1 /*
2  * Copyright (c) 1996, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.awt;
27 
28 import java.awt.RenderingHints.Key;
29 import java.awt.geom.AffineTransform;
30 import java.awt.image.ImageObserver;
31 import java.awt.image.BufferedImageOp;
32 import java.awt.image.BufferedImage;
33 import java.awt.image.RenderedImage;
34 import java.awt.image.renderable.RenderableImage;
35 import java.awt.font.GlyphVector;
36 import java.awt.font.FontRenderContext;
37 import java.awt.font.TextAttribute;
38 import java.text.AttributedCharacterIterator;
39 import java.util.Map;
40 
41 /**
42  * This {@code Graphics2D} class extends the
43  * {@link Graphics} class to provide more sophisticated
44  * control over geometry, coordinate transformations, color management,
45  * and text layout.  This is the fundamental class for rendering
46  * 2-dimensional shapes, text and images on the  Java(tm) platform.
47  *
48  * <h2>Coordinate Spaces</h2>
49  * All coordinates passed to a {@code Graphics2D} object are specified
50  * in a device-independent coordinate system called User Space, which is
51  * used by applications.  The {@code Graphics2D} object contains
52  * an {@link AffineTransform} object as part of its rendering state
53  * that defines how to convert coordinates from user space to
54  * device-dependent coordinates in Device Space.
55  * <p>
56  * Coordinates in device space usually refer to individual device pixels
57  * and are aligned on the infinitely thin gaps between these pixels.
58  * Some {@code Graphics2D} objects can be used to capture rendering
59  * operations for storage into a graphics metafile for playback on a
60  * concrete device of unknown physical resolution at a later time.  Since
61  * the resolution might not be known when the rendering operations are
62  * captured, the {@code Graphics2D Transform} is set up
63  * to transform user coordinates to a virtual device space that
64  * approximates the expected resolution of the target device. Further
65  * transformations might need to be applied at playback time if the
66  * estimate is incorrect.
67  * <p>
68  * Some of the operations performed by the rendering attribute objects
69  * occur in the device space, but all {@code Graphics2D} methods take
70  * user space coordinates.
71  * <p>
72  * Every {@code Graphics2D} object is associated with a target that
73  * defines where rendering takes place. A
74  * {@link GraphicsConfiguration} object defines the characteristics
75  * of the rendering target, such as pixel format and resolution.
76  * The same rendering target is used throughout the life of a
77  * {@code Graphics2D} object.
78  * <p>
79  * When creating a {@code Graphics2D} object,  the
80  * {@code GraphicsConfiguration}
81  * specifies the <a id="deftransform">default transform</a> for
82  * the target of the {@code Graphics2D} (a
83  * {@link Component} or {@link Image}).  This default transform maps the
84  * user space coordinate system to screen and printer device coordinates
85  * such that the origin maps to the upper left hand corner of the
86  * target region of the device with increasing X coordinates extending
87  * to the right and increasing Y coordinates extending downward.
88  * The scaling of the default transform is set to identity for those devices
89  * that are close to 72 dpi, such as screen devices.
90  * The scaling of the default transform is set to approximately 72 user
91  * space coordinates per square inch for high resolution devices, such as
92  * printers.  For image buffers, the default transform is the
93  * {@code Identity} transform.
94  *
95  * <h2>Rendering Process</h2>
96  * The Rendering Process can be broken down into four phases that are
97  * controlled by the {@code Graphics2D} rendering attributes.
98  * The renderer can optimize many of these steps, either by caching the
99  * results for future calls, by collapsing multiple virtual steps into
100  * a single operation, or by recognizing various attributes as common
101  * simple cases that can be eliminated by modifying other parts of the
102  * operation.
103  * <p>
104  * The steps in the rendering process are:
105  * <ol>
106  * <li>
107  * Determine what to render.
108  * <li>
109  * Constrain the rendering operation to the current {@code Clip}.
110  * The {@code Clip} is specified by a {@link Shape} in user
111  * space and is controlled by the program using the various clip
112  * manipulation methods of {@code Graphics} and
113  * {@code Graphics2D}.  This <i>user clip</i>
114  * is transformed into device space by the current
115  * {@code Transform} and combined with the
116  * <i>device clip</i>, which is defined by the visibility of windows and
117  * device extents.  The combination of the user clip and device clip
118  * defines the <i>composite clip</i>, which determines the final clipping
119  * region.  The user clip is not modified by the rendering
120  * system to reflect the resulting composite clip.
121  * <li>
122  * Determine what colors to render.
123  * <li>
124  * Apply the colors to the destination drawing surface using the current
125  * {@link Composite} attribute in the {@code Graphics2D} context.
126  * </ol>
127  * <br>
128  * The three types of rendering operations, along with details of each
129  * of their particular rendering processes are:
130  * <ol>
131  * <li>
132  * <b><a id="rendershape">{@code Shape} operations</a></b>
133  * <ol>
134  * <li>
135  * If the operation is a {@code draw(Shape)} operation, then
136  * the  {@link Stroke#createStrokedShape(Shape) createStrokedShape}
137  * method on the current {@link Stroke} attribute in the
138  * {@code Graphics2D} context is used to construct a new
139  * {@code Shape} object that contains the outline of the specified
140  * {@code Shape}.
141  * <li>
142  * The {@code Shape} is transformed from user space to device space
143  * using the current {@code Transform}
144  * in the {@code Graphics2D} context.
145  * <li>
146  * The outline of the {@code Shape} is extracted using the
147  * {@link Shape#getPathIterator(AffineTransform) getPathIterator} method of
148  * {@code Shape}, which returns a
149  * {@link java.awt.geom.PathIterator PathIterator}
150  * object that iterates along the boundary of the {@code Shape}.
151  * <li>
152  * If the {@code Graphics2D} object cannot handle the curved segments
153  * that the {@code PathIterator} object returns then it can call the
154  * alternate
155  * {@link Shape#getPathIterator(AffineTransform, double) getPathIterator}
156  * method of {@code Shape}, which flattens the {@code Shape}.
157  * <li>
158  * The current {@link Paint} in the {@code Graphics2D} context
159  * is queried for a {@link PaintContext}, which specifies the
160  * colors to render in device space.
161  * </ol>
162  * <li>
163  * <b><a id=rendertext>Text operations</a></b>
164  * <ol>
165  * <li>
166  * The following steps are used to determine the set of glyphs required
167  * to render the indicated {@code String}:
168  * <ol>
169  * <li>
170  * If the argument is a {@code String}, then the current
171  * {@code Font} in the {@code Graphics2D} context is asked to
172  * convert the Unicode characters in the {@code String} into a set of
173  * glyphs for presentation with whatever basic layout and shaping
174  * algorithms the font implements.
