoCAT02(CAM02COLOR clr)344 CAM02COLOR HPEtoCAT02(CAM02COLOR clr)
345 {
346     cmsFloat64Number M[9];
347 
348     M[0] = (( 0.7328 *  1.910197) + (0.4296 * 0.370950));
349     M[1] = (( 0.7328 * -1.112124) + (0.4296 * 0.629054));
350     M[2] = (( 0.7328 *  0.201908) + (0.4296 * 0.000008) - 0.1624);
351     M[3] = ((-0.7036 *  1.910197) + (1.6975 * 0.370950));
352     M[4] = ((-0.7036 * -1.112124) + (1.6975 * 0.629054));
353     M[5] = ((-0.7036 *  0.201908) + (1.6975 * 0.000008) + 0.0061);
354     M[6] = (( 0.0030 *  1.910197) + (0.0136 * 0.370950));
355     M[7] = (( 0.0030 * -1.112124) + (0.0136 * 0.629054));
356     M[8] = (( 0.0030 *  0.201908) + (0.0136 * 0.000008) + 0.9834);;
357 
358     clr.RGBc[0] = (clr.RGBp[0] * M[0]) + (clr.RGBp[1] * M[1]) + (clr.RGBp[2] * M[2]);
359     clr.RGBc[1] = (clr.RGBp[0] * M[3]) + (clr.RGBp[1] * M[4]) + (clr.RGBp[2] * M[5]);
360     clr.RGBc[2] = (clr.RGBp[0] * M[6]) + (clr.RGBp[1] * M[7]) + (clr.RGBp[2] * M[8]);
361     return clr;
362 }
363 
364 
365 static
InverseChromaticAdaptation(CAM02COLOR clr,cmsCIECAM02 * pMod)366 CAM02COLOR InverseChromaticAdaptation(CAM02COLOR clr,  cmsCIECAM02* pMod)
367 {
368     cmsUInt32Number i;
369     for (i = 0; i < 3; i++) {
370         clr.RGB[i] = clr.RGBc[i] /
371             ((pMod->adoptedWhite.XYZ[1] * pMod->D / pMod->adoptedWhite.RGB[i]) + 1.0 - pMod->D);
372     }
373     return clr;
374 }
375 
376 
377 static
CAT02toXYZ(CAM02COLOR clr)378 CAM02COLOR CAT02toXYZ(CAM02COLOR clr)
379 {
380     clr.XYZ[0] = (clr.RGB[0] *  1.096124) + (clr.RGB[1] * -0.278869) + (clr.RGB[2] *  0.182745);
381     clr.XYZ[1] = (clr.RGB[0] *  0.454369) + (clr.RGB[1] *  0.473533) + (clr.RGB[2] *  0.072098);
382     clr.XYZ[2] = (clr.RGB[0] * -0.009628) + (clr.RGB[1] * -0.005698) + (clr.RGB[2] *  1.015326);
383 
384     return clr;
385 }
386 
387 
cmsCIECAM02Init(cmsContext ContextID,const cmsViewingConditions * pVC)388 cmsHANDLE  CMSEXPORT cmsCIECAM02Init(cmsContext ContextID, const cmsViewingConditions* pVC)
389 {
390     cmsCIECAM02* lpMod;
391 
392     _cmsAssert(pVC != NULL);
393 
394     if((lpMod = (cmsCIECAM02*) _cmsMallocZero(ContextID, sizeof(cmsCIECAM02))) == NULL) {
395         return NULL;
396     }
397 
398     lpMod ->ContextID = ContextID;
399 
400     lpMod ->adoptedWhite.XYZ[0] = pVC ->whitePoint.X;
401     lpMod ->adoptedWhite.XYZ[1] = pVC ->whitePoint.Y;
402     lpMod ->adoptedWhite.XYZ[2] = pVC ->whitePoint.Z;
403 
404     lpMod -> LA       = pVC ->La;
405     lpMod -> Yb       = pVC ->Yb;
406     lpMod -> D        = pVC ->D_value;
407     lpMod -> surround = pVC ->surround;
408 
409     switch (lpMod -> surround) {
410 
411 
412     case CUTSHEET_SURROUND:
413         lpMod->F = 0.8;
414         lpMod->c = 0.41;
415         lpMod->Nc = 0.8;
416         break;
417 
418     case DARK_SURROUND:
419         lpMod -> F  = 0.8;
