1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 // This file is available under and governed by the GNU General Public
26 // License version 2 only, as published by the Free Software Foundation.
27 // However, the following notice accompanied the original version of this
28 // file:
29 //
30 //---------------------------------------------------------------------------------
31 //
32 //  Little Color Management System
33 //  Copyright (c) 1998-2017 Marti Maria Saguer
34 //
35 // Permission is hereby granted, free of charge, to any person obtaining
36 // a copy of this software and associated documentation files (the "Software"),
37 // to deal in the Software without restriction, including without limitation
38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
39 // and/or sell copies of the Software, and to permit persons to whom the Software
40 // is furnished to do so, subject to the following conditions:
41 //
42 // The above copyright notice and this permission notice shall be included in
43 // all copies or substantial portions of the Software.
44 //
45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52 //
53 //---------------------------------------------------------------------------------
54 //
55 
56 #include "lcms2_internal.h"
57 
58 
59 // Allocates an empty multi profile element
_cmsStageAllocPlaceholder(cmsContext ContextID,cmsStageSignature Type,cmsUInt32Number InputChannels,cmsUInt32Number OutputChannels,_cmsStageEvalFn EvalPtr,_cmsStageDupElemFn DupElemPtr,_cmsStageFreeElemFn FreePtr,void * Data)60 cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
61                                 cmsStageSignature Type,
62                                 cmsUInt32Number InputChannels,
63                                 cmsUInt32Number OutputChannels,
64                                 _cmsStageEvalFn     EvalPtr,
65                                 _cmsStageDupElemFn  DupElemPtr,
66                                 _cmsStageFreeElemFn FreePtr,
67                                 void*             Data)
68 {
69     cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
70 
71     if (ph == NULL) return NULL;
72 
73 
74     ph ->ContextID = ContextID;
75 
76     ph ->Type       = Type;
77     ph ->Implements = Type;   // By default, no clue on what is implementing
78 
79     ph ->InputChannels  = InputChannels;
80     ph ->OutputChannels = OutputChannels;
81     ph ->EvalPtr        = EvalPtr;
82     ph ->DupElemPtr     = DupElemPtr;
83     ph ->FreePtr        = FreePtr;
84     ph ->Data           = Data;
85 
86     return ph;
87 }
88 
89 
90 static
EvaluateIdentity(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)91 void EvaluateIdentity(const cmsFloat32Number In[],
92                             cmsFloat32Number Out[],
93                       const cmsStage *mpe)
94 {
95     memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
96 }
97 
98 
cmsStageAllocIdentity(cmsContext ContextID,cmsUInt32Number nChannels)99 cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
100 {
101     return _cmsStageAllocPlaceholder(ContextID,
102                                    cmsSigIdentityElemType,
103                                    nChannels, nChannels,
104                                    EvaluateIdentity,
105                                    NULL,
106                                    NULL,
107                                    NULL);
108  }
109 
110 // Conversion functions. From floating point to 16 bits
111 static
FromFloatTo16(const cmsFloat32Number In[],cmsUInt16Number Out[],cmsUInt32Number n)112 void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
113 {
114     cmsUInt32Number i;
115 
116     for (i=0; i < n; i++) {
117         Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
118     }
119 }
120 
121 // From 16 bits to floating point
122 static
From16ToFloat(const cmsUInt16Number In[],cmsFloat32Number Out[],cmsUInt32Number n)123 void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
124 {
125     cmsUInt32Number i;
126 
127     for (i=0; i < n; i++) {
128         Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
129     }
130 }
131 
132 
133 // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
134 // that conform the LUT. It should be called with the LUT, the number of expected elements and
135 // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
136 // the function founds a match with current pipeline, it fills the pointers and returns TRUE
137 // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
138 // the storage process.
cmsPipelineCheckAndRetreiveStages(const cmsPipeline * Lut,cmsUInt32Number n,...)139 cmsBool  CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
140 {
141     va_list args;
142     cmsUInt32Number i;
143     cmsStage* mpe;
144     cmsStageSignature Type;
145     void** ElemPtr;
146 
147     // Make sure same number of elements
148     if (cmsPipelineStageCount(Lut) != n) return FALSE;
149 
150     va_start(args, n);
151 
152     // Iterate across asked types
153     mpe = Lut ->Elements;
154     for (i=0; i < n; i++) {
155 
156         // Get asked type. cmsStageSignature is promoted to int by compiler
157         Type  = (cmsStageSignature)va_arg(args, int);
158         if (mpe ->Type != Type) {
159 
160             va_end(args);       // Mismatch. We are done.
161             return FALSE;
162         }
163         mpe = mpe ->Next;
164     }
165 
166     // Found a combination, fill pointers if not NULL
167     mpe = Lut ->Elements;
168     for (i=0; i < n; i++) {
169 
170         ElemPtr = va_arg(args, void**);
171         if (ElemPtr != NULL)
172             *ElemPtr = mpe;
173 
174         mpe = mpe ->Next;
175     }
176 
177     va_end(args);
178     return TRUE;
179 }
180 
181 // Below there are implementations for several types of elements. Each type may be implemented by a
182 // evaluation function, a duplication function, a function to free resources and a constructor.
183 
184 // *************************************************************************************************
185 // Type cmsSigCurveSetElemType (curves)
186 // *************************************************************************************************
187 
_cmsStageGetPtrToCurveSet(const cmsStage * mpe)188 cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
189 {
190     _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
191 
192     return Data ->TheCurves;
193 }
194 
195 static
EvaluateCurves(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)196 void EvaluateCurves(const cmsFloat32Number In[],
197                     cmsFloat32Number Out[],
198                     const cmsStage *mpe)
199 {
200     _cmsStageToneCurvesData* Data;
201     cmsUInt32Number i;
202 
203     _cmsAssert(mpe != NULL);
204 
205     Data = (_cmsStageToneCurvesData*) mpe ->Data;
206     if (Data == NULL) return;
207 
208     if (Data ->TheCurves == NULL) return;
209 
210     for (i=0; i < Data ->nCurves; i++) {
211         Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
212     }
213 }
214 
215 static
CurveSetElemTypeFree(cmsStage * mpe)216 void CurveSetElemTypeFree(cmsStage* mpe)
217 {
218     _cmsStageToneCurvesData* Data;
219     cmsUInt32Number i;
220 
221     _cmsAssert(mpe != NULL);
222 
223     Data = (_cmsStageToneCurvesData*) mpe ->Data;
224     if (Data == NULL) return;
225 
226     if (Data ->TheCurves != NULL) {
227         for (i=0; i < Data ->nCurves; i++) {
228             if (Data ->TheCurves[i] != NULL)
229                 cmsFreeToneCurve(Data ->TheCurves[i]);
230         }
231     }
232     _cmsFree(mpe ->ContextID, Data ->TheCurves);
233     _cmsFree(mpe ->ContextID, Data);
234 }
235 
236 
237 static
CurveSetDup(cmsStage * mpe)238 void* CurveSetDup(cmsStage* mpe)
239 {
240     _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
241     _cmsStageToneCurvesData* NewElem;
242     cmsUInt32Number i;
243 
244     NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
245     if (NewElem == NULL) return NULL;
246 
247     NewElem ->nCurves   = Data ->nCurves;
248     NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
249 
250     if (NewElem ->TheCurves == NULL) goto Error;
251 
252     for (i=0; i < NewElem ->nCurves; i++) {
253 
254         // Duplicate each curve. It may fail.
