1 /*
2  * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2015, 2019, SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "gc/shared/barrierSetAssembler.hpp"
29 #include "interpreter/bytecodeHistogram.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "interpreter/interp_masm.hpp"
33 #include "interpreter/templateInterpreterGenerator.hpp"
34 #include "interpreter/templateTable.hpp"
35 #include "oops/arrayOop.hpp"
36 #include "oops/methodData.hpp"
37 #include "oops/method.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "prims/jvmtiExport.hpp"
40 #include "prims/jvmtiThreadState.hpp"
41 #include "runtime/arguments.hpp"
42 #include "runtime/deoptimization.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "runtime/stubRoutines.hpp"
46 #include "runtime/synchronizer.hpp"
47 #include "runtime/timer.hpp"
48 #include "runtime/vframeArray.hpp"
49 #include "utilities/debug.hpp"
50 #include "utilities/macros.hpp"
51 
52 #undef __
53 #define __ _masm->
54 
55 // Size of interpreter code.  Increase if too small.  Interpreter will
56 // fail with a guarantee ("not enough space for interpreter generation");
57 // if too small.
58 // Run with +PrintInterpreter to get the VM to print out the size.
59 // Max size with JVMTI
60 int TemplateInterpreter::InterpreterCodeSize = 256*K;
61 
62 #ifdef PRODUCT
63 #define BLOCK_COMMENT(str) /* nothing */
64 #else
65 #define BLOCK_COMMENT(str) __ block_comment(str)
66 #endif
67 
68 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
69 
70 //-----------------------------------------------------------------------------
71 
generate_slow_signature_handler()72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
73   // Slow_signature handler that respects the PPC C calling conventions.
74   //
75   // We get called by the native entry code with our output register
76   // area == 8. First we call InterpreterRuntime::get_result_handler
77   // to copy the pointer to the signature string temporarily to the
78   // first C-argument and to return the result_handler in
79   // R3_RET. Since native_entry will copy the jni-pointer to the
80   // first C-argument slot later on, it is OK to occupy this slot
81   // temporarilly. Then we copy the argument list on the java
82   // expression stack into native varargs format on the native stack
83   // and load arguments into argument registers. Integer arguments in
84   // the varargs vector will be sign-extended to 8 bytes.
85   //
86   // On entry:
87   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
88   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
89   //     this method
90   //   R19_method
91   //
92   // On exit (just before return instruction):
93   //   R3_RET            - contains the address of the result_handler.
94   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
95   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
96   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
97   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
98 
99   const int LogSizeOfTwoInstructions = 3;
100 
101   // FIXME: use Argument:: GL: Argument names different numbers!
102   const int max_fp_register_arguments  = 13;
103   const int max_int_register_arguments = 6;  // first 2 are reserved
104 
105   const Register arg_java       = R21_tmp1;
106   const Register arg_c          = R22_tmp2;
107   const Register signature      = R23_tmp3;  // is string
108   const Register sig_byte       = R24_tmp4;
109   const Register fpcnt          = R25_tmp5;
110   const Register argcnt         = R26_tmp6;
111   const Register intSlot        = R27_tmp7;
112   const Register target_sp      = R28_tmp8;
113   const FloatRegister floatSlot = F0;
114 
115   address entry = __ function_entry();
116 
117   __ save_LR_CR(R0);
118   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
119   // We use target_sp for storing arguments in the C frame.
120   __ mr(target_sp, R1_SP);
121   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
122 
123   __ mr(arg_java, R3_ARG1);
124 
125   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
126 
127   // Signature is in R3_RET. Signature is callee saved.
128   __ mr(signature, R3_RET);
129 
130   // Get the result handler.
131   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
132 
133   {
134     Label L;
135     // test if static
136     // _access_flags._flags must be at offset 0.
137     // TODO PPC port: requires change in shared code.
138     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
139     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
140     // _access_flags must be a 32 bit value.
141     assert(sizeof(AccessFlags) == 4, "wrong size");
142     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
143     // testbit with condition register.
144     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
145     __ btrue(CCR0, L);
146     // For non-static functions, pass "this" in R4_ARG2 and copy it
147     // to 2nd C-arg slot.
148     // We need to box the Java object here, so we use arg_java
149     // (address of current Java stack slot) as argument and don't
150     // dereference it as in case of ints, floats, etc.
151     __ mr(R4_ARG2, arg_java);
152     __ addi(arg_java, arg_java, -BytesPerWord);
153     __ std(R4_ARG2, _abi(carg_2), target_sp);
154     __ bind(L);
155   }
156 
157   // Will be incremented directly after loop_start. argcnt=0
158   // corresponds to 3rd C argument.
159   __ li(argcnt, -1);
160   // arg_c points to 3rd C argument
161   __ addi(arg_c, target_sp, _abi(carg_3));
162   // no floating-point args parsed so far
163   __ li(fpcnt, 0);
164 
165   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
166   Label loop_start, loop_end;
167   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
168 
169   // signature points to '(' at entry
170 #ifdef ASSERT
171   __ lbz(sig_byte, 0, signature);
172   __ cmplwi(CCR0, sig_byte, '(');
173   __ bne(CCR0, do_dontreachhere);
174 #endif
175 
176   __ bind(loop_start);
177 
178   __ addi(argcnt, argcnt, 1);
179   __ lbzu(sig_byte, 1, signature);
180 
181   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
182   __ beq(CCR0, loop_end);
183 
184   __ cmplwi(CCR0, sig_byte, 'B'); // byte
185   __ beq(CCR0, do_int);
186 
187   __ cmplwi(CCR0, sig_byte, 'C'); // char
188   __ beq(CCR0, do_int);
189 
190   __ cmplwi(CCR0, sig_byte, 'D'); // double
191   __ beq(CCR0, do_double);
192 
193   __ cmplwi(CCR0, sig_byte, 'F'); // float
194   __ beq(CCR0, do_float);
195 
196   __ cmplwi(CCR0, sig_byte, 'I'); // int
197   __ beq(CCR0, do_int);
198 
199   __ cmplwi(CCR0, sig_byte, 'J'); // long
200   __ beq(CCR0, do_long);
201 
202   __ cmplwi(CCR0, sig_byte, 'S'); // short
203   __ beq(CCR0, do_int);
204 
205   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
206   __ beq(CCR0, do_int);
207 
208   __ cmplwi(CCR0, sig_byte, 'L'); // object
209   __ beq(CCR0, do_object);
210 
211   __ cmplwi(CCR0, sig_byte, '['); // array
212   __ beq(CCR0, do_array);
213 
214   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
215   //  __ beq(CCR0, do_void);
216 
217   __ bind(do_dontreachhere);
218 
219   __ unimplemented("ShouldNotReachHere in slow_signature_handler");
220 
221   __ bind(do_array);
222 
223   {
224     Label start_skip, end_skip;
225 
226     __ bind(start_skip);
227     __ lbzu(sig_byte, 1, signature);
228     __ cmplwi(CCR0, sig_byte, '[');
229     __ beq(CCR0, start_skip); // skip further brackets
230     __ cmplwi(CCR0, sig_byte, '9');
231     __ bgt(CCR0, end_skip);   // no optional size
232     __ cmplwi(CCR0, sig_byte, '0');
233     __ bge(CCR0, start_skip); // skip optional size
234     __ bind(end_skip);
235 
236     __ cmplwi(CCR0, sig_byte, 'L');
237     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
238     __ b(do_boxed);          // otherwise, go directly to do_boxed
239   }
240 
241   __ bind(do_object);
242   {
243     Label L;
244     __ bind(L);
245     __ lbzu(sig_byte, 1, signature);
246     __ cmplwi(CCR0, sig_byte, ';');
247     __ bne(CCR0, L);
248    }
249   // Need to box the Java object here, so we use arg_java (address of
250   // current Java stack slot) as argument and don't dereference it as
251   // in case of ints, floats, etc.
