1 /*
2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_MacroAssembler.hpp"
29 #include "c1/c1_Runtime1.hpp"
30 #include "ci/ciUtilities.hpp"
31 #include "gc/shared/cardTable.hpp"
32 #include "gc/shared/cardTableBarrierSet.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "memory/universe.hpp"
35 #include "nativeInst_x86.hpp"
36 #include "oops/compiledICHolder.hpp"
37 #include "oops/oop.inline.hpp"
38 #include "prims/jvmtiExport.hpp"
39 #include "register_x86.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/signature.hpp"
42 #include "runtime/vframeArray.hpp"
43 #include "utilities/macros.hpp"
44 #include "vmreg_x86.inline.hpp"
45 
46 // Implementation of StubAssembler
47 
call_RT(Register oop_result1,Register metadata_result,address entry,int args_size)48 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
49   // setup registers
50   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
51   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
52   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
53   assert(args_size >= 0, "illegal args_size");
54   bool align_stack = false;
55 #ifdef _LP64
56   // At a method handle call, the stack may not be properly aligned
57   // when returning with an exception.
58   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
59 #endif
60 
61 #ifdef _LP64
62   mov(c_rarg0, thread);
63   set_num_rt_args(0); // Nothing on stack
64 #else
65   set_num_rt_args(1 + args_size);
66 
67   // push java thread (becomes first argument of C function)
68   get_thread(thread);
69   push(thread);
70 #endif // _LP64
71 
72   int call_offset;
73   if (!align_stack) {
74     set_last_Java_frame(thread, noreg, rbp, NULL);
75   } else {
76     address the_pc = pc();
77     call_offset = offset();
78     set_last_Java_frame(thread, noreg, rbp, the_pc);
79     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
80   }
81 
82   // do the call
83   call(RuntimeAddress(entry));
84   if (!align_stack) {
85     call_offset = offset();
86   }
87   // verify callee-saved register
88 #ifdef ASSERT
89   guarantee(thread != rax, "change this code");
90   push(rax);
91   { Label L;
92     get_thread(rax);
93     cmpptr(thread, rax);
94     jcc(Assembler::equal, L);
95     int3();
96     stop("StubAssembler::call_RT: rdi not callee saved?");
97     bind(L);
98   }
99   pop(rax);
100 #endif
101   reset_last_Java_frame(thread, true);
102 
103   // discard thread and arguments
104   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
105 
106   // check for pending exceptions
107   { Label L;
108     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
109     jcc(Assembler::equal, L);
110     // exception pending => remove activation and forward to exception handler
111     movptr(rax, Address(thread, Thread::pending_exception_offset()));
112     // make sure that the vm_results are cleared
113     if (oop_result1->is_valid()) {
114       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
115     }
116     if (metadata_result->is_valid()) {
117       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
118     }
119     if (frame_size() == no_frame_size) {
120       leave();
121       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
122     } else if (_stub_id == Runtime1::forward_exception_id) {
123       should_not_reach_here();
124     } else {
125       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
126     }
127     bind(L);
128   }
129   // get oop results if there are any and reset the values in the thread
130   if (oop_result1->is_valid()) {
131     get_vm_result(oop_result1, thread);
132   }
133   if (metadata_result->is_valid()) {
134     get_vm_result_2(metadata_result, thread);
135   }
136   return call_offset;
137 }
138 
139 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1)140 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
141 #ifdef _LP64
142   mov(c_rarg1, arg1);
143 #else
144   push(arg1);
145 #endif // _LP64
146   return call_RT(oop_result1, metadata_result, entry, 1);
147 }
148 
149 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1,Register arg2)150 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
151 #ifdef _LP64
152   if (c_rarg1 == arg2) {
153     if (c_rarg2 == arg1) {
154       xchgq(arg1, arg2);
155     } else {
156       mov(c_rarg2, arg2);
157       mov(c_rarg1, arg1);
158     }
159   } else {
160     mov(c_rarg1, arg1);
161     mov(c_rarg2, arg2);
162   }
163 #else
164   push(arg2);
165   push(arg1);
166 #endif // _LP64
167   return call_RT(oop_result1, metadata_result, entry, 2);
168 }
169 
170 
call_RT(Register oop_result1,Register metadata_result,address entry,Register arg1,Register arg2,Register arg3)171 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
172 #ifdef _LP64
173   // if there is any conflict use the stack
174   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
175       arg2 == c_rarg1 || arg1 == c_rarg3 ||
176       arg3 == c_rarg1 || arg1 == c_rarg2) {
177     push(arg3);
178     push(arg2);
179     push(arg1);
180     pop(c_rarg1);
181     pop(c_rarg2);
182     pop(c_rarg3);
183   } else {
184     mov(c_rarg1, arg1);
185     mov(c_rarg2, arg2);
186     mov(c_rarg3, arg3);
187   }
188 #else
189   push(arg3);
190   push(arg2);
191   push(arg1);
192 #endif // _LP64
193   return call_RT(oop_result1, metadata_result, entry, 3);
194 }
195 
196 
197 // Implementation of StubFrame
198 
199 class StubFrame: public StackObj {
200  private:
201   StubAssembler* _sasm;
202 
203  public:
204   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
205   void load_argument(int offset_in_words, Register reg);
206 
207   ~StubFrame();
208 };
209 
prologue(const char * name,bool must_gc_arguments)210 void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
211   set_info(name, must_gc_arguments);
212   enter();
213 }
214 
epilogue()215 void StubAssembler::epilogue() {
216   leave();
217   ret(0);
218 }
219 
220 #define __ _sasm->
221 
StubFrame(StubAssembler * sasm,const char * name,bool must_gc_arguments)222 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
223   _sasm = sasm;
224   __ prologue(name, must_gc_arguments);
225 }
226 
227 // load parameters that were stored with LIR_Assembler::store_parameter
228 // Note: offsets for store_parameter and load_argument must match
load_argument(int offset_in_words,Register reg)229 void StubFrame::load_argument(int offset_in_words, Register reg) {
230   __ load_parameter(offset_in_words, reg);
231 }
232 
233 
~StubFrame()234 StubFrame::~StubFrame() {
235   __ epilogue();
236 }
237 
238 #undef __
239 
240 
241 // Implementation of Runtime1
242 
243 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
244 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
245 
246 // Stack layout for saving/restoring  all the registers needed during a runtime
247 // call (this includes deoptimization)
248 // Note: note that users of this frame may well have arguments to some runtime
249 // while these values are on the stack. These positions neglect those arguments
250 // but the code in save_live_registers will take the argument count into
251 // account.