255         NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
256         if (NewElem ->TheCurves[i] == NULL) goto Error;
257 
258 
259     }
260     return (void*) NewElem;
261 
262 Error:
263 
264     if (NewElem ->TheCurves != NULL) {
265         for (i=0; i < NewElem ->nCurves; i++) {
266             if (NewElem ->TheCurves[i])
267                 cmsFreeToneCurve(NewElem ->TheCurves[i]);
268         }
269     }
270     _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
271     _cmsFree(mpe ->ContextID, NewElem);
272     return NULL;
273 }
274 
275 
276 // Curves == NULL forces identity curves
cmsStageAllocToneCurves(cmsContext ContextID,cmsUInt32Number nChannels,cmsToneCurve * const Curves[])277 cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
278 {
279     cmsUInt32Number i;
280     _cmsStageToneCurvesData* NewElem;
281     cmsStage* NewMPE;
282 
283 
284     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
285                                      EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
286     if (NewMPE == NULL) return NULL;
287 
288     NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
289     if (NewElem == NULL) {
290         cmsStageFree(NewMPE);
291         return NULL;
292     }
293 
294     NewMPE ->Data  = (void*) NewElem;
295 
296     NewElem ->nCurves   = nChannels;
297     NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
298     if (NewElem ->TheCurves == NULL) {
299         cmsStageFree(NewMPE);
300         return NULL;
301     }
302 
303     for (i=0; i < nChannels; i++) {
304 
305         if (Curves == NULL) {
306             NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
307         }
308         else {
309             NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
310         }
311 
312         if (NewElem ->TheCurves[i] == NULL) {
313             cmsStageFree(NewMPE);
314             return NULL;
315         }
316 
317     }
318 
319    return NewMPE;
320 }
321 
322 
323 // Create a bunch of identity curves
_cmsStageAllocIdentityCurves(cmsContext ContextID,cmsUInt32Number nChannels)324 cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels)
325 {
326     cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
327 
328     if (mpe == NULL) return NULL;
329     mpe ->Implements = cmsSigIdentityElemType;
330     return mpe;
331 }
332 
333 
334 // *************************************************************************************************
335 // Type cmsSigMatrixElemType (Matrices)
336 // *************************************************************************************************
337 
338 
339 // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
340 static
EvaluateMatrix(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)341 void EvaluateMatrix(const cmsFloat32Number In[],
342                     cmsFloat32Number Out[],
343                     const cmsStage *mpe)
344 {
345     cmsUInt32Number i, j;
346     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
347     cmsFloat64Number Tmp;
348 
349     // Input is already in 0..1.0 notation
350     for (i=0; i < mpe ->OutputChannels; i++) {
351 
352         Tmp = 0;
353         for (j=0; j < mpe->InputChannels; j++) {
354             Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
355         }
356 
357         if (Data ->Offset != NULL)
358             Tmp += Data->Offset[i];
359 
360         Out[i] = (cmsFloat32Number) Tmp;
361     }
362 
363 
364     // Output in 0..1.0 domain
365 }
366 
367 
368 // Duplicate a yet-existing matrix element
369 static
MatrixElemDup(cmsStage * mpe)370 void* MatrixElemDup(cmsStage* mpe)
371 {
372     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
373     _cmsStageMatrixData* NewElem;
374     cmsUInt32Number sz;
375 
376     NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
377     if (NewElem == NULL) return NULL;
378 
379     sz = mpe ->InputChannels * mpe ->OutputChannels;
380 
381     NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
382 
383     if (Data ->Offset)
384         NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
385                                                 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
386 
387     return (void*) NewElem;
388 }
389 
390 
391 static
MatrixElemTypeFree(cmsStage * mpe)392 void MatrixElemTypeFree(cmsStage* mpe)
393 {
394     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
395     if (Data == NULL)
396         return;
397     if (Data ->Double)
398         _cmsFree(mpe ->ContextID, Data ->Double);
399 
400     if (Data ->Offset)
401         _cmsFree(mpe ->ContextID, Data ->Offset);
402 
403     _cmsFree(mpe ->ContextID, mpe ->Data);
404 }
405 
406 
407 
cmsStageAllocMatrix(cmsContext ContextID,cmsUInt32Number Rows,cmsUInt32Number Cols,const cmsFloat64Number * Matrix,const cmsFloat64Number * Offset)408 cmsStage*  CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
409                                      const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
410 {
411     cmsUInt32Number i, n;
412     _cmsStageMatrixData* NewElem;
413     cmsStage* NewMPE;
414 
415     n = Rows * Cols;
416 
417     // Check for overflow
418     if (n == 0) return NULL;
419     if (n >= UINT_MAX / Cols) return NULL;
420     if (n >= UINT_MAX / Rows) return NULL;
421     if (n < Rows || n < Cols) return NULL;
422 
423     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
424                                      EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
425     if (NewMPE == NULL) return NULL;
426 
427 
428     NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
429     if (NewElem == NULL) return NULL;
430 
431 
432     NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
433 
434     if (NewElem->Double == NULL) {
435         MatrixElemTypeFree(NewMPE);
436         return NULL;
437     }
438 
439     for (i=0; i < n; i++) {
440         NewElem ->Double[i] = Matrix[i];
441     }
442 
443 
444     if (Offset != NULL) {
445 
446         NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
447         if (NewElem->Offset == NULL) {
448            MatrixElemTypeFree(NewMPE);
449            return NULL;
450         }
451 
452         for (i=0; i < Rows; i++) {
453                 NewElem ->Offset[i] = Offset[i];
454         }
455 
456     }
457 
458     NewMPE ->Data  = (void*) NewElem;
459     return NewMPE;
460 }
461 
462 
463 // *************************************************************************************************
464 // Type cmsSigCLutElemType
465 // *************************************************************************************************
466 
467 
468 // Evaluate in true floating point
469 static
EvaluateCLUTfloat(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)470 void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
471 {
472     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
473 
474     Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
475 }
476 
477 
478 // Convert to 16 bits, evaluate, and back to floating point
479 static
EvaluateCLUTfloatIn16(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)480 void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
481 {
482     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
483     cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
484 
485     _cmsAssert(mpe ->InputChannels  <= MAX_STAGE_CHANNELS);
486     _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
487 
488     FromFloatTo16(In, In16, mpe ->InputChannels);
489     Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
490     From16ToFloat(Out16, Out,  mpe ->OutputChannels);
491 }
492 
493 
494 // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
495 static
CubeSize(const cmsUInt32Number Dims[],cmsUInt32Number b)496 cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
497 {
498     cmsUInt32Number rv, dim;
499 
500     _cmsAssert(Dims != NULL);
501 
502     for (rv = 1; b > 0; b--) {
503 
504         dim = Dims[b-1];
505         if (dim == 0) return 0;  // Error
506 
507         rv *= dim;
508 
509         // Check for overflow
510         if (rv > UINT_MAX / dim) return 0;
511     }
512 
513     return rv;
514 }
515 
516 static
CLUTElemDup(cmsStage * mpe)517 void* CLUTElemDup(cmsStage* mpe)
518 {
519     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
520     _cmsStageCLutData* NewElem;
521 
522 
523     NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
524     if (NewElem == NULL) return NULL;
525 
526     NewElem ->nEntries       = Data ->nEntries;
527     NewElem ->HasFloatValues = Data ->HasFloatValues;
528 
529     if (Data ->Tab.T) {
530 
531         if (Data ->HasFloatValues) {
