1 /*
2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import java.lang.constant.ClassDesc;
29 import java.lang.constant.Constable;
30 import java.lang.constant.MethodTypeDesc;
31 import java.lang.ref.Reference;
32 import java.lang.ref.ReferenceQueue;
33 import java.lang.ref.WeakReference;
34 import java.util.Arrays;
35 import java.util.Collections;
36 import java.util.List;
37 import java.util.NoSuchElementException;
38 import java.util.Objects;
39 import java.util.Optional;
40 import java.util.StringJoiner;
41 import java.util.concurrent.ConcurrentHashMap;
42 import java.util.concurrent.ConcurrentMap;
43 import java.util.stream.Stream;
44 
45 import jdk.internal.vm.annotation.Stable;
46 import sun.invoke.util.BytecodeDescriptor;
47 import sun.invoke.util.VerifyType;
48 import sun.invoke.util.Wrapper;
49 import sun.security.util.SecurityConstants;
50 
51 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
52 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
53 import static java.lang.invoke.MethodType.fromDescriptor;
54 
55 /**
56  * A method type represents the arguments and return type accepted and
57  * returned by a method handle, or the arguments and return type passed
58  * and expected  by a method handle caller.  Method types must be properly
59  * matched between a method handle and all its callers,
60  * and the JVM's operations enforce this matching at, specifically
61  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
62  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
63  * of {@code invokedynamic} instructions.
64  * <p>
65  * The structure is a return type accompanied by any number of parameter types.
66  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
67  * (For ease of exposition, we treat {@code void} as if it were a type.
68  * In fact, it denotes the absence of a return type.)
69  * <p>
70  * All instances of {@code MethodType} are immutable.
71  * Two instances are completely interchangeable if they compare equal.
72  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
73  * <p>
74  * This type can be created only by factory methods.
75  * All factory methods may cache values, though caching is not guaranteed.
76  * Some factory methods are static, while others are virtual methods which
77  * modify precursor method types, e.g., by changing a selected parameter.
78  * <p>
79  * Factory methods which operate on groups of parameter types
80  * are systematically presented in two versions, so that both Java arrays and
81  * Java lists can be used to work with groups of parameter types.
82  * The query methods {@code parameterArray} and {@code parameterList}
83  * also provide a choice between arrays and lists.
84  * <p>
85  * {@code MethodType} objects are sometimes derived from bytecode instructions
86  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
87  * with the instructions in a class file's constant pool.
88  * <p>
89  * Like classes and strings, method types can also be represented directly
90  * in a class file's constant pool as constants.
91  * A method type may be loaded by an {@code ldc} instruction which refers
92  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
93  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
94  * (For full details on method type constants,
95  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
96  * <p>
97  * When the JVM materializes a {@code MethodType} from a descriptor string,
98  * all classes named in the descriptor must be accessible, and will be loaded.
99  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
100  * This loading may occur at any time before the {@code MethodType} object is first derived.
101  * @author John Rose, JSR 292 EG
102  * @since 1.7
103  */
104 public final
105 class MethodType
106         implements Constable,
107                    TypeDescriptor.OfMethod<Class<?>, MethodType>,
108                    java.io.Serializable {
109     @java.io.Serial
110     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
111 
112     // The rtype and ptypes fields define the structural identity of the method type:
113     private final @Stable Class<?>   rtype;
114     private final @Stable Class<?>[] ptypes;
115 
116     // The remaining fields are caches of various sorts:
117     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
118     private @Stable Object wrapAlt;  // alternative wrapped/unwrapped version and
119                                      // private communication for readObject and readResolve
120     private @Stable Invokers invokers;   // cache of handy higher-order adapters
121     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
122 
123     /**
124      * Constructor that performs no copying or validation.
125      * Should only be called from the factory method makeImpl
126      */
MethodType(Class<?> rtype, Class<?>[] ptypes)127     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
128         this.rtype = rtype;
129         this.ptypes = ptypes;
130     }
131 
form()132     /*trusted*/ MethodTypeForm form() { return form; }
rtype()133     /*trusted*/ Class<?> rtype() { return rtype; }
ptypes()134     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
135 
setForm(MethodTypeForm f)136     void setForm(MethodTypeForm f) { form = f; }
137 
138     /** This number, mandated by the JVM spec as 255,
139      *  is the maximum number of <em>slots</em>
140      *  that any Java method can receive in its argument list.
141      *  It limits both JVM signatures and method type objects.
142      *  The longest possible invocation will look like
143      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
144      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
145      */
146     /*non-public*/
147     static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
148 
149     /** This number is the maximum arity of a method handle, 254.
150      *  It is derived from the absolute JVM-imposed arity by subtracting one,
151      *  which is the slot occupied by the method handle itself at the
152      *  beginning of the argument list used to invoke the method handle.
153      *  The longest possible invocation will look like
154      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
155      */
156     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
157     /*non-public*/
158     static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
159 
160     /** This number is the maximum arity of a method handle invoker, 253.
161      *  It is derived from the absolute JVM-imposed arity by subtracting two,
162      *  which are the slots occupied by invoke method handle, and the
163      *  target method handle, which are both at the beginning of the argument
164      *  list used to invoke the target method handle.