252   Label do_null;
253   __ bind(do_boxed);
254   __ ld(R0,0, arg_java);
255   __ cmpdi(CCR0, R0, 0);
256   __ li(intSlot,0);
257   __ beq(CCR0, do_null);
258   __ mr(intSlot, arg_java);
259   __ bind(do_null);
260   __ std(intSlot, 0, arg_c);
261   __ addi(arg_java, arg_java, -BytesPerWord);
262   __ addi(arg_c, arg_c, BytesPerWord);
263   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
264   __ blt(CCR0, move_intSlot_to_ARG);
265   __ b(loop_start);
266 
267   __ bind(do_int);
268   __ lwa(intSlot, 0, arg_java);
269   __ std(intSlot, 0, arg_c);
270   __ addi(arg_java, arg_java, -BytesPerWord);
271   __ addi(arg_c, arg_c, BytesPerWord);
272   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
273   __ blt(CCR0, move_intSlot_to_ARG);
274   __ b(loop_start);
275 
276   __ bind(do_long);
277   __ ld(intSlot, -BytesPerWord, arg_java);
278   __ std(intSlot, 0, arg_c);
279   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
280   __ addi(arg_c, arg_c, BytesPerWord);
281   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
282   __ blt(CCR0, move_intSlot_to_ARG);
283   __ b(loop_start);
284 
285   __ bind(do_float);
286   __ lfs(floatSlot, 0, arg_java);
287 #if defined(LINUX)
288   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
289   // in the least significant word of an argument slot.
290 #if defined(VM_LITTLE_ENDIAN)
291   __ stfs(floatSlot, 0, arg_c);
292 #else
293   __ stfs(floatSlot, 4, arg_c);
294 #endif
295 #elif defined(AIX)
296   // Although AIX runs on big endian CPU, float is in most significant
297   // word of an argument slot.
298   __ stfs(floatSlot, 0, arg_c);
299 #elif defined(_ALLBSD_SOURCE)
300   __ stfs(floatSlot, 4, arg_c);
301 #else
302 #error "unknown OS"
303 #endif
304   __ addi(arg_java, arg_java, -BytesPerWord);
305   __ addi(arg_c, arg_c, BytesPerWord);
306   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
307   __ blt(CCR0, move_floatSlot_to_FARG);
308   __ b(loop_start);
309 
310   __ bind(do_double);
311   __ lfd(floatSlot, - BytesPerWord, arg_java);
312   __ stfd(floatSlot, 0, arg_c);
313   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
314   __ addi(arg_c, arg_c, BytesPerWord);
315   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
316   __ blt(CCR0, move_floatSlot_to_FARG);
317   __ b(loop_start);
318 
319   __ bind(loop_end);
320 
321   __ pop_frame();
322   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
323   __ restore_LR_CR(R0);
324 
325   __ blr();
326 
327   Label move_int_arg, move_float_arg;
328   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
329   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
330   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
331   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
332   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
333   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
334   __ mr(R10_ARG8, intSlot); __ b(loop_start);
335 
336   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
337   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
338   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
339   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
340   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
341   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
342   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
343   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
344   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
345   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
346   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
347   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
348   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
349   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
350 
351   __ bind(move_intSlot_to_ARG);
352   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
353   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
354   __ add(R11_scratch1, R0, R11_scratch1);
355   __ mtctr(R11_scratch1/*branch_target*/);
356   __ bctr();
357   __ bind(move_floatSlot_to_FARG);
358   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
359   __ addi(fpcnt, fpcnt, 1);
360   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
361   __ add(R11_scratch1, R0, R11_scratch1);
362   __ mtctr(R11_scratch1/*branch_target*/);
363   __ bctr();
364 
365   return entry;
366 }
367 
generate_result_handler_for(BasicType type)368 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
369   //
370   // Registers alive
371   //   R3_RET
372   //   LR
373   //
374   // Registers updated
375   //   R3_RET
376   //
377 
378   Label done;
379   address entry = __ pc();
380 
381   switch (type) {
382   case T_BOOLEAN:
383     // convert !=0 to 1
384     __ neg(R0, R3_RET);
385     __ orr(R0, R3_RET, R0);
386     __ srwi(R3_RET, R0, 31);
387     break;
388   case T_BYTE:
389      // sign extend 8 bits
390      __ extsb(R3_RET, R3_RET);
391      break;
392   case T_CHAR:
393      // zero extend 16 bits
394      __ clrldi(R3_RET, R3_RET, 48);
395      break;
396   case T_SHORT:
397      // sign extend 16 bits
398      __ extsh(R3_RET, R3_RET);
399      break;
400   case T_INT:
401      // sign extend 32 bits
402      __ extsw(R3_RET, R3_RET);
403      break;
404   case T_LONG:
405      break;
406   case T_OBJECT:
407     // JNIHandles::resolve result.
408     __ resolve_jobject(R3_RET, R11_scratch1, R31, /* needs_frame */ true); // kills R31
409     break;
410   case T_FLOAT:
411      break;
412   case T_DOUBLE:
413      break;
414   case T_VOID:
415      break;
416   default: ShouldNotReachHere();
417   }
418 
419   BIND(done);
420   __ blr();
421 
422   return entry;
423 }
424 
425 // Abstract method entry.
426 //
generate_abstract_entry(void)427 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
428   address entry = __ pc();
429 
430   //
431   // Registers alive
432   //   R16_thread     - JavaThread*
433   //   R19_method     - callee's method (method to be invoked)
434   //   R1_SP          - SP prepared such that caller's outgoing args are near top
435   //   LR             - return address to caller
436   //
437   // Stack layout at this point:
438   //
439   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
440   //           alignment (optional)
441   //           [outgoing Java arguments]
442   //           ...
443   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
444   //            ...
445   //
446 
447   // Can't use call_VM here because we have not set up a new
448   // interpreter state. Make the call to the vm and make it look like
449   // our caller set up the JavaFrameAnchor.
450   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
451 
452   // Push a new C frame and save LR.
453   __ save_LR_CR(R0);
454   __ push_frame_reg_args(0, R11_scratch1);
455 
456   // This is not a leaf but we have a JavaFrameAnchor now and we will
457   // check (create) exceptions afterward so this is ok.
458   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
459                   R16_thread, R19_method);
460 
461   // Pop the C frame and restore LR.
462   __ pop_frame();
463   __ restore_LR_CR(R0);
464 
465   // Reset JavaFrameAnchor from call_VM_leaf above.
466   __ reset_last_Java_frame();
467 
468   // We don't know our caller, so jump to the general forward exception stub,
469   // which will also pop our full frame off. Satisfy the interface of
470   // SharedRuntime::generate_forward_exception()
471   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
472   __ mtctr(R11_scratch1);
473   __ bctr();
474 
475   return entry;
476 }
477 
478 // Interpreter intrinsic for WeakReference.get().
479 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
480 //    into R8 and return quickly
481 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
482 //    It contains a GC barrier which puts the reference into the satb buffer
483 //    to indicate that someone holds a strong reference to the object the
484 //    weak ref points to!
generate_Reference_get_entry(void)485 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
486   // Code: _aload_0, _getfield, _areturn
487   // parameter size = 1
488   //
489   // The code that gets generated by this routine is split into 2 parts:
490   //    1. the "intrinsified" code for G1 (or any SATB based GC),
491   //    2. the slow path - which is an expansion of the regular method entry.
492   //
493   // Notes:
494   // * In the G1 code we do not check whether we need to block for
495   //   a safepoint. If G1 is enabled then we must execute the specialized
496   //   code for Reference.get (except when the Reference object is null)
497   //   so that we can log the value in the referent field with an SATB
498   //   update buffer.
499   //   If the code for the getfield template is modified so that the
500   //   G1 pre-barrier code is executed when the current method is
501   //   Reference.get() then going through the normal method entry
502   //   will be fine.
503   // * The G1 code can, however, check the receiver object (the instance
504   //   of java.lang.Reference) and jump to the slow path if null. If the
505   //   Reference object is null then we obviously cannot fetch the referent
506   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
507   //   regular method entry code to generate the NPE.
508   //
509 
510   address entry = __ pc();
511 
512   const int referent_offset = java_lang_ref_Reference::referent_offset();
513 
514   Label slow_path;
515 
516   // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
517 
518   // In the G1 code we don't check if we need to reach a safepoint. We
519   // continue and the thread will safepoint at the next bytecode dispatch.
520 
521   // If the receiver is null then it is OK to jump to the slow path.
522   __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
523 
524   // Check if receiver == NULL and go the slow path.
525   __ cmpdi(CCR0, R3_RET, 0);
526   __ beq(CCR0, slow_path);
527 
528   __ load_heap_oop(R3_RET, referent_offset, R3_RET,
529                    /* non-volatile temp */ R31, R11_scratch1, true, ON_WEAK_OOP_REF);
530 
531   // Generate the G1 pre-barrier code to log the value of
532   // the referent field in an SATB buffer. Note with
533   // these parameters the pre-barrier does not generate
534   // the load of the previous value.
535 
536   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
537   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
538 
539   __ blr();
540 
541   __ bind(slow_path);
542   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
543   return entry;
544 }
545 
generate_StackOverflowError_handler()546 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
547   address entry = __ pc();
548 
549   // Expression stack must be empty before entering the VM if an
550   // exception happened.