532             NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
533             if (NewElem ->Tab.TFloat == NULL)
534                 goto Error;
535         } else {
536             NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
537             if (NewElem ->Tab.T == NULL)
538                 goto Error;
539         }
540     }
541 
542     NewElem ->Params   = _cmsComputeInterpParamsEx(mpe ->ContextID,
543                                                    Data ->Params ->nSamples,
544                                                    Data ->Params ->nInputs,
545                                                    Data ->Params ->nOutputs,
546                                                    NewElem ->Tab.T,
547                                                    Data ->Params ->dwFlags);
548     if (NewElem->Params != NULL)
549         return (void*) NewElem;
550  Error:
551     if (NewElem->Tab.T)
552         // This works for both types
553         _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
554     _cmsFree(mpe ->ContextID, NewElem);
555     return NULL;
556 }
557 
558 
559 static
CLutElemTypeFree(cmsStage * mpe)560 void CLutElemTypeFree(cmsStage* mpe)
561 {
562 
563     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
564 
565     // Already empty
566     if (Data == NULL) return;
567 
568     // This works for both types
569     if (Data -> Tab.T)
570         _cmsFree(mpe ->ContextID, Data -> Tab.T);
571 
572     _cmsFreeInterpParams(Data ->Params);
573     _cmsFree(mpe ->ContextID, mpe ->Data);
574 }
575 
576 
577 // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
578 // granularity on each dimension.
cmsStageAllocCLut16bitGranular(cmsContext ContextID,const cmsUInt32Number clutPoints[],cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsUInt16Number * Table)579 cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
580                                          const cmsUInt32Number clutPoints[],
581                                          cmsUInt32Number inputChan,
582                                          cmsUInt32Number outputChan,
583                                          const cmsUInt16Number* Table)
584 {
585     cmsUInt32Number i, n;
586     _cmsStageCLutData* NewElem;
587     cmsStage* NewMPE;
588 
589     _cmsAssert(clutPoints != NULL);
590 
591     if (inputChan > MAX_INPUT_DIMENSIONS) {
592         cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
593         return NULL;
594     }
595 
596     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
597                                      EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
598 
599     if (NewMPE == NULL) return NULL;
600 
601     NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
602     if (NewElem == NULL) {
603         cmsStageFree(NewMPE);
604         return NULL;
605     }
606 
607     NewMPE ->Data  = (void*) NewElem;
608 
609     NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
610     NewElem -> HasFloatValues = FALSE;
611 
612     if (n == 0) {
613         cmsStageFree(NewMPE);
614         return NULL;
615     }
616 
617 
618     NewElem ->Tab.T  = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
619     if (NewElem ->Tab.T == NULL) {
620         cmsStageFree(NewMPE);
621         return NULL;
622     }
623 
624     if (Table != NULL) {
625         for (i=0; i < n; i++) {
626             NewElem ->Tab.T[i] = Table[i];
627         }
628     }
629 
630     NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
631     if (NewElem ->Params == NULL) {
632         cmsStageFree(NewMPE);
633         return NULL;
634     }
635 
636     return NewMPE;
637 }
638 
cmsStageAllocCLut16bit(cmsContext ContextID,cmsUInt32Number nGridPoints,cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsUInt16Number * Table)639 cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
640                                     cmsUInt32Number nGridPoints,
641                                     cmsUInt32Number inputChan,
642                                     cmsUInt32Number outputChan,
643                                     const cmsUInt16Number* Table)
644 {
645     cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
646     int i;
647 
648    // Our resulting LUT would be same gridpoints on all dimensions
649     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
650         Dimensions[i] = nGridPoints;
651 
652     return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
653 }
654 
655 
cmsStageAllocCLutFloat(cmsContext ContextID,cmsUInt32Number nGridPoints,cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsFloat32Number * Table)656 cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
657                                        cmsUInt32Number nGridPoints,
658                                        cmsUInt32Number inputChan,
659                                        cmsUInt32Number outputChan,
660                                        const cmsFloat32Number* Table)
661 {
662    cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
663    int i;
664 
665     // Our resulting LUT would be same gridpoints on all dimensions
666     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
667         Dimensions[i] = nGridPoints;
668 
669     return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
670 }
671 
672 
673 
cmsStageAllocCLutFloatGranular(cmsContext ContextID,const cmsUInt32Number clutPoints[],cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsFloat32Number * Table)674 cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
675 {
676     cmsUInt32Number i, n;
677     _cmsStageCLutData* NewElem;
678     cmsStage* NewMPE;
679 
680     _cmsAssert(clutPoints != NULL);
681 
682     if (inputChan > MAX_INPUT_DIMENSIONS) {
683         cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
684         return NULL;
685     }
686 
687     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
688                                              EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
689     if (NewMPE == NULL) return NULL;
690 
691 
692     NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
693     if (NewElem == NULL) {
694         cmsStageFree(NewMPE);
695         return NULL;
696     }
697 
698     NewMPE ->Data  = (void*) NewElem;
699 
700     // There is a potential integer overflow on conputing n and nEntries.
701     NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
702     NewElem -> HasFloatValues = TRUE;
703 
704     if (n == 0) {
705         cmsStageFree(NewMPE);
706         return NULL;
707     }
708 
709     NewElem ->Tab.TFloat  = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
710     if (NewElem ->Tab.TFloat == NULL) {
711         cmsStageFree(NewMPE);
712         return NULL;
713     }
714 
715     if (Table != NULL) {
716         for (i=0; i < n; i++) {
717             NewElem ->Tab.TFloat[i] = Table[i];
718         }
719     }
720 
721     NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints,  inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
722     if (NewElem ->Params == NULL) {
723         cmsStageFree(NewMPE);
724         return NULL;
725     }
726 
727     return NewMPE;
728 }
729 
730 
731 static
IdentitySampler(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)732 int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
733 {
734     int nChan = *(int*) Cargo;
735     int i;
736 
737     for (i=0; i < nChan; i++)
738         Out[i] = In[i];
739 
740     return 1;
741 }
742 
743 // Creates an MPE that just copies input to output
_cmsStageAllocIdentityCLut(cmsContext ContextID,cmsUInt32Number nChan)744 cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan)
745 {
746     cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
747     cmsStage* mpe ;
748     int i;
749 
750     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
751         Dimensions[i] = 2;
752 
753     mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
754     if (mpe == NULL) return NULL;
755 
756     if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
757         cmsStageFree(mpe);
758         return NULL;
759     }
760 
761     mpe ->Implements = cmsSigIdentityElemType;
762     return mpe;
763 }
764 
765 
766 
767 // Quantize a value 0 <= i < MaxSamples to 0..0xffff
_cmsQuantizeVal(cmsFloat64Number i,cmsUInt32Number MaxSamples)768 cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples)
769 {
770     cmsFloat64Number x;
771 
772     x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
773     return _cmsQuickSaturateWord(x);
774 }
775 
776 
777 // This routine does a sweep on whole input space, and calls its callback
778 // function on knots. returns TRUE if all ok, FALSE otherwise.
