1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 // This file is available under and governed by the GNU General Public
26 // License version 2 only, as published by the Free Software Foundation.
27 // However, the following notice accompanied the original version of this
28 // file:
29 //
30 //---------------------------------------------------------------------------------
31 //
32 //  Little Color Management System
33 //  Copyright (c) 1998-2020 Marti Maria Saguer
34 //
35 // Permission is hereby granted, free of charge, to any person obtaining
36 // a copy of this software and associated documentation files (the "Software"),
37 // to deal in the Software without restriction, including without limitation
38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
39 // and/or sell copies of the Software, and to permit persons to whom the Software
40 // is furnished to do so, subject to the following conditions:
41 //
42 // The above copyright notice and this permission notice shall be included in
43 // all copies or substantial portions of the Software.
44 //
45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52 //
53 //---------------------------------------------------------------------------------
54 //
55 
56 #include "lcms2_internal.h"
57 
58 
59 #define cmsmin(a, b) (((a) < (b)) ? (a) : (b))
60 #define cmsmax(a, b) (((a) > (b)) ? (a) : (b))
61 
62 // This file contains routines for resampling and LUT optimization, black point detection
63 // and black preservation.
64 
65 // Black point detection -------------------------------------------------------------------------
66 
67 
68 // PCS -> PCS round trip transform, always uses relative intent on the device -> pcs
69 static
CreateRoundtripXForm(cmsHPROFILE hProfile,cmsUInt32Number nIntent)70 cmsHTRANSFORM CreateRoundtripXForm(cmsHPROFILE hProfile, cmsUInt32Number nIntent)
71 {
72     cmsContext ContextID = cmsGetProfileContextID(hProfile);
73     cmsHPROFILE hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
74     cmsHTRANSFORM xform;
75     cmsBool BPC[4] = { FALSE, FALSE, FALSE, FALSE };
76     cmsFloat64Number States[4] = { 1.0, 1.0, 1.0, 1.0 };
77     cmsHPROFILE hProfiles[4];
78     cmsUInt32Number Intents[4];
79 
80     hProfiles[0] = hLab; hProfiles[1] = hProfile; hProfiles[2] = hProfile; hProfiles[3] = hLab;
81     Intents[0]   = INTENT_RELATIVE_COLORIMETRIC; Intents[1] = nIntent; Intents[2] = INTENT_RELATIVE_COLORIMETRIC; Intents[3] = INTENT_RELATIVE_COLORIMETRIC;
82 
83     xform =  cmsCreateExtendedTransform(ContextID, 4, hProfiles, BPC, Intents,
84         States, NULL, 0, TYPE_Lab_DBL, TYPE_Lab_DBL, cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE);
85 
86     cmsCloseProfile(hLab);
87     return xform;
88 }
89 
90 // Use darker colorants to obtain black point. This works in the relative colorimetric intent and
91 // assumes more ink results in darker colors. No ink limit is assumed.
92 static
BlackPointAsDarkerColorant(cmsHPROFILE hInput,cmsUInt32Number Intent,cmsCIEXYZ * BlackPoint,cmsUInt32Number dwFlags)93 cmsBool  BlackPointAsDarkerColorant(cmsHPROFILE    hInput,
94                                     cmsUInt32Number Intent,
95                                     cmsCIEXYZ* BlackPoint,
96                                     cmsUInt32Number dwFlags)
97 {
98     cmsUInt16Number *Black;
99     cmsHTRANSFORM xform;
100     cmsColorSpaceSignature Space;
101     cmsUInt32Number nChannels;
102     cmsUInt32Number dwFormat;
103     cmsHPROFILE hLab;
104     cmsCIELab  Lab;
105     cmsCIEXYZ  BlackXYZ;
106     cmsContext ContextID = cmsGetProfileContextID(hInput);
107 
108     // If the profile does not support input direction, assume Black point 0
109     if (!cmsIsIntentSupported(hInput, Intent, LCMS_USED_AS_INPUT)) {
110 
111         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
112         return FALSE;
113     }
114 
115     // Create a formatter which has n channels and no floating point
116     dwFormat = cmsFormatterForColorspaceOfProfile(hInput, 2, FALSE);
117 
118     // Try to get black by using black colorant
119     Space = cmsGetColorSpace(hInput);
120 
121     // This function returns darker colorant in 16 bits for several spaces
122     if (!_cmsEndPointsBySpace(Space, NULL, &Black, &nChannels)) {
123 
124         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
125         return FALSE;
126     }
127 
128     if (nChannels != T_CHANNELS(dwFormat)) {
129        BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
130        return FALSE;
131     }
132 
133     // Lab will be used as the output space, but lab2 will avoid recursion
134     hLab = cmsCreateLab2ProfileTHR(ContextID, NULL);
135     if (hLab == NULL) {
136        BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
137        return FALSE;
138     }
139 
140     // Create the transform
141     xform = cmsCreateTransformTHR(ContextID, hInput, dwFormat,
142                                 hLab, TYPE_Lab_DBL, Intent, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
143     cmsCloseProfile(hLab);
144 
145     if (xform == NULL) {
146 
147         // Something went wrong. Get rid of open resources and return zero as black
148         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
149         return FALSE;
150     }
151 
152     // Convert black to Lab
153     cmsDoTransform(xform, Black, &Lab, 1);
154 
155     // Force it to be neutral, clip to max. L* of 50
156     Lab.a = Lab.b = 0;
157     if (Lab.L > 50) Lab.L = 50;
158 
159     // Free the resources
160     cmsDeleteTransform(xform);
161 
162     // Convert from Lab (which is now clipped) to XYZ.