551   __ empty_expression_stack();
552   // Throw exception.
553   __ call_VM(noreg,
554              CAST_FROM_FN_PTR(address,
555                               InterpreterRuntime::throw_StackOverflowError));
556   return entry;
557 }
558 
generate_ArrayIndexOutOfBounds_handler()559 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
560   address entry = __ pc();
561   __ empty_expression_stack();
562   // R4_ARG2 already contains the array.
563   // Index is in R17_tos.
564   __ mr(R5_ARG3, R17_tos);
565   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R4_ARG2, R5_ARG3);
566   return entry;
567 }
568 
generate_ClassCastException_handler()569 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
570   address entry = __ pc();
571   // Expression stack must be empty before entering the VM if an
572   // exception happened.
573   __ empty_expression_stack();
574 
575   // Load exception object.
576   // Thread will be loaded to R3_ARG1.
577   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
578 #ifdef ASSERT
579   // Above call must not return here since exception pending.
580   __ should_not_reach_here();
581 #endif
582   return entry;
583 }
584 
generate_exception_handler_common(const char * name,const char * message,bool pass_oop)585 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
586   address entry = __ pc();
587   //__ untested("generate_exception_handler_common");
588   Register Rexception = R17_tos;
589 
590   // Expression stack must be empty before entering the VM if an exception happened.
591   __ empty_expression_stack();
592 
593   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
594   if (pass_oop) {
595     __ mr(R5_ARG3, Rexception);
596     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception));
597   } else {
598     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
599     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception));
600   }
601 
602   // Throw exception.
603   __ mr(R3_ARG1, Rexception);
604   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
605   __ mtctr(R11_scratch1);
606   __ bctr();
607 
608   return entry;
609 }
610 
611 // This entry is returned to when a call returns to the interpreter.
612 // When we arrive here, we expect that the callee stack frame is already popped.
generate_return_entry_for(TosState state,int step,size_t index_size)613 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
614   address entry = __ pc();
615 
616   // Move the value out of the return register back to the TOS cache of current frame.
617   switch (state) {
618     case ltos:
619     case btos:
620     case ztos:
621     case ctos:
622     case stos:
623     case atos:
624     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
625     case ftos:
626     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
627     case vtos: break;                           // Nothing to do, this was a void return.
628     default  : ShouldNotReachHere();
629   }
630 
631   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
632   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
633   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
634 
635   // Compiled code destroys templateTableBase, reload.
636   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
637 
638   if (state == atos) {
639     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
640   }
641 
642   const Register cache = R11_scratch1;
643   const Register size  = R12_scratch2;
644   __ get_cache_and_index_at_bcp(cache, 1, index_size);
645 
646   // Get least significant byte of 64 bit value:
647 #if defined(VM_LITTLE_ENDIAN)
648   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
649 #else
650   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
651 #endif
652   __ sldi(size, size, Interpreter::logStackElementSize);
653   __ add(R15_esp, R15_esp, size);
654 
655  __ check_and_handle_popframe(R11_scratch1);
656  __ check_and_handle_earlyret(R11_scratch1);
657 
658   __ dispatch_next(state, step);
659   return entry;
660 }
661 
generate_deopt_entry_for(TosState state,int step,address continuation)662 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
663   address entry = __ pc();
664   // If state != vtos, we're returning from a native method, which put it's result
665   // into the result register. So move the value out of the return register back
666   // to the TOS cache of current frame.
667 
668   switch (state) {
669     case ltos:
670     case btos:
671     case ztos:
672     case ctos:
673     case stos:
674     case atos:
675     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
676     case ftos:
677     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
678     case vtos: break;                           // Nothing to do, this was a void return.
679     default  : ShouldNotReachHere();
680   }
681 
682   // Load LcpoolCache @@@ should be already set!
683   __ get_constant_pool_cache(R27_constPoolCache);
684 
685   // Handle a pending exception, fall through if none.
686   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
687 
688   // Start executing bytecodes.
689   if (continuation == NULL) {
690     __ dispatch_next(state, step);
691   } else {
692     __ jump_to_entry(continuation, R11_scratch1);
693   }
694 
695   return entry;
696 }
697 
generate_safept_entry_for(TosState state,address runtime_entry)698 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
699   address entry = __ pc();
700 
701   __ push(state);
702   __ call_VM(noreg, runtime_entry);
703   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
704 
705   return entry;
706 }
707 
708 // Helpers for commoning out cases in the various type of method entries.
709 
710 // Increment invocation count & check for overflow.
711 //
712 // Note: checking for negative value instead of overflow
713 //       so we have a 'sticky' overflow test.
714 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)715 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
716   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
717   Register Rscratch1   = R11_scratch1;
718   Register Rscratch2   = R12_scratch2;
719   Register R3_counters = R3_ARG1;
720   Label done;
721 
722   if (TieredCompilation) {
723     const int increment = InvocationCounter::count_increment;
724     Label no_mdo;
725     if (ProfileInterpreter) {
726       const Register Rmdo = R3_counters;
727       // If no method data exists, go to profile_continue.
728       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
729       __ cmpdi(CCR0, Rmdo, 0);
730       __ beq(CCR0, no_mdo);
731 
732       // Increment invocation counter in the MDO.
733       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
734       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
735       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
736       __ addi(Rscratch2, Rscratch2, increment);
737       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
738       __ and_(Rscratch1, Rscratch2, Rscratch1);
739       __ bne(CCR0, done);
740       __ b(*overflow);
741     }
742 
743     // Increment counter in MethodCounters*.
744     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
745     __ bind(no_mdo);
746     __ get_method_counters(R19_method, R3_counters, done);
747     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
748     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
749     __ addi(Rscratch2, Rscratch2, increment);
750     __ stw(Rscratch2, mo_ic_offs, R3_counters);
751     __ and_(Rscratch1, Rscratch2, Rscratch1);
752     __ beq(CCR0, *overflow);
753 
754     __ bind(done);
755 
756   } else {
757 
758     // Update standard invocation counters.
759     Register Rsum_ivc_bec = R4_ARG2;
760     __ get_method_counters(R19_method, R3_counters, done);
761     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
762     // Increment interpreter invocation counter.
763     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
764       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
765       __ addi(R12_scratch2, R12_scratch2, 1);
766       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
767     }
768     // Check if we must create a method data obj.
769     if (ProfileInterpreter && profile_method != NULL) {
770       const Register profile_limit = Rscratch1;
771       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
772       // Test to see if we should create a method data oop.
773       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
774       __ blt(CCR0, *profile_method_continue);
775       // If no method data exists, go to profile_method.
776       __ test_method_data_pointer(*profile_method);
777     }
778     // Finally check for counter overflow.
779     if (overflow) {
780       const Register invocation_limit = Rscratch1;
781       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
782       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
783       __ bge(CCR0, *overflow);
784     }
785 
786     __ bind(done);
787   }
788 }
789 
790 // Generate code to initiate compilation on invocation counter overflow.
generate_counter_overflow(Label & continue_entry)791 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
792   // Generate code to initiate compilation on the counter overflow.
793 
794   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
795   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
796   // We pass zero in.
797   // The call returns the address of the verified entry point for the method or NULL
798   // if the compilation did not complete (either went background or bailed out).
799   //
800   // Unlike the C++ interpreter above: Check exceptions!
801   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
802   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
803 
804   __ li(R4_ARG2, 0);
805   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
806 
807   // Returns verified_entry_point or NULL.
808   // We ignore it in any case.
809   __ b(continue_entry);
810 }
811 
812 // See if we've got enough room on the stack for locals plus overhead below
813 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
814 // without going through the signal handler, i.e., reserved and yellow zones
815 // will not be made usable. The shadow zone must suffice to handle the
816 // overflow.
817 //
818 // Kills Rmem_frame_size, Rscratch1.
generate_stack_overflow_check(Register Rmem_frame_size,Register Rscratch1)819 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
820   Label done;
821   assert_different_registers(Rmem_frame_size, Rscratch1);
822 
823   BLOCK_COMMENT("stack_overflow_check_with_compare {");
824   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
825   __ ld(Rscratch1, thread_(stack_overflow_limit));
826   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
827   __ bgt(CCR0/*is_stack_overflow*/, done);
828 
829   // The stack overflows. Load target address of the runtime stub and call it.
830   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
831   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
832   __ mtctr(Rscratch1);
833   // Restore caller_sp (c2i adapter may exist, but no shrinking of interpreted caller frame).