175  * <li>
176  * If the argument is an
177  * {@link AttributedCharacterIterator},
178  * the iterator is asked to convert itself to a
179  * {@link java.awt.font.TextLayout TextLayout}
180  * using its embedded font attributes. The {@code TextLayout}
181  * implements more sophisticated glyph layout algorithms that
182  * perform Unicode bi-directional layout adjustments automatically
183  * for multiple fonts of differing writing directions.
184   * <li>
185  * If the argument is a
186  * {@link GlyphVector}, then the
187  * {@code GlyphVector} object already contains the appropriate
188  * font-specific glyph codes with explicit coordinates for the position of
189  * each glyph.
190  * </ol>
191  * <li>
192  * The current {@code Font} is queried to obtain outlines for the
193  * indicated glyphs.  These outlines are treated as shapes in user space
194  * relative to the position of each glyph that was determined in step 1.
195  * <li>
196  * The character outlines are filled as indicated above
197  * under <a href="#rendershape">{@code Shape} operations</a>.
198  * <li>
199  * The current {@code Paint} is queried for a
200  * {@code PaintContext}, which specifies
201  * the colors to render in device space.
202  * </ol>
203  * <li>
204  * <b><a id= renderingimage>{@code Image} Operations</a></b>
205  * <ol>
206  * <li>
207  * The region of interest is defined by the bounding box of the source
208  * {@code Image}.
209  * This bounding box is specified in Image Space, which is the
210  * {@code Image} object's local coordinate system.
211  * <li>
212  * If an {@code AffineTransform} is passed to
213  * {@link #drawImage(java.awt.Image, java.awt.geom.AffineTransform, java.awt.image.ImageObserver) drawImage(Image, AffineTransform, ImageObserver)},
214  * the {@code AffineTransform} is used to transform the bounding
215  * box from image space to user space. If no {@code AffineTransform}
216  * is supplied, the bounding box is treated as if it is already in user space.
217  * <li>
218  * The bounding box of the source {@code Image} is transformed from user
219  * space into device space using the current {@code Transform}.
220  * Note that the result of transforming the bounding box does not
221  * necessarily result in a rectangular region in device space.
222  * <li>
223  * The {@code Image} object determines what colors to render,
224  * sampled according to the source to destination
225  * coordinate mapping specified by the current {@code Transform} and the
226  * optional image transform.
227  * </ol>
228  * </ol>
229  *
230  * <h2>Default Rendering Attributes</h2>
231  * The default values for the {@code Graphics2D} rendering attributes are:
232  * <dl>
233  * <dt><i>{@code Paint}</i>
234  * <dd>The color of the {@code Component}.
235  * <dt><i>{@code Font}</i>
236  * <dd>The {@code Font} of the {@code Component}.
237  * <dt><i>{@code Stroke}</i>
238  * <dd>A square pen with a linewidth of 1, no dashing, miter segment joins
239  * and square end caps.
240  * <dt><i>{@code Transform}</i>
241  * <dd>The
242  * {@link GraphicsConfiguration#getDefaultTransform() getDefaultTransform}
243  * for the {@code GraphicsConfiguration} of the {@code Component}.
244  * <dt><i>{@code Composite}</i>
245  * <dd>The {@link AlphaComposite#SRC_OVER} rule.
246  * <dt><i>{@code Clip}</i>
247  * <dd>No rendering {@code Clip}, the output is clipped to the
248  * {@code Component}.
249  * </dl>
250  *
251  * <h2>Rendering Compatibility Issues</h2>
252  * The JDK(tm) 1.1 rendering model is based on a pixelization model
253  * that specifies that coordinates
254  * are infinitely thin, lying between the pixels.  Drawing operations are
255  * performed using a one-pixel wide pen that fills the
256  * pixel below and to the right of the anchor point on the path.
257  * The JDK 1.1 rendering model is consistent with the
258  * capabilities of most of the existing class of platform
259  * renderers that need  to resolve integer coordinates to a
260  * discrete pen that must fall completely on a specified number of pixels.
261  * <p>
262  * The Java 2D(tm) (Java(tm) 2 platform) API supports antialiasing renderers.
263  * A pen with a width of one pixel does not need to fall
264  * completely on pixel N as opposed to pixel N+1.  The pen can fall
265  * partially on both pixels. It is not necessary to choose a bias
266  * direction for a wide pen since the blending that occurs along the
267  * pen traversal edges makes the sub-pixel position of the pen
268  * visible to the user.  On the other hand, when antialiasing is
269  * turned off by setting the
270  * {@link RenderingHints#KEY_ANTIALIASING KEY_ANTIALIASING} hint key
271  * to the
272  * {@link RenderingHints#VALUE_ANTIALIAS_OFF VALUE_ANTIALIAS_OFF}
273  * hint value, the renderer might need
274  * to apply a bias to determine which pixel to modify when the pen
275  * is straddling a pixel boundary, such as when it is drawn
276  * along an integer coordinate in device space.  While the capabilities
277  * of an antialiasing renderer make it no longer necessary for the
278  * rendering model to specify a bias for the pen, it is desirable for the
279  * antialiasing and non-antialiasing renderers to perform similarly for
280  * the common cases of drawing one-pixel wide horizontal and vertical
281  * lines on the screen.  To ensure that turning on antialiasing by
282  * setting the
283  * {@link RenderingHints#KEY_ANTIALIASING KEY_ANTIALIASING} hint
284  * key to
285  * {@link RenderingHints#VALUE_ANTIALIAS_ON VALUE_ANTIALIAS_ON}
286  * does not cause such lines to suddenly become twice as wide and half
287  * as opaque, it is desirable to have the model specify a path for such
288  * lines so that they completely cover a particular set of pixels to help
289  * increase their crispness.
290  * <p>
291  * Java 2D API maintains compatibility with JDK 1.1 rendering
292  * behavior, such that legacy operations and existing renderer
293  * behavior is unchanged under Java 2D API.  Legacy
294  * methods that map onto general {@code draw} and
295  * {@code fill} methods are defined, which clearly indicates
296  * how {@code Graphics2D} extends {@code Graphics} based
297  * on settings of {@code Stroke} and {@code Transform}
298  * attributes and rendering hints.  The definition
299  * performs identically under default attribute settings.
300  * For example, the default {@code Stroke} is a
301  * {@code BasicStroke} with a width of 1 and no dashing and the
302  * default Transform for screen drawing is an Identity transform.
303  * <p>
304  * The following two rules provide predictable rendering behavior whether
305  * aliasing or antialiasing is being used.