163     cmsLab2XYZ(NULL, &BlackXYZ, &Lab);
164 
165     if (BlackPoint != NULL)
166         *BlackPoint = BlackXYZ;
167 
168     return TRUE;
169 
170     cmsUNUSED_PARAMETER(dwFlags);
171 }
172 
173 // Get a black point of output CMYK profile, discounting any ink-limiting embedded
174 // in the profile. For doing that, we use perceptual intent in input direction:
175 // Lab (0, 0, 0) -> [Perceptual] Profile -> CMYK -> [Rel. colorimetric] Profile -> Lab
176 static
BlackPointUsingPerceptualBlack(cmsCIEXYZ * BlackPoint,cmsHPROFILE hProfile)177 cmsBool BlackPointUsingPerceptualBlack(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile)
178 {
179     cmsHTRANSFORM hRoundTrip;
180     cmsCIELab LabIn, LabOut;
181     cmsCIEXYZ  BlackXYZ;
182 
183      // Is the intent supported by the profile?
184     if (!cmsIsIntentSupported(hProfile, INTENT_PERCEPTUAL, LCMS_USED_AS_INPUT)) {
185 
186         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
187         return TRUE;
188     }
189 
190     hRoundTrip = CreateRoundtripXForm(hProfile, INTENT_PERCEPTUAL);
191     if (hRoundTrip == NULL) {
192         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
193         return FALSE;
194     }
195 
196     LabIn.L = LabIn.a = LabIn.b = 0;
197     cmsDoTransform(hRoundTrip, &LabIn, &LabOut, 1);
198 
199     // Clip Lab to reasonable limits
200     if (LabOut.L > 50) LabOut.L = 50;
201     LabOut.a = LabOut.b = 0;
202 
203     cmsDeleteTransform(hRoundTrip);
204 
205     // Convert it to XYZ
206     cmsLab2XYZ(NULL, &BlackXYZ, &LabOut);
207 
208     if (BlackPoint != NULL)
209         *BlackPoint = BlackXYZ;
210 
211     return TRUE;
212 }
213 
214 // This function shouldn't exist at all -- there is such quantity of broken
215 // profiles on black point tag, that we must somehow fix chromaticity to
216 // avoid huge tint when doing Black point compensation. This function does
217 // just that. There is a special flag for using black point tag, but turned
218 // off by default because it is bogus on most profiles. The detection algorithm
219 // involves to turn BP to neutral and to use only L component.
cmsDetectBlackPoint(cmsCIEXYZ * BlackPoint,cmsHPROFILE hProfile,cmsUInt32Number Intent,cmsUInt32Number dwFlags)220 cmsBool CMSEXPORT cmsDetectBlackPoint(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
221 {
222     cmsProfileClassSignature devClass;
223 
224     // Make sure the device class is adequate
225     devClass = cmsGetDeviceClass(hProfile);
226     if (devClass == cmsSigLinkClass ||
227         devClass == cmsSigAbstractClass ||
228         devClass == cmsSigNamedColorClass) {
229             BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
230             return FALSE;
231     }
232 
233     // Make sure intent is adequate
234     if (Intent != INTENT_PERCEPTUAL &&
235         Intent != INTENT_RELATIVE_COLORIMETRIC &&
236         Intent != INTENT_SATURATION) {
237             BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
238             return FALSE;
239     }
240 
241     // v4 + perceptual & saturation intents does have its own black point, and it is
242     // well specified enough to use it. Black point tag is deprecated in V4.