834 #ifdef ASSERT
835   Label frame_not_shrunk;
836   __ cmpld(CCR0, R1_SP, R21_sender_SP);
837   __ ble(CCR0, frame_not_shrunk);
838   __ stop("frame shrunk");
839   __ bind(frame_not_shrunk);
840   __ ld(Rscratch1, 0, R1_SP);
841   __ ld(R0, 0, R21_sender_SP);
842   __ cmpd(CCR0, R0, Rscratch1);
843   __ asm_assert_eq("backlink");
844 #endif // ASSERT
845   __ mr(R1_SP, R21_sender_SP);
846   __ bctr();
847 
848   __ align(32, 12);
849   __ bind(done);
850   BLOCK_COMMENT("} stack_overflow_check_with_compare");
851 }
852 
853 // Lock the current method, interpreter register window must be set up!
lock_method(Register Rflags,Register Rscratch1,Register Rscratch2,bool flags_preloaded)854 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
855   const Register Robj_to_lock = Rscratch2;
856 
857   {
858     if (!flags_preloaded) {
859       __ lwz(Rflags, method_(access_flags));
860     }
861 
862 #ifdef ASSERT
863     // Check if methods needs synchronization.
864     {
865       Label Lok;
866       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
867       __ btrue(CCR0,Lok);
868       __ stop("method doesn't need synchronization");
869       __ bind(Lok);
870     }
871 #endif // ASSERT
872   }
873 
874   // Get synchronization object to Rscratch2.
875   {
876     Label Lstatic;
877     Label Ldone;
878 
879     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
880     __ btrue(CCR0, Lstatic);
881 
882     // Non-static case: load receiver obj from stack and we're done.
883     __ ld(Robj_to_lock, R18_locals);
884     __ b(Ldone);
885 
886     __ bind(Lstatic); // Static case: Lock the java mirror
887     // Load mirror from interpreter frame.
888     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
889     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
890 
891     __ bind(Ldone);
892     __ verify_oop(Robj_to_lock);
893   }
894 
895   // Got the oop to lock => execute!
896   __ add_monitor_to_stack(true, Rscratch1, R0);
897 
898   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
899   __ lock_object(R26_monitor, Robj_to_lock);
900 }
901 
902 // Generate a fixed interpreter frame for pure interpreter
903 // and I2N native transition frames.
904 //
905 // Before (stack grows downwards):
906 //
907 //         |  ...         |
908 //         |------------- |
909 //         |  java arg0   |
910 //         |  ...         |
911 //         |  java argn   |
912 //         |              |   <-   R15_esp
913 //         |              |
914 //         |--------------|
915 //         | abi_112      |
916 //         |              |   <-   R1_SP
917 //         |==============|
918 //
919 //
920 // After:
921 //
922 //         |  ...         |
923 //         |  java arg0   |<-   R18_locals
924 //         |  ...         |
925 //         |  java argn   |
926 //         |--------------|
927 //         |              |
928 //         |  java locals |
929 //         |              |
930 //         |--------------|
931 //         |  abi_48      |
932 //         |==============|
933 //         |              |
934 //         |   istate     |
935 //         |              |
936 //         |--------------|
937 //         |   monitor    |<-   R26_monitor
938 //         |--------------|
939 //         |              |<-   R15_esp
940 //         | expression   |
941 //         | stack        |
942 //         |              |
943 //         |--------------|
944 //         |              |
945 //         | abi_112      |<-   R1_SP
946 //         |==============|
947 //
948 // The top most frame needs an abi space of 112 bytes. This space is needed,
949 // since we call to c. The c function may spill their arguments to the caller
950 // frame. When we call to java, we don't need these spill slots. In order to save
951 // space on the stack, we resize the caller. However, java locals reside in
952 // the caller frame and the frame has to be increased. The frame_size for the
953 // current frame was calculated based on max_stack as size for the expression
954 // stack. At the call, just a part of the expression stack might be used.
955 // We don't want to waste this space and cut the frame back accordingly.
956 // The resulting amount for resizing is calculated as follows:
957 // resize =   (number_of_locals - number_of_arguments) * slot_size
958 //          + (R1_SP - R15_esp) + 48
959 //
960 // The size for the callee frame is calculated:
961 // framesize = 112 + max_stack + monitor + state_size
962 //
963 // maxstack:   Max number of slots on the expression stack, loaded from the method.
964 // monitor:    We statically reserve room for one monitor object.
965 // state_size: We save the current state of the interpreter to this area.
966 //
generate_fixed_frame(bool native_call,Register Rsize_of_parameters,Register Rsize_of_locals)967 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
968   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
969            top_frame_size      = R7_ARG5,
970            Rconst_method       = R8_ARG6;
971 
972   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
973 
974   __ ld(Rconst_method, method_(const));
975   __ lhz(Rsize_of_parameters /* number of params */,
976          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
977   if (native_call) {
978     // If we're calling a native method, we reserve space for the worst-case signature
979     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
980     // We add two slots to the parameter_count, one for the jni
981     // environment and one for a possible native mirror.
982     Label skip_native_calculate_max_stack;
983     __ addi(top_frame_size, Rsize_of_parameters, 2);
984     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
985     __ bge(CCR0, skip_native_calculate_max_stack);
986     __ li(top_frame_size, Argument::n_register_parameters);
987     __ bind(skip_native_calculate_max_stack);
988     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
989     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
990     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
991     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
992   } else {
993     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
994     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
995     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
996     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
997     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
998     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
999     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1000     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1001   }
1002 
1003   // Compute top frame size.
1004   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1005 
1006   // Cut back area between esp and max_stack.
1007   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1008 
1009   __ round_to(top_frame_size, frame::alignment_in_bytes);
1010   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1011   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1012   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1013 
1014   if (!native_call) {
1015     // Stack overflow check.
1016     // Native calls don't need the stack size check since they have no
1017     // expression stack and the arguments are already on the stack and
1018     // we only add a handful of words to the stack.
1019     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1020     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1021   }
1022 
1023   // Set up interpreter state registers.
1024 
1025   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1026   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1027   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1028 
1029   // Set method data pointer.
1030   if (ProfileInterpreter) {
1031     Label zero_continue;
1032     __ ld(R28_mdx, method_(method_data));
1033     __ cmpdi(CCR0, R28_mdx, 0);
1034     __ beq(CCR0, zero_continue);
1035     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1036     __ bind(zero_continue);
1037   }
1038 
1039   if (native_call) {
1040     __ li(R14_bcp, 0); // Must initialize.
1041   } else {
1042     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1043   }
1044 
1045   // Resize parent frame.
1046   __ mflr(R12_scratch2);
1047   __ neg(parent_frame_resize, parent_frame_resize);
1048   __ resize_frame(parent_frame_resize, R11_scratch1);
1049   __ std(R12_scratch2, _abi(lr), R1_SP);
1050 
1051   // Get mirror and store it in the frame as GC root for this Method*.
1052   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1053 
1054   __ addi(R26_monitor, R1_SP, -frame::ijava_state_size);
1055   __ addi(R15_esp, R26_monitor, -Interpreter::stackElementSize);
1056 
1057   // Store values.
1058   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1059   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1060   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1061   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1062 
1063   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1064   // be found in the frame after save_interpreter_state is done. This is always true
1065   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1066   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1067   // (Enhanced Stack Trace).
1068   // The signal handler does not save the interpreter state into the frame.
1069 
1070   // We have to initialize some of these frame slots for native calls (accessed by GC).
1071   // Also initialize them for non-native calls for better tool support (even though
1072   // you may not get the most recent version as described above).
1073   __ li(R0, 0);
1074   __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1075   __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1076   if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1077   __ std(R15_esp, _ijava_state_neg(esp), R1_SP);
1078   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); // only used for native_call
1079 
1080   // Store sender's SP and this frame's top SP.
1081   __ subf(R12_scratch2, top_frame_size, R1_SP);
1082   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1083   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1084 
1085   // Push top frame.
1086   __ push_frame(top_frame_size, R11_scratch1);
1087 }
1088 
1089 // End of helpers
1090 
generate_math_entry(AbstractInterpreter::MethodKind kind)1091 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1092 
1093   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1094   bool use_instruction = false;
1095   address runtime_entry = NULL;
1096   int num_args = 1;
1097   bool double_precision = true;
1098 
1099   // PPC64 specific:
1100   switch (kind) {
1101     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1102     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1103     case Interpreter::java_lang_math_fmaF:
1104     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1105     default: break; // Fall back to runtime call.
1106   }
1107 
1108   switch (kind) {
1109     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1110     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1111     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1112     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1113     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1114     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1115     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1116     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1117     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1118     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1119     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1120     default: ShouldNotReachHere();
1121   }
1122 
1123   // Use normal entry if neither instruction nor runtime call is used.