306  * <ul>
307  * <li> Device coordinates are defined to be between device pixels which
308  * avoids any inconsistent results between aliased and antialiased
309  * rendering.  If coordinates were defined to be at a pixel's center, some
310  * of the pixels covered by a shape, such as a rectangle, would only be
311  * half covered.
312  * With aliased rendering, the half covered pixels would either be
313  * rendered inside the shape or outside the shape.  With anti-aliased
314  * rendering, the pixels on the entire edge of the shape would be half
315  * covered.  On the other hand, since coordinates are defined to be
316  * between pixels, a shape like a rectangle would have no half covered
317  * pixels, whether or not it is rendered using antialiasing.
318  * <li> Lines and paths stroked using the {@code BasicStroke}
319  * object may be "normalized" to provide consistent rendering of the
320  * outlines when positioned at various points on the drawable and
321  * whether drawn with aliased or antialiased rendering.  This
322  * normalization process is controlled by the
323  * {@link RenderingHints#KEY_STROKE_CONTROL KEY_STROKE_CONTROL} hint.
324  * The exact normalization algorithm is not specified, but the goals
325  * of this normalization are to ensure that lines are rendered with
326  * consistent visual appearance regardless of how they fall on the
327  * pixel grid and to promote more solid horizontal and vertical
328  * lines in antialiased mode so that they resemble their non-antialiased
329  * counterparts more closely.  A typical normalization step might
330  * promote antialiased line endpoints to pixel centers to reduce the
331  * amount of blending or adjust the subpixel positioning of
332  * non-antialiased lines so that the floating point line widths
333  * round to even or odd pixel counts with equal likelihood.  This
334  * process can move endpoints by up to half a pixel (usually towards
335  * positive infinity along both axes) to promote these consistent
336  * results.
337  * </ul>
338  * <p>
339  * The following definitions of general legacy methods
340  * perform identically to previously specified behavior under default
341  * attribute settings:
342  * <ul>
343  * <li>
344  * For {@code fill} operations, including {@code fillRect},
345  * {@code fillRoundRect}, {@code fillOval},
346  * {@code fillArc}, {@code fillPolygon}, and
347  * {@code clearRect}, {@link #fill(Shape) fill} can now be called
348  * with the desired {@code Shape}.  For example, when filling a
349  * rectangle:
350  * <pre>
351  * fill(new Rectangle(x, y, w, h));
352  * </pre>
353  * is called.
354  *
355  * <li>
356  * Similarly, for draw operations, including {@code drawLine},
357  * {@code drawRect}, {@code drawRoundRect},
358  * {@code drawOval}, {@code drawArc}, {@code drawPolyline},
359  * and {@code drawPolygon}, {@link #draw(Shape) draw} can now be
360  * called with the desired {@code Shape}.  For example, when drawing a
361  * rectangle:
362  * <pre>
363  * draw(new Rectangle(x, y, w, h));
364  * </pre>
365  * is called.
366  *
367  * <li>
368  * The {@code draw3DRect} and {@code fill3DRect} methods were
369  * implemented in terms of the {@code drawLine} and
370  * {@code fillRect} methods in the {@code Graphics} class which
371  * would predicate their behavior upon the current {@code Stroke}
372  * and {@code Paint} objects in a {@code Graphics2D} context.
373  * This class overrides those implementations with versions that use
374  * the current {@code Color} exclusively, overriding the current
375  * {@code Paint} and which uses {@code fillRect} to describe
376  * the exact same behavior as the preexisting methods regardless of the
377  * setting of the current {@code Stroke}.
378  * </ul>
379  * The {@code Graphics} class defines only the {@code setColor}
380  * method to control the color to be painted.  Since the Java 2D API extends
381  * the {@code Color} object to implement the new {@code Paint}
382  * interface, the existing
383  * {@code setColor} method is now a convenience method for setting the
384  * current {@code Paint} attribute to a {@code Color} object.
385  * {@code setColor(c)} is equivalent to {@code setPaint(c)}.
386  * <p>
387  * The {@code Graphics} class defines two methods for controlling
388  * how colors are applied to the destination.
389  * <ol>
390  * <li>
391  * The {@code setPaintMode} method is implemented as a convenience
392  * method to set the default {@code Composite}, equivalent to
393  * {@code setComposite(new AlphaComposite.SrcOver)}.
394  * <li>
395  * The {@code setXORMode(Color xorcolor)} method is implemented
396  * as a convenience method to set a special {@code Composite} object that
397  * ignores the {@code Alpha} components of source colors and sets the
398  * destination color to the value:
399  * <pre>
400  * dstpixel = (PixelOf(srccolor) ^ PixelOf(xorcolor) ^ dstpixel);
401  * </pre>
402  * </ol>
403  *
404  * @author Jim Graham
405  * @see java.awt.RenderingHints
406  */
407 public abstract class Graphics2D extends Graphics {
408 
409     /**
410      * Constructs a new {@code Graphics2D} object.  Since
411      * {@code Graphics2D} is an abstract class, and since it must be
412      * customized by subclasses for different output devices,
413      * {@code Graphics2D} objects cannot be created directly.
414      * Instead, {@code Graphics2D} objects must be obtained from another
415      * {@code Graphics2D} object, created by a
416      * {@code Component}, or obtained from images such as
417      * {@link BufferedImage} objects.
418      * @see java.awt.Component#getGraphics
419      * @see java.awt.Graphics#create
420      */
Graphics2D()421     protected Graphics2D() {
422     }
423 
424     /**
425      * Draws a 3-D highlighted outline of the specified rectangle.
426      * The edges of the rectangle are highlighted so that they
427      * appear to be beveled and lit from the upper left corner.
428      * <p>
429      * The colors used for the highlighting effect are determined
430      * based on the current color.
431      * The resulting rectangle covers an area that is
432      * <code>width&nbsp;+&nbsp;1</code> pixels wide
433      * by <code>height&nbsp;+&nbsp;1</code> pixels tall.  This method
434      * uses the current {@code Color} exclusively and ignores
435      * the current {@code Paint}.
436      * @param x the x coordinate of the rectangle to be drawn.
437      * @param y the y coordinate of the rectangle to be drawn.
438      * @param width the width of the rectangle to be drawn.
439      * @param height the height of the rectangle to be drawn.
440      * @param raised a boolean that determines whether the rectangle
441      *                      appears to be raised above the surface
442      *                      or sunk into the surface.