243     if ((cmsGetEncodedICCversion(hProfile) >= 0x4000000) &&
244         (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) {
245 
246             // Matrix shaper share MRC & perceptual intents
247             if (cmsIsMatrixShaper(hProfile))
248                 return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, 0);
249 
250             // Get Perceptual black out of v4 profiles. That is fixed for perceptual & saturation intents
251             BlackPoint -> X = cmsPERCEPTUAL_BLACK_X;
252             BlackPoint -> Y = cmsPERCEPTUAL_BLACK_Y;
253             BlackPoint -> Z = cmsPERCEPTUAL_BLACK_Z;
254 
255             return TRUE;
256     }
257 
258 
259 #ifdef CMS_USE_PROFILE_BLACK_POINT_TAG
260 
261     // v2, v4 rel/abs colorimetric
262     if (cmsIsTag(hProfile, cmsSigMediaBlackPointTag) &&
263         Intent == INTENT_RELATIVE_COLORIMETRIC) {
264 
265             cmsCIEXYZ *BlackPtr, BlackXYZ, UntrustedBlackPoint, TrustedBlackPoint, MediaWhite;
266             cmsCIELab Lab;
267 
268             // If black point is specified, then use it,
269 
270             BlackPtr = cmsReadTag(hProfile, cmsSigMediaBlackPointTag);
271             if (BlackPtr != NULL) {
272 
273                 BlackXYZ = *BlackPtr;
274                 _cmsReadMediaWhitePoint(&MediaWhite, hProfile);
275 
276                 // Black point is absolute XYZ, so adapt to D50 to get PCS value
277                 cmsAdaptToIlluminant(&UntrustedBlackPoint, &MediaWhite, cmsD50_XYZ(), &BlackXYZ);
278 
279                 // Force a=b=0 to get rid of any chroma
280                 cmsXYZ2Lab(NULL, &Lab, &UntrustedBlackPoint);
281                 Lab.a = Lab.b = 0;
282                 if (Lab.L > 50) Lab.L = 50; // Clip to L* <= 50
283                 cmsLab2XYZ(NULL, &TrustedBlackPoint, &Lab);
284 
285                 if (BlackPoint != NULL)
286                     *BlackPoint = TrustedBlackPoint;
287 
288                 return TRUE;
289             }
290     }
291 #endif
292 
293     // That is about v2 profiles.
294 
295     // If output profile, discount ink-limiting and that's all
296     if (Intent == INTENT_RELATIVE_COLORIMETRIC &&
297         (cmsGetDeviceClass(hProfile) == cmsSigOutputClass) &&
298         (cmsGetColorSpace(hProfile)  == cmsSigCmykData))
299         return BlackPointUsingPerceptualBlack(BlackPoint, hProfile);
300 
301     // Nope, compute BP using current intent.
302     return BlackPointAsDarkerColorant(hProfile, Intent, BlackPoint, dwFlags);
303 }
304 
305 
306 
307 // ---------------------------------------------------------------------------------------------------------
308 
309 // Least Squares Fit of a Quadratic Curve to Data
310 // http://www.personal.psu.edu/jhm/f90/lectures/lsq2.html
311 
312 static
RootOfLeastSquaresFitQuadraticCurve(int n,cmsFloat64Number x[],cmsFloat64Number y[])313 cmsFloat64Number RootOfLeastSquaresFitQuadraticCurve(int n, cmsFloat64Number x[], cmsFloat64Number y[])
314 {
315     double sum_x = 0, sum_x2 = 0, sum_x3 = 0, sum_x4 = 0;
316     double sum_y = 0, sum_yx = 0, sum_yx2 = 0;
317     double d, a, b, c;
318     int i;
319     cmsMAT3 m;
320     cmsVEC3 v, res;
321 
322     if (n < 4) return 0;
323 
324     for (i=0; i < n; i++) {
325 
326         double xn = x[i];
327         double yn = y[i];
328 
329         sum_x  += xn;
330         sum_x2 += xn*xn;
331         sum_x3 += xn*xn*xn;
332         sum_x4 += xn*xn*xn*xn;
333 
334         sum_y += yn;
335         sum_yx += yn*xn;
336         sum_yx2 += yn*xn*xn;
337     }
338 
339     _cmsVEC3init(&m.v[0], n,      sum_x,  sum_x2);
340     _cmsVEC3init(&m.v[1], sum_x,  sum_x2, sum_x3);
341     _cmsVEC3init(&m.v[2], sum_x2, sum_x3, sum_x4);
342 
343     _cmsVEC3init(&v, sum_y, sum_yx, sum_yx2);
344 
345     if (!_cmsMAT3solve(&res, &m, &v)) return 0;
346 
347 
348     a = res.n[2];
349     b = res.n[1];
350     c = res.n[0];
351 
352     if (fabs(a) < 1.0E-10) {
353 
354         return cmsmin(0, cmsmax(50, -c/b ));
355     }
356     else {
357 
358          d = b*b - 4.0 * a * c;
359          if (d <= 0) {
360              return 0;
361          }
362          else {
363 
364              double rt = (-b + sqrt(d)) / (2.0 * a);
365 
366              return cmsmax(0, cmsmin(50, rt));
367          }
368    }
369 
370 }
371 
372 
373 
374 // Calculates the black point of a destination profile.