1124   if (!use_instruction && runtime_entry == NULL) return NULL;
1125 
1126   address entry = __ pc();
1127 
1128   // Load arguments
1129   assert(num_args <= 13, "passed in registers");
1130   if (double_precision) {
1131     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1132     for (int i = 0; i < num_args; ++i) {
1133       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1134       offset -= 2 * Interpreter::stackElementSize;
1135     }
1136   } else {
1137     int offset = num_args * Interpreter::stackElementSize;
1138     for (int i = 0; i < num_args; ++i) {
1139       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1140       offset -= Interpreter::stackElementSize;
1141     }
1142   }
1143 
1144   if (use_instruction) {
1145     switch (kind) {
1146       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1147       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1148       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1149       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1150       default: ShouldNotReachHere();
1151     }
1152   } else {
1153     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1154     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1155     //__ call_c_and_return_to_caller(R12_scratch2);
1156 
1157     // Push a new C frame and save LR.
1158     __ save_LR_CR(R0);
1159     __ push_frame_reg_args(0, R11_scratch1);
1160 
1161     __ call_VM_leaf(runtime_entry);
1162 
1163     // Pop the C frame and restore LR.
1164     __ pop_frame();
1165     __ restore_LR_CR(R0);
1166   }
1167 
1168   // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1169   __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1170   __ blr();
1171 
1172   __ flush();
1173 
1174   return entry;
1175 }
1176 
bang_stack_shadow_pages(bool native_call)1177 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1178   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1179   // Note that we do the banging after the frame is setup, since the exception
1180   // handling code expects to find a valid interpreter frame on the stack.
1181   // Doing the banging earlier fails if the caller frame is not an interpreter
1182   // frame.
1183   // (Also, the exception throwing code expects to unlock any synchronized
1184   // method receiever, so do the banging after locking the receiver.)
1185 
1186   // Bang each page in the shadow zone. We can't assume it's been done for
1187   // an interpreter frame with greater than a page of locals, so each page
1188   // needs to be checked.  Only true for non-native.
1189   if (UseStackBanging) {
1190     const int page_size = os::vm_page_size();
1191     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1192     const int start_page = native_call ? n_shadow_pages : 1;
1193     BLOCK_COMMENT("bang_stack_shadow_pages:");
1194     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1195       __ bang_stack_with_offset(pages*page_size);
1196     }
1197   }
1198 }
1199 
1200 // Interpreter stub for calling a native method. (asm interpreter)
1201 // This sets up a somewhat different looking stack for calling the
1202 // native method than the typical interpreter frame setup.
1203 //
1204 // On entry:
1205 //   R19_method    - method
1206 //   R16_thread    - JavaThread*
1207 //   R15_esp       - intptr_t* sender tos
1208 //
1209 //   abstract stack (grows up)
1210 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1211 //        ...
generate_native_entry(bool synchronized)1212 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1213 
1214   address entry = __ pc();
1215 
1216   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1217 
1218   // -----------------------------------------------------------------------------
1219   // Allocate a new frame that represents the native callee (i2n frame).
1220   // This is not a full-blown interpreter frame, but in particular, the
1221   // following registers are valid after this:
1222   // - R19_method
1223   // - R18_local (points to start of arguments to native function)
1224   //
1225   //   abstract stack (grows up)
1226   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1227   //        ...
1228 
1229   const Register signature_handler_fd = R11_scratch1;
1230   const Register pending_exception    = R0;
1231   const Register result_handler_addr  = R31;
1232   const Register native_method_fd     = R11_scratch1;
1233   const Register access_flags         = R22_tmp2;
1234   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1235   const Register sync_state           = R12_scratch2;
1236   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1237   const Register suspend_flags        = R11_scratch1;
1238 
1239   //=============================================================================
1240   // Allocate new frame and initialize interpreter state.
1241 
1242   Label exception_return;
1243   Label exception_return_sync_check;
1244   Label stack_overflow_return;
1245 
1246   // Generate new interpreter state and jump to stack_overflow_return in case of
1247   // a stack overflow.
1248   //generate_compute_interpreter_state(stack_overflow_return);
1249 
1250   Register size_of_parameters = R22_tmp2;
1251 
1252   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1253 
1254   //=============================================================================
1255   // Increment invocation counter. On overflow, entry to JNI method
1256   // will be compiled.
1257   Label invocation_counter_overflow, continue_after_compile;
1258   if (inc_counter) {
1259     if (synchronized) {
1260       // Since at this point in the method invocation the exception handler
1261       // would try to exit the monitor of synchronized methods which hasn't
1262       // been entered yet, we set the thread local variable
1263       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1264       // runtime, exception handling i.e. unlock_if_synchronized_method will
1265       // check this thread local flag.
1266       // This flag has two effects, one is to force an unwind in the topmost
1267       // interpreter frame and not perform an unlock while doing so.
1268       __ li(R0, 1);
1269       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1270     }
1271     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1272 
1273     BIND(continue_after_compile);
1274   }
1275 
1276   bang_stack_shadow_pages(true);
1277 
1278   if (inc_counter) {
1279     // Reset the _do_not_unlock_if_synchronized flag.
1280     if (synchronized) {
1281       __ li(R0, 0);
1282       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1283     }
1284   }
1285 
1286   // access_flags = method->access_flags();
1287   // Load access flags.
1288   assert(access_flags->is_nonvolatile(),
1289          "access_flags must be in a non-volatile register");
1290   // Type check.
1291   assert(4 == sizeof(AccessFlags), "unexpected field size");
1292   __ lwz(access_flags, method_(access_flags));
1293 
1294   // We don't want to reload R19_method and access_flags after calls
1295   // to some helper functions.
1296   assert(R19_method->is_nonvolatile(),
1297          "R19_method must be a non-volatile register");
1298 
1299   // Check for synchronized methods. Must happen AFTER invocation counter
1300   // check, so method is not locked if counter overflows.
1301 
1302   if (synchronized) {
1303     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1304 
1305     // Update monitor in state.
1306     __ ld(R11_scratch1, 0, R1_SP);
1307     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1308   }
1309 
1310   // jvmti/jvmpi support
1311   __ notify_method_entry();
1312 
1313   //=============================================================================
1314   // Get and call the signature handler.
1315 
1316   __ ld(signature_handler_fd, method_(signature_handler));
1317   Label call_signature_handler;
1318 
1319   __ cmpdi(CCR0, signature_handler_fd, 0);
1320   __ bne(CCR0, call_signature_handler);
1321 
1322   // Method has never been called. Either generate a specialized
1323   // handler or point to the slow one.
1324   //
1325   // Pass parameter 'false' to avoid exception check in call_VM.
1326   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1327 
1328   // Check for an exception while looking up the target method. If we
1329   // incurred one, bail.
1330   __ ld(pending_exception, thread_(pending_exception));
1331   __ cmpdi(CCR0, pending_exception, 0);
1332   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1333 
1334   // Reload signature handler, it may have been created/assigned in the meanwhile.
1335   __ ld(signature_handler_fd, method_(signature_handler));
1336   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1337 
1338   BIND(call_signature_handler);
1339 
1340   // Before we call the signature handler we push a new frame to
1341   // protect the interpreter frame volatile registers when we return
1342   // from jni but before we can get back to Java.
1343 
1344   // First set the frame anchor while the SP/FP registers are
1345   // convenient and the slow signature handler can use this same frame
1346   // anchor.
1347 
1348   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1349   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1350 
1351   // Now the interpreter frame (and its call chain) have been
1352   // invalidated and flushed. We are now protected against eager
1353   // being enabled in native code. Even if it goes eager the
1354   // registers will be reloaded as clean and we will invalidate after
1355   // the call so no spurious flush should be possible.
1356 
1357   // Call signature handler and pass locals address.
1358   //
1359   // Our signature handlers copy required arguments to the C stack
1360   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1361   __ mr(R3_ARG1, R18_locals);
1362 #if !defined(ABI_ELFv2)
1363   __ ld(signature_handler_fd, 0, signature_handler_fd);
1364 #endif
1365 
1366   __ call_stub(signature_handler_fd);
1367 
1368   // Remove the register parameter varargs slots we allocated in
1369   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1370   // outgoing argument area.
1371   //
1372   // Not needed on PPC64.
1373   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1374 
1375   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1376   // Save across call to native method.
1377   __ mr(result_handler_addr, R3_RET);
1378 
1379   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1380 
1381   // Set up fixed parameters and call the native method.
1382   // If the method is static, get mirror into R4_ARG2.