443      * @see         java.awt.Graphics#fill3DRect
444      */
draw3DRect(int x, int y, int width, int height, boolean raised)445     public void draw3DRect(int x, int y, int width, int height,
446                            boolean raised) {
447         Paint p = getPaint();
448         Color c = getColor();
449         Color brighter = c.brighter();
450         Color darker = c.darker();
451 
452         setColor(raised ? brighter : darker);
453         //drawLine(x, y, x, y + height);
454         fillRect(x, y, 1, height + 1);
455         //drawLine(x + 1, y, x + width - 1, y);
456         fillRect(x + 1, y, width - 1, 1);
457         setColor(raised ? darker : brighter);
458         //drawLine(x + 1, y + height, x + width, y + height);
459         fillRect(x + 1, y + height, width, 1);
460         //drawLine(x + width, y, x + width, y + height - 1);
461         fillRect(x + width, y, 1, height);
462         setPaint(p);
463     }
464 
465     /**
466      * Paints a 3-D highlighted rectangle filled with the current color.
467      * The edges of the rectangle are highlighted so that it appears
468      * as if the edges were beveled and lit from the upper left corner.
469      * The colors used for the highlighting effect and for filling are
470      * determined from the current {@code Color}.  This method uses
471      * the current {@code Color} exclusively and ignores the current
472      * {@code Paint}.
473      * @param x the x coordinate of the rectangle to be filled.
474      * @param y the y coordinate of the rectangle to be filled.
475      * @param       width the width of the rectangle to be filled.
476      * @param       height the height of the rectangle to be filled.
477      * @param       raised a boolean value that determines whether the
478      *                      rectangle appears to be raised above the surface
479      *                      or etched into the surface.
480      * @see         java.awt.Graphics#draw3DRect
481      */
fill3DRect(int x, int y, int width, int height, boolean raised)482     public void fill3DRect(int x, int y, int width, int height,
483                            boolean raised) {
484         Paint p = getPaint();
485         Color c = getColor();
486         Color brighter = c.brighter();
487         Color darker = c.darker();
488 
489         if (!raised) {
490             setColor(darker);
491         } else if (p != c) {
492             setColor(c);
493         }
494         fillRect(x+1, y+1, width-2, height-2);
495         setColor(raised ? brighter : darker);
496         //drawLine(x, y, x, y + height - 1);
497         fillRect(x, y, 1, height);
498         //drawLine(x + 1, y, x + width - 2, y);
499         fillRect(x + 1, y, width - 2, 1);
500         setColor(raised ? darker : brighter);
501         //drawLine(x + 1, y + height - 1, x + width - 1, y + height - 1);
502         fillRect(x + 1, y + height - 1, width - 1, 1);
503         //drawLine(x + width - 1, y, x + width - 1, y + height - 2);
504         fillRect(x + width - 1, y, 1, height - 1);
505         setPaint(p);
506     }
507 
508     /**
509      * Strokes the outline of a {@code Shape} using the settings of the
510      * current {@code Graphics2D} context.  The rendering attributes
511      * applied include the {@code Clip}, {@code Transform},
512      * {@code Paint}, {@code Composite} and
513      * {@code Stroke} attributes.
514      * @param s the {@code Shape} to be rendered
515      * @see #setStroke
516      * @see #setPaint
517      * @see java.awt.Graphics#setColor
518      * @see #transform
519      * @see #setTransform
520      * @see #clip
521      * @see #setClip
522      * @see #setComposite
523      */
draw(Shape s)524     public abstract void draw(Shape s);
525 
526     /**
527      * Renders an image, applying a transform from image space into user space
528      * before drawing.
529      * The transformation from user space into device space is done with
530      * the current {@code Transform} in the {@code Graphics2D}.
531      * The specified transformation is applied to the image before the
532      * transform attribute in the {@code Graphics2D} context is applied.
533      * The rendering attributes applied include the {@code Clip},
534      * {@code Transform}, and {@code Composite} attributes.
535      * Note that no rendering is done if the specified transform is
536      * noninvertible.
537      * @param img the specified image to be rendered.
538      *            This method does nothing if {@code img} is null.
539      * @param xform the transformation from image space into user space
540      * @param obs the {@link ImageObserver}
541      * to be notified as more of the {@code Image}
542      * is converted
543      * @return {@code true} if the {@code Image} is
544      * fully loaded and completely rendered, or if it's null;
545      * {@code false} if the {@code Image} is still being loaded.
546      * @see #transform
547      * @see #setTransform
548      * @see #setComposite
549      * @see #clip
550      * @see #setClip
551      */
drawImage(Image img, AffineTransform xform, ImageObserver obs)552     public abstract boolean drawImage(Image img,
553                                       AffineTransform xform,
554                                       ImageObserver obs);
555 
556     /**
557      * Renders a {@code BufferedImage} that is
558      * filtered with a
559      * {@link BufferedImageOp}.
560      * The rendering attributes applied include the {@code Clip},
561      * {@code Transform}
562      * and {@code Composite} attributes.  This is equivalent to:
563      * <pre>
564      * img1 = op.filter(img, null);
565      * drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
566      * </pre>
567      * @param op the filter to be applied to the image before rendering
568      * @param img the specified {@code BufferedImage} to be rendered.
569      *            This method does nothing if {@code img} is null.
570      * @param x the x coordinate of the location in user space where
571      * the upper left corner of the image is rendered
572      * @param y the y coordinate of the location in user space where
573      * the upper left corner of the image is rendered
574      *
575      * @see #transform
576      * @see #setTransform
577      * @see #setComposite
578      * @see #clip
579      * @see #setClip
580      */
drawImage(BufferedImage img, BufferedImageOp op, int x, int y)581     public abstract void drawImage(BufferedImage img,
582                                    BufferedImageOp op,
583                                    int x,
584                                    int y);
585 
586     /**
587      * Renders a {@link RenderedImage},
588      * applying a transform from image
589      * space into user space before drawing.
590      * The transformation from user space into device space is done with
591      * the current {@code Transform} in the {@code Graphics2D}.
592      * The specified transformation is applied to the image before the
593      * transform attribute in the {@code Graphics2D} context is applied.
594      * The rendering attributes applied include the {@code Clip},
595      * {@code Transform}, and {@code Composite} attributes. Note
596      * that no rendering is done if the specified transform is
597      * noninvertible.
598      * @param img the image to be rendered. This method does
599      *            nothing if {@code img} is null.
600      * @param xform the transformation from image space into user space
601      * @see #transform
602      * @see #setTransform
603      * @see #setComposite
604      * @see #clip
605      * @see #setClip
606      */
drawRenderedImage(RenderedImage img, AffineTransform xform)607     public abstract void drawRenderedImage(RenderedImage img,
608                                            AffineTransform xform);
609 
610     /**
611      * Renders a
612      * {@link RenderableImage},
613      * applying a transform from image space into user space before drawing.