cmsStageSampleCLut16bit(cmsStage * mpe,cmsSAMPLER16 Sampler,void * Cargo,cmsUInt32Number dwFlags)779 cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
780 {
781     int i, t, index, rest;
782     cmsUInt32Number nTotalPoints;
783     cmsUInt32Number nInputs, nOutputs;
784     cmsUInt32Number* nSamples;
785     cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
786     _cmsStageCLutData* clut;
787 
788     if (mpe == NULL) return FALSE;
789 
790     clut = (_cmsStageCLutData*) mpe->Data;
791 
792     if (clut == NULL) return FALSE;
793 
794     nSamples = clut->Params ->nSamples;
795     nInputs  = clut->Params ->nInputs;
796     nOutputs = clut->Params ->nOutputs;
797 
798     if (nInputs <= 0) return FALSE;
799     if (nOutputs <= 0) return FALSE;
800     if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
801     if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
802 
803     memset(In, 0, sizeof(In));
804     memset(Out, 0, sizeof(Out));
805 
806     nTotalPoints = CubeSize(nSamples, nInputs);
807     if (nTotalPoints == 0) return FALSE;
808 
809     index = 0;
810     for (i = 0; i < (int) nTotalPoints; i++) {
811 
812         rest = i;
813         for (t = (int)nInputs - 1; t >= 0; --t) {
814 
815             cmsUInt32Number  Colorant = rest % nSamples[t];
816 
817             rest /= nSamples[t];
818 
819             In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
820         }
821 
822         if (clut ->Tab.T != NULL) {
823             for (t = 0; t < (int)nOutputs; t++)
824                 Out[t] = clut->Tab.T[index + t];
825         }
826 
827         if (!Sampler(In, Out, Cargo))
828             return FALSE;
829 
830         if (!(dwFlags & SAMPLER_INSPECT)) {
831 
832             if (clut ->Tab.T != NULL) {
833                 for (t=0; t < (int) nOutputs; t++)
834                     clut->Tab.T[index + t] = Out[t];
835             }
836         }
837 
838         index += nOutputs;
839     }
840 
841     return TRUE;
842 }
843 
844 // Same as anterior, but for floating point
cmsStageSampleCLutFloat(cmsStage * mpe,cmsSAMPLERFLOAT Sampler,void * Cargo,cmsUInt32Number dwFlags)845 cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
846 {
847     int i, t, index, rest;
848     cmsUInt32Number nTotalPoints;
849     cmsUInt32Number nInputs, nOutputs;
850     cmsUInt32Number* nSamples;
851     cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
852     _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
853 
854     nSamples = clut->Params ->nSamples;
855     nInputs  = clut->Params ->nInputs;
856     nOutputs = clut->Params ->nOutputs;
857 
858     if (nInputs <= 0) return FALSE;
859     if (nOutputs <= 0) return FALSE;
860     if (nInputs  > MAX_INPUT_DIMENSIONS) return FALSE;
861     if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
862 
863     nTotalPoints = CubeSize(nSamples, nInputs);
864     if (nTotalPoints == 0) return FALSE;
865 
866     index = 0;
867     for (i = 0; i < (int)nTotalPoints; i++) {
868 
869         rest = i;
870         for (t = (int) nInputs-1; t >=0; --t) {
871 
872             cmsUInt32Number  Colorant = rest % nSamples[t];
873 
874             rest /= nSamples[t];
875 
876             In[t] =  (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
877         }
878 
879         if (clut ->Tab.TFloat != NULL) {
880             for (t=0; t < (int) nOutputs; t++)
881                 Out[t] = clut->Tab.TFloat[index + t];
882         }
883 
884         if (!Sampler(In, Out, Cargo))
885             return FALSE;
886 
887         if (!(dwFlags & SAMPLER_INSPECT)) {
888 
889             if (clut ->Tab.TFloat != NULL) {
890                 for (t=0; t < (int) nOutputs; t++)
891                     clut->Tab.TFloat[index + t] = Out[t];
892             }
893         }
894 
895         index += nOutputs;
896     }
897 
898     return TRUE;
899 }
900 
901 
902 
903 // This routine does a sweep on whole input space, and calls its callback
904 // function on knots. returns TRUE if all ok, FALSE otherwise.
cmsSliceSpace16(cmsUInt32Number nInputs,const cmsUInt32Number clutPoints[],cmsSAMPLER16 Sampler,void * Cargo)905 cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
906                                          cmsSAMPLER16 Sampler, void * Cargo)
907 {
908     int i, t, rest;
909     cmsUInt32Number nTotalPoints;
910     cmsUInt16Number In[cmsMAXCHANNELS];
911 
912     if (nInputs >= cmsMAXCHANNELS) return FALSE;
913 
914     nTotalPoints = CubeSize(clutPoints, nInputs);
915     if (nTotalPoints == 0) return FALSE;
916 
917     for (i = 0; i < (int) nTotalPoints; i++) {
918 
919         rest = i;
920         for (t = (int) nInputs-1; t >=0; --t) {
921 
922             cmsUInt32Number  Colorant = rest % clutPoints[t];
923 
924             rest /= clutPoints[t];
925             In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
926 
927         }
928 
929         if (!Sampler(In, NULL, Cargo))
930             return FALSE;
931     }
932 
933     return TRUE;
934 }
935 
cmsSliceSpaceFloat(cmsUInt32Number nInputs,const cmsUInt32Number clutPoints[],cmsSAMPLERFLOAT Sampler,void * Cargo)936 cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
937                                             cmsSAMPLERFLOAT Sampler, void * Cargo)
938 {
939     int i, t, rest;
940     cmsUInt32Number nTotalPoints;
941     cmsFloat32Number In[cmsMAXCHANNELS];
942 
943     if (nInputs >= cmsMAXCHANNELS) return FALSE;
944 
945     nTotalPoints = CubeSize(clutPoints, nInputs);
946     if (nTotalPoints == 0) return FALSE;
947 
948     for (i = 0; i < (int) nTotalPoints; i++) {
949 
950         rest = i;
951         for (t = (int) nInputs-1; t >=0; --t) {
952 
953             cmsUInt32Number  Colorant = rest % clutPoints[t];
954 
955             rest /= clutPoints[t];
956             In[t] =  (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
957 
958         }
959 
960         if (!Sampler(In, NULL, Cargo))
961             return FALSE;
962     }
963 
964     return TRUE;
965 }
966 
967 // ********************************************************************************
968 // Type cmsSigLab2XYZElemType
969 // ********************************************************************************
970 
971 
972 static
EvaluateLab2XYZ(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)973 void EvaluateLab2XYZ(const cmsFloat32Number In[],
974                      cmsFloat32Number Out[],
975                      const cmsStage *mpe)
976 {
977     cmsCIELab Lab;
978     cmsCIEXYZ XYZ;
979     const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
980 
981     // V4 rules
982     Lab.L = In[0] * 100.0;
983     Lab.a = In[1] * 255.0 - 128.0;
984     Lab.b = In[2] * 255.0 - 128.0;
985 
986     cmsLab2XYZ(NULL, &XYZ, &Lab);
987 
988     // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
989     // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
990 
991     Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
992     Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
993     Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
994     return;
995 
996     cmsUNUSED_PARAMETER(mpe);
997 }
998 
999 
1000 // No dup or free routines needed, as the structure has no pointers in it.