1383   {
1384     Label method_is_not_static;
1385     // Access_flags is non-volatile and still, no need to restore it.
1386 
1387     // Restore access flags.
1388     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1389     __ bfalse(CCR0, method_is_not_static);
1390 
1391     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1392     // Load mirror from interpreter frame.
1393     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1394     // R4_ARG2 = &state->_oop_temp;
1395     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1396     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1397     BIND(method_is_not_static);
1398   }
1399 
1400   // At this point, arguments have been copied off the stack into
1401   // their JNI positions. Oops are boxed in-place on the stack, with
1402   // handles copied to arguments. The result handler address is in a
1403   // register.
1404 
1405   // Pass JNIEnv address as first parameter.
1406   __ addir(R3_ARG1, thread_(jni_environment));
1407 
1408   // Load the native_method entry before we change the thread state.
1409   __ ld(native_method_fd, method_(native_function));
1410 
1411   //=============================================================================
1412   // Transition from _thread_in_Java to _thread_in_native. As soon as
1413   // we make this change the safepoint code needs to be certain that
1414   // the last Java frame we established is good. The pc in that frame
1415   // just needs to be near here not an actual return address.
1416 
1417   // We use release_store_fence to update values like the thread state, where
1418   // we don't want the current thread to continue until all our prior memory
1419   // accesses (including the new thread state) are visible to other threads.
1420   __ li(R0, _thread_in_native);
1421   __ release();
1422 
1423   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1424   __ stw(R0, thread_(thread_state));
1425 
1426   //=============================================================================
1427   // Call the native method. Argument registers must not have been
1428   // overwritten since "__ call_stub(signature_handler);" (except for
1429   // ARG1 and ARG2 for static methods).
1430   __ call_c(native_method_fd);
1431 
1432   __ li(R0, 0);
1433   __ ld(R11_scratch1, 0, R1_SP);
1434   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1435   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1436   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1437 
1438   // Note: C++ interpreter needs the following here:
1439   // The frame_manager_lr field, which we use for setting the last
1440   // java frame, gets overwritten by the signature handler. Restore
1441   // it now.
1442   //__ get_PC_trash_LR(R11_scratch1);
1443   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1444 
1445   // Because of GC R19_method may no longer be valid.
1446 
1447   // Block, if necessary, before resuming in _thread_in_Java state.
1448   // In order for GC to work, don't clear the last_Java_sp until after
1449   // blocking.
1450 
1451   //=============================================================================
1452   // Switch thread to "native transition" state before reading the
1453   // synchronization state. This additional state is necessary
1454   // because reading and testing the synchronization state is not
1455   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1456   // in _thread_in_native state, loads _not_synchronized and is
1457   // preempted. VM thread changes sync state to synchronizing and
1458   // suspends threads for GC. Thread A is resumed to finish this
1459   // native method, but doesn't block here since it didn't see any
1460   // synchronization in progress, and escapes.
1461 
1462   // We use release_store_fence to update values like the thread state, where
1463   // we don't want the current thread to continue until all our prior memory
1464   // accesses (including the new thread state) are visible to other threads.
1465   __ li(R0/*thread_state*/, _thread_in_native_trans);
1466   __ release();
1467   __ stw(R0/*thread_state*/, thread_(thread_state));
1468   __ fence();
1469 
1470   // Now before we return to java we must look for a current safepoint
1471   // (a new safepoint can not start since we entered native_trans).
1472   // We must check here because a current safepoint could be modifying
1473   // the callers registers right this moment.
1474 
1475   // Acquire isn't strictly necessary here because of the fence, but
1476   // sync_state is declared to be volatile, so we do it anyway
1477   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1478 
1479   Label do_safepoint, sync_check_done;
1480   // No synchronization in progress nor yet synchronized.
1481   __ safepoint_poll(do_safepoint, sync_state);
1482 
1483   // Not suspended.
1484   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1485   __ lwz(suspend_flags, thread_(suspend_flags));
1486   __ cmpwi(CCR1, suspend_flags, 0);
1487   __ beq(CCR1, sync_check_done);
1488 
1489   __ bind(do_safepoint);
1490   __ isync();
1491   // Block. We do the call directly and leave the current
1492   // last_Java_frame setup undisturbed. We must save any possible
1493   // native result across the call. No oop is present.
1494 
1495   __ mr(R3_ARG1, R16_thread);
1496 #if defined(ABI_ELFv2)
1497   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1498             relocInfo::none);
1499 #else
1500   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1501             relocInfo::none);
1502 #endif
1503 
1504   __ bind(sync_check_done);
1505 
1506   //=============================================================================
1507   // <<<<<< Back in Interpreter Frame >>>>>
1508 
1509   // We are in thread_in_native_trans here and back in the normal
1510   // interpreter frame. We don't have to do anything special about
1511   // safepoints and we can switch to Java mode anytime we are ready.
1512 
1513   // Note: frame::interpreter_frame_result has a dependency on how the
1514   // method result is saved across the call to post_method_exit. For
1515   // native methods it assumes that the non-FPU/non-void result is
1516   // saved in _native_lresult and a FPU result in _native_fresult. If
1517   // this changes then the interpreter_frame_result implementation
1518   // will need to be updated too.
1519 
1520   // On PPC64, we have stored the result directly after the native call.
1521 
1522   //=============================================================================
1523   // Back in Java
1524 
1525   // We use release_store_fence to update values like the thread state, where
1526   // we don't want the current thread to continue until all our prior memory
1527   // accesses (including the new thread state) are visible to other threads.
1528   __ li(R0/*thread_state*/, _thread_in_Java);
1529   __ lwsync(); // Acquire safepoint and suspend state, release thread state.
1530   __ stw(R0/*thread_state*/, thread_(thread_state));
1531 
1532   if (CheckJNICalls) {
1533     // clear_pending_jni_exception_check
1534     __ load_const_optimized(R0, 0L);
1535     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1536   }
1537 
1538   __ reset_last_Java_frame();
1539 
1540   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1541   // not, and whether unlocking throws an exception or not, we notify
1542   // on native method exit. If we do have an exception, we'll end up
1543   // in the caller's context to handle it, so if we don't do the
1544   // notify here, we'll drop it on the floor.
1545   __ notify_method_exit(true/*native method*/,
1546                         ilgl /*illegal state (not used for native methods)*/,
1547                         InterpreterMacroAssembler::NotifyJVMTI,
1548                         false /*check_exceptions*/);
1549 
1550   //=============================================================================
1551   // Handle exceptions
1552 
1553   if (synchronized) {
1554     // Don't check for exceptions since we're still in the i2n frame. Do that
1555     // manually afterwards.
1556     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1557   }
1558 
1559   // Reset active handles after returning from native.
1560   // thread->active_handles()->clear();
1561   __ ld(active_handles, thread_(active_handles));
1562   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1563   __ li(R0, 0);
1564   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1565 
1566   Label exception_return_sync_check_already_unlocked;
1567   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1568   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1569   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1570 
1571   //-----------------------------------------------------------------------------
1572   // No exception pending.
1573 
1574   // Move native method result back into proper registers and return.
1575   // Invoke result handler (may unbox/promote).
1576   __ ld(R11_scratch1, 0, R1_SP);
1577   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1578   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1579   __ call_stub(result_handler_addr);
1580 
1581   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1582 
1583   // Must use the return pc which was loaded from the caller's frame
1584   // as the VM uses return-pc-patching for deoptimization.
1585   __ mtlr(R0);
1586   __ blr();
1587 
1588   //-----------------------------------------------------------------------------
1589   // An exception is pending. We call into the runtime only if the
1590   // caller was not interpreted. If it was interpreted the
1591   // interpreter will do the correct thing. If it isn't interpreted
1592   // (call stub/compiled code) we will change our return and continue.
1593 
1594   BIND(exception_return_sync_check);
1595 
1596   if (synchronized) {
1597     // Don't check for exceptions since we're still in the i2n frame. Do that
1598     // manually afterwards.
1599     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1600   }
1601   BIND(exception_return_sync_check_already_unlocked);
1602 
1603   const Register return_pc = R31;
1604 
1605   __ ld(return_pc, 0, R1_SP);
1606   __ ld(return_pc, _abi(lr), return_pc);
1607 
1608   // Get the address of the exception handler.
1609   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1610                   R16_thread,
1611                   return_pc /* return pc */);
1612   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1613 
1614   // Load the PC of the the exception handler into LR.
1615   __ mtlr(R3_RET);
1616 
1617   // Load exception into R3_ARG1 and clear pending exception in thread.