252 //
253 #ifdef _LP64
254   #define SLOT2(x) x,
255   #define SLOT_PER_WORD 2
256 #else
257   #define SLOT2(x)
258   #define SLOT_PER_WORD 1
259 #endif // _LP64
260 
261 enum reg_save_layout {
262   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
263   // happen and will assert if the stack size we create is misaligned
264 #ifdef _LP64
265   align_dummy_0, align_dummy_1,
266 #endif // _LP64
267 #ifdef _WIN64
268   // Windows always allocates space for it's argument registers (see
269   // frame::arg_reg_save_area_bytes).
270   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
271   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
272   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
273   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
274 #endif // _WIN64
275   xmm_regs_as_doubles_off,                                                                  // 32
276   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
277   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
278   // fpu_state_end_off is exclusive
279   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
280   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
281   extra_space_offset,                                                                       // 360
282 #ifdef _LP64
283   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
284   r14_off, r14H_off,                                                                        // 368, 372
285   r13_off, r13H_off,                                                                        // 376, 380
286   r12_off, r12H_off,                                                                        // 384, 388
287   r11_off, r11H_off,                                                                        // 392, 396
288   r10_off, r10H_off,                                                                        // 400, 404
289   r9_off, r9H_off,                                                                          // 408, 412
290   r8_off, r8H_off,                                                                          // 416, 420
291   rdi_off, rdiH_off,                                                                        // 424, 428
292 #else
293   rdi_off = extra_space_offset,
294 #endif // _LP64
295   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
296   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
297   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
298   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
299   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
300   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
301   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
302   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
303   return_off, SLOT2(returnH_off)                                                            // 496, 500
304   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
305 };
306 
307 // Save off registers which might be killed by calls into the runtime.
308 // Tries to smart of about FP registers.  In particular we separate
309 // saving and describing the FPU registers for deoptimization since we
310 // have to save the FPU registers twice if we describe them and on P4
311 // saving FPU registers which don't contain anything appears
312 // expensive.  The deopt blob is the only thing which needs to
313 // describe FPU registers.  In all other cases it should be sufficient
314 // to simply save their current value.
315 
generate_oop_map(StubAssembler * sasm,int num_rt_args,bool save_fpu_registers=true)316 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
317                                 bool save_fpu_registers = true) {
318 
319   // In 64bit all the args are in regs so there are no additional stack slots
320   LP64_ONLY(num_rt_args = 0);
321   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
322   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
323   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
324 
325   // record saved value locations in an OopMap
326   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
327   OopMap* map = new OopMap(frame_size_in_slots, 0);
328   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
329   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
330   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
331   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
332   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
333   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
334 #ifdef _LP64
335   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
336   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
337   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
338   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
339   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
340   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
341   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
342   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
343 
344   // This is stupid but needed.
345   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
346   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
347   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
348   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
349   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
350   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
351 
352   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
353   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
354   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
355   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
356   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
357   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
358   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
359   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
360 #endif // _LP64
361 
362   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
363 #ifdef _LP64
364   if (UseAVX < 3) {
365     xmm_bypass_limit = xmm_bypass_limit / 2;
366   }
367 #endif
368 
369   if (save_fpu_registers) {
370     if (UseSSE < 2) {
371       int fpu_off = float_regs_as_doubles_off;
372       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
373         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
374         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
375         // %%% This is really a waste but we'll keep things as they were for now
376         if (true) {
377           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
378         }
379         fpu_off += 2;
380       }
381       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
382     }
383 
384     if (UseSSE >= 2) {
385       int xmm_off = xmm_regs_as_doubles_off;
386       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
387         if (n < xmm_bypass_limit) {
388           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
389           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
390           // %%% This is really a waste but we'll keep things as they were for now
391           if (true) {
392             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
393           }
394         }
395         xmm_off += 2;
396       }
397       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
398 
399     } else if (UseSSE == 1) {
400       int xmm_off = xmm_regs_as_doubles_off;
401       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
402         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
403         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
404         xmm_off += 2;
405       }
406       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
407     }
408   }
409 
410   return map;
411 }
412 
413 #define __ this->
414 
save_live_registers_no_oop_map(bool save_fpu_registers)415 void C1_MacroAssembler::save_live_registers_no_oop_map(bool save_fpu_registers) {
416   __ block_comment("save_live_registers");
417 
418   __ pusha();         // integer registers
419 
420   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
421   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
422 
423   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
424 
425 #ifdef ASSERT
426   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
427 #endif
428 
429   if (save_fpu_registers) {
430     if (UseSSE < 2) {
431       // save FPU stack
432       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
433       __ fwait();
434 
435 #ifdef ASSERT
436       Label ok;
437       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
438       __ jccb(Assembler::equal, ok);
439       __ stop("corrupted control word detected");
440       __ bind(ok);
441 #endif
442 
443       // Reset the control word to guard against exceptions being unmasked
444       // since fstp_d can cause FPU stack underflow exceptions.  Write it
445       // into the on stack copy and then reload that to make sure that the
446       // current and future values are correct.
447       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
448       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
449 
450       // Save the FPU registers in de-opt-able form
451       int offset = 0;
452       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
453         __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
454         offset += 8;
455       }
456     }
457 
458     if (UseSSE >= 2) {
459       // save XMM registers
460       // XMM registers can contain float or double values, but this is not known here,
461       // so always save them as doubles.
462       // note that float values are _not_ converted automatically, so for float values
463       // the second word contains only garbage data.