165      *  The longest possible invocation will look like
166      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
167      */
168     /*non-public*/
169     static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
170 
checkRtype(Class<?> rtype)171     private static void checkRtype(Class<?> rtype) {
172         Objects.requireNonNull(rtype);
173     }
checkPtype(Class<?> ptype)174     private static void checkPtype(Class<?> ptype) {
175         Objects.requireNonNull(ptype);
176         if (ptype == void.class)
177             throw newIllegalArgumentException("parameter type cannot be void");
178     }
179     /** Return number of extra slots (count of long/double args). */
checkPtypes(Class<?>[] ptypes)180     private static int checkPtypes(Class<?>[] ptypes) {
181         int slots = 0;
182         for (Class<?> ptype : ptypes) {
183             checkPtype(ptype);
184             if (ptype == double.class || ptype == long.class) {
185                 slots++;
186             }
187         }
188         checkSlotCount(ptypes.length + slots);
189         return slots;
190     }
191 
192     static {
193         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
assert(MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0194         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
195     }
checkSlotCount(int count)196     static void checkSlotCount(int count) {
197         if ((count & MAX_JVM_ARITY) != count)
198             throw newIllegalArgumentException("bad parameter count "+count);
199     }
newIndexOutOfBoundsException(Object num)200     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
201         if (num instanceof Integer)  num = "bad index: "+num;
202         return new IndexOutOfBoundsException(num.toString());
203     }
204 
205     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
206 
207     static final Class<?>[] NO_PTYPES = {};
208 
209     /**
210      * Finds or creates an instance of the given method type.
211      * @param rtype  the return type
212      * @param ptypes the parameter types
213      * @return a method type with the given components
214      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
215      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
216      */
methodType(Class<?> rtype, Class<?>[] ptypes)217     public static MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
218         return makeImpl(rtype, ptypes, false);
219     }
220 
221     /**
222      * Finds or creates a method type with the given components.
223      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
224      * @param rtype  the return type
225      * @param ptypes the parameter types
226      * @return a method type with the given components
227      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
228      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
229      */
methodType(Class<?> rtype, List<Class<?>> ptypes)230     public static MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
231         boolean notrust = false;  // random List impl. could return evil ptypes array
232         return makeImpl(rtype, listToArray(ptypes), notrust);
233     }
234 
listToArray(List<Class<?>> ptypes)235     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
236         // sanity check the size before the toArray call, since size might be huge
237         checkSlotCount(ptypes.size());
238         return ptypes.toArray(NO_PTYPES);
239     }
240 
241     /**
242      * Finds or creates a method type with the given components.
243      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
244      * The leading parameter type is prepended to the remaining array.
245      * @param rtype  the return type
246      * @param ptype0 the first parameter type
247      * @param ptypes the remaining parameter types
248      * @return a method type with the given components
249      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
250      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
251      */
methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes)252     public static MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
253         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
254         ptypes1[0] = ptype0;
255         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
256         return makeImpl(rtype, ptypes1, true);
257     }
258 
259     /**
260      * Finds or creates a method type with the given components.
261      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
262      * The resulting method has no parameter types.
263      * @param rtype  the return type
264      * @return a method type with the given return value
265      * @throws NullPointerException if {@code rtype} is null
266      */
methodType(Class<?> rtype)267     public static MethodType methodType(Class<?> rtype) {
268         return makeImpl(rtype, NO_PTYPES, true);
269     }
270 
271     /**
272      * Finds or creates a method type with the given components.
273      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
274      * The resulting method has the single given parameter type.
275      * @param rtype  the return type
276      * @param ptype0 the parameter type
277      * @return a method type with the given return value and parameter type
278      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
279      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
280      */
methodType(Class<?> rtype, Class<?> ptype0)281     public static MethodType methodType(Class<?> rtype, Class<?> ptype0) {
282         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
283     }
284 
285     /**
286      * Finds or creates a method type with the given components.
287      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
288      * The resulting method has the same parameter types as {@code ptypes},
289      * and the specified return type.
290      * @param rtype  the return type
291      * @param ptypes the method type which supplies the parameter types
292      * @return a method type with the given components
293      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
294      */
methodType(Class<?> rtype, MethodType ptypes)295     public static MethodType methodType(Class<?> rtype, MethodType ptypes) {
296         return makeImpl(rtype, ptypes.ptypes, true);
297     }
298 
299     /**
300      * Sole factory method to find or create an interned method type.
301      * @param rtype desired return type
302      * @param ptypes desired parameter types
303      * @param trusted whether the ptypes can be used without cloning
304      * @return the unique method type of the desired structure
305      */
306     /*trusted*/
makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted)307     static MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
308         if (ptypes.length == 0) {
309             ptypes = NO_PTYPES; trusted = true;
310         }
311         MethodType primordialMT = new MethodType(rtype, ptypes);
312         MethodType mt = internTable.get(primordialMT);
313         if (mt != null)
314             return mt;
315 
316         // promote the object to the Real Thing, and reprobe
317         MethodType.checkRtype(rtype);
318         if (trusted) {
319             MethodType.checkPtypes(ptypes);
320             mt = primordialMT;
321         } else {
322             // Make defensive copy then validate
323             ptypes = Arrays.copyOf(ptypes, ptypes.length);
324             MethodType.checkPtypes(ptypes);
325             mt = new MethodType(rtype, ptypes);
326         }
327         mt.form = MethodTypeForm.findForm(mt);
328         return internTable.add(mt);
329     }
330     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
331 
332     /**
333      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
334      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
335      * All parameters and the return type will be {@code Object},
336      * except the final array parameter if any, which will be {@code Object[]}.
337      * @param objectArgCount number of parameters (excluding the final array parameter if any)
338      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
339      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
340      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
341      * @see #genericMethodType(int)
342      */
genericMethodType(int objectArgCount, boolean finalArray)343     public static MethodType genericMethodType(int objectArgCount, boolean finalArray) {
344         MethodType mt;
345         checkSlotCount(objectArgCount);
346         int ivarargs = (!finalArray ? 0 : 1);
347         int ootIndex = objectArgCount*2 + ivarargs;
348         if (ootIndex < objectOnlyTypes.length) {
349             mt = objectOnlyTypes[ootIndex];
350             if (mt != null)  return mt;
351         }
352         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
353         Arrays.fill(ptypes, Object.class);
354         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
355         mt = makeImpl(Object.class, ptypes, true);
356         if (ootIndex < objectOnlyTypes.length) {
357             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
358         }
359         return mt;
360     }
361 
362     /**
363      * Finds or creates a method type whose components are all {@code Object}.