614      * The transformation from user space into device space is done with
615      * the current {@code Transform} in the {@code Graphics2D}.
616      * The specified transformation is applied to the image before the
617      * transform attribute in the {@code Graphics2D} context is applied.
618      * The rendering attributes applied include the {@code Clip},
619      * {@code Transform}, and {@code Composite} attributes. Note
620      * that no rendering is done if the specified transform is
621      * noninvertible.
622      *<p>
623      * Rendering hints set on the {@code Graphics2D} object might
624      * be used in rendering the {@code RenderableImage}.
625      * If explicit control is required over specific hints recognized by a
626      * specific {@code RenderableImage}, or if knowledge of which hints
627      * are used is required, then a {@code RenderedImage} should be
628      * obtained directly from the {@code RenderableImage}
629      * and rendered using
630      *{@link #drawRenderedImage(RenderedImage, AffineTransform) drawRenderedImage}.
631      * @param img the image to be rendered. This method does
632      *            nothing if {@code img} is null.
633      * @param xform the transformation from image space into user space
634      * @see #transform
635      * @see #setTransform
636      * @see #setComposite
637      * @see #clip
638      * @see #setClip
639      * @see #drawRenderedImage
640      */
drawRenderableImage(RenderableImage img, AffineTransform xform)641     public abstract void drawRenderableImage(RenderableImage img,
642                                              AffineTransform xform);
643 
644     /**
645      * Renders the text of the specified {@code String}, using the
646      * current text attribute state in the {@code Graphics2D} context.
647      * The baseline of the
648      * first character is at position (<i>x</i>,&nbsp;<i>y</i>) in
649      * the User Space.
650      * The rendering attributes applied include the {@code Clip},
651      * {@code Transform}, {@code Paint}, {@code Font} and
652      * {@code Composite} attributes.  For characters in script
653      * systems such as Hebrew and Arabic, the glyphs can be rendered from
654      * right to left, in which case the coordinate supplied is the
655      * location of the leftmost character on the baseline.
656      * @param str the string to be rendered
657      * @param x the x coordinate of the location where the
658      * {@code String} should be rendered
659      * @param y the y coordinate of the location where the
660      * {@code String} should be rendered
661      * @throws NullPointerException if {@code str} is
662      *         {@code null}
663      * @see         java.awt.Graphics#drawBytes
664      * @see         java.awt.Graphics#drawChars
665      * @since       1.0
666      */
drawString(String str, int x, int y)667     public abstract void drawString(String str, int x, int y);
668 
669     /**
670      * Renders the text specified by the specified {@code String},
671      * using the current text attribute state in the {@code Graphics2D} context.
672      * The baseline of the first character is at position
673      * (<i>x</i>,&nbsp;<i>y</i>) in the User Space.
674      * The rendering attributes applied include the {@code Clip},
675      * {@code Transform}, {@code Paint}, {@code Font} and
676      * {@code Composite} attributes. For characters in script systems
677      * such as Hebrew and Arabic, the glyphs can be rendered from right to
678      * left, in which case the coordinate supplied is the location of the
679      * leftmost character on the baseline.
680      * @param str the {@code String} to be rendered
681      * @param x the x coordinate of the location where the
682      * {@code String} should be rendered
683      * @param y the y coordinate of the location where the
684      * {@code String} should be rendered
685      * @throws NullPointerException if {@code str} is
686      *         {@code null}
687      * @see #setPaint
688      * @see java.awt.Graphics#setColor
689      * @see java.awt.Graphics#setFont
690      * @see #setTransform
691      * @see #setComposite
692      * @see #setClip
693      */
drawString(String str, float x, float y)694     public abstract void drawString(String str, float x, float y);
695 
696     /**
697      * Renders the text of the specified iterator applying its attributes
698      * in accordance with the specification of the {@link TextAttribute} class.
699      * <p>
700      * The baseline of the first character is at position
701      * (<i>x</i>,&nbsp;<i>y</i>) in User Space.
702      * For characters in script systems such as Hebrew and Arabic,
703      * the glyphs can be rendered from right to left, in which case the
704      * coordinate supplied is the location of the leftmost character
705      * on the baseline.
706      * @param iterator the iterator whose text is to be rendered
707      * @param x the x coordinate where the iterator's text is to be
708      * rendered
709      * @param y the y coordinate where the iterator's text is to be
710      * rendered
711      * @throws NullPointerException if {@code iterator} is
712      *         {@code null}
713      * @see #setPaint
714      * @see java.awt.Graphics#setColor
715      * @see #setTransform
716      * @see #setComposite
717      * @see #setClip
718      */
drawString(AttributedCharacterIterator iterator, int x, int y)719     public abstract void drawString(AttributedCharacterIterator iterator,
720                                     int x, int y);
721 
722     /**
723      * Renders the text of the specified iterator applying its attributes
724      * in accordance with the specification of the {@link TextAttribute} class.
725      * <p>
726      * The baseline of the first character is at position
727      * (<i>x</i>,&nbsp;<i>y</i>) in User Space.
728      * For characters in script systems such as Hebrew and Arabic,
729      * the glyphs can be rendered from right to left, in which case the
730      * coordinate supplied is the location of the leftmost character
731      * on the baseline.
732      * @param iterator the iterator whose text is to be rendered
733      * @param x the x coordinate where the iterator's text is to be
734      * rendered
735      * @param y the y coordinate where the iterator's text is to be
736      * rendered
737      * @throws NullPointerException if {@code iterator} is
738      *         {@code null}
739      * @see #setPaint
740      * @see java.awt.Graphics#setColor
741      * @see #setTransform
742      * @see #setComposite
743      * @see #setClip
744      */
drawString(AttributedCharacterIterator iterator, float x, float y)745     public abstract void drawString(AttributedCharacterIterator iterator,
746                                     float x, float y);
747 
748     /**
749      * Renders the text of the specified
750      * {@link GlyphVector} using
751      * the {@code Graphics2D} context's rendering attributes.
752      * The rendering attributes applied include the {@code Clip},
753      * {@code Transform}, {@code Paint}, and
754      * {@code Composite} attributes.  The {@code GlyphVector}
755      * specifies individual glyphs from a {@link Font}.
756      * The {@code GlyphVector} can also contain the glyph positions.
757      * This is the fastest way to render a set of characters to the
758      * screen.
759      * @param g the {@code GlyphVector} to be rendered
760      * @param x the x position in User Space where the glyphs should
761      * be rendered
762      * @param y the y position in User Space where the glyphs should
763      * be rendered
764      * @throws NullPointerException if {@code g} is {@code null}.