1618   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1619   __ li(R4_ARG2, 0);
1620   __ std(R4_ARG2, thread_(pending_exception));
1621 
1622   // Load the original return pc into R4_ARG2.
1623   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1624 
1625   // Return to exception handler.
1626   __ blr();
1627 
1628   //=============================================================================
1629   // Counter overflow.
1630 
1631   if (inc_counter) {
1632     // Handle invocation counter overflow.
1633     __ bind(invocation_counter_overflow);
1634 
1635     generate_counter_overflow(continue_after_compile);
1636   }
1637 
1638   return entry;
1639 }
1640 
1641 // Generic interpreted method entry to (asm) interpreter.
1642 //
generate_normal_entry(bool synchronized)1643 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1644   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1645   address entry = __ pc();
1646   // Generate the code to allocate the interpreter stack frame.
1647   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1648            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1649 
1650   // Does also a stack check to assure this frame fits on the stack.
1651   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1652 
1653   // --------------------------------------------------------------------------
1654   // Zero out non-parameter locals.
1655   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1656   // worth to ask the flag, just do it.
1657   Register Rslot_addr = R6_ARG4,
1658            Rnum       = R7_ARG5;
1659   Label Lno_locals, Lzero_loop;
1660 
1661   // Set up the zeroing loop.
1662   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1663   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1664   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1665   __ beq(CCR0, Lno_locals);
1666   __ li(R0, 0);
1667   __ mtctr(Rnum);
1668 
1669   // The zero locals loop.
1670   __ bind(Lzero_loop);
1671   __ std(R0, 0, Rslot_addr);
1672   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1673   __ bdnz(Lzero_loop);
1674 
1675   __ bind(Lno_locals);
1676 
1677   // --------------------------------------------------------------------------
1678   // Counter increment and overflow check.
1679   Label invocation_counter_overflow,
1680         profile_method,
1681         profile_method_continue;
1682   if (inc_counter || ProfileInterpreter) {
1683 
1684     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1685     if (synchronized) {
1686       // Since at this point in the method invocation the exception handler
1687       // would try to exit the monitor of synchronized methods which hasn't
1688       // been entered yet, we set the thread local variable
1689       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1690       // runtime, exception handling i.e. unlock_if_synchronized_method will
1691       // check this thread local flag.
1692       // This flag has two effects, one is to force an unwind in the topmost
1693       // interpreter frame and not perform an unlock while doing so.
1694       __ li(R0, 1);
1695       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1696     }
1697 
1698     // Argument and return type profiling.
1699     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1700 
1701     // Increment invocation counter and check for overflow.
1702     if (inc_counter) {
1703       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1704     }
1705 
1706     __ bind(profile_method_continue);
1707   }
1708 
1709   bang_stack_shadow_pages(false);
1710 
1711   if (inc_counter || ProfileInterpreter) {
1712     // Reset the _do_not_unlock_if_synchronized flag.
1713     if (synchronized) {
1714       __ li(R0, 0);
1715       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1716     }
1717   }
1718 
1719   // --------------------------------------------------------------------------
1720   // Locking of synchronized methods. Must happen AFTER invocation_counter
1721   // check and stack overflow check, so method is not locked if overflows.
1722   if (synchronized) {
1723     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1724   }
1725 #ifdef ASSERT
1726   else {
1727     Label Lok;
1728     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1729     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1730     __ asm_assert_eq("method needs synchronization");
1731     __ bind(Lok);
1732   }
1733 #endif // ASSERT
1734 
1735   __ verify_thread();
1736 
1737   // --------------------------------------------------------------------------
1738   // JVMTI support
1739   __ notify_method_entry();
1740 
1741   // --------------------------------------------------------------------------
1742   // Start executing instructions.
1743   __ dispatch_next(vtos);
1744 
1745   // --------------------------------------------------------------------------
1746   // Out of line counter overflow and MDO creation code.
1747   if (ProfileInterpreter) {
1748     // We have decided to profile this method in the interpreter.
1749     __ bind(profile_method);
1750     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1751     __ set_method_data_pointer_for_bcp();
1752     __ b(profile_method_continue);
1753   }
1754 
1755   if (inc_counter) {
1756     // Handle invocation counter overflow.
1757     __ bind(invocation_counter_overflow);
1758     generate_counter_overflow(profile_method_continue);
1759   }
1760   return entry;
1761 }
1762 
1763 // CRC32 Intrinsics.
1764 //
1765 // Contract on scratch and work registers.
1766 // =======================================
1767 //
1768 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1769 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1770 // You can't rely on these registers across calls.
1771 //
1772 // The generators for CRC32_update and for CRC32_updateBytes use the
1773 // scratch/work register set internally, passing the work registers
1774 // as arguments to the MacroAssembler emitters as required.
1775 //
1776 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1777 // Their contents is not constant but may change according to the requirements
1778 // of the emitted code.
1779 //
1780 // All other registers from the scratch/work register set are used "internally"
1781 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1782 // Basically, only R3_RET contains a defined value which is the function result.
1783 //
1784 /**
1785  * Method entry for static native methods:
1786  *   int java.util.zip.CRC32.update(int crc, int b)
1787  */
generate_CRC32_update_entry()1788 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1789   if (UseCRC32Intrinsics) {
1790     address start = __ pc();  // Remember stub start address (is rtn value).
1791     Label slow_path;
1792 
1793     // Safepoint check
1794     const Register sync_state = R11_scratch1;
1795     __ safepoint_poll(slow_path, sync_state);
1796 
1797     // We don't generate local frame and don't align stack because
1798     // we not even call stub code (we generate the code inline)
1799     // and there is no safepoint on this path.
1800 
1801     // Load java parameters.
1802     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1803     const Register argP    = R15_esp;
1804     const Register crc     = R3_ARG1;  // crc value
1805     const Register data    = R4_ARG2;
1806     const Register table   = R5_ARG3;  // address of crc32 table
1807 
1808     BLOCK_COMMENT("CRC32_update {");
1809 
1810     // Arguments are reversed on java expression stack
1811 #ifdef VM_LITTLE_ENDIAN
1812     int data_offs = 0+1*wordSize;      // (stack) address of byte value. Emitter expects address, not value.
1813                                        // Being passed as an int, the single byte is at offset +0.
1814 #else
1815     int data_offs = 3+1*wordSize;      // (stack) address of byte value. Emitter expects address, not value.
1816                                        // Being passed from java as an int, the single byte is at offset +3.
1817 #endif
1818     __ lwz(crc, 2*wordSize, argP);     // Current crc state, zero extend to 64 bit to have a clean register.
1819     __ lbz(data, data_offs, argP);     // Byte from buffer, zero-extended.
1820     __ load_const_optimized(table, StubRoutines::crc_table_addr(), R0);
1821     __ kernel_crc32_singleByteReg(crc, data, table, true);
1822 
1823     // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1824     __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1825     __ blr();
1826 
1827     // Generate a vanilla native entry as the slow path.
1828     BLOCK_COMMENT("} CRC32_update");
1829     BIND(slow_path);
1830     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1831     return start;
1832   }
1833 
1834   return NULL;
1835 }
1836 
1837 /**
1838  * Method entry for static native methods:
1839  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1840  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1841  */
generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind)1842 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1843   if (UseCRC32Intrinsics) {
1844     address start = __ pc();  // Remember stub start address (is rtn value).
1845     Label slow_path;
1846 
1847     // Safepoint check
1848     const Register sync_state = R11_scratch1;
1849     __ safepoint_poll(slow_path, sync_state);
1850 
1851     // We don't generate local frame and don't align stack because
1852     // we not even call stub code (we generate the code inline)
1853     // and there is no safepoint on this path.
1854 
1855     // Load parameters.
1856     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1857     const Register argP    = R15_esp;
1858     const Register crc     = R3_ARG1;  // crc value
1859     const Register data    = R4_ARG2;  // address of java byte array
1860     const Register dataLen = R5_ARG3;  // source data len
1861     const Register tmp     = R11_scratch1;
1862 
1863     // Arguments are reversed on java expression stack.
1864     // Calculate address of start element.
1865     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1866       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1867       // crc     @ (SP + 5W) (32bit)
1868       // buf     @ (SP + 3W) (64bit ptr to long array)
1869       // off     @ (SP + 2W) (32bit)
1870       // dataLen @ (SP + 1W) (32bit)
1871       // data = buf + off
1872       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1873       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1874       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1875       __ lwz( crc,     5*wordSize, argP);  // current crc state
1876       __ add( data, data, tmp);            // Add byte buffer offset.
1877     } else {                                                         // Used for "updateBytes update".