_cmsStageAllocLab2XYZ(cmsContext ContextID)1001 cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID)
1002 {
1003     return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
1004 }
1005 
1006 // ********************************************************************************
1007 
1008 // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
1009 // number of gridpoints that would make exact match. However, a prelinearization
1010 // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
1011 // Almost all what we need but unfortunately, the rest of entries should be scaled by
1012 // (255*257/256) and this is not exact.
1013 
_cmsStageAllocLabV2ToV4curves(cmsContext ContextID)1014 cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
1015 {
1016     cmsStage* mpe;
1017     cmsToneCurve* LabTable[3];
1018     int i, j;
1019 
1020     LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1021     LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1022     LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1023 
1024     for (j=0; j < 3; j++) {
1025 
1026         if (LabTable[j] == NULL) {
1027             cmsFreeToneCurveTriple(LabTable);
1028             return NULL;
1029         }
1030 
1031         // We need to map * (0xffff / 0xff00), that's same as (257 / 256)
1032         // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
1033         for (i=0; i < 257; i++)  {
1034 
1035             LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1036         }
1037 
1038         LabTable[j] ->Table16[257] = 0xffff;
1039     }
1040 
1041     mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1042     cmsFreeToneCurveTriple(LabTable);
1043 
1044     if (mpe == NULL) return NULL;
1045     mpe ->Implements = cmsSigLabV2toV4;
1046     return mpe;
1047 }
1048 
1049 // ********************************************************************************
1050 
1051 // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
_cmsStageAllocLabV2ToV4(cmsContext ContextID)1052 cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1053 {
1054     static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1055                                      0, 65535.0/65280.0, 0,
1056                                      0, 0, 65535.0/65280.0
1057                                      };
1058 
1059     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1060 
1061     if (mpe == NULL) return mpe;
1062     mpe ->Implements = cmsSigLabV2toV4;
1063     return mpe;
1064 }
1065 
1066 
1067 // Reverse direction
_cmsStageAllocLabV4ToV2(cmsContext ContextID)1068 cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1069 {
1070     static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1071                                      0, 65280.0/65535.0, 0,
1072                                      0, 0, 65280.0/65535.0
1073                                      };
1074 
1075      cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1076 
1077     if (mpe == NULL) return mpe;
1078     mpe ->Implements = cmsSigLabV4toV2;
1079     return mpe;
1080 }
1081 
1082 
1083 // To Lab to float. Note that the MPE gives numbers in normal Lab range
1084 // and we need 0..1.0 range for the formatters
1085 // L* : 0...100 => 0...1.0  (L* / 100)
1086 // ab* : -128..+127 to 0..1  ((ab* + 128) / 255)
1087 
_cmsStageNormalizeFromLabFloat(cmsContext ContextID)1088 cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1089 {
1090     static const cmsFloat64Number a1[] = {
1091         1.0/100.0, 0, 0,
1092         0, 1.0/255.0, 0,
1093         0, 0, 1.0/255.0
1094     };
1095 
1096     static const cmsFloat64Number o1[] = {
1097         0,
1098         128.0/255.0,
1099         128.0/255.0
1100     };
1101 
1102     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1103 
1104     if (mpe == NULL) return mpe;
1105     mpe ->Implements = cmsSigLab2FloatPCS;
1106     return mpe;
1107 }
1108 
1109 // Fom XYZ to floating point PCS
_cmsStageNormalizeFromXyzFloat(cmsContext ContextID)1110 cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1111 {
1112 #define n (32768.0/65535.0)
1113     static const cmsFloat64Number a1[] = {
1114         n, 0, 0,
1115         0, n, 0,
1116         0, 0, n
1117     };
1118 #undef n
1119 
1120     cmsStage *mpe =  cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1121 
1122     if (mpe == NULL) return mpe;
1123     mpe ->Implements = cmsSigXYZ2FloatPCS;
1124     return mpe;
1125 }
1126 
_cmsStageNormalizeToLabFloat(cmsContext ContextID)1127 cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1128 {
1129     static const cmsFloat64Number a1[] = {
1130         100.0, 0, 0,
1131         0, 255.0, 0,
1132         0, 0, 255.0
1133     };
1134 
1135     static const cmsFloat64Number o1[] = {
1136         0,
1137         -128.0,
1138         -128.0
1139     };
1140 
1141     cmsStage *mpe =  cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1142     if (mpe == NULL) return mpe;
1143     mpe ->Implements = cmsSigFloatPCS2Lab;
1144     return mpe;
1145 }
1146 
_cmsStageNormalizeToXyzFloat(cmsContext ContextID)1147 cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1148 {
1149 #define n (65535.0/32768.0)
1150 
1151     static const cmsFloat64Number a1[] = {
1152         n, 0, 0,
1153         0, n, 0,
1154         0, 0, n
1155     };
1156 #undef n
1157 
1158     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1159     if (mpe == NULL) return mpe;
1160     mpe ->Implements = cmsSigFloatPCS2XYZ;
1161     return mpe;
1162 }
1163 
1164 // Clips values smaller than zero
1165 static
Clipper(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)1166 void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1167 {
1168        cmsUInt32Number i;
1169        for (i = 0; i < mpe->InputChannels; i++) {
1170 
1171               cmsFloat32Number n = In[i];
1172               Out[i] = n < 0 ? 0 : n;
1173        }
1174 }
1175 
_cmsStageClipNegatives(cmsContext ContextID,cmsUInt32Number nChannels)1176 cmsStage*  _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels)
1177 {
1178        return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType,
1179               nChannels, nChannels, Clipper, NULL, NULL, NULL);
1180 }
1181 
1182 // ********************************************************************************
1183 // Type cmsSigXYZ2LabElemType
1184 // ********************************************************************************
1185 
1186 static
EvaluateXYZ2Lab(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)1187 void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1188 {
1189     cmsCIELab Lab;
1190     cmsCIEXYZ XYZ;
1191     const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1192 
1193     // From 0..1.0 to XYZ
1194 
1195     XYZ.X = In[0] * XYZadj;
1196     XYZ.Y = In[1] * XYZadj;
1197     XYZ.Z = In[2] * XYZadj;
1198 
1199     cmsXYZ2Lab(NULL, &Lab, &XYZ);
1200 
1201     // From V4 Lab to 0..1.0
1202 
1203     Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1204     Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1205     Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1206     return;
1207 
1208     cmsUNUSED_PARAMETER(mpe);
1209 }
1210 
_cmsStageAllocXYZ2Lab(cmsContext ContextID)1211 cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1212 {
1213     return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1214 
1215 }
1216 
1217 // ********************************************************************************
1218 
1219 // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1220 
_cmsStageAllocLabPrelin(cmsContext ContextID)1221 cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1222 {
1223     cmsToneCurve* LabTable[3];