765      *
766      * @see java.awt.Font#createGlyphVector
767      * @see java.awt.font.GlyphVector
768      * @see #setPaint
769      * @see java.awt.Graphics#setColor
770      * @see #setTransform
771      * @see #setComposite
772      * @see #setClip
773      */
drawGlyphVector(GlyphVector g, float x, float y)774     public abstract void drawGlyphVector(GlyphVector g, float x, float y);
775 
776     /**
777      * Fills the interior of a {@code Shape} using the settings of the
778      * {@code Graphics2D} context. The rendering attributes applied
779      * include the {@code Clip}, {@code Transform},
780      * {@code Paint}, and {@code Composite}.
781      * @param s the {@code Shape} to be filled
782      * @see #setPaint
783      * @see java.awt.Graphics#setColor
784      * @see #transform
785      * @see #setTransform
786      * @see #setComposite
787      * @see #clip
788      * @see #setClip
789      */
fill(Shape s)790     public abstract void fill(Shape s);
791 
792     /**
793      * Checks whether or not the specified {@code Shape} intersects
794      * the specified {@link Rectangle}, which is in device
795      * space. If {@code onStroke} is false, this method checks
796      * whether or not the interior of the specified {@code Shape}
797      * intersects the specified {@code Rectangle}.  If
798      * {@code onStroke} is {@code true}, this method checks
799      * whether or not the {@code Stroke} of the specified
800      * {@code Shape} outline intersects the specified
801      * {@code Rectangle}.
802      * The rendering attributes taken into account include the
803      * {@code Clip}, {@code Transform}, and {@code Stroke}
804      * attributes.
805      * @param rect the area in device space to check for a hit
806      * @param s the {@code Shape} to check for a hit
807      * @param onStroke flag used to choose between testing the
808      * stroked or the filled shape.  If the flag is {@code true}, the
809      * {@code Stroke} outline is tested.  If the flag is
810      * {@code false}, the filled {@code Shape} is tested.
811      * @return {@code true} if there is a hit; {@code false}
812      * otherwise.
813      * @see #setStroke
814      * @see #fill
815      * @see #draw
816      * @see #transform
817      * @see #setTransform
818      * @see #clip
819      * @see #setClip
820      */
hit(Rectangle rect, Shape s, boolean onStroke)821     public abstract boolean hit(Rectangle rect,
822                                 Shape s,
823                                 boolean onStroke);
824 
825     /**
826      * Returns the device configuration associated with this
827      * {@code Graphics2D}.
828      * @return the device configuration of this {@code Graphics2D}.
829      */
getDeviceConfiguration()830     public abstract GraphicsConfiguration getDeviceConfiguration();
831 
832     /**
833      * Sets the {@code Composite} for the {@code Graphics2D} context.
834      * The {@code Composite} is used in all drawing methods such as
835      * {@code drawImage}, {@code drawString}, {@code draw},
836      * and {@code fill}.  It specifies how new pixels are to be combined
837      * with the existing pixels on the graphics device during the rendering
838      * process.
839      * <p>If this {@code Graphics2D} context is drawing to a
840      * {@code Component} on the display screen and the
841      * {@code Composite} is a custom object rather than an
842      * instance of the {@code AlphaComposite} class, and if
843      * there is a security manager, its {@code checkPermission}
844      * method is called with an {@code AWTPermission("readDisplayPixels")}
845      * permission.
846      * @throws SecurityException
847      *         if a custom {@code Composite} object is being
848      *         used to render to the screen and a security manager
849      *         is set and its {@code checkPermission} method
850      *         does not allow the operation.
851      * @param comp the {@code Composite} object to be used for rendering
852      * @see java.awt.Graphics#setXORMode
853      * @see java.awt.Graphics#setPaintMode
854      * @see #getComposite
855      * @see AlphaComposite
856      * @see SecurityManager#checkPermission
857      * @see java.awt.AWTPermission
858      */
setComposite(Composite comp)859     public abstract void setComposite(Composite comp);
860 
861     /**
862      * Sets the {@code Paint} attribute for the
863      * {@code Graphics2D} context.  Calling this method
864      * with a {@code null Paint} object does
865      * not have any effect on the current {@code Paint} attribute
866      * of this {@code Graphics2D}.
867      * @param paint the {@code Paint} object to be used to generate
868      * color during the rendering process, or {@code null}
869      * @see java.awt.Graphics#setColor
870      * @see #getPaint
871      * @see GradientPaint
872      * @see TexturePaint
873      */
setPaint( Paint paint )874     public abstract void setPaint( Paint paint );
875 
876     /**
877      * Sets the {@code Stroke} for the {@code Graphics2D} context.
878      * @param s the {@code Stroke} object to be used to stroke a
879      * {@code Shape} during the rendering process
880      * @see BasicStroke
881      * @see #getStroke
882      */
setStroke(Stroke s)883     public abstract void setStroke(Stroke s);
884 
885     /**
886      * Sets the value of a single preference for the rendering algorithms.
887      * Hint categories include controls for rendering quality and overall
888      * time/quality trade-off in the rendering process.  Refer to the
889      * {@code RenderingHints} class for definitions of some common
890      * keys and values.
891      * @param hintKey the key of the hint to be set.
892      * @param hintValue the value indicating preferences for the specified
893      * hint category.
894      * @see #getRenderingHint(RenderingHints.Key)
895      * @see RenderingHints
896      */
setRenderingHint(Key hintKey, Object hintValue)897     public abstract void setRenderingHint(Key hintKey, Object hintValue);
898 
899     /**
900      * Returns the value of a single preference for the rendering algorithms.
901      * Hint categories include controls for rendering quality and overall
902      * time/quality trade-off in the rendering process.  Refer to the
903      * {@code RenderingHints} class for definitions of some common
904      * keys and values.
905      * @param hintKey the key corresponding to the hint to get.
906      * @return an object representing the value for the specified hint key.
907      * Some of the keys and their associated values are defined in the
908      * {@code RenderingHints} class.
909      * @see RenderingHints
910      * @see #setRenderingHint(RenderingHints.Key, Object)
911      */
getRenderingHint(Key hintKey)912     public abstract Object getRenderingHint(Key hintKey);
913 
914     /**
915      * Replaces the values of all preferences for the rendering
916      * algorithms with the specified {@code hints}.
917      * The existing values for all rendering hints are discarded and
918      * the new set of known hints and values are initialized from the
919      * specified {@link Map} object.
920      * Hint categories include controls for rendering quality and
921      * overall time/quality trade-off in the rendering process.