464       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
465       int offset = 0;
466 #ifdef _LP64
467       if (UseAVX < 3) {
468         xmm_bypass_limit = xmm_bypass_limit / 2;
469       }
470 #endif
471       for (int n = 0; n < xmm_bypass_limit; n++) {
472         XMMRegister xmm_name = as_XMMRegister(n);
473         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
474         offset += 8;
475       }
476     } else if (UseSSE == 1) {
477       // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
478       int offset = 0;
479       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
480         XMMRegister xmm_name = as_XMMRegister(n);
481         __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
482         offset += 8;
483       }
484     }
485   }
486 
487   // FPU stack must be empty now
488   __ verify_FPU(0, "save_live_registers");
489 }
490 
491 #undef __
492 #define __ sasm->
493 
restore_fpu(C1_MacroAssembler * sasm,bool restore_fpu_registers)494 static void restore_fpu(C1_MacroAssembler* sasm, bool restore_fpu_registers) {
495   if (restore_fpu_registers) {
496     if (UseSSE >= 2) {
497       // restore XMM registers
498       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
499 #ifdef _LP64
500       if (UseAVX < 3) {
501         xmm_bypass_limit = xmm_bypass_limit / 2;
502       }
503 #endif
504       int offset = 0;
505       for (int n = 0; n < xmm_bypass_limit; n++) {
506         XMMRegister xmm_name = as_XMMRegister(n);
507         __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
508         offset += 8;
509       }
510     } else if (UseSSE == 1) {
511       // restore XMM registers(num MMX == num fpu)
512       int offset = 0;
513       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
514         XMMRegister xmm_name = as_XMMRegister(n);
515         __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
516         offset += 8;
517       }
518     }
519 
520     if (UseSSE < 2) {
521       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
522     } else {
523       // check that FPU stack is really empty
524       __ verify_FPU(0, "restore_live_registers");
525     }
526 
527   } else {
528     // check that FPU stack is really empty
529     __ verify_FPU(0, "restore_live_registers");
530   }
531 
532 #ifdef ASSERT
533   {
534     Label ok;
535     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
536     __ jcc(Assembler::equal, ok);
537     __ stop("bad offsets in frame");
538     __ bind(ok);
539   }
540 #endif // ASSERT
541 
542   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
543 }
544 
545 #undef __
546 #define __ this->
547 
restore_live_registers(bool restore_fpu_registers)548 void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) {
549   __ block_comment("restore_live_registers");
550 
551   restore_fpu(this, restore_fpu_registers);
552   __ popa();
553 }
554 
555 
restore_live_registers_except_rax(bool restore_fpu_registers)556 void C1_MacroAssembler::restore_live_registers_except_rax(bool restore_fpu_registers) {
557   __ block_comment("restore_live_registers_except_rax");
558 
559   restore_fpu(this, restore_fpu_registers);
560 
561 #ifdef _LP64
562   __ movptr(r15, Address(rsp, 0));
563   __ movptr(r14, Address(rsp, wordSize));
564   __ movptr(r13, Address(rsp, 2 * wordSize));
565   __ movptr(r12, Address(rsp, 3 * wordSize));
566   __ movptr(r11, Address(rsp, 4 * wordSize));
567   __ movptr(r10, Address(rsp, 5 * wordSize));
568   __ movptr(r9,  Address(rsp, 6 * wordSize));
569   __ movptr(r8,  Address(rsp, 7 * wordSize));
570   __ movptr(rdi, Address(rsp, 8 * wordSize));
571   __ movptr(rsi, Address(rsp, 9 * wordSize));
572   __ movptr(rbp, Address(rsp, 10 * wordSize));
573   // skip rsp
574   __ movptr(rbx, Address(rsp, 12 * wordSize));
575   __ movptr(rdx, Address(rsp, 13 * wordSize));
576   __ movptr(rcx, Address(rsp, 14 * wordSize));
577 
578   __ addptr(rsp, 16 * wordSize);
579 #else
580 
581   __ pop(rdi);
582   __ pop(rsi);
583   __ pop(rbp);
584   __ pop(rbx); // skip this value
585   __ pop(rbx);
586   __ pop(rdx);
587   __ pop(rcx);
588   __ addptr(rsp, BytesPerWord);
589 #endif // _LP64
590 }
591 
592 #undef __
593 #define __ sasm->
594 
save_live_registers(StubAssembler * sasm,int num_rt_args,bool save_fpu_registers=true)595 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
596                                    bool save_fpu_registers = true) {
597   __ save_live_registers_no_oop_map(save_fpu_registers);
598   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
599 }
600 
restore_live_registers(StubAssembler * sasm,bool restore_fpu_registers=true)601 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
602   __ restore_live_registers(restore_fpu_registers);
603 }
604 
restore_live_registers_except_rax(StubAssembler * sasm,bool restore_fpu_registers=true)605 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
606   sasm->restore_live_registers_except_rax(restore_fpu_registers);
607 }
608 
609 
initialize_pd()610 void Runtime1::initialize_pd() {
611   // nothing to do
612 }
613 
614 
615 // Target: the entry point of the method that creates and posts the exception oop.
616 // has_argument: true if the exception needs arguments (passed on the stack because
617 //               registers must be preserved).
generate_exception_throw(StubAssembler * sasm,address target,bool has_argument)618 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
619   // Preserve all registers.
620   int num_rt_args = has_argument ? (2 + 1) : 1;
621   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
622 
623   // Now all registers are saved and can be used freely.
624   // Verify that no old value is used accidentally.
625   __ invalidate_registers(true, true, true, true, true, true);
626 
627   // Registers used by this stub.
628   const Register temp_reg = rbx;
629 
630   // Load arguments for exception that are passed as arguments into the stub.