1224     cmsFloat64Number Params[1] =  {2.4} ;
1225 
1226     LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1227     LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1228     LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1229 
1230     return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1231 }
1232 
1233 
1234 // Free a single MPE
cmsStageFree(cmsStage * mpe)1235 void CMSEXPORT cmsStageFree(cmsStage* mpe)
1236 {
1237     if (mpe ->FreePtr)
1238         mpe ->FreePtr(mpe);
1239 
1240     _cmsFree(mpe ->ContextID, mpe);
1241 }
1242 
1243 
cmsStageInputChannels(const cmsStage * mpe)1244 cmsUInt32Number  CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1245 {
1246     return mpe ->InputChannels;
1247 }
1248 
cmsStageOutputChannels(const cmsStage * mpe)1249 cmsUInt32Number  CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1250 {
1251     return mpe ->OutputChannels;
1252 }
1253 
cmsStageType(const cmsStage * mpe)1254 cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1255 {
1256     return mpe -> Type;
1257 }
1258 
cmsStageData(const cmsStage * mpe)1259 void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1260 {
1261     return mpe -> Data;
1262 }
1263 
cmsStageNext(const cmsStage * mpe)1264 cmsStage*  CMSEXPORT cmsStageNext(const cmsStage* mpe)
1265 {
1266     return mpe -> Next;
1267 }
1268 
1269 
1270 // Duplicates an MPE
cmsStageDup(cmsStage * mpe)1271 cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1272 {
1273     cmsStage* NewMPE;
1274 
1275     if (mpe == NULL) return NULL;
1276     NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1277                                      mpe ->Type,
1278                                      mpe ->InputChannels,
1279                                      mpe ->OutputChannels,
1280                                      mpe ->EvalPtr,
1281                                      mpe ->DupElemPtr,
1282                                      mpe ->FreePtr,
1283                                      NULL);
1284     if (NewMPE == NULL) return NULL;
1285 
1286     NewMPE ->Implements = mpe ->Implements;
1287 
1288     if (mpe ->DupElemPtr) {
1289 
1290         NewMPE ->Data = mpe ->DupElemPtr(mpe);
1291 
1292         if (NewMPE->Data == NULL) {
1293 
1294             cmsStageFree(NewMPE);
1295             return NULL;
1296         }
1297 
1298     } else {
1299 
1300         NewMPE ->Data       = NULL;
1301     }
1302 
1303     return NewMPE;
1304 }
1305 
1306 
1307 // ***********************************************************************************************************
1308 
1309 // This function sets up the channel count
1310 static
BlessLUT(cmsPipeline * lut)1311 cmsBool BlessLUT(cmsPipeline* lut)
1312 {
1313     // We can set the input/output channels only if we have elements.
1314     if (lut ->Elements != NULL) {
1315 
1316         cmsStage* prev;
1317         cmsStage* next;
1318         cmsStage* First;
1319         cmsStage* Last;
1320 
1321         First  = cmsPipelineGetPtrToFirstStage(lut);
1322         Last   = cmsPipelineGetPtrToLastStage(lut);
1323 
1324         if (First == NULL || Last == NULL) return FALSE;
1325 
1326         lut->InputChannels = First->InputChannels;
1327         lut->OutputChannels = Last->OutputChannels;
1328 
1329         // Check chain consistency
1330         prev = First;
1331         next = prev->Next;
1332 
1333         while (next != NULL)
1334         {
1335             if (next->InputChannels != prev->OutputChannels)
1336                 return FALSE;
1337 
1338             next = next->Next;
1339             prev = prev->Next;
1340     }
1341 }
1342 
1343     return TRUE;
1344 }
1345 
1346 
1347 // Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1348 static
_LUTeval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1349 void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[],  register const void* D)
1350 {
1351     cmsPipeline* lut = (cmsPipeline*) D;
1352     cmsStage *mpe;
1353     cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1354     int Phase = 0, NextPhase;
1355 
1356     From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1357 
1358     for (mpe = lut ->Elements;
1359          mpe != NULL;
1360          mpe = mpe ->Next) {
1361 
1362              NextPhase = Phase ^ 1;
1363              mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1364              Phase = NextPhase;
1365     }
1366 
1367 
1368     FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1369 }
1370 
1371 
1372 
1373 // Does evaluate the LUT on cmsFloat32Number-basis.
1374 static
_LUTevalFloat(register const cmsFloat32Number In[],register cmsFloat32Number Out[],const void * D)1375 void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
1376 {
1377     cmsPipeline* lut = (cmsPipeline*) D;
1378     cmsStage *mpe;
1379     cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1380     int Phase = 0, NextPhase;
1381 
1382     memmove(&Storage[Phase][0], In, lut ->InputChannels  * sizeof(cmsFloat32Number));
1383 
1384     for (mpe = lut ->Elements;
1385          mpe != NULL;
1386          mpe = mpe ->Next) {
1387 
1388               NextPhase = Phase ^ 1;
1389               mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1390               Phase = NextPhase;
1391     }
1392 
1393     memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1394 }
1395 
1396 
1397 // LUT Creation & Destruction
cmsPipelineAlloc(cmsContext ContextID,cmsUInt32Number InputChannels,cmsUInt32Number OutputChannels)1398 cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1399 {
1400        cmsPipeline* NewLUT;
1401 
1402        // A value of zero in channels is allowed as placeholder
1403        if (InputChannels >= cmsMAXCHANNELS ||
1404            OutputChannels >= cmsMAXCHANNELS) return NULL;
1405 
1406        NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1407        if (NewLUT == NULL) return NULL;
1408 
1409        NewLUT -> InputChannels  = InputChannels;
1410        NewLUT -> OutputChannels = OutputChannels;
1411 
1412        NewLUT ->Eval16Fn    = _LUTeval16;
1413        NewLUT ->EvalFloatFn = _LUTevalFloat;
1414        NewLUT ->DupDataFn   = NULL;
1415        NewLUT ->FreeDataFn  = NULL;
1416        NewLUT ->Data        = NewLUT;
1417        NewLUT ->ContextID   = ContextID;
1418 
1419        if (!BlessLUT(NewLUT))
1420        {
1421            _cmsFree(ContextID, NewLUT);
1422            return NULL;
1423        }
1424 
1425        return NewLUT;
1426 }
1427 
cmsGetPipelineContextID(const cmsPipeline * lut)1428 cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1429 {
1430     _cmsAssert(lut != NULL);
1431     return lut ->ContextID;
1432 }
1433 
cmsPipelineInputChannels(const cmsPipeline * lut)1434 cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1435 {
1436     _cmsAssert(lut != NULL);
1437     return lut ->InputChannels;
1438 }
1439 
cmsPipelineOutputChannels(const cmsPipeline * lut)1440 cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1441 {
1442     _cmsAssert(lut != NULL);
1443     return lut ->OutputChannels;
1444 }
1445 
1446 // Free a profile elements LUT
cmsPipelineFree(cmsPipeline * lut)1447 void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1448 {
1449     cmsStage *mpe, *Next;
1450 
1451     if (lut == NULL) return;
1452 
1453     for (mpe = lut ->Elements;
1454         mpe != NULL;
1455         mpe = Next) {
1456 
1457             Next = mpe ->Next;
1458             cmsStageFree(mpe);
1459     }
1460 
1461     if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1462 
1463     _cmsFree(lut ->ContextID, lut);
1464 }
1465 
1466 
1467 // Default to evaluate the LUT on 16 bit-basis.
