1 /*
2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/oop.inline.hpp"
30 #include "runtime/handles.inline.hpp"
31 #include "runtime/interfaceSupport.inline.hpp"
32 #include "runtime/java.hpp"
33 #include "runtime/javaCalls.hpp"
34 #include "runtime/mutex.hpp"
35 #include "runtime/mutexLocker.hpp"
36 #include "services/lowMemoryDetector.hpp"
37 #include "services/management.hpp"
38 
39 volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
40 volatile jint LowMemoryDetector::_disabled_count = 0;
41 
has_pending_requests()42 bool LowMemoryDetector::has_pending_requests() {
43   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
44   bool has_requests = false;
45   int num_memory_pools = MemoryService::num_memory_pools();
46   for (int i = 0; i < num_memory_pools; i++) {
47     MemoryPool* pool = MemoryService::get_memory_pool(i);
48     SensorInfo* sensor = pool->usage_sensor();
49     if (sensor != NULL) {
50       has_requests = has_requests || sensor->has_pending_requests();
51     }
52 
53     SensorInfo* gc_sensor = pool->gc_usage_sensor();
54     if (gc_sensor != NULL) {
55       has_requests = has_requests || gc_sensor->has_pending_requests();
56     }
57   }
58   return has_requests;
59 }
60 
process_sensor_changes(TRAPS)61 void LowMemoryDetector::process_sensor_changes(TRAPS) {
62   ResourceMark rm(THREAD);
63   HandleMark hm(THREAD);
64 
65   // No need to hold Notification_lock to call out to Java
66   int num_memory_pools = MemoryService::num_memory_pools();
67   for (int i = 0; i < num_memory_pools; i++) {
68     MemoryPool* pool = MemoryService::get_memory_pool(i);
69     SensorInfo* sensor = pool->usage_sensor();
70     SensorInfo* gc_sensor = pool->gc_usage_sensor();
71     if (sensor != NULL && sensor->has_pending_requests()) {
72       sensor->process_pending_requests(CHECK);
73     }
74     if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
75       gc_sensor->process_pending_requests(CHECK);
76     }
77   }
78 }
79 
80 // This method could be called from any Java threads
81 // and also VMThread.
detect_low_memory()82 void LowMemoryDetector::detect_low_memory() {
83   MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
84 
85   bool has_pending_requests = false;
86   int num_memory_pools = MemoryService::num_memory_pools();
87   for (int i = 0; i < num_memory_pools; i++) {
88     MemoryPool* pool = MemoryService::get_memory_pool(i);
89     SensorInfo* sensor = pool->usage_sensor();
90     if (sensor != NULL &&
91         pool->usage_threshold()->is_high_threshold_supported() &&
92         pool->usage_threshold()->high_threshold() != 0) {
93       MemoryUsage usage = pool->get_memory_usage();
94       sensor->set_gauge_sensor_level(usage,
95                                      pool->usage_threshold());
96       has_pending_requests = has_pending_requests || sensor->has_pending_requests();
97     }
98   }
99 
100   if (has_pending_requests) {
101     Notification_lock->notify_all();
102   }
103 }
104 
105 // This method could be called from any Java threads
106 // and also VMThread.
detect_low_memory(MemoryPool * pool)107 void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
108   SensorInfo* sensor = pool->usage_sensor();
109   if (sensor == NULL ||
110       !pool->usage_threshold()->is_high_threshold_supported() ||
111       pool->usage_threshold()->high_threshold() == 0) {
112     return;
113   }
114 
115   {
116     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
117 
118     MemoryUsage usage = pool->get_memory_usage();
119     sensor->set_gauge_sensor_level(usage,
120                                    pool->usage_threshold());
121     if (sensor->has_pending_requests()) {
122       // notify sensor state update
123       Notification_lock->notify_all();
124     }
125   }
126 }
127 
128 // Only called by VMThread at GC time
detect_after_gc_memory(MemoryPool * pool)129 void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
130   SensorInfo* sensor = pool->gc_usage_sensor();
131   if (sensor == NULL ||
132       !pool->gc_usage_threshold()->is_high_threshold_supported() ||
133       pool->gc_usage_threshold()->high_threshold() == 0) {
134     return;
135   }
136 
137   {
138     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
139 
140     MemoryUsage usage = pool->get_last_collection_usage();
141     sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
142 
143     if (sensor->has_pending_requests()) {
144       // notify sensor state update
145       Notification_lock->notify_all();
146     }
147   }
148 }
149 
150 // recompute enabled flag
recompute_enabled_for_collected_pools()151 void LowMemoryDetector::recompute_enabled_for_collected_pools() {
152   bool enabled = false;
153   int num_memory_pools = MemoryService::num_memory_pools();
154   for (int i=0; i<num_memory_pools; i++) {
155     MemoryPool* pool = MemoryService::get_memory_pool(i);
156     if (pool->is_collected_pool() && is_enabled(pool)) {
157       enabled = true;
158       break;
159     }
160   }
161   _enabled_for_collected_pools = enabled;
162 }
163 
SensorInfo()164 SensorInfo::SensorInfo() {
165   _sensor_obj = NULL;
166   _sensor_on = false;
167   _sensor_count = 0;
168   _pending_trigger_count = 0;
169   _pending_clear_count = 0;
170 }
171 
172 // When this method is used, the memory usage is monitored
173 // as a gauge attribute.  Sensor notifications (trigger or
174 // clear) is only emitted at the first time it crosses
175 // a threshold.