375 // This algorithm comes from the Adobe paper disclosing its black point compensation method.
cmsDetectDestinationBlackPoint(cmsCIEXYZ * BlackPoint,cmsHPROFILE hProfile,cmsUInt32Number Intent,cmsUInt32Number dwFlags)376 cmsBool CMSEXPORT cmsDetectDestinationBlackPoint(cmsCIEXYZ* BlackPoint, cmsHPROFILE hProfile, cmsUInt32Number Intent, cmsUInt32Number dwFlags)
377 {
378     cmsColorSpaceSignature ColorSpace;
379     cmsHTRANSFORM hRoundTrip = NULL;
380     cmsCIELab InitialLab, destLab, Lab;
381     cmsFloat64Number inRamp[256], outRamp[256];
382     cmsFloat64Number MinL, MaxL;
383     cmsBool NearlyStraightMidrange = TRUE;
384     cmsFloat64Number yRamp[256];
385     cmsFloat64Number x[256], y[256];
386     cmsFloat64Number lo, hi;
387     int n, l;
388     cmsProfileClassSignature devClass;
389 
390     // Make sure the device class is adequate
391     devClass = cmsGetDeviceClass(hProfile);
392     if (devClass == cmsSigLinkClass ||
393         devClass == cmsSigAbstractClass ||
394         devClass == cmsSigNamedColorClass) {
395             BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
396             return FALSE;
397     }
398 
399     // Make sure intent is adequate
400     if (Intent != INTENT_PERCEPTUAL &&
401         Intent != INTENT_RELATIVE_COLORIMETRIC &&
402         Intent != INTENT_SATURATION) {
403             BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
404             return FALSE;
405     }
406 
407 
408     // v4 + perceptual & saturation intents does have its own black point, and it is
409     // well specified enough to use it. Black point tag is deprecated in V4.
410     if ((cmsGetEncodedICCversion(hProfile) >= 0x4000000) &&
411         (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) {
412 
413             // Matrix shaper share MRC & perceptual intents
414             if (cmsIsMatrixShaper(hProfile))
415                 return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, 0);
416 
417             // Get Perceptual black out of v4 profiles. That is fixed for perceptual & saturation intents
418             BlackPoint -> X = cmsPERCEPTUAL_BLACK_X;
419             BlackPoint -> Y = cmsPERCEPTUAL_BLACK_Y;
420             BlackPoint -> Z = cmsPERCEPTUAL_BLACK_Z;
421             return TRUE;
422     }
423 
424 
425     // Check if the profile is lut based and gray, rgb or cmyk (7.2 in Adobe's document)
426     ColorSpace = cmsGetColorSpace(hProfile);
427     if (!cmsIsCLUT(hProfile, Intent, LCMS_USED_AS_OUTPUT ) ||
428         (ColorSpace != cmsSigGrayData &&
429          ColorSpace != cmsSigRgbData  &&
430          ColorSpace != cmsSigCmykData)) {
431 
432         // In this case, handle as input case
433         return cmsDetectBlackPoint(BlackPoint, hProfile, Intent, dwFlags);
434     }
435 
436     // It is one of the valid cases!, use Adobe algorithm
437 
438 
439     // Set a first guess, that should work on good profiles.
