1 /*
2  * Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package jdk.nashorn.internal.codegen;
27 
28 import static jdk.nashorn.internal.runtime.Property.NOT_CONFIGURABLE;
29 import static jdk.nashorn.internal.runtime.Property.NOT_ENUMERABLE;
30 import static jdk.nashorn.internal.runtime.Property.NOT_WRITABLE;
31 
32 import java.lang.invoke.MethodType;
33 import jdk.nashorn.internal.codegen.types.Type;
34 import jdk.nashorn.internal.ir.AccessNode;
35 import jdk.nashorn.internal.ir.CallNode;
36 import jdk.nashorn.internal.ir.Expression;
37 import jdk.nashorn.internal.ir.FunctionNode;
38 import jdk.nashorn.internal.ir.IdentNode;
39 import jdk.nashorn.internal.ir.IndexNode;
40 import jdk.nashorn.internal.ir.Optimistic;
41 import jdk.nashorn.internal.objects.ArrayBufferView;
42 import jdk.nashorn.internal.objects.NativeArray;
43 import jdk.nashorn.internal.runtime.FindProperty;
44 import jdk.nashorn.internal.runtime.JSType;
45 import jdk.nashorn.internal.runtime.Property;
46 import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
47 import jdk.nashorn.internal.runtime.ScriptFunction;
48 import jdk.nashorn.internal.runtime.ScriptObject;
49 import jdk.nashorn.internal.runtime.ScriptRuntime;
50 
51 /**
52  * Functionality for using a runtime scope to look up value types.
53  * Used during recompilation.
54  */
55 final class TypeEvaluator {
56     /**
57      * Type signature for invocation of functions without parameters: we must pass (callee, this) of type
58      * (ScriptFunction, Object) respectively. We also use Object as the return type (we must pass something,
59      * but it'll be ignored; it can't be void, though).
60      */
61     private static final MethodType EMPTY_INVOCATION_TYPE = MethodType.methodType(Object.class, ScriptFunction.class, Object.class);
62 
63     private final Compiler compiler;
64     private final ScriptObject runtimeScope;
65 
TypeEvaluator(final Compiler compiler, final ScriptObject runtimeScope)66     TypeEvaluator(final Compiler compiler, final ScriptObject runtimeScope) {
67         this.compiler = compiler;
68         this.runtimeScope = runtimeScope;
69     }
70 
71     /**
72      * Returns true if the expression can be safely evaluated, and its value is an object known to always use
73      * String as the type of its property names retrieved through
74      * {@link ScriptRuntime#toPropertyIterator(Object)}. It is used to avoid optimistic assumptions about its
75      * property name types.
76      * @param expr the expression to test
77      * @return true if the expression can be safely evaluated, and its value is an object known to always use
78      * String as the type of its property iterators.
79      */
hasStringPropertyIterator(final Expression expr)80     boolean hasStringPropertyIterator(final Expression expr) {
81         return evaluateSafely(expr) instanceof ScriptObject;
82     }
83 
getOptimisticType(final Optimistic node)84     Type getOptimisticType(final Optimistic node) {
85         assert compiler.useOptimisticTypes();
86 
87         final int  programPoint = node.getProgramPoint();
88         final Type validType    = compiler.getInvalidatedProgramPointType(programPoint);
89 
90         if (validType != null) {
91             return validType;
92         }
93 
94         final Type mostOptimisticType = node.getMostOptimisticType();
95         final Type evaluatedType      = getEvaluatedType(node);
96 
97         if (evaluatedType != null) {
98             if (evaluatedType.widerThan(mostOptimisticType)) {
99                 final Type newValidType = evaluatedType.isObject() || evaluatedType.isBoolean() ? Type.OBJECT : evaluatedType;
100                 // Update invalidatedProgramPoints so we don't re-evaluate the expression next time. This is a heuristic
101                 // as we're doing a tradeoff. Re-evaluating expressions on each recompile takes time, but it might
102                 // notice a widening in the type of the expression and thus prevent an unnecessary deoptimization later.
103                 // We'll presume though that the types of expressions are mostly stable, so if we evaluated it in one
104                 // compilation, we'll keep to that and risk a low-probability deoptimization if its type gets widened
105                 // in the future.
106                 compiler.addInvalidatedProgramPoint(node.getProgramPoint(), newValidType);
107             }
108             return evaluatedType;
109         }
110         return mostOptimisticType;
111     }
112 
getPropertyType(final ScriptObject sobj, final String name)113     private static Type getPropertyType(final ScriptObject sobj, final String name) {
114         final FindProperty find = sobj.findProperty(name, true);
115         if (find == null) {
116             return null;
117         }
118 
119         final Property property      = find.getProperty();
120         final Class<?> propertyClass = property.getType();
121         if (propertyClass == null) {
122             // propertyClass == null means its value is Undefined. It is probably not initialized yet, so we won't make
123             // a type assumption yet.
124             return null;
125         } else if (propertyClass.isPrimitive()) {
126             return Type.typeFor(propertyClass);
127         }
128 
129         final ScriptObject owner = find.getOwner();
130         if (property.hasGetterFunction(owner)) {
131             // Can have side effects, so we can't safely evaluate it; since !propertyClass.isPrimitive(), it's Object.
132             return Type.OBJECT;
133         }
134 
135         // Safely evaluate the property, and return the narrowest type for the actual value (e.g. Type.INT for a boxed
136         // integer).