cmsPipelineEval16(const cmsUInt16Number In[],cmsUInt16Number Out[],const cmsPipeline * lut)1468 void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[],  const cmsPipeline* lut)
1469 {
1470     _cmsAssert(lut != NULL);
1471     lut ->Eval16Fn(In, Out, lut->Data);
1472 }
1473 
1474 
1475 // Does evaluate the LUT on cmsFloat32Number-basis.
cmsPipelineEvalFloat(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsPipeline * lut)1476 void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1477 {
1478     _cmsAssert(lut != NULL);
1479     lut ->EvalFloatFn(In, Out, lut);
1480 }
1481 
1482 
1483 
1484 // Duplicates a LUT
cmsPipelineDup(const cmsPipeline * lut)1485 cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1486 {
1487     cmsPipeline* NewLUT;
1488     cmsStage *NewMPE, *Anterior = NULL, *mpe;
1489     cmsBool  First = TRUE;
1490 
1491     if (lut == NULL) return NULL;
1492 
1493     NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1494     if (NewLUT == NULL) return NULL;
1495 
1496     for (mpe = lut ->Elements;
1497          mpe != NULL;
1498          mpe = mpe ->Next) {
1499 
1500              NewMPE = cmsStageDup(mpe);
1501 
1502              if (NewMPE == NULL) {
1503                  cmsPipelineFree(NewLUT);
1504                  return NULL;
1505              }
1506 
1507              if (First) {
1508                  NewLUT ->Elements = NewMPE;
1509                  First = FALSE;
1510              }
1511              else {
1512                 if (Anterior != NULL)
1513                     Anterior ->Next = NewMPE;
1514              }
1515 
1516             Anterior = NewMPE;
1517     }
1518 
1519     NewLUT ->Eval16Fn    = lut ->Eval16Fn;
1520     NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1521     NewLUT ->DupDataFn   = lut ->DupDataFn;
1522     NewLUT ->FreeDataFn  = lut ->FreeDataFn;
1523 
1524     if (NewLUT ->DupDataFn != NULL)
1525         NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1526 
1527 
1528     NewLUT ->SaveAs8Bits    = lut ->SaveAs8Bits;
1529 
1530     if (!BlessLUT(NewLUT))
1531     {
1532         _cmsFree(lut->ContextID, NewLUT);
1533         return NULL;
1534     }
1535 
1536     return NewLUT;
1537 }
1538 
1539 
cmsPipelineInsertStage(cmsPipeline * lut,cmsStageLoc loc,cmsStage * mpe)1540 int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1541 {
1542     cmsStage* Anterior = NULL, *pt;
1543 
1544     if (lut == NULL || mpe == NULL)
1545         return FALSE;
1546 
1547     switch (loc) {
1548 
1549         case cmsAT_BEGIN:
1550             mpe ->Next = lut ->Elements;
1551             lut ->Elements = mpe;
1552             break;
1553 
1554         case cmsAT_END:
1555 
1556             if (lut ->Elements == NULL)
1557                 lut ->Elements = mpe;
1558             else {
1559 
1560                 for (pt = lut ->Elements;
1561                      pt != NULL;
1562                      pt = pt -> Next) Anterior = pt;
1563 
1564                 Anterior ->Next = mpe;
1565                 mpe ->Next = NULL;
1566             }
1567             break;
1568         default:;
1569             return FALSE;
1570     }
1571 
1572     return BlessLUT(lut);
1573 }
1574 
1575 // Unlink an element and return the pointer to it
cmsPipelineUnlinkStage(cmsPipeline * lut,cmsStageLoc loc,cmsStage ** mpe)1576 void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1577 {
1578     cmsStage *Anterior, *pt, *Last;
1579     cmsStage *Unlinked = NULL;
1580 
1581 
1582     // If empty LUT, there is nothing to remove
1583     if (lut ->Elements == NULL) {
1584         if (mpe) *mpe = NULL;
1585         return;
1586     }
1587 
1588     // On depending on the strategy...