440     if (Intent == INTENT_RELATIVE_COLORIMETRIC) {
441 
442         cmsCIEXYZ IniXYZ;
443 
444         // calculate initial Lab as source black point
445         if (!cmsDetectBlackPoint(&IniXYZ, hProfile, Intent, dwFlags)) {
446             return FALSE;
447         }
448 
449         // convert the XYZ to lab
450         cmsXYZ2Lab(NULL, &InitialLab, &IniXYZ);
451 
452     } else {
453 
454         // set the initial Lab to zero, that should be the black point for perceptual and saturation
455         InitialLab.L = 0;
456         InitialLab.a = 0;
457         InitialLab.b = 0;
458     }
459 
460 
461     // Step 2
462     // ======
463 
464     // Create a roundtrip. Define a Transform BT for all x in L*a*b*
465     hRoundTrip = CreateRoundtripXForm(hProfile, Intent);
466     if (hRoundTrip == NULL)  return FALSE;
467 
468     // Compute ramps
469 
470     for (l=0; l < 256; l++) {
471 
472         Lab.L = (cmsFloat64Number) (l * 100.0) / 255.0;
473         Lab.a = cmsmin(50, cmsmax(-50, InitialLab.a));
474         Lab.b = cmsmin(50, cmsmax(-50, InitialLab.b));
475 
476         cmsDoTransform(hRoundTrip, &Lab, &destLab, 1);
477 
478         inRamp[l]  = Lab.L;
479         outRamp[l] = destLab.L;
480     }
481 
482     // Make monotonic
483     for (l = 254; l > 0; --l) {
484         outRamp[l] = cmsmin(outRamp[l], outRamp[l+1]);
485     }
486 
487     // Check
488     if (! (outRamp[0] < outRamp[255])) {
489 
490         cmsDeleteTransform(hRoundTrip);
491         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
492         return FALSE;
493     }
494 
495 
496     // Test for mid range straight (only on relative colorimetric)
497     NearlyStraightMidrange = TRUE;
498     MinL = outRamp[0]; MaxL = outRamp[255];
499     if (Intent == INTENT_RELATIVE_COLORIMETRIC) {
500 
501         for (l=0; l < 256; l++) {
502 
503             if (! ((inRamp[l] <= MinL + 0.2 * (MaxL - MinL) ) ||
504                 (fabs(inRamp[l] - outRamp[l]) < 4.0 )))
505                 NearlyStraightMidrange = FALSE;
506         }
507 
508         // If the mid range is straight (as determined above) then the
509         // DestinationBlackPoint shall be the same as initialLab.
510         // Otherwise, the DestinationBlackPoint shall be determined
511         // using curve fitting.
512         if (NearlyStraightMidrange) {
513 
514             cmsLab2XYZ(NULL, BlackPoint, &InitialLab);
515             cmsDeleteTransform(hRoundTrip);
516             return TRUE;
517         }
518     }
519 
520 
521     // curve fitting: The round-trip curve normally looks like a nearly constant section at the black point,
522     // with a corner and a nearly straight line to the white point.
523     for (l=0; l < 256; l++) {
524 
525         yRamp[l] = (outRamp[l] - MinL) / (MaxL - MinL);
526     }
527 
528     // find the black point using the least squares error quadratic curve fitting
529     if (Intent == INTENT_RELATIVE_COLORIMETRIC) {
530         lo = 0.1;
531         hi = 0.5;
532     }
533     else {
534 
535         // Perceptual and saturation
536         lo = 0.03;
537         hi = 0.25;
538     }
539 
540     // Capture shadow points for the fitting.
541     n = 0;
542     for (l=0; l < 256; l++) {
543 
544         cmsFloat64Number ff = yRamp[l];
545 
546         if (ff >= lo && ff < hi) {
547             x[n] = inRamp[l];
548             y[n] = yRamp[l];
549             n++;
550         }
551     }
552 
553 
554     // No suitable points
555     if (n < 3 ) {
556         cmsDeleteTransform(hRoundTrip);
557         BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
558         return FALSE;
559     }
560 
561 
562     // fit and get the vertex of quadratic curve
563     Lab.L = RootOfLeastSquaresFitQuadraticCurve(n, x, y);
564 
565     if (Lab.L < 0.0) { // clip to zero L* if the vertex is negative
566         Lab.L = 0;
567     }
568 
569     Lab.a = InitialLab.a;
570     Lab.b = InitialLab.b;
571 
572     cmsLab2XYZ(NULL, BlackPoint, &Lab);
573 
574     cmsDeleteTransform(hRoundTrip);
575     return TRUE;
576 }
577