631   if (has_argument) {
632 #ifdef _LP64
633     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
634     __ movptr(c_rarg2, Address(rbp, 3*BytesPerWord));
635 #else
636     __ movptr(temp_reg, Address(rbp, 3*BytesPerWord));
637     __ push(temp_reg);
638     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
639     __ push(temp_reg);
640 #endif // _LP64
641   }
642   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
643 
644   OopMapSet* oop_maps = new OopMapSet();
645   oop_maps->add_gc_map(call_offset, oop_map);
646 
647   __ stop("should not reach here");
648 
649   return oop_maps;
650 }
651 
652 
generate_handle_exception(StubID id,StubAssembler * sasm)653 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
654   __ block_comment("generate_handle_exception");
655 
656   // incoming parameters
657   const Register exception_oop = rax;
658   const Register exception_pc  = rdx;
659   // other registers used in this stub
660   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
661 
662   // Save registers, if required.
663   OopMapSet* oop_maps = new OopMapSet();
664   OopMap* oop_map = NULL;
665   switch (id) {
666   case forward_exception_id:
667     // We're handling an exception in the context of a compiled frame.
668     // The registers have been saved in the standard places.  Perform
669     // an exception lookup in the caller and dispatch to the handler
670     // if found.  Otherwise unwind and dispatch to the callers
671     // exception handler.
672     oop_map = generate_oop_map(sasm, 1 /*thread*/);
673 
674     // load and clear pending exception oop into RAX
675     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
676     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
677 
678     // load issuing PC (the return address for this stub) into rdx
679     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
680 
681     // make sure that the vm_results are cleared (may be unnecessary)
682     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
683     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
684     break;
685   case handle_exception_nofpu_id:
686   case handle_exception_id:
687     // At this point all registers MAY be live.
688     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
689     break;
690   case handle_exception_from_callee_id: {
691     // At this point all registers except exception oop (RAX) and
692     // exception pc (RDX) are dead.
693     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
694     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
695     sasm->set_frame_size(frame_size);
696     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
697     break;
698   }
699   default:  ShouldNotReachHere();
700   }
701 
702 #ifdef TIERED
703   // C2 can leave the fpu stack dirty
704   if (UseSSE < 2) {
705     __ empty_FPU_stack();
706   }
707 #endif // TIERED
708 
709   // verify that only rax, and rdx is valid at this time
710   __ invalidate_registers(false, true, true, false, true, true);
711   // verify that rax, contains a valid exception
712   __ verify_not_null_oop(exception_oop);
713 
714   // load address of JavaThread object for thread-local data
715   NOT_LP64(__ get_thread(thread);)
716 
717 #ifdef ASSERT
718   // check that fields in JavaThread for exception oop and issuing pc are
719   // empty before writing to them
720   Label oop_empty;
721   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
722   __ jcc(Assembler::equal, oop_empty);
723   __ stop("exception oop already set");
724   __ bind(oop_empty);
725 
726   Label pc_empty;
727   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
728   __ jcc(Assembler::equal, pc_empty);
729   __ stop("exception pc already set");
730   __ bind(pc_empty);
731 #endif
732 
733   // save exception oop and issuing pc into JavaThread
734   // (exception handler will load it from here)
735   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
736   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
737 
738   // patch throwing pc into return address (has bci & oop map)
739   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
740 
741   // compute the exception handler.
742   // the exception oop and the throwing pc are read from the fields in JavaThread
743   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
744   oop_maps->add_gc_map(call_offset, oop_map);
745 
746   // rax: handler address
747   //      will be the deopt blob if nmethod was deoptimized while we looked up
748   //      handler regardless of whether handler existed in the nmethod.
749 
750   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
751   __ invalidate_registers(false, true, true, true, true, true);
752 
753   // patch the return address, this stub will directly return to the exception handler
754   __ movptr(Address(rbp, 1*BytesPerWord), rax);
755 
756   switch (id) {
757   case forward_exception_id:
758   case handle_exception_nofpu_id:
759   case handle_exception_id:
760     // Restore the registers that were saved at the beginning.
761     restore_live_registers(sasm, id != handle_exception_nofpu_id);
762     break;
763   case handle_exception_from_callee_id:
764     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
765     // since we do a leave anyway.
766 
767     // Pop the return address.
768     __ leave();
769     __ pop(rcx);
770     __ jmp(rcx);  // jump to exception handler
771     break;
772   default:  ShouldNotReachHere();
773   }
774 
775   return oop_maps;
776 }
777 
778 
generate_unwind_exception(StubAssembler * sasm)779 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
780   // incoming parameters
781   const Register exception_oop = rax;
782   // callee-saved copy of exception_oop during runtime call
783   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
784   // other registers used in this stub
785   const Register exception_pc = rdx;
786   const Register handler_addr = rbx;
787   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
788 
789   // verify that only rax, is valid at this time
790   __ invalidate_registers(false, true, true, true, true, true);
791 
792 #ifdef ASSERT
793   // check that fields in JavaThread for exception oop and issuing pc are empty
794   NOT_LP64(__ get_thread(thread);)
795   Label oop_empty;
796   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
797   __ jcc(Assembler::equal, oop_empty);
798   __ stop("exception oop must be empty");
799   __ bind(oop_empty);
800 
801   Label pc_empty;
802   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
803   __ jcc(Assembler::equal, pc_empty);
804   __ stop("exception pc must be empty");
805   __ bind(pc_empty);
806 #endif
807 
808   // clear the FPU stack in case any FPU results are left behind
809   __ empty_FPU_stack();
810 
811   // save exception_oop in callee-saved register to preserve it during runtime calls
812   __ verify_not_null_oop(exception_oop);
813   __ movptr(exception_oop_callee_saved, exception_oop);
814 
815   NOT_LP64(__ get_thread(thread);)
816   // Get return address (is on top of stack after leave).
817   __ movptr(exception_pc, Address(rsp, 0));
818 
819   // search the exception handler address of the caller (using the return address)
820   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
821   // rax: exception handler address of the caller
822 
823   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
824   __ invalidate_registers(false, true, true, true, false, true);
825 
826   // move result of call into correct register
827   __ movptr(handler_addr, rax);
828 
829   // Restore exception oop to RAX (required convention of exception handler).