364      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
365      * All parameters and the return type will be Object.
366      * @param objectArgCount number of parameters
367      * @return a generally applicable method type, for all calls of the given argument count
368      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
369      * @see #genericMethodType(int, boolean)
370      */
genericMethodType(int objectArgCount)371     public static MethodType genericMethodType(int objectArgCount) {
372         return genericMethodType(objectArgCount, false);
373     }
374 
375     /**
376      * Finds or creates a method type with a single different parameter type.
377      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
378      * @param num    the index (zero-based) of the parameter type to change
379      * @param nptype a new parameter type to replace the old one with
380      * @return the same type, except with the selected parameter changed
381      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
382      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
383      * @throws NullPointerException if {@code nptype} is null
384      */
changeParameterType(int num, Class<?> nptype)385     public MethodType changeParameterType(int num, Class<?> nptype) {
386         if (parameterType(num) == nptype)  return this;
387         checkPtype(nptype);
388         Class<?>[] nptypes = ptypes.clone();
389         nptypes[num] = nptype;
390         return makeImpl(rtype, nptypes, true);
391     }
392 
393     /**
394      * Finds or creates a method type with additional parameter types.
395      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
396      * @param num    the position (zero-based) of the inserted parameter type(s)
397      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
398      * @return the same type, except with the selected parameter(s) inserted
399      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
400      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
401      *                                  or if the resulting method type would have more than 255 parameter slots
402      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
403      */
insertParameterTypes(int num, Class<?>... ptypesToInsert)404     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
405         int len = ptypes.length;
406         if (num < 0 || num > len)
407             throw newIndexOutOfBoundsException(num);
408         int ins = checkPtypes(ptypesToInsert);
409         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
410         int ilen = ptypesToInsert.length;
411         if (ilen == 0)  return this;
412         Class<?>[] nptypes = new Class<?>[len + ilen];
413         if (num > 0) {
414             System.arraycopy(ptypes, 0, nptypes, 0, num);
415         }
416         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
417         if (num < len) {
418             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
419         }
420         return makeImpl(rtype, nptypes, true);
421     }
422 
423     /**
424      * Finds or creates a method type with additional parameter types.
425      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
426      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
427      * @return the same type, except with the selected parameter(s) appended
428      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
429      *                                  or if the resulting method type would have more than 255 parameter slots
430      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
431      */
appendParameterTypes(Class<?>.... ptypesToInsert)432     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
433         return insertParameterTypes(parameterCount(), ptypesToInsert);
434     }
435 
436     /**
437      * Finds or creates a method type with additional parameter types.
438      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
439      * @param num    the position (zero-based) of the inserted parameter type(s)
440      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
441      * @return the same type, except with the selected parameter(s) inserted
442      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
443      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
444      *                                  or if the resulting method type would have more than 255 parameter slots
445      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
446      */
insertParameterTypes(int num, List<Class<?>> ptypesToInsert)447     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
448         return insertParameterTypes(num, listToArray(ptypesToInsert));
449     }
450 
451     /**
452      * Finds or creates a method type with additional parameter types.
453      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
454      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
455      * @return the same type, except with the selected parameter(s) appended
456      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
457      *                                  or if the resulting method type would have more than 255 parameter slots
458      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
459      */
appendParameterTypes(List<Class<?>> ptypesToInsert)460     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
461         return insertParameterTypes(parameterCount(), ptypesToInsert);
462     }
463 
464      /**
465      * Finds or creates a method type with modified parameter types.
466      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
467      * @param start  the position (zero-based) of the first replaced parameter type(s)
468      * @param end    the position (zero-based) after the last replaced parameter type(s)
469      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
470      * @return the same type, except with the selected parameter(s) replaced
471      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
472      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
473      *                                  or if {@code start} is greater than {@code end}
474      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
475      *                                  or if the resulting method type would have more than 255 parameter slots
476      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
477      */
478     /*non-public*/
replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert)479     MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
480         if (start == end)
481             return insertParameterTypes(start, ptypesToInsert);
482         int len = ptypes.length;
483         if (!(0 <= start && start <= end && end <= len))
484             throw newIndexOutOfBoundsException("start="+start+" end="+end);
485         int ilen = ptypesToInsert.length;
486         if (ilen == 0)
487             return dropParameterTypes(start, end);
488         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
489     }
490 
491     /** Replace the last arrayLength parameter types with the component type of arrayType.
492      * @param arrayType any array type
493      * @param pos position at which to spread
494      * @param arrayLength the number of parameter types to change
495      * @return the resulting type
496      */
497     /*non-public*/
asSpreaderType(Class<?> arrayType, int pos, int arrayLength)498     MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
499         assert(parameterCount() >= arrayLength);
500         int spreadPos = pos;
501         if (arrayLength == 0)  return this;  // nothing to change
502         if (arrayType == Object[].class) {
503             if (isGeneric())  return this;  // nothing to change
504             if (spreadPos == 0) {
505                 // no leading arguments to preserve; go generic
506                 MethodType res = genericMethodType(arrayLength);
507                 if (rtype != Object.class) {
508                     res = res.changeReturnType(rtype);
509                 }
510                 return res;
511             }
512         }
513         Class<?> elemType = arrayType.getComponentType();
514         assert(elemType != null);
515         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
516             if (ptypes[i] != elemType) {
517                 Class<?>[] fixedPtypes = ptypes.clone();
518                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
519                 return methodType(rtype, fixedPtypes);
520             }
521         }
522         return this;  // arguments check out; no change
523     }
524 
525     /** Return the leading parameter type, which must exist and be a reference.