176 //
177 // High and low thresholds are designed to provide a
178 // hysteresis mechanism to avoid repeated triggering
179 // of notifications when the attribute value makes small oscillations
180 // around the high or low threshold value.
181 //
182 // The sensor will be triggered if:
183 //  (1) the usage is crossing above the high threshold and
184 //      the sensor is currently off and no pending
185 //      trigger requests; or
186 //  (2) the usage is crossing above the high threshold and
187 //      the sensor will be off (i.e. sensor is currently on
188 //      and has pending clear requests).
189 //
190 // Subsequent crossings of the high threshold value do not cause
191 // any triggers unless the usage becomes less than the low threshold.
192 //
193 // The sensor will be cleared if:
194 //  (1) the usage is crossing below the low threshold and
195 //      the sensor is currently on and no pending
196 //      clear requests; or
197 //  (2) the usage is crossing below the low threshold and
198 //      the sensor will be on (i.e. sensor is currently off
199 //      and has pending trigger requests).
200 //
201 // Subsequent crossings of the low threshold value do not cause
202 // any clears unless the usage becomes greater than or equal
203 // to the high threshold.
204 //
205 // If the current level is between high and low threshold, no change.
206 //
set_gauge_sensor_level(MemoryUsage usage,ThresholdSupport * high_low_threshold)207 void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
208   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
209   assert(high_low_threshold->is_high_threshold_supported(), "just checking");
210 
211   bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
212   bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
213 
214   assert(!(is_over_high && is_below_low), "Can't be both true");
215 
216   if (is_over_high &&
217         ((!_sensor_on && _pending_trigger_count == 0) ||
218          _pending_clear_count > 0)) {
219     // low memory detected and need to increment the trigger pending count
220     // if the sensor is off or will be off due to _pending_clear_ > 0
221     // Request to trigger the sensor
222     _pending_trigger_count++;
223     _usage = usage;
224 
225     if (_pending_clear_count > 0) {
226       // non-zero pending clear requests indicates that there are
227       // pending requests to clear this sensor.
228       // This trigger request needs to clear this clear count
229       // since the resulting sensor flag should be on.
230       _pending_clear_count = 0;
231     }
232   } else if (is_below_low &&
233                ((_sensor_on && _pending_clear_count == 0) ||
234                 (_pending_trigger_count > 0 && _pending_clear_count == 0))) {
235     // memory usage returns below the threshold
236     // Request to clear the sensor if the sensor is on or will be on due to
237     // _pending_trigger_count > 0 and also no clear request
238     _pending_clear_count++;
239   }
240 }
241 
242 // When this method is used, the memory usage is monitored as a
243 // simple counter attribute.  The sensor will be triggered
244 // whenever the usage is crossing the threshold to keep track
245 // of the number of times the VM detects such a condition occurs.
246 //
247 // High and low thresholds are designed to provide a
248 // hysteresis mechanism to avoid repeated triggering
249 // of notifications when the attribute value makes small oscillations
250 // around the high or low threshold value.
251 //
252 // The sensor will be triggered if:
253 //   - the usage is crossing above the high threshold regardless
254 //     of the current sensor state.