830   __ movptr(exception_oop, exception_oop_callee_saved);
831 
832   // verify that there is really a valid exception in rax
833   __ verify_not_null_oop(exception_oop);
834 
835   // get throwing pc (= return address).
836   // rdx has been destroyed by the call, so it must be set again
837   // the pop is also necessary to simulate the effect of a ret(0)
838   __ pop(exception_pc);
839 
840   // continue at exception handler (return address removed)
841   // note: do *not* remove arguments when unwinding the
842   //       activation since the caller assumes having
843   //       all arguments on the stack when entering the
844   //       runtime to determine the exception handler
845   //       (GC happens at call site with arguments!)
846   // rax: exception oop
847   // rdx: throwing pc
848   // rbx: exception handler
849   __ jmp(handler_addr);
850 }
851 
852 
generate_patching(StubAssembler * sasm,address target)853 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
854   // use the maximum number of runtime-arguments here because it is difficult to
855   // distinguish each RT-Call.
856   // Note: This number affects also the RT-Call in generate_handle_exception because
857   //       the oop-map is shared for all calls.
858   const int num_rt_args = 2;  // thread + dummy
859 
860   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
861   assert(deopt_blob != NULL, "deoptimization blob must have been created");
862 
863   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
864 
865 #ifdef _LP64
866   const Register thread = r15_thread;
867   // No need to worry about dummy
868   __ mov(c_rarg0, thread);
869 #else
870   __ push(rax); // push dummy
871 
872   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
873   // push java thread (becomes first argument of C function)
874   __ get_thread(thread);
875   __ push(thread);
876 #endif // _LP64
877   __ set_last_Java_frame(thread, noreg, rbp, NULL);
878   // do the call
879   __ call(RuntimeAddress(target));
880   OopMapSet* oop_maps = new OopMapSet();
881   oop_maps->add_gc_map(__ offset(), oop_map);
882   // verify callee-saved register
883 #ifdef ASSERT
884   guarantee(thread != rax, "change this code");
885   __ push(rax);
886   { Label L;
887     __ get_thread(rax);
888     __ cmpptr(thread, rax);
889     __ jcc(Assembler::equal, L);
890     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
891     __ bind(L);
892   }
893   __ pop(rax);
894 #endif
895   __ reset_last_Java_frame(thread, true);
896 #ifndef _LP64
897   __ pop(rcx); // discard thread arg
898   __ pop(rcx); // discard dummy
899 #endif // _LP64
900 
901   // check for pending exceptions
902   { Label L;
903     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
904     __ jcc(Assembler::equal, L);
905     // exception pending => remove activation and forward to exception handler
906 
907     __ testptr(rax, rax);                                   // have we deoptimized?
908     __ jump_cc(Assembler::equal,
909                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
910 
911     // the deopt blob expects exceptions in the special fields of
912     // JavaThread, so copy and clear pending exception.
913 
914     // load and clear pending exception
915     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
916     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
917 
918     // check that there is really a valid exception
919     __ verify_not_null_oop(rax);
920 
921     // load throwing pc: this is the return address of the stub
922     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
923 
924 #ifdef ASSERT
925     // check that fields in JavaThread for exception oop and issuing pc are empty
926     Label oop_empty;
927     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
928     __ jcc(Assembler::equal, oop_empty);
929     __ stop("exception oop must be empty");
930     __ bind(oop_empty);
931 
932     Label pc_empty;
933     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
934     __ jcc(Assembler::equal, pc_empty);
935     __ stop("exception pc must be empty");
936     __ bind(pc_empty);
937 #endif
938 
939     // store exception oop and throwing pc to JavaThread
940     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
941     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
942 
943     restore_live_registers(sasm);
944 
945     __ leave();
946     __ addptr(rsp, BytesPerWord);  // remove return address from stack
947 
948     // Forward the exception directly to deopt blob. We can blow no
949     // registers and must leave throwing pc on the stack.  A patch may
950     // have values live in registers so the entry point with the
951     // exception in tls.
952     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
953 
954     __ bind(L);
955   }
956 
957 
958   // Runtime will return true if the nmethod has been deoptimized during
959   // the patching process. In that case we must do a deopt reexecute instead.
960 
961   Label cont;
962 
963   __ testptr(rax, rax);                                 // have we deoptimized?
964   __ jcc(Assembler::equal, cont);                       // no
965 
966   // Will reexecute. Proper return address is already on the stack we just restore
967   // registers, pop all of our frame but the return address and jump to the deopt blob
968   restore_live_registers(sasm);
969   __ leave();
970   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
971 
972   __ bind(cont);
973   restore_live_registers(sasm);
974   __ leave();
975   __ ret(0);
976 
977   return oop_maps;
978 }
979 
980 
generate_code_for(StubID id,StubAssembler * sasm)981 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
982 
983   // for better readability
984   const bool must_gc_arguments = true;
985   const bool dont_gc_arguments = false;
986 
987   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
988   bool save_fpu_registers = true;
989 
990   // stub code & info for the different stubs
991   OopMapSet* oop_maps = NULL;
992   switch (id) {
993     case forward_exception_id:
994       {
995         oop_maps = generate_handle_exception(id, sasm);
996         __ leave();
997         __ ret(0);
998       }
999       break;
1000 
1001     case new_instance_id:
1002     case fast_new_instance_id:
1003     case fast_new_instance_init_check_id:
1004       {
1005         Register klass = rdx; // Incoming
1006         Register obj   = rax; // Result
1007 
1008         if (id == new_instance_id) {
1009           __ set_info("new_instance", dont_gc_arguments);
1010         } else if (id == fast_new_instance_id) {
1011           __ set_info("fast new_instance", dont_gc_arguments);
1012         } else {
1013           assert(id == fast_new_instance_init_check_id, "bad StubID");
1014           __ set_info("fast new_instance init check", dont_gc_arguments);
1015         }
1016 
1017         // If TLAB is disabled, see if there is support for inlining contiguous
1018         // allocations.
1019         // Otherwise, just go to the slow path.