526      *  @return the leading parameter type, after error checks
527      */
528     /*non-public*/
leadingReferenceParameter()529     Class<?> leadingReferenceParameter() {
530         Class<?> ptype;
531         if (ptypes.length == 0 ||
532             (ptype = ptypes[0]).isPrimitive())
533             throw newIllegalArgumentException("no leading reference parameter");
534         return ptype;
535     }
536 
537     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
538      * @param arrayType any array type
539      * @param pos position at which to insert parameters
540      * @param arrayLength the number of parameter types to insert
541      * @return the resulting type
542      */
543     /*non-public*/
asCollectorType(Class<?> arrayType, int pos, int arrayLength)544     MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
545         assert(parameterCount() >= 1);
546         assert(pos < ptypes.length);
547         assert(ptypes[pos].isAssignableFrom(arrayType));
548         MethodType res;
549         if (arrayType == Object[].class) {
550             res = genericMethodType(arrayLength);
551             if (rtype != Object.class) {
552                 res = res.changeReturnType(rtype);
553             }
554         } else {
555             Class<?> elemType = arrayType.getComponentType();
556             assert(elemType != null);
557             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
558         }
559         if (ptypes.length == 1) {
560             return res;
561         } else {
562             // insert after (if need be), then before
563             if (pos < ptypes.length - 1) {
564                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
565             }
566             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
567         }
568     }
569 
570     /**
571      * Finds or creates a method type with some parameter types omitted.
572      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
573      * @param start  the index (zero-based) of the first parameter type to remove
574      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
575      * @return the same type, except with the selected parameter(s) removed
576      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
577      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
578      *                                  or if {@code start} is greater than {@code end}
579      */
580     public MethodType dropParameterTypes(int start, int end) {
581         int len = ptypes.length;
582         if (!(0 <= start && start <= end && end <= len))
583             throw newIndexOutOfBoundsException("start="+start+" end="+end);
584         if (start == end)  return this;
585         Class<?>[] nptypes;
586         if (start == 0) {
587             if (end == len) {
588                 // drop all parameters
589                 nptypes = NO_PTYPES;
590             } else {
591                 // drop initial parameter(s)
592                 nptypes = Arrays.copyOfRange(ptypes, end, len);
593             }
594         } else {
595             if (end == len) {
596                 // drop trailing parameter(s)
597                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
598             } else {
599                 int tail = len - end;
600                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
601                 System.arraycopy(ptypes, end, nptypes, start, tail);
602             }
603         }
604         return makeImpl(rtype, nptypes, true);
605     }
606 
607     /**
608      * Finds or creates a method type with a different return type.
609      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
610      * @param nrtype a return parameter type to replace the old one with
611      * @return the same type, except with the return type change
612      * @throws NullPointerException if {@code nrtype} is null
613      */
614     public MethodType changeReturnType(Class<?> nrtype) {
615         if (returnType() == nrtype)  return this;
616         return makeImpl(nrtype, ptypes, true);
617     }
618 
619     /**
620      * Reports if this type contains a primitive argument or return value.
621      * The return type {@code void} counts as a primitive.
622      * @return true if any of the types are primitives
623      */
624     public boolean hasPrimitives() {
625         return form.hasPrimitives();
626     }
627 
628     /**
629      * Reports if this type contains a wrapper argument or return value.
630      * Wrappers are types which box primitive values, such as {@link Integer}.
631      * The reference type {@code java.lang.Void} counts as a wrapper,
632      * if it occurs as a return type.
633      * @return true if any of the types are wrappers
634      */
635     public boolean hasWrappers() {
636         return unwrap() != this;
637     }
638 
639     /**
640      * Erases all reference types to {@code Object}.
641      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
642      * All primitive types (including {@code void}) will remain unchanged.
643      * @return a version of the original type with all reference types replaced
644      */
645     public MethodType erase() {
646         return form.erasedType();
647     }
648 
649     /**
650      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
651      * This is the reduced type polymorphism used by private methods
652      * such as {@link MethodHandle#invokeBasic invokeBasic}.
653      * @return a version of the original type with all reference and subword types replaced
654      */
655     /*non-public*/
656     MethodType basicType() {
657         return form.basicType();
658     }
659 
660     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
661             = new Class<?>[] { MethodHandle.class };
662 
663     /**
664      * @return a version of the original type with MethodHandle prepended as the first argument
665      */
666     /*non-public*/
667     MethodType invokerType() {
668         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
669     }
670 
671     /**
672      * Converts all types, both reference and primitive, to {@code Object}.
673      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
674      * The expression {@code type.wrap().erase()} produces the same value
675      * as {@code type.generic()}.
676      * @return a version of the original type with all types replaced
677      */
678     public MethodType generic() {
679         return genericMethodType(parameterCount());
680     }
681 
682     /*non-public*/
683     boolean isGeneric() {
684         return this == erase() && !hasPrimitives();
685     }
686 
687     /**
688      * Converts all primitive types to their corresponding wrapper types.
689      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
690      * All reference types (including wrapper types) will remain unchanged.
691      * A {@code void} return type is changed to the type {@code java.lang.Void}.
692      * The expression {@code type.wrap().erase()} produces the same value
693      * as {@code type.generic()}.
694      * @return a version of the original type with all primitive types replaced
695      */
696     public MethodType wrap() {
697         return hasPrimitives() ? wrapWithPrims(this) : this;
698     }
699 
700     /**
701      * Converts all wrapper types to their corresponding primitive types.
702      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
703      * All primitive types (including {@code void}) will remain unchanged.
704      * A return type of {@code java.lang.Void} is changed to {@code void}.