922      * Refer to the {@code RenderingHints} class for definitions of
923      * some common keys and values.
924      * @param hints the rendering hints to be set
925      * @see #getRenderingHints
926      * @see RenderingHints
927      */
setRenderingHints(Map<?,?> hints)928     public abstract void setRenderingHints(Map<?,?> hints);
929 
930     /**
931      * Sets the values of an arbitrary number of preferences for the
932      * rendering algorithms.
933      * Only values for the rendering hints that are present in the
934      * specified {@code Map} object are modified.
935      * All other preferences not present in the specified
936      * object are left unmodified.
937      * Hint categories include controls for rendering quality and
938      * overall time/quality trade-off in the rendering process.
939      * Refer to the {@code RenderingHints} class for definitions of
940      * some common keys and values.
941      * @param hints the rendering hints to be set
942      * @see RenderingHints
943      */
addRenderingHints(Map<?,?> hints)944     public abstract void addRenderingHints(Map<?,?> hints);
945 
946     /**
947      * Gets the preferences for the rendering algorithms.  Hint categories
948      * include controls for rendering quality and overall time/quality
949      * trade-off in the rendering process.
950      * Returns all of the hint key/value pairs that were ever specified in
951      * one operation.  Refer to the
952      * {@code RenderingHints} class for definitions of some common
953      * keys and values.
954      * @return a reference to an instance of {@code RenderingHints}
955      * that contains the current preferences.
956      * @see RenderingHints
957      * @see #setRenderingHints(Map)
958      */
getRenderingHints()959     public abstract RenderingHints getRenderingHints();
960 
961     /**
962      * Translates the origin of the {@code Graphics2D} context to the
963      * point (<i>x</i>,&nbsp;<i>y</i>) in the current coordinate system.
964      * Modifies the {@code Graphics2D} context so that its new origin
965      * corresponds to the point (<i>x</i>,&nbsp;<i>y</i>) in the
966      * {@code Graphics2D} context's former coordinate system.  All
967      * coordinates used in subsequent rendering operations on this graphics
968      * context are relative to this new origin.
969      * @param  x the specified x coordinate
970      * @param  y the specified y coordinate
971      * @since   1.0
972      */
translate(int x, int y)973     public abstract void translate(int x, int y);
974 
975     /**
976      * Concatenates the current
977      * {@code Graphics2D Transform}
978      * with a translation transform.
979      * Subsequent rendering is translated by the specified
980      * distance relative to the previous position.
981      * This is equivalent to calling transform(T), where T is an
982      * {@code AffineTransform} represented by the following matrix:
983      * <pre>
984      *          [   1    0    tx  ]
985      *          [   0    1    ty  ]
986      *          [   0    0    1   ]
987      * </pre>
988      * @param tx the distance to translate along the x-axis
989      * @param ty the distance to translate along the y-axis
990      */
translate(double tx, double ty)991     public abstract void translate(double tx, double ty);
992 
993     /**
994      * Concatenates the current {@code Graphics2D}
995      * {@code Transform} with a rotation transform.
996      * Subsequent rendering is rotated by the specified radians relative
997      * to the previous origin.
998      * This is equivalent to calling {@code transform(R)}, where R is an
999      * {@code AffineTransform} represented by the following matrix:
1000      * <pre>
1001      *          [   cos(theta)    -sin(theta)    0   ]
1002      *          [   sin(theta)     cos(theta)    0   ]
1003      *          [       0              0         1   ]
1004      * </pre>
1005      * Rotating with a positive angle theta rotates points on the positive
1006      * x axis toward the positive y axis.
1007      * @param theta the angle of rotation in radians
1008      */
rotate(double theta)1009     public abstract void rotate(double theta);
1010 
1011     /**
1012      * Concatenates the current {@code Graphics2D}
1013      * {@code Transform} with a translated rotation
1014      * transform.  Subsequent rendering is transformed by a transform
1015      * which is constructed by translating to the specified location,
1016      * rotating by the specified radians, and translating back by the same
1017      * amount as the original translation.  This is equivalent to the
1018      * following sequence of calls:
1019      * <pre>
1020      *          translate(x, y);
1021      *          rotate(theta);
1022      *          translate(-x, -y);
1023      * </pre>
1024      * Rotating with a positive angle theta rotates points on the positive
1025      * x axis toward the positive y axis.
1026      * @param theta the angle of rotation in radians
1027      * @param x the x coordinate of the origin of the rotation
1028      * @param y the y coordinate of the origin of the rotation
1029      */
rotate(double theta, double x, double y)1030     public abstract void rotate(double theta, double x, double y);
1031 
1032     /**
1033      * Concatenates the current {@code Graphics2D}
1034      * {@code Transform} with a scaling transformation
1035      * Subsequent rendering is resized according to the specified scaling
1036      * factors relative to the previous scaling.
1037      * This is equivalent to calling {@code transform(S)}, where S is an
1038      * {@code AffineTransform} represented by the following matrix:
1039      * <pre>
1040      *          [   sx   0    0   ]
1041      *          [   0    sy   0   ]
1042      *          [   0    0    1   ]
1043      * </pre>
1044      * @param sx the amount by which X coordinates in subsequent
1045      * rendering operations are multiplied relative to previous
1046      * rendering operations.
1047      * @param sy the amount by which Y coordinates in subsequent
1048      * rendering operations are multiplied relative to previous
1049      * rendering operations.
1050      */
scale(double sx, double sy)1051     public abstract void scale(double sx, double sy);
1052 
1053     /**
1054      * Concatenates the current {@code Graphics2D}
1055      * {@code Transform} with a shearing transform.
1056      * Subsequent renderings are sheared by the specified
1057      * multiplier relative to the previous position.
1058      * This is equivalent to calling {@code transform(SH)}, where SH
1059      * is an {@code AffineTransform} represented by the following
1060      * matrix:
1061      * <pre>
1062      *          [   1   shx   0   ]
1063      *          [  shy   1    0   ]
1064      *          [   0    0    1   ]
1065      * </pre>
1066      * @param shx the multiplier by which coordinates are shifted in
1067      * the positive X axis direction as a function of their Y coordinate
1068      * @param shy the multiplier by which coordinates are shifted in
1069      * the positive Y axis direction as a function of their X coordinate
1070      */
shear(double shx, double shy)1071     public abstract void shear(double shx, double shy);
1072 
1073     /**
1074      * Composes an {@code AffineTransform} object with the
1075      * {@code Transform} in this {@code Graphics2D} according
1076      * to the rule last-specified-first-applied.  If the current
1077      * {@code Transform} is Cx, the result of composition
1078      * with Tx is a new {@code Transform} Cx'.  Cx' becomes the
1079      * current {@code Transform} for this {@code Graphics2D}.