1020         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && !UseTLAB
1021             && Universe::heap()->supports_inline_contig_alloc()) {
1022           Label slow_path;
1023           Register obj_size = rcx;
1024           Register t1       = rbx;
1025           Register t2       = rsi;
1026           assert_different_registers(klass, obj, obj_size, t1, t2);
1027 
1028           __ push(rdi);
1029           __ push(rbx);
1030 
1031           if (id == fast_new_instance_init_check_id) {
1032             // make sure the klass is initialized
1033             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1034             __ jcc(Assembler::notEqual, slow_path);
1035           }
1036 
1037 #ifdef ASSERT
1038           // assert object can be fast path allocated
1039           {
1040             Label ok, not_ok;
1041             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1042             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1043             __ jcc(Assembler::lessEqual, not_ok);
1044             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1045             __ jcc(Assembler::zero, ok);
1046             __ bind(not_ok);
1047             __ stop("assert(can be fast path allocated)");
1048             __ should_not_reach_here();
1049             __ bind(ok);
1050           }
1051 #endif // ASSERT
1052 
1053           const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1054           NOT_LP64(__ get_thread(thread));
1055 
1056           // get the instance size (size is postive so movl is fine for 64bit)
1057           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1058 
1059           __ eden_allocate(thread, obj, obj_size, 0, t1, slow_path);
1060 
1061           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1062           __ verify_oop(obj);
1063           __ pop(rbx);
1064           __ pop(rdi);
1065           __ ret(0);
1066 
1067           __ bind(slow_path);
1068           __ pop(rbx);
1069           __ pop(rdi);
1070         }
1071 
1072         __ enter();
1073         OopMap* map = save_live_registers(sasm, 2);
1074         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1075         oop_maps = new OopMapSet();
1076         oop_maps->add_gc_map(call_offset, map);
1077         restore_live_registers_except_rax(sasm);
1078         __ verify_oop(obj);
1079         __ leave();
1080         __ ret(0);
1081 
1082         // rax,: new instance
1083       }
1084 
1085       break;
1086 
1087     case counter_overflow_id:
1088       {
1089         Register bci = rax, method = rbx;
1090         __ enter();
1091         OopMap* map = save_live_registers(sasm, 3);
1092         // Retrieve bci
1093         __ movl(bci, Address(rbp, 2*BytesPerWord));
1094         // And a pointer to the Method*
1095         __ movptr(method, Address(rbp, 3*BytesPerWord));
1096         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1097         oop_maps = new OopMapSet();
1098         oop_maps->add_gc_map(call_offset, map);
1099         restore_live_registers(sasm);
1100         __ leave();
1101         __ ret(0);
1102       }
1103       break;
1104 
1105     case new_type_array_id:
1106     case new_object_array_id:
1107       {
1108         Register length   = rbx; // Incoming
1109         Register klass    = rdx; // Incoming
1110         Register obj      = rax; // Result
1111 
1112         if (id == new_type_array_id) {
1113           __ set_info("new_type_array", dont_gc_arguments);
1114         } else {
1115           __ set_info("new_object_array", dont_gc_arguments);
1116         }
1117 
1118 #ifdef ASSERT
1119         // assert object type is really an array of the proper kind
1120         {
1121           Label ok;
1122           Register t0 = obj;
1123           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1124           __ sarl(t0, Klass::_lh_array_tag_shift);
1125           int tag = ((id == new_type_array_id)
1126                      ? Klass::_lh_array_tag_type_value
1127                      : Klass::_lh_array_tag_obj_value);
1128           __ cmpl(t0, tag);
1129           __ jcc(Assembler::equal, ok);
1130           __ stop("assert(is an array klass)");
1131           __ should_not_reach_here();
1132           __ bind(ok);
1133         }
1134 #endif // ASSERT
1135 
1136         // If TLAB is disabled, see if there is support for inlining contiguous
1137         // allocations.
1138         // Otherwise, just go to the slow path.
1139         if (!UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
1140           Register arr_size = rsi;
1141           Register t1       = rcx;  // must be rcx for use as shift count
1142           Register t2       = rdi;
1143           Label slow_path;
1144 
1145           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1146           // since size is positive movl does right thing on 64bit
1147           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1148           // since size is postive movl does right thing on 64bit
1149           __ movl(arr_size, length);
1150           assert(t1 == rcx, "fixed register usage");
1151           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1152           __ shrptr(t1, Klass::_lh_header_size_shift);
1153           __ andptr(t1, Klass::_lh_header_size_mask);
1154           __ addptr(arr_size, t1);
1155           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1156           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1157 
1158           // Using t2 for non 64-bit.
1159           const Register thread = NOT_LP64(t2) LP64_ONLY(r15_thread);
1160           NOT_LP64(__ get_thread(thread));
1161           __ eden_allocate(thread, obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1162 
1163           __ initialize_header(obj, klass, length, t1, t2);
1164           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1165           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1166           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1167           __ andptr(t1, Klass::_lh_header_size_mask);
1168           __ subptr(arr_size, t1);  // body length
1169           __ addptr(t1, obj);       // body start
1170           __ initialize_body(t1, arr_size, 0, t2);
1171           __ verify_oop(obj);
1172           __ ret(0);
1173 
1174           __ bind(slow_path);
1175         }
1176 
1177         __ enter();
1178         OopMap* map = save_live_registers(sasm, 3);
1179         int call_offset;
1180         if (id == new_type_array_id) {
1181           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1182         } else {
1183           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1184         }
1185 
1186         oop_maps = new OopMapSet();
1187         oop_maps->add_gc_map(call_offset, map);
1188         restore_live_registers_except_rax(sasm);
1189 
1190         __ verify_oop(obj);
1191         __ leave();
1192         __ ret(0);
1193 
1194         // rax,: new array
1195       }
1196       break;
1197 
1198     case new_multi_array_id:
1199       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1200         // rax,: klass
1201         // rbx,: rank
1202         // rcx: address of 1st dimension
1203         OopMap* map = save_live_registers(sasm, 4);
1204         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1205 
1206         oop_maps = new OopMapSet();
1207         oop_maps->add_gc_map(call_offset, map);
1208         restore_live_registers_except_rax(sasm);
1209 
1210         // rax,: new multi array
1211         __ verify_oop(rax);
1212       }
1213       break;
1214 
1215     case register_finalizer_id:
1216       {
1217         __ set_info("register_finalizer", dont_gc_arguments);
1218 
1219         // This is called via call_runtime so the arguments
1220         // will be place in C abi locations
1221 
1222 #ifdef _LP64
1223         __ verify_oop(c_rarg0);
1224         __ mov(rax, c_rarg0);
1225 #else
1226         // The object is passed on the stack and we haven't pushed a
1227         // frame yet so it's one work away from top of stack.