420         lpMod -> c  = 0.525;
421         lpMod -> Nc = 0.8;
422         break;
423 
424     case DIM_SURROUND:
425         lpMod -> F  = 0.9;
426         lpMod -> c  = 0.59;
427         lpMod -> Nc = 0.95;
428         break;
429 
430     default:
431         // Average surround
432         lpMod -> F  = 1.0;
433         lpMod -> c  = 0.69;
434         lpMod -> Nc = 1.0;
435     }
436 
437     lpMod -> n   = compute_n(lpMod);
438     lpMod -> z   = compute_z(lpMod);
439     lpMod -> Nbb = computeNbb(lpMod);
440     lpMod -> FL  = computeFL(lpMod);
441 
442     if (lpMod -> D == D_CALCULATE) {
443         lpMod -> D   = computeD(lpMod);
444     }
445 
446     lpMod -> Ncb = lpMod -> Nbb;
447 
448     lpMod -> adoptedWhite = XYZtoCAT02(lpMod -> adoptedWhite);
449     lpMod -> adoptedWhite = ChromaticAdaptation(lpMod -> adoptedWhite, lpMod);
450     lpMod -> adoptedWhite = CAT02toHPE(lpMod -> adoptedWhite);
451     lpMod -> adoptedWhite = NonlinearCompression(lpMod -> adoptedWhite, lpMod);
452 
453     return (cmsHANDLE) lpMod;
454 
455 }
456 
cmsCIECAM02Done(cmsHANDLE hModel)457 void CMSEXPORT cmsCIECAM02Done(cmsHANDLE hModel)
458 {
459     cmsCIECAM02* lpMod = (cmsCIECAM02*) hModel;
460 
461     if (lpMod) _cmsFree(lpMod ->ContextID, lpMod);
462 }
463 
464 
cmsCIECAM02Forward(cmsHANDLE hModel,const cmsCIEXYZ * pIn,cmsJCh * pOut)465 void CMSEXPORT cmsCIECAM02Forward(cmsHANDLE hModel, const cmsCIEXYZ* pIn, cmsJCh* pOut)
466 {
467     CAM02COLOR clr;
468     cmsCIECAM02* lpMod = (cmsCIECAM02*) hModel;
469 
470     _cmsAssert(lpMod != NULL);
471     _cmsAssert(pIn != NULL);
472     _cmsAssert(pOut != NULL);
473 
474     memset(&clr, 0, sizeof(clr));
475 
476     clr.XYZ[0] = pIn ->X;
477     clr.XYZ[1] = pIn ->Y;
478     clr.XYZ[2] = pIn ->Z;
479 
480     clr = XYZtoCAT02(clr);
481     clr = ChromaticAdaptation(clr, lpMod);
482     clr = CAT02toHPE(clr);
483     clr = NonlinearCompression(clr, lpMod);
484     clr = ComputeCorrelates(clr, lpMod);
485 
486     pOut ->J = clr.J;
487     pOut ->C = clr.C;
488     pOut ->h = clr.h;
489 }
490 
cmsCIECAM02Reverse(cmsHANDLE hModel,const cmsJCh * pIn,cmsCIEXYZ * pOut)491 void CMSEXPORT cmsCIECAM02Reverse(cmsHANDLE hModel, const cmsJCh* pIn, cmsCIEXYZ* pOut)
492 {
493     CAM02COLOR clr;
494     cmsCIECAM02* lpMod = (cmsCIECAM02*) hModel;
495 
496     _cmsAssert(lpMod != NULL);
497     _cmsAssert(pIn != NULL);
498     _cmsAssert(pOut != NULL);
499 
500     memset(&clr, 0, sizeof(clr));
501 
502     clr.J = pIn -> J;
503     clr.C = pIn -> C;
504     clr.h = pIn -> h;
505 
506     clr = InverseCorrelates(clr, lpMod);
507     clr = InverseNonlinearity(clr, lpMod);
508     clr = HPEtoCAT02(clr);
509     clr = InverseChromaticAdaptation(clr, lpMod);
510     clr = CAT02toXYZ(clr);
511 
512     pOut ->X = clr.XYZ[0];
513     pOut ->Y = clr.XYZ[1];
514     pOut ->Z = clr.XYZ[2];
515 }
516