705      * @return a version of the original type with all wrapper types replaced
706      */
707     public MethodType unwrap() {
708         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
709         return unwrapWithNoPrims(noprims);
710     }
711 
712     private static MethodType wrapWithPrims(MethodType pt) {
713         assert(pt.hasPrimitives());
714         MethodType wt = (MethodType)pt.wrapAlt;
715         if (wt == null) {
716             // fill in lazily
717             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
718             assert(wt != null);
719             pt.wrapAlt = wt;
720         }
721         return wt;
722     }
723 
724     private static MethodType unwrapWithNoPrims(MethodType wt) {
725         assert(!wt.hasPrimitives());
726         MethodType uwt = (MethodType)wt.wrapAlt;
727         if (uwt == null) {
728             // fill in lazily
729             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
730             if (uwt == null)
731                 uwt = wt;    // type has no wrappers or prims at all
732             wt.wrapAlt = uwt;
733         }
734         return uwt;
735     }
736 
737     /**
738      * Returns the parameter type at the specified index, within this method type.
739      * @param num the index (zero-based) of the desired parameter type
740      * @return the selected parameter type
741      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
742      */
743     public Class<?> parameterType(int num) {
744         return ptypes[num];
745     }
746     /**
747      * Returns the number of parameter types in this method type.
748      * @return the number of parameter types
749      */
750     public int parameterCount() {
751         return ptypes.length;
752     }
753     /**
754      * Returns the return type of this method type.
755      * @return the return type
756      */
757     public Class<?> returnType() {
758         return rtype;
759     }
760 
761     /**
762      * Presents the parameter types as a list (a convenience method).
763      * The list will be immutable.
764      * @return the parameter types (as an immutable list)
765      */
766     public List<Class<?>> parameterList() {
767         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
768     }
769 
770     /**
771      * Returns the last parameter type of this method type.
772      * If this type has no parameters, the sentinel value
773      * {@code void.class} is returned instead.
774      * @apiNote
775      * <p>
776      * The sentinel value is chosen so that reflective queries can be
777      * made directly against the result value.
778      * The sentinel value cannot be confused with a real parameter,
779      * since {@code void} is never acceptable as a parameter type.
780      * For variable arity invocation modes, the expression
781      * {@link Class#getComponentType lastParameterType().getComponentType()}
782      * is useful to query the type of the "varargs" parameter.
783      * @return the last parameter type if any, else {@code void.class}
784      * @since 10
785      */
786     public Class<?> lastParameterType() {
787         int len = ptypes.length;
788         return len == 0 ? void.class : ptypes[len-1];
789     }
790 
791     /**
792      * Presents the parameter types as an array (a convenience method).
793      * Changes to the array will not result in changes to the type.
794      * @return the parameter types (as a fresh copy if necessary)
795      */
796     public Class<?>[] parameterArray() {
797         return ptypes.clone();
798     }
799 
800     /**
801      * Compares the specified object with this type for equality.
802      * That is, it returns {@code true} if and only if the specified object
803      * is also a method type with exactly the same parameters and return type.
804      * @param x object to compare
805      * @see Object#equals(Object)
806      */
807     // This implementation may also return true if x is a WeakEntry containing
808     // a method type that is equal to this. This is an internal implementation
809     // detail to allow for faster method type lookups.
810     // See ConcurrentWeakInternSet.WeakEntry#equals(Object)
811     @Override
812     public boolean equals(Object x) {
813         if (this == x) {
814             return true;
815         }
816         if (x instanceof MethodType) {
817             return equals((MethodType)x);
818         }
819         if (x instanceof ConcurrentWeakInternSet.WeakEntry) {
820             Object o = ((ConcurrentWeakInternSet.WeakEntry)x).get();
821             if (o instanceof MethodType) {
822                 return equals((MethodType)o);
823             }
824         }
825         return false;
826     }
827 
828     private boolean equals(MethodType that) {
829         return this.rtype == that.rtype
830             && Arrays.equals(this.ptypes, that.ptypes);
831     }
832 
833     /**
834      * Returns the hash code value for this method type.
835      * It is defined to be the same as the hashcode of a List
836      * whose elements are the return type followed by the
837      * parameter types.
838      * @return the hash code value for this method type
839      * @see Object#hashCode()
840      * @see #equals(Object)
841      * @see List#hashCode()
842      */
843     @Override
844     public int hashCode() {
845         int hashCode = 31 + rtype.hashCode();
846         for (Class<?> ptype : ptypes)
847             hashCode = 31 * hashCode + ptype.hashCode();
848         return hashCode;
849     }
850 
851     /**
852      * Returns a string representation of the method type,
853      * of the form {@code "(PT0,PT1...)RT"}.
854      * The string representation of a method type is a
855      * parenthesis enclosed, comma separated list of type names,
856      * followed immediately by the return type.
857      * <p>
858      * Each type is represented by its
859      * {@link java.lang.Class#getSimpleName simple name}.
860      */
861     @Override
862     public String toString() {
863         StringJoiner sj = new StringJoiner(",", "(",
864                 ")" + rtype.getSimpleName());
865         for (int i = 0; i < ptypes.length; i++) {
866             sj.add(ptypes[i].getSimpleName());
867         }
868         return sj.toString();
869     }
870 
871     /** True if my parameter list is effectively identical to the given full list,
872      *  after skipping the given number of my own initial parameters.
873      *  In other words, after disregarding {@code skipPos} parameters,
874      *  my remaining parameter list is no longer than the {@code fullList}, and
875      *  is equal to the same-length initial sublist of {@code fullList}.