1228         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1229         __ verify_oop(rax);
1230 #endif // _LP64
1231 
1232         // load the klass and check the has finalizer flag
1233         Label register_finalizer;
1234         Register t = rsi;
1235         __ load_klass(t, rax);
1236         __ movl(t, Address(t, Klass::access_flags_offset()));
1237         __ testl(t, JVM_ACC_HAS_FINALIZER);
1238         __ jcc(Assembler::notZero, register_finalizer);
1239         __ ret(0);
1240 
1241         __ bind(register_finalizer);
1242         __ enter();
1243         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1244         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1245         oop_maps = new OopMapSet();
1246         oop_maps->add_gc_map(call_offset, oop_map);
1247 
1248         // Now restore all the live registers
1249         restore_live_registers(sasm);
1250 
1251         __ leave();
1252         __ ret(0);
1253       }
1254       break;
1255 
1256     case throw_range_check_failed_id:
1257       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1258         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1259       }
1260       break;
1261 
1262     case throw_index_exception_id:
1263       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1264         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1265       }
1266       break;
1267 
1268     case throw_div0_exception_id:
1269       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1270         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1271       }
1272       break;
1273 
1274     case throw_null_pointer_exception_id:
1275       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1276         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1277       }
1278       break;
1279 
1280     case handle_exception_nofpu_id:
1281     case handle_exception_id:
1282       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1283         oop_maps = generate_handle_exception(id, sasm);
1284       }
1285       break;
1286 
1287     case handle_exception_from_callee_id:
1288       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1289         oop_maps = generate_handle_exception(id, sasm);
1290       }
1291       break;
1292 
1293     case unwind_exception_id:
1294       { __ set_info("unwind_exception", dont_gc_arguments);
1295         // note: no stubframe since we are about to leave the current
1296         //       activation and we are calling a leaf VM function only.
1297         generate_unwind_exception(sasm);
1298       }
1299       break;
1300 
1301     case throw_array_store_exception_id:
1302       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1303         // tos + 0: link
1304         //     + 1: return address
1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1306       }
1307       break;
1308 
1309     case throw_class_cast_exception_id:
1310       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1311         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1312       }
1313       break;
1314 
1315     case throw_incompatible_class_change_error_id:
1316       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1317         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1318       }
1319       break;
1320 
1321     case slow_subtype_check_id:
1322       {
1323         // Typical calling sequence:
1324         // __ push(klass_RInfo);  // object klass or other subclass
1325         // __ push(sup_k_RInfo);  // array element klass or other superclass
1326         // __ call(slow_subtype_check);
1327         // Note that the subclass is pushed first, and is therefore deepest.
1328         // Previous versions of this code reversed the names 'sub' and 'super'.
1329         // This was operationally harmless but made the code unreadable.
1330         enum layout {
1331           rax_off, SLOT2(raxH_off)
1332           rcx_off, SLOT2(rcxH_off)
1333           rsi_off, SLOT2(rsiH_off)
1334           rdi_off, SLOT2(rdiH_off)
1335           // saved_rbp_off, SLOT2(saved_rbpH_off)
1336           return_off, SLOT2(returnH_off)
1337           sup_k_off, SLOT2(sup_kH_off)
1338           klass_off, SLOT2(superH_off)
1339           framesize,
1340           result_off = klass_off  // deepest argument is also the return value
1341         };
1342 
1343         __ set_info("slow_subtype_check", dont_gc_arguments);
1344         __ push(rdi);
1345         __ push(rsi);
1346         __ push(rcx);
1347         __ push(rax);
1348 
1349         // This is called by pushing args and not with C abi
1350         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1351         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1352 
1353         Label miss;
1354         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1355 
1356         // fallthrough on success:
1357         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1358         __ pop(rax);
1359         __ pop(rcx);
1360         __ pop(rsi);
1361         __ pop(rdi);
1362         __ ret(0);
1363 
1364         __ bind(miss);
1365         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1366         __ pop(rax);
1367         __ pop(rcx);
1368         __ pop(rsi);
1369         __ pop(rdi);
1370         __ ret(0);
1371       }
1372       break;
1373 
1374     case monitorenter_nofpu_id:
1375       save_fpu_registers = false;
1376       // fall through
1377     case monitorenter_id:
1378       {
1379         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1380         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1381 
1382         // Called with store_parameter and not C abi
1383 
1384         f.load_argument(1, rax); // rax,: object
1385         f.load_argument(0, rbx); // rbx,: lock address
1386 
1387         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1388 
1389         oop_maps = new OopMapSet();
1390         oop_maps->add_gc_map(call_offset, map);
1391         restore_live_registers(sasm, save_fpu_registers);
1392       }
1393       break;
1394 
1395     case monitorexit_nofpu_id:
1396       save_fpu_registers = false;
1397       // fall through
1398     case monitorexit_id:
1399       {
1400         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1401         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1402 
1403         // Called with store_parameter and not C abi
1404 
1405         f.load_argument(0, rax); // rax,: lock address
1406 
1407         // note: really a leaf routine but must setup last java sp
1408         //       => use call_RT for now (speed can be improved by
1409         //       doing last java sp setup manually)
1410         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1411 
1412         oop_maps = new OopMapSet();
1413         oop_maps->add_gc_map(call_offset, map);
1414         restore_live_registers(sasm, save_fpu_registers);
1415       }
1416       break;
1417 
1418     case deoptimize_id:
1419       {
1420         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1421         const int num_rt_args = 2;  // thread, trap_request
1422         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1423         f.load_argument(0, rax);
1424         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1425         oop_maps = new OopMapSet();
1426         oop_maps->add_gc_map(call_offset, oop_map);
1427         restore_live_registers(sasm);
1428         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1429         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1430         __ leave();
1431         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1432       }
1433       break;
1434 
1435     case access_field_patching_id:
1436       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1437         // we should set up register map
1438         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1439       }
1440       break;
1441 
1442     case load_klass_patching_id:
1443       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1444         // we should set up register map
1445         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1446       }
1447       break;
1448 
1449     case load_mirror_patching_id:
1450       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1451         // we should set up register map
1452         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1453       }
1454       break;
1455 
1456     case load_appendix_patching_id:
1457       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1458         // we should set up register map
1459         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1460       }
1461       break;
1462 
1463     case dtrace_object_alloc_id:
1464       { // rax,: object
1465         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1466         // we can't gc here so skip the oopmap but make sure that all
1467         // the live registers get saved.