255 //
256 // The sensor will be cleared if:
257 //  (1) the usage is crossing below the low threshold and
258 //      the sensor is currently on; or
259 //  (2) the usage is crossing below the low threshold and
260 //      the sensor will be on (i.e. sensor is currently off
261 //      and has pending trigger requests).
set_counter_sensor_level(MemoryUsage usage,ThresholdSupport * counter_threshold)262 void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
263   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
264   assert(counter_threshold->is_high_threshold_supported(), "just checking");
265 
266   bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
267   bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
268 
269   assert(!(is_over_high && is_below_low), "Can't be both true");
270 
271   if (is_over_high) {
272     _pending_trigger_count++;
273     _usage = usage;
274     _pending_clear_count = 0;
275   } else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
276     _pending_clear_count++;
277   }
278 }
279 
oops_do(OopClosure * f)280 void SensorInfo::oops_do(OopClosure* f) {
281   f->do_oop((oop*) &_sensor_obj);
282 }
283 
process_pending_requests(TRAPS)284 void SensorInfo::process_pending_requests(TRAPS) {
285   int pending_count = pending_trigger_count();
286   if (pending_clear_count() > 0) {
287     clear(pending_count, CHECK);
288   } else {
289     trigger(pending_count, CHECK);
290   }
291 
292 }
293 
trigger(int count,TRAPS)294 void SensorInfo::trigger(int count, TRAPS) {
295   assert(count <= _pending_trigger_count, "just checking");
296   if (_sensor_obj != NULL) {
297     InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK);
298     Handle sensor_h(THREAD, _sensor_obj);
299 
300     Symbol* trigger_method_signature;
301 
302     JavaValue result(T_VOID);
303     JavaCallArguments args(sensor_h);
304     args.push_int((int) count);
305 
306     Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, THREAD);
307     // Call Sensor::trigger(int, MemoryUsage) to send notification to listeners.
308     // When OOME occurs and fails to allocate MemoryUsage object, call
309     // Sensor::trigger(int) instead.  The pending request will be processed
310     // but no notification will be sent.
311     if (HAS_PENDING_EXCEPTION) {
312        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here");
313        CLEAR_PENDING_EXCEPTION;
314        trigger_method_signature = vmSymbols::int_void_signature();
315     } else {
316        trigger_method_signature = vmSymbols::trigger_method_signature();
317        args.push_oop(usage_h);
318     }
319 
320     JavaCalls::call_virtual(&result,
321                         sensorKlass,
322                         vmSymbols::trigger_name(),
323                         trigger_method_signature,
324                         &args,
325                         THREAD);
326 
327     if (HAS_PENDING_EXCEPTION) {
328        // We just clear the OOM pending exception that we might have encountered
329        // in Java's tiggerAction(), and continue with updating the counters since
330        // the Java counters have been updated too.
331        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here");
332        CLEAR_PENDING_EXCEPTION;
333      }
334   }
335 
336   {
337     // Holds Notification_lock and update the sensor state
338     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
339     assert(_pending_trigger_count > 0, "Must have pending trigger");
340     _sensor_on = true;
341     _sensor_count += count;
342     _pending_trigger_count = _pending_trigger_count - count;
343   }
344 }
345 
clear(int count,TRAPS)346 void SensorInfo::clear(int count, TRAPS) {
347   {
348     // Holds Notification_lock and update the sensor state
349     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
350     if (_pending_clear_count == 0) {
351       // Bail out if we lost a race to set_*_sensor_level() which may have
352       // reactivated the sensor in the meantime because it was triggered again.
353       return;
354     }
355     _sensor_on = false;
356     _sensor_count += count;
357     _pending_clear_count = 0;
358     _pending_trigger_count = _pending_trigger_count - count;
359   }
360 
361   if (_sensor_obj != NULL) {
362     InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK);
363     Handle sensor(THREAD, _sensor_obj);
364 
365     JavaValue result(T_VOID);
366     JavaCallArguments args(sensor);
367     args.push_int((int) count);
368     JavaCalls::call_virtual(&result,
369                             sensorKlass,
370                             vmSymbols::clear_name(),
371                             vmSymbols::int_void_signature(),
372                             &args,
373                             CHECK);
374   }
375 }
376 
377 //--------------------------------------------------------------
378 // Non-product code
379 
380 #ifndef PRODUCT
print()381 void SensorInfo::print() {
382   tty->print_cr("%s count = " SIZE_FORMAT " pending_triggers = %d pending_clears = %d",
383                 (_sensor_on ? "on" : "off"),
384                 _sensor_count, _pending_trigger_count, _pending_clear_count);
385 }
386 
387 #endif // PRODUCT
388