876      */
877     /*non-public*/
878     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
879         int myLen = ptypes.length, fullLen = fullList.size();
880         if (skipPos > myLen || myLen - skipPos > fullLen)
881             return false;
882         List<Class<?>> myList = Arrays.asList(ptypes);
883         if (skipPos != 0) {
884             myList = myList.subList(skipPos, myLen);
885             myLen -= skipPos;
886         }
887         if (fullLen == myLen)
888             return myList.equals(fullList);
889         else
890             return myList.equals(fullList.subList(0, myLen));
891     }
892 
893     /** True if the old return type can always be viewed (w/o casting) under new return type,
894      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
895      */
896     /*non-public*/
897     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
898         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
899             return false;
900         if (form == newType.form && form.erasedType == this)
901             return true;  // my reference parameters are all Object
902         if (ptypes == newType.ptypes)
903             return true;
904         int argc = parameterCount();
905         if (argc != newType.parameterCount())
906             return false;
907         for (int i = 0; i < argc; i++) {
908             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
909                 return false;
910         }
911         return true;
912     }
913     /*non-public*/
914     boolean isConvertibleTo(MethodType newType) {
915         MethodTypeForm oldForm = this.form();
916         MethodTypeForm newForm = newType.form();
917         if (oldForm == newForm)
918             // same parameter count, same primitive/object mix
919             return true;
920         if (!canConvert(returnType(), newType.returnType()))
921             return false;
922         Class<?>[] srcTypes = newType.ptypes;
923         Class<?>[] dstTypes = ptypes;
924         if (srcTypes == dstTypes)
925             return true;
926         int argc;
927         if ((argc = srcTypes.length) != dstTypes.length)
928             return false;
929         if (argc <= 1) {
930             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
931                 return false;
932             return true;
933         }
934         if ((!oldForm.hasPrimitives() && oldForm.erasedType == this) ||
935             (!newForm.hasPrimitives() && newForm.erasedType == newType)) {
936             // Somewhat complicated test to avoid a loop of 2 or more trips.
937             // If either type has only Object parameters, we know we can convert.
938             assert(canConvertParameters(srcTypes, dstTypes));
939             return true;
940         }
941         return canConvertParameters(srcTypes, dstTypes);
942     }
943 
944     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
945      *  If the type conversion is impossible for either, the result should be false.
946      */
947     /*non-public*/
948     boolean explicitCastEquivalentToAsType(MethodType newType) {
949         if (this == newType)  return true;
950         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
951             return false;
952         }
953         Class<?>[] srcTypes = newType.ptypes;
954         Class<?>[] dstTypes = ptypes;
955         if (dstTypes == srcTypes) {
956             return true;
957         }
958         assert(dstTypes.length == srcTypes.length);
959         for (int i = 0; i < dstTypes.length; i++) {
960             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
961                 return false;
962             }
963         }
964         return true;
965     }
966 
967     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
968      *  and with the same effect.
969      *  MHs.eCA has the following "upgrades" to MH.asType:
970      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
971      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
972      *  2. the full matrix of primitive-to-primitive conversions is supported
973      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
974      *     are not supported by asType, but anything supported by asType is equivalent
975      *     with MHs.eCE.
976      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
977      *  3b. unboxing of null is permitted (creates a zero primitive value)
978      * Other than interfaces, reference-to-reference conversions are the same.
979      * Boxing primitives to references is the same for both operators.
980      */
981     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
982         if (src == dst || dst == Object.class || dst == void.class)  return true;
983         if (src.isPrimitive()) {
984             // Could be a prim/prim conversion, where casting is a strict superset.
985             // Or a boxing conversion, which is always to an exact wrapper class.
986             return canConvert(src, dst);
987         } else if (dst.isPrimitive()) {
988             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
989             return false;
990         } else {
991             // R->R always works, but we have to avoid a check-cast to an interface.
992             return !dst.isInterface() || dst.isAssignableFrom(src);
993         }
994     }
995 
996     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
997         for (int i = 0; i < srcTypes.length; i++) {
998             if (!canConvert(srcTypes[i], dstTypes[i])) {
999                 return false;
1000             }
1001         }
1002         return true;
1003     }
1004 
1005     /*non-public*/
1006     static boolean canConvert(Class<?> src, Class<?> dst) {
1007         // short-circuit a few cases:
1008         if (src == dst || src == Object.class || dst == Object.class)  return true;
1009         // the remainder of this logic is documented in MethodHandle.asType
1010         if (src.isPrimitive()) {
1011             // can force void to an explicit null, a la reflect.Method.invoke
1012             // can also force void to a primitive zero, by analogy
1013             if (src == void.class)  return true;  //or !dst.isPrimitive()?
1014             Wrapper sw = Wrapper.forPrimitiveType(src);
1015             if (dst.isPrimitive()) {
1016                 // P->P must widen
1017                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
1018             } else {
1019                 // P->R must box and widen
1020                 return dst.isAssignableFrom(sw.wrapperType());
1021             }
1022         } else if (dst.isPrimitive()) {
1023             // any value can be dropped
1024             if (dst == void.class)  return true;
1025             Wrapper dw = Wrapper.forPrimitiveType(dst);
1026             // R->P must be able to unbox (from a dynamically chosen type) and widen
1027             // For example:
1028             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
1029             //   Character/Comparable/Object -> dw:Character -> char
1030             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
1031             // This means that dw must be cast-compatible with src.
1032             if (src.isAssignableFrom(dw.wrapperType())) {
1033                 return true;
1034             }
1035             // The above does not work if the source reference is strongly typed
1036             // to a wrapper whose primitive must be widened.  For example:
1037             //   Byte -> unbox:byte -> short/int/long/float/double
1038             //   Character -> unbox:char -> int/long/float/double
1039             if (Wrapper.isWrapperType(src) &&
1040                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1041                 // can unbox from src and then widen to dst
1042                 return true;
1043             }
1044             // We have already covered cases which arise due to runtime unboxing
1045             // of a reference type which covers several wrapper types:
1046             //   Object -> cast:Integer -> unbox:int -> long/float/double
1047             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1048             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1049             // subclass of Number which wraps a value that can convert to char.