1468         save_live_registers(sasm, 1);
1469 
1470         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1471         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1472         NOT_LP64(__ pop(rax));
1473 
1474         restore_live_registers(sasm);
1475       }
1476       break;
1477 
1478     case fpu2long_stub_id:
1479       {
1480         // rax, and rdx are destroyed, but should be free since the result is returned there
1481         // preserve rsi,ecx
1482         __ push(rsi);
1483         __ push(rcx);
1484         LP64_ONLY(__ push(rdx);)
1485 
1486         // check for NaN
1487         Label return0, do_return, return_min_jlong, do_convert;
1488 
1489         Address value_high_word(rsp, wordSize + 4);
1490         Address value_low_word(rsp, wordSize);
1491         Address result_high_word(rsp, 3*wordSize + 4);
1492         Address result_low_word(rsp, 3*wordSize);
1493 
1494         __ subptr(rsp, 32);                    // more than enough on 32bit
1495         __ fst_d(value_low_word);
1496         __ movl(rax, value_high_word);
1497         __ andl(rax, 0x7ff00000);
1498         __ cmpl(rax, 0x7ff00000);
1499         __ jcc(Assembler::notEqual, do_convert);
1500         __ movl(rax, value_high_word);
1501         __ andl(rax, 0xfffff);
1502         __ orl(rax, value_low_word);
1503         __ jcc(Assembler::notZero, return0);
1504 
1505         __ bind(do_convert);
1506         __ fnstcw(Address(rsp, 0));
1507         __ movzwl(rax, Address(rsp, 0));
1508         __ orl(rax, 0xc00);
1509         __ movw(Address(rsp, 2), rax);
1510         __ fldcw(Address(rsp, 2));
1511         __ fwait();
1512         __ fistp_d(result_low_word);
1513         __ fldcw(Address(rsp, 0));
1514         __ fwait();
1515         // This gets the entire long in rax on 64bit
1516         __ movptr(rax, result_low_word);
1517         // testing of high bits
1518         __ movl(rdx, result_high_word);
1519         __ mov(rcx, rax);
1520         // What the heck is the point of the next instruction???
1521         __ xorl(rcx, 0x0);
1522         __ movl(rsi, 0x80000000);
1523         __ xorl(rsi, rdx);
1524         __ orl(rcx, rsi);
1525         __ jcc(Assembler::notEqual, do_return);
1526         __ fldz();
1527         __ fcomp_d(value_low_word);
1528         __ fnstsw_ax();
1529 #ifdef _LP64
1530         __ testl(rax, 0x4100);  // ZF & CF == 0
1531         __ jcc(Assembler::equal, return_min_jlong);
1532 #else
1533         __ sahf();
1534         __ jcc(Assembler::above, return_min_jlong);
1535 #endif // _LP64
1536         // return max_jlong
1537 #ifndef _LP64
1538         __ movl(rdx, 0x7fffffff);
1539         __ movl(rax, 0xffffffff);
1540 #else
1541         __ mov64(rax, CONST64(0x7fffffffffffffff));
1542 #endif // _LP64
1543         __ jmp(do_return);
1544 
1545         __ bind(return_min_jlong);
1546 #ifndef _LP64
1547         __ movl(rdx, 0x80000000);
1548         __ xorl(rax, rax);
1549 #else
1550         __ mov64(rax, UCONST64(0x8000000000000000));
1551 #endif // _LP64
1552         __ jmp(do_return);
1553 
1554         __ bind(return0);
1555         __ fpop();
1556 #ifndef _LP64
1557         __ xorptr(rdx,rdx);
1558         __ xorptr(rax,rax);
1559 #else
1560         __ xorptr(rax, rax);
1561 #endif // _LP64
1562 
1563         __ bind(do_return);
1564         __ addptr(rsp, 32);
1565         LP64_ONLY(__ pop(rdx);)
1566         __ pop(rcx);
1567         __ pop(rsi);
1568         __ ret(0);
1569       }
1570       break;
1571 
1572     case predicate_failed_trap_id:
1573       {
1574         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1575 
1576         OopMap* map = save_live_registers(sasm, 1);
1577 
1578         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1579         oop_maps = new OopMapSet();
1580         oop_maps->add_gc_map(call_offset, map);
1581         restore_live_registers(sasm);
1582         __ leave();
1583         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1584         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1585 
1586         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1587       }
1588       break;
1589 
1590     default:
1591       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1592         __ movptr(rax, (int)id);
1593         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1594         __ should_not_reach_here();
1595       }
1596       break;
1597   }
1598   return oop_maps;
1599 }
1600 
1601 #undef __
1602 
pd_name_for_address(address entry)1603 const char *Runtime1::pd_name_for_address(address entry) {
1604   return "<unknown function>";
1605 }
1606