1080      * Transforming a point p by the updated {@code Transform} Cx' is
1081      * equivalent to first transforming p by Tx and then transforming
1082      * the result by the original {@code Transform} Cx.  In other
1083      * words, Cx'(p) = Cx(Tx(p)).  A copy of the Tx is made, if necessary,
1084      * so further modifications to Tx do not affect rendering.
1085      * @param Tx the {@code AffineTransform} object to be composed with
1086      * the current {@code Transform}
1087      * @see #setTransform
1088      * @see AffineTransform
1089      */
transform(AffineTransform Tx)1090     public abstract void transform(AffineTransform Tx);
1091 
1092     /**
1093      * Overwrites the Transform in the {@code Graphics2D} context.
1094      * WARNING: This method should <b>never</b> be used to apply a new
1095      * coordinate transform on top of an existing transform because the
1096      * {@code Graphics2D} might already have a transform that is
1097      * needed for other purposes, such as rendering Swing
1098      * components or applying a scaling transformation to adjust for the
1099      * resolution of a printer.
1100      * <p>To add a coordinate transform, use the
1101      * {@code transform}, {@code rotate}, {@code scale},
1102      * or {@code shear} methods.  The {@code setTransform}
1103      * method is intended only for restoring the original
1104      * {@code Graphics2D} transform after rendering, as shown in this
1105      * example:
1106      * <pre>
1107      * // Get the current transform
1108      * AffineTransform saveAT = g2.getTransform();
1109      * // Perform transformation
1110      * g2d.transform(...);
1111      * // Render
1112      * g2d.draw(...);
1113      * // Restore original transform
1114      * g2d.setTransform(saveAT);
1115      * </pre>
1116      *
1117      * @param Tx the {@code AffineTransform} that was retrieved
1118      *           from the {@code getTransform} method
1119      * @see #transform
1120      * @see #getTransform
1121      * @see AffineTransform
1122      */
setTransform(AffineTransform Tx)1123     public abstract void setTransform(AffineTransform Tx);
1124 
1125     /**
1126      * Returns a copy of the current {@code Transform} in the
1127      * {@code Graphics2D} context.
1128      * @return the current {@code AffineTransform} in the
1129      *             {@code Graphics2D} context.
1130      * @see #transform
1131      * @see #setTransform
1132      */
getTransform()1133     public abstract AffineTransform getTransform();
1134 
1135     /**
1136      * Returns the current {@code Paint} of the
1137      * {@code Graphics2D} context.
1138      * @return the current {@code Graphics2D Paint},
1139      * which defines a color or pattern.
1140      * @see #setPaint
1141      * @see java.awt.Graphics#setColor
1142      */
getPaint()1143     public abstract Paint getPaint();
1144 
1145     /**
1146      * Returns the current {@code Composite} in the
1147      * {@code Graphics2D} context.
1148      * @return the current {@code Graphics2D Composite},
1149      *              which defines a compositing style.
1150      * @see #setComposite
1151      */
getComposite()1152     public abstract Composite getComposite();
1153 
1154     /**
1155      * Sets the background color for the {@code Graphics2D} context.
1156      * The background color is used for clearing a region.
1157      * When a {@code Graphics2D} is constructed for a
1158      * {@code Component}, the background color is
1159      * inherited from the {@code Component}. Setting the background color
1160      * in the {@code Graphics2D} context only affects the subsequent
1161      * {@code clearRect} calls and not the background color of the
1162      * {@code Component}.  To change the background
1163      * of the {@code Component}, use appropriate methods of
1164      * the {@code Component}.
1165      * @param color the background color that is used in
1166      * subsequent calls to {@code clearRect}
1167      * @see #getBackground
1168      * @see java.awt.Graphics#clearRect
1169      */
setBackground(Color color)1170     public abstract void setBackground(Color color);
1171 
1172     /**
1173      * Returns the background color used for clearing a region.
1174      * @return the current {@code Graphics2D Color},
1175      * which defines the background color.
1176      * @see #setBackground
1177      */
getBackground()1178     public abstract Color getBackground();
1179 
1180     /**
1181      * Returns the current {@code Stroke} in the
1182      * {@code Graphics2D} context.
1183      * @return the current {@code Graphics2D Stroke},
1184      *                 which defines the line style.
1185      * @see #setStroke
1186      */
getStroke()1187     public abstract Stroke getStroke();
1188 
1189     /**
1190      * Intersects the current {@code Clip} with the interior of the
1191      * specified {@code Shape} and sets the {@code Clip} to the
1192      * resulting intersection.  The specified {@code Shape} is
1193      * transformed with the current {@code Graphics2D}
1194      * {@code Transform} before being intersected with the current
1195      * {@code Clip}.  This method is used to make the current
1196      * {@code Clip} smaller.
1197      * To make the {@code Clip} larger, use {@code setClip}.
1198      * The <i>user clip</i> modified by this method is independent of the
1199      * clipping associated with device bounds and visibility.  If no clip has
1200      * previously been set, or if the clip has been cleared using
1201      * {@link Graphics#setClip(Shape) setClip} with a {@code null}
1202      * argument, the specified {@code Shape} becomes the new
1203      * user clip.
1204      * @param s the {@code Shape} to be intersected with the current
1205      *          {@code Clip}.  If {@code s} is {@code null},
1206      *          this method clears the current {@code Clip}.
1207      */
clip(Shape s)1208      public abstract void clip(Shape s);
1209 
1210      /**
1211      * Get the rendering context of the {@code Font} within this
1212      * {@code Graphics2D} context.
1213      * The {@link FontRenderContext}
1214      * encapsulates application hints such as anti-aliasing and
1215      * fractional metrics, as well as target device specific information
1216      * such as dots-per-inch.  This information should be provided by the
1217      * application when using objects that perform typographical
1218      * formatting, such as {@code Font} and
1219      * {@code TextLayout}.  This information should also be provided
1220      * by applications that perform their own layout and need accurate
1221      * measurements of various characteristics of glyphs such as advance
1222      * and line height when various rendering hints have been applied to
1223      * the text rendering.
1224      *
1225      * @return a reference to an instance of FontRenderContext.
1226      * @see java.awt.font.FontRenderContext
1227      * @see java.awt.Font#createGlyphVector
1228      * @see java.awt.font.TextLayout
1229      * @since     1.2
1230      */
1231 
getFontRenderContext()1232     public abstract FontRenderContext getFontRenderContext();
1233 
1234 }
1235