1050             // Since there is none, we don't need an extra check here to cover char or boolean.
1051             return false;
1052         } else {
1053             // R->R always works, since null is always valid dynamically
1054             return true;
1055         }
1056     }
1057 
1058     /// Queries which have to do with the bytecode architecture
1059 
1060     /** Reports the number of JVM stack slots required to invoke a method
1061      * of this type.  Note that (for historical reasons) the JVM requires
1062      * a second stack slot to pass long and double arguments.
1063      * So this method returns {@link #parameterCount() parameterCount} plus the
1064      * number of long and double parameters (if any).
1065      * <p>
1066      * This method is included for the benefit of applications that must
1067      * generate bytecodes that process method handles and invokedynamic.
1068      * @return the number of JVM stack slots for this type's parameters
1069      */
1070     /*non-public*/
1071     int parameterSlotCount() {
1072         return form.parameterSlotCount();
1073     }
1074 
1075     /*non-public*/
1076     Invokers invokers() {
1077         Invokers inv = invokers;
1078         if (inv != null)  return inv;
1079         invokers = inv = new Invokers(this);
1080         return inv;
1081     }
1082 
1083     /**
1084      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1085      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1086      * Any class or interface name embedded in the descriptor string will be
1087      * resolved by the given loader (or if it is null, on the system class loader).
1088      * <p>
1089      * Note that it is possible to encounter method types which cannot be
1090      * constructed by this method, because their component types are
1091      * not all reachable from a common class loader.
1092      * <p>
1093      * This method is included for the benefit of applications that must
1094      * generate bytecodes that process method handles and {@code invokedynamic}.
1095      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1096      * @param loader the class loader in which to look up the types
1097      * @return a method type matching the bytecode-level type descriptor
1098      * @throws NullPointerException if the string is null
1099      * @throws IllegalArgumentException if the string is not well-formed
1100      * @throws TypeNotPresentException if a named type cannot be found
1101      * @throws SecurityException if the security manager is present and
1102      *         {@code loader} is {@code null} and the caller does not have the
1103      *         {@link RuntimePermission}{@code ("getClassLoader")}
1104      */
1105     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1106         throws IllegalArgumentException, TypeNotPresentException
1107     {
1108         if (loader == null) {
1109             SecurityManager sm = System.getSecurityManager();
1110             if (sm != null) {
1111                 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1112             }
1113         }
1114         return fromDescriptor(descriptor,
1115                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1116     }
1117 
1118     /**
1119      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1120      * {@code null} ClassLoader means the bootstrap loader is used here.
1121      * <p>
1122      * IMPORTANT: This method is preferable for JDK internal use as it more
1123      * correctly interprets {@code null} ClassLoader than
1124      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1125      * Use of this method also avoids early initialization issues when system
1126      * ClassLoader is not initialized yet.
1127      */
1128     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1129         throws IllegalArgumentException, TypeNotPresentException
1130     {
1131         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1132             descriptor.indexOf(')') < 0 ||
1133             descriptor.indexOf('.') >= 0)
1134             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1135         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1136         Class<?> rtype = types.remove(types.size() - 1);
1137         Class<?>[] ptypes = listToArray(types);
1138         return makeImpl(rtype, ptypes, true);
1139     }
1140 
1141     /**
1142      * Produces a bytecode descriptor representation of the method type.
1143      * <p>
1144      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1145      * Two distinct classes which share a common name but have different class loaders
1146      * will appear identical when viewed within descriptor strings.
1147      * <p>
1148      * This method is included for the benefit of applications that must
1149      * generate bytecodes that process method handles and {@code invokedynamic}.
1150      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1151      * because the latter requires a suitable class loader argument.
1152      * @return the bytecode type descriptor representation
1153      */
1154     public String toMethodDescriptorString() {
1155         String desc = methodDescriptor;
1156         if (desc == null) {
1157             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1158             methodDescriptor = desc;
1159         }
1160         return desc;
1161     }
1162 
1163     /**
1164      * Return a field type descriptor string for this type
1165      *
1166      * @return the descriptor string
1167      * @jvms 4.3.2 Field Descriptors
1168      * @since 12
1169      */
1170     @Override
1171     public String descriptorString() {
1172         return toMethodDescriptorString();
1173     }
1174 
1175     /*non-public*/
1176     static String toFieldDescriptorString(Class<?> cls) {
1177         return BytecodeDescriptor.unparse(cls);
1178     }
1179 
1180     /**
1181      * Return a nominal descriptor for this instance, if one can be
1182      * constructed, or an empty {@link Optional} if one cannot be.
1183      *
1184      * @return An {@link Optional} containing the resulting nominal descriptor,
1185      * or an empty {@link Optional} if one cannot be constructed.
1186      * @since 12
1187      */
1188     @Override
1189     public Optional<MethodTypeDesc> describeConstable() {
1190         try {
1191             return Optional.of(MethodTypeDesc.of(returnType().describeConstable().orElseThrow(),
1192                                                  Stream.of(parameterArray())
1193                                                       .map(p -> p.describeConstable().orElseThrow())
1194                                                       .toArray(ClassDesc[]::new)));
1195         }
1196         catch (NoSuchElementException e) {
1197             return Optional.empty();
1198         }
1199     }
1200 
1201     /// Serialization.
1202 
1203     /**
1204      * There are no serializable fields for {@code MethodType}.
1205      */
1206     @java.io.Serial
1207     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1208 
1209     /**
1210      * Save the {@code MethodType} instance to a stream.
1211      *
1212      * @serialData
1213      * For portability, the serialized format does not refer to named fields.
1214      * Instead, the return type and parameter type arrays are written directly
1215      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1216      * as follows:
1217      * <blockquote><pre>{@code
1218 s.writeObject(this.returnType());
1219 s.writeObject(this.parameterArray());
1220      * }</pre></blockquote>
1221      * <p>
1222      * The deserialized field values are checked as if they were
1223      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1224      * For example, null values, or {@code void} parameter types,
1225      * will lead to exceptions during deserialization.