137         final Object value = property.needsDeclaration() ? ScriptRuntime.UNDEFINED : property.getObjectValue(owner, owner);
138         if (value == ScriptRuntime.UNDEFINED) {
139             return null;
140         }
141         return Type.typeFor(JSType.unboxedFieldType(value));
142     }
143 
144     /**
145      * Declares a symbol name as belonging to a non-scoped local variable during an on-demand compilation of a single
146      * function. This method will add an explicit Undefined binding for the local into the runtime scope if it's
147      * otherwise implicitly undefined so that when an expression is evaluated for the name, it won't accidentally find
148      * an unrelated value higher up the scope chain. It is only required to call this method when doing an optimistic
149      * on-demand compilation.
150      * @param symbolName the name of the symbol that is to be declared as being a non-scoped local variable.
151      */
declareLocalSymbol(final String symbolName)152     void declareLocalSymbol(final String symbolName) {
153         assert
154             compiler.useOptimisticTypes() &&
155             compiler.isOnDemandCompilation() &&
156             runtimeScope != null :
157                 "useOptimistic=" +
158                     compiler.useOptimisticTypes() +
159                     " isOnDemand=" +
160                     compiler.isOnDemandCompilation() +
161                     " scope="+runtimeScope;
162 
163         if (runtimeScope.findProperty(symbolName, false) == null) {
164             runtimeScope.addOwnProperty(symbolName, NOT_WRITABLE | NOT_ENUMERABLE | NOT_CONFIGURABLE, ScriptRuntime.UNDEFINED);
165         }
166     }
167 
evaluateSafely(final Expression expr)168     private Object evaluateSafely(final Expression expr) {
169         if (expr instanceof IdentNode) {
170             return runtimeScope == null ? null : evaluatePropertySafely(runtimeScope, ((IdentNode)expr).getName());
171         }
172 
173         if (expr instanceof AccessNode) {
174             final AccessNode accessNode = (AccessNode)expr;
175             final Object     base       = evaluateSafely(accessNode.getBase());
176             if (!(base instanceof ScriptObject)) {
177                 return null;
178             }
179             return evaluatePropertySafely((ScriptObject)base, accessNode.getProperty());
180         }
181 
182         return null;
183     }
184 
evaluatePropertySafely(final ScriptObject sobj, final String name)185     private static Object evaluatePropertySafely(final ScriptObject sobj, final String name) {
186         final FindProperty find = sobj.findProperty(name, true);
187         if (find == null) {
188             return null;
189         }
190         final Property     property = find.getProperty();
191         final ScriptObject owner    = find.getOwner();
192         if (property.hasGetterFunction(owner)) {
193             // Possible side effects; can't evaluate safely
194             return null;
195         }
196         return property.getObjectValue(owner, owner);
197     }
198 
199 
getEvaluatedType(final Optimistic expr)200     private Type getEvaluatedType(final Optimistic expr) {
201         if (expr instanceof IdentNode) {
202             if (runtimeScope == null) {
203                 return null;
204             }
205             return getPropertyType(runtimeScope, ((IdentNode)expr).getName());
206         } else if (expr instanceof AccessNode) {
207             final AccessNode accessNode = (AccessNode)expr;
208             final Object base = evaluateSafely(accessNode.getBase());
209             if (!(base instanceof ScriptObject)) {
210                 return null;
211             }
212             return getPropertyType((ScriptObject)base, accessNode.getProperty());
213         } else if (expr instanceof IndexNode) {
214             final IndexNode indexNode = (IndexNode)expr;
215             final Object    base = evaluateSafely(indexNode.getBase());
216             if(base instanceof NativeArray || base instanceof ArrayBufferView) {
217                 // NOTE: optimistic array getters throw UnwarrantedOptimismException based on the type of their
218                 // underlying array storage, not based on values of individual elements. Thus, a LongArrayData will
219                 // throw UOE for every optimistic int linkage attempt, even if the long value being returned in the
220                 // first invocation would be representable as int. That way, we can presume that the array's optimistic
221                 // type is the most optimistic type for which an element getter has a chance of executing successfully.
222                 return ((ScriptObject)base).getArray().getOptimisticType();
223             }
224         } else if (expr instanceof CallNode) {
225             // Currently, we'll only try to guess the return type of immediately invoked function expressions with no
226             // parameters, that is (function() { ... })(). We could do better, but these are all heuristics and we can
227             // gradually introduce them as needed. An easy one would be to do the same for .call(this) idiom.
228             final CallNode callExpr = (CallNode)expr;
229             final Expression fnExpr = callExpr.getFunction();
230             // Skip evaluation if running with eager compilation as we may violate constraints in RecompilableScriptFunctionData
231             if (fnExpr instanceof FunctionNode && compiler.getContext().getEnv()._lazy_compilation) {
232                 final FunctionNode fn = (FunctionNode)fnExpr;
233                 if (callExpr.getArgs().isEmpty()) {
234                     final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(fn.getId());
235                     if (data != null) {
236                         final Type returnType = Type.typeFor(data.getReturnType(EMPTY_INVOCATION_TYPE, runtimeScope));
237                         if (returnType == Type.BOOLEAN) {
238                             // We don't have optimistic booleans. In fact, optimistic call sites getting back boolean
239                             // currently deoptimize all the way to Object.
240                             return Type.OBJECT;
241                         }
242                         assert returnType == Type.INT || returnType == Type.NUMBER || returnType == Type.OBJECT;
243                         return returnType;
244                     }
245                 }
246             }
247         }
248 
249         return null;
250     }
251 }
252