1589     switch (loc) {
1590 
1591         case cmsAT_BEGIN:
1592             {
1593                 cmsStage* elem = lut ->Elements;
1594 
1595                 lut ->Elements = elem -> Next;
1596                 elem ->Next = NULL;
1597                 Unlinked = elem;
1598 
1599             }
1600             break;
1601 
1602         case cmsAT_END:
1603             Anterior = Last = NULL;
1604             for (pt = lut ->Elements;
1605                 pt != NULL;
1606                 pt = pt -> Next) {
1607                     Anterior = Last;
1608                     Last = pt;
1609             }
1610 
1611             Unlinked = Last;  // Next already points to NULL
1612 
1613             // Truncate the chain
1614             if (Anterior)
1615                 Anterior ->Next = NULL;
1616             else
1617                 lut ->Elements = NULL;
1618             break;
1619         default:;
1620     }
1621 
1622     if (mpe)
1623         *mpe = Unlinked;
1624     else
1625         cmsStageFree(Unlinked);
1626 
1627     // May fail, but we ignore it
1628     BlessLUT(lut);
1629 }
1630 
1631 
1632 // Concatenate two LUT into a new single one
cmsPipelineCat(cmsPipeline * l1,const cmsPipeline * l2)1633 cmsBool  CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1634 {
1635     cmsStage* mpe;
1636 
1637     // If both LUTS does not have elements, we need to inherit
1638     // the number of channels
1639     if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1640         l1 ->InputChannels  = l2 ->InputChannels;
1641         l1 ->OutputChannels = l2 ->OutputChannels;
1642     }
1643 
1644     // Cat second
1645     for (mpe = l2 ->Elements;
1646          mpe != NULL;
1647          mpe = mpe ->Next) {
1648 
1649             // We have to dup each element
1650             if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1651                 return FALSE;
1652     }
1653 
1654     return BlessLUT(l1);
1655 }
1656 
1657 
cmsPipelineSetSaveAs8bitsFlag(cmsPipeline * lut,cmsBool On)1658 cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1659 {
1660     cmsBool Anterior = lut ->SaveAs8Bits;
1661 
1662     lut ->SaveAs8Bits = On;
1663     return Anterior;
1664 }
1665 
1666 
cmsPipelineGetPtrToFirstStage(const cmsPipeline * lut)1667 cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1668 {
1669     return lut ->Elements;
1670 }
1671 
cmsPipelineGetPtrToLastStage(const cmsPipeline * lut)1672 cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1673 {
1674     cmsStage *mpe, *Anterior = NULL;
1675 
1676     for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1677         Anterior = mpe;
1678 
1679     return Anterior;
1680 }
1681 
cmsPipelineStageCount(const cmsPipeline * lut)1682 cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1683 {
1684     cmsStage *mpe;
1685     cmsUInt32Number n;
1686 
1687     for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1688             n++;
1689 
1690     return n;
1691 }
1692 
1693 // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1694 // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
_cmsPipelineSetOptimizationParameters(cmsPipeline * Lut,_cmsOPTeval16Fn Eval16,void * PrivateData,_cmsFreeUserDataFn FreePrivateDataFn,_cmsDupUserDataFn DupPrivateDataFn)1695 void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1696                                         _cmsOPTeval16Fn Eval16,
1697                                         void* PrivateData,
1698                                         _cmsFreeUserDataFn FreePrivateDataFn,
1699                                         _cmsDupUserDataFn  DupPrivateDataFn)
1700 {
1701 
1702     Lut ->Eval16Fn = Eval16;
1703     Lut ->DupDataFn = DupPrivateDataFn;
1704     Lut ->FreeDataFn = FreePrivateDataFn;
1705     Lut ->Data = PrivateData;
1706 }
1707 
1708 
1709 // ----------------------------------------------------------- Reverse interpolation
1710 // Here's how it goes. The derivative Df(x) of the function f is the linear
1711 // transformation that best approximates f near the point x. It can be represented
1712 // by a matrix A whose entries are the partial derivatives of the components of f
1713 // with respect to all the coordinates. This is know as the Jacobian
1714 //
1715 // The best linear approximation to f is given by the matrix equation:
1716 //
1717 // y-y0 = A (x-x0)
1718 //
1719 // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1720 // linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1721 // and since y0=f(x0) one can solve the above equation for x. This leads to the
1722 // Newton's method formula:
1723 //
1724 // xn+1 = xn - A-1 f(xn)
1725 //
1726 // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1727 // fashion described above. Iterating this will give better and better approximations
1728 // if you have a "good enough" initial guess.
1729 
1730 
1731 #define JACOBIAN_EPSILON            0.001f
1732 #define INVERSION_MAX_ITERATIONS    30
1733 
1734 // Increment with reflexion on boundary
1735 static
IncDelta(cmsFloat32Number * Val)1736 void IncDelta(cmsFloat32Number *Val)
1737 {
1738     if (*Val < (1.0 - JACOBIAN_EPSILON))
1739 
1740         *Val += JACOBIAN_EPSILON;
1741 
1742     else
1743         *Val -= JACOBIAN_EPSILON;
1744 
1745 }
1746 
1747 
1748 
1749 // Euclidean distance between two vectors of n elements each one
1750 static
EuclideanDistance(cmsFloat32Number a[],cmsFloat32Number b[],int n)1751 cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1752 {
1753     cmsFloat32Number sum = 0;
1754     int i;
1755 
1756     for (i=0; i < n; i++) {
1757         cmsFloat32Number dif = b[i] - a[i];
1758         sum +=  dif * dif;
1759     }
1760 
1761     return sqrtf(sum);
1762 }
1763 
1764 
1765 // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1766 //
1767 // x1 <- x - [J(x)]^-1 * f(x)
1768 //
1769 // lut: The LUT on where to do the search
1770 // Target: LabK, 3 values of Lab plus destination K which is fixed
1771 // Result: The obtained CMYK
1772 // Hint:   Location where begin the search
1773 
cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],cmsFloat32Number Result[],cmsFloat32Number Hint[],const cmsPipeline * lut)1774 cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1775                                               cmsFloat32Number Result[],
1776                                               cmsFloat32Number Hint[],
1777                                               const cmsPipeline* lut)
1778 {
1779     cmsUInt32Number  i, j;
1780     cmsFloat64Number  error, LastError = 1E20;
1781     cmsFloat32Number  fx[4], x[4], xd[4], fxd[4];
1782     cmsVEC3 tmp, tmp2;
1783     cmsMAT3 Jacobian;
1784 
1785     // Only 3->3 and 4->3 are supported
1786     if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1787     if (lut ->OutputChannels != 3) return FALSE;
1788 
1789     // Take the hint as starting point if specified
1790     if (Hint == NULL) {
1791 
1792         // Begin at any point, we choose 1/3 of CMY axis
1793         x[0] = x[1] = x[2] = 0.3f;
1794     }
1795     else {
1796 
1797         // Only copy 3 channels from hint...
1798         for (j=0; j < 3; j++)
1799             x[j] = Hint[j];
1800     }
1801 
1802     // If Lut is 4-dimensions, then grab target[3], which is fixed
1803     if (lut ->InputChannels == 4) {
1804         x[3] = Target[3];
1805     }
1806     else x[3] = 0; // To keep lint happy
1807 
1808 
1809     // Iterate
1810     for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1811 
1812         // Get beginning fx
1813         cmsPipelineEvalFloat(x, fx, lut);
1814 
1815         // Compute error
1816         error = EuclideanDistance(fx, Target, 3);
1817 
1818         // If not convergent, return last safe value
1819         if (error >= LastError)
1820             break;
1821 
1822         // Keep latest values
1823         LastError     = error;
1824         for (j=0; j < lut ->InputChannels; j++)
1825                 Result[j] = x[j];
1826 
1827         // Found an exact match?
1828         if (error <= 0)
1829             break;
1830 
1831         // Obtain slope (the Jacobian)
1832         for (j = 0; j < 3; j++) {
1833 
1834             xd[0] = x[0];
1835             xd[1] = x[1];
1836             xd[2] = x[2];
1837             xd[3] = x[3];  // Keep fixed channel
1838 
1839             IncDelta(&xd[j]);
1840 
1841             cmsPipelineEvalFloat(xd, fxd, lut);
1842 
1843             Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1844             Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1845             Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1846         }
1847 
1848         // Solve system
1849         tmp2.n[0] = fx[0] - Target[0];
1850         tmp2.n[1] = fx[1] - Target[1];
1851         tmp2.n[2] = fx[2] - Target[2];
1852 
1853         if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1854             return FALSE;
1855 
1856         // Move our guess
1857         x[0] -= (cmsFloat32Number) tmp.n[0];
1858         x[1] -= (cmsFloat32Number) tmp.n[1];
1859         x[2] -= (cmsFloat32Number) tmp.n[2];
1860 
1861         // Some clipping....
1862         for (j=0; j < 3; j++) {
1863             if (x[j] < 0) x[j] = 0;
1864             else
1865                 if (x[j] > 1.0) x[j] = 1.0;
1866         }
1867     }
1868 
1869     return TRUE;
1870 }
1871 
1872 
1873