1226      * @param s the stream to write the object to
1227      * @throws java.io.IOException if there is a problem writing the object
1228      */
1229     @java.io.Serial
1230     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1231         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1232         s.writeObject(returnType());
1233         s.writeObject(parameterArray());
1234     }
1235 
1236     /**
1237      * Reconstitute the {@code MethodType} instance from a stream (that is,
1238      * deserialize it).
1239      * This instance is a scratch object with bogus final fields.
1240      * It provides the parameters to the factory method called by
1241      * {@link #readResolve readResolve}.
1242      * After that call it is discarded.
1243      * @param s the stream to read the object from
1244      * @throws java.io.IOException if there is a problem reading the object
1245      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1246      * @see #readResolve
1247      * @see #writeObject
1248      */
1249     @java.io.Serial
1250     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1251         // Assign defaults in case this object escapes
1252         UNSAFE.putReference(this, OffsetHolder.rtypeOffset, void.class);
1253         UNSAFE.putReference(this, OffsetHolder.ptypesOffset, NO_PTYPES);
1254 
1255         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1256 
1257         Class<?>   returnType     = (Class<?>)   s.readObject();
1258         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1259 
1260         // Verify all operands, and make sure ptypes is unshared
1261         // Cache the new MethodType for readResolve
1262         wrapAlt = new MethodType[]{MethodType.methodType(returnType, parameterArray)};
1263     }
1264 
1265     // Support for resetting final fields while deserializing. Implement Holder
1266     // pattern to make the rarely needed offset calculation lazy.
1267     private static class OffsetHolder {
1268         static final long rtypeOffset
1269                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1270 
1271         static final long ptypesOffset
1272                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1273     }
1274 
1275     /**
1276      * Resolves and initializes a {@code MethodType} object
1277      * after serialization.
1278      * @return the fully initialized {@code MethodType} object
1279      */
1280     @java.io.Serial
1281     private Object readResolve() {
1282         // Do not use a trusted path for deserialization:
1283         //    return makeImpl(rtype, ptypes, true);
1284         // Verify all operands, and make sure ptypes is unshared:
1285         // Return a new validated MethodType for the rtype and ptypes passed from readObject.
1286         MethodType mt = ((MethodType[])wrapAlt)[0];
1287         wrapAlt = null;
1288         return mt;
1289     }
1290 
1291     /**
1292      * Simple implementation of weak concurrent intern set.
1293      *
1294      * @param <T> interned type
1295      */
1296     private static class ConcurrentWeakInternSet<T> {
1297 
1298         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1299         private final ReferenceQueue<T> stale;
1300 
1301         public ConcurrentWeakInternSet() {
1302             this.map = new ConcurrentHashMap<>(512);
1303             this.stale = new ReferenceQueue<>();
1304         }
1305 
1306         /**
1307          * Get the existing interned element.
1308          * This method returns null if no element is interned.
1309          *
1310          * @param elem element to look up
1311          * @return the interned element
1312          */
1313         public T get(T elem) {
1314             if (elem == null) throw new NullPointerException();
1315             expungeStaleElements();
1316 
1317             WeakEntry<T> value = map.get(elem);
1318             if (value != null) {
1319                 T res = value.get();
1320                 if (res != null) {
1321                     return res;
1322                 }
1323             }
1324             return null;
1325         }
1326 
1327         /**
1328          * Interns the element.
1329          * Always returns non-null element, matching the one in the intern set.
1330          * Under the race against another add(), it can return <i>different</i>
1331          * element, if another thread beats us to interning it.
1332          *
1333          * @param elem element to add
1334          * @return element that was actually added
1335          */
1336         public T add(T elem) {
1337             if (elem == null) throw new NullPointerException();
1338 
1339             // Playing double race here, and so spinloop is required.
1340             // First race is with two concurrent updaters.
1341             // Second race is with GC purging weak ref under our feet.
1342             // Hopefully, we almost always end up with a single pass.
1343             T interned;
1344             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1345             do {
1346                 expungeStaleElements();
1347                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1348                 interned = (exist == null) ? elem : exist.get();
1349             } while (interned == null);
1350             return interned;
1351         }
1352 
1353         private void expungeStaleElements() {
1354             Reference<? extends T> reference;
1355             while ((reference = stale.poll()) != null) {
1356                 map.remove(reference);
1357             }
1358         }
1359 
1360         private static class WeakEntry<T> extends WeakReference<T> {
1361 
1362             public final int hashcode;
1363 
1364             public WeakEntry(T key, ReferenceQueue<T> queue) {
1365                 super(key, queue);
1366                 hashcode = key.hashCode();
1367             }
1368 
1369             /**
1370              * This implementation returns {@code true} if {@code obj} is another
1371              * {@code WeakEntry} whose referent is equals to this referent, or
1372              * if {@code obj} is equals to the referent of this. This allows
1373              * lookups to be made without wrapping in a {@code WeakEntry}.
1374              *
1375              * @param obj the object to compare
1376              * @return true if {@code obj} is equals to this or the referent of this
1377              * @see MethodType#equals(Object)
1378              * @see Object#equals(Object)
1379              */
1380             @Override
1381             public boolean equals(Object obj) {
1382                 Object mine = get();
1383                 if (obj instanceof WeakEntry) {
1384                     Object that = ((WeakEntry) obj).get();
1385                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1386                 }
1387                 return (mine == null) ? (obj == null) : mine.equals(obj);
1388             }
1389 
1390             @Override
1391             public int hashCode() {
1392                 return hashcode;
1393             }
1394 
1395         }
1396     }
1397 
1398 }
1399