1878       BLOCK_COMMENT("CRC32_updateBytes {");
1879       // crc     @ (SP + 4W) (32bit)
1880       // buf     @ (SP + 3W) (64bit ptr to byte array)
1881       // off     @ (SP + 2W) (32bit)
1882       // dataLen @ (SP + 1W) (32bit)
1883       // data = buf + off + base_offset
1884       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1885       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1886       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1887       __ add( data, data, tmp);            // add byte buffer offset
1888       __ lwz( crc,     4*wordSize, argP);  // current crc state
1889       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1890     }
1891 
1892     __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, false);
1893 
1894     // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1895     __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1896     __ blr();
1897 
1898     // Generate a vanilla native entry as the slow path.
1899     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1900     BIND(slow_path);
1901     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1902     return start;
1903   }
1904 
1905   return NULL;
1906 }
1907 
1908 
1909 /**
1910  * Method entry for intrinsic-candidate (non-native) methods:
1911  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
1912  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1913  * Unlike CRC32, CRC32C does not have any methods marked as native
1914  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1915  **/
generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind)1916 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1917   if (UseCRC32CIntrinsics) {
1918     address start = __ pc();  // Remember stub start address (is rtn value).
1919 
1920     // We don't generate local frame and don't align stack because
1921     // we not even call stub code (we generate the code inline)
1922     // and there is no safepoint on this path.
1923 
1924     // Load parameters.
1925     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1926     const Register argP    = R15_esp;
1927     const Register crc     = R3_ARG1;  // crc value
1928     const Register data    = R4_ARG2;  // address of java byte array
1929     const Register dataLen = R5_ARG3;  // source data len
1930     const Register tmp     = R11_scratch1;
1931 
1932     // Arguments are reversed on java expression stack.
1933     // Calculate address of start element.
1934     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
1935       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1936       // crc     @ (SP + 5W) (32bit)
1937       // buf     @ (SP + 3W) (64bit ptr to long array)
1938       // off     @ (SP + 2W) (32bit)
1939       // dataLen @ (SP + 1W) (32bit)
1940       // data = buf + off
1941       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1942       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1943       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1944       __ lwz( crc,     5*wordSize, argP);  // current crc state
1945       __ add( data, data, tmp);            // Add byte buffer offset.
1946       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
1947     } else {                                                         // Used for "updateBytes update".
1948       BLOCK_COMMENT("CRC32C_updateBytes {");
1949       // crc     @ (SP + 4W) (32bit)
1950       // buf     @ (SP + 3W) (64bit ptr to byte array)
1951       // off     @ (SP + 2W) (32bit)
1952       // dataLen @ (SP + 1W) (32bit)
1953       // data = buf + off + base_offset
1954       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1955       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1956       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1957       __ add( data, data, tmp);            // add byte buffer offset
1958       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
1959       __ lwz( crc,     4*wordSize, argP);  // current crc state
1960       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1961     }
1962 
1963     __ crc32(crc, data, dataLen, R2, R6, R7, R8, R9, R10, R11, R12, true);
1964 
1965     // Restore caller sp for c2i case (from compiled) and for resized sender frame (from interpreted).
1966     __ resize_frame_absolute(R21_sender_SP, R11_scratch1, R0);
1967     __ blr();
1968 
1969     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
1970     return start;
1971   }
1972 
1973   return NULL;
1974 }
1975 
1976 // =============================================================================
1977 // Exceptions
1978 
generate_throw_exception()1979 void TemplateInterpreterGenerator::generate_throw_exception() {
1980   Register Rexception    = R17_tos,
1981            Rcontinuation = R3_RET;
1982 
1983   // --------------------------------------------------------------------------
1984   // Entry point if an method returns with a pending exception (rethrow).
1985   Interpreter::_rethrow_exception_entry = __ pc();
1986   {
1987     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
1988     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1989     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1990 
1991     // Compiled code destroys templateTableBase, reload.
1992     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1993   }
1994 
1995   // Entry point if a interpreted method throws an exception (throw).
1996   Interpreter::_throw_exception_entry = __ pc();
1997   {
1998     __ mr(Rexception, R3_RET);
1999 
2000     __ verify_thread();
2001     __ verify_oop(Rexception);
2002 
2003     // Expression stack must be empty before entering the VM in case of an exception.
2004     __ empty_expression_stack();
2005     // Find exception handler address and preserve exception oop.
2006     // Call C routine to find handler and jump to it.
2007     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2008     __ mtctr(Rcontinuation);
2009     // Push exception for exception handler bytecodes.
2010     __ push_ptr(Rexception);
2011 
2012     // Jump to exception handler (may be remove activation entry!).
2013     __ bctr();
2014   }
2015 
2016   // If the exception is not handled in the current frame the frame is
2017   // removed and the exception is rethrown (i.e. exception
2018   // continuation is _rethrow_exception).
2019   //
2020   // Note: At this point the bci is still the bxi for the instruction
2021   // which caused the exception and the expression stack is
2022   // empty. Thus, for any VM calls at this point, GC will find a legal
2023   // oop map (with empty expression stack).
2024 
2025   // In current activation
2026   // tos: exception
2027   // bcp: exception bcp
2028 
2029   // --------------------------------------------------------------------------
2030   // JVMTI PopFrame support
2031 
2032   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2033   {
2034     // Set the popframe_processing bit in popframe_condition indicating that we are
2035     // currently handling popframe, so that call_VMs that may happen later do not
2036     // trigger new popframe handling cycles.
2037     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2038     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2039     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2040 
2041     // Empty the expression stack, as in normal exception handling.
2042     __ empty_expression_stack();
2043     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2044 
2045     // Check to see whether we are returning to a deoptimized frame.
2046     // (The PopFrame call ensures that the caller of the popped frame is
2047     // either interpreted or compiled and deoptimizes it if compiled.)
2048     // Note that we don't compare the return PC against the
2049     // deoptimization blob's unpack entry because of the presence of
2050     // adapter frames in C2.
2051     Label Lcaller_not_deoptimized;
2052     Register return_pc = R3_ARG1;
2053     __ ld(return_pc, 0, R1_SP);
2054     __ ld(return_pc, _abi(lr), return_pc);
2055     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2056     __ cmpdi(CCR0, R3_RET, 0);
2057     __ bne(CCR0, Lcaller_not_deoptimized);
2058 
2059     // The deoptimized case.
2060     // In this case, we can't call dispatch_next() after the frame is
2061     // popped, but instead must save the incoming arguments and restore
2062     // them after deoptimization has occurred.
2063     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2064     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2065     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2066     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2067     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2068     // Save these arguments.
2069     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2070 
2071     // Inform deoptimization that it is responsible for restoring these arguments.
2072     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2073     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2074 
2075     // Return from the current method into the deoptimization blob. Will eventually
2076     // end up in the deopt interpeter entry, deoptimization prepared everything that
2077     // we will reexecute the call that called us.
2078     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2079     __ mtlr(return_pc);
2080     __ blr();
2081 
2082     // The non-deoptimized case.
2083     __ bind(Lcaller_not_deoptimized);
2084 
2085     // Clear the popframe condition flag.
2086     __ li(R0, 0);
2087     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2088 
2089     // Get out of the current method and re-execute the call that called us.
2090     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2091     __ restore_interpreter_state(R11_scratch1);
2092     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2093     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2094     if (ProfileInterpreter) {
2095       __ set_method_data_pointer_for_bcp();
2096       __ ld(R11_scratch1, 0, R1_SP);
2097       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2098     }
2099 #if INCLUDE_JVMTI
2100     Label L_done;
2101 
2102     __ lbz(R11_scratch1, 0, R14_bcp);
2103     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2104     __ bne(CCR0, L_done);
2105 
2106     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2107     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2108     __ ld(R4_ARG2, 0, R18_locals);
2109     __ call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp);
2110     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2111     __ cmpdi(CCR0, R4_ARG2, 0);
2112     __ beq(CCR0, L_done);
2113     __ std(R4_ARG2, wordSize, R15_esp);
2114     __ bind(L_done);
2115 #endif // INCLUDE_JVMTI
2116     __ dispatch_next(vtos);
2117   }
2118   // end of JVMTI PopFrame support
2119 
2120   // --------------------------------------------------------------------------
2121   // Remove activation exception entry.
2122   // This is jumped to if an interpreted method can't handle an exception itself
2123   // (we come from the throw/rethrow exception entry above). We're going to call
2124   // into the VM to find the exception handler in the caller, pop the current
2125   // frame and return the handler we calculated.
2126   Interpreter::_remove_activation_entry = __ pc();
2127   {
2128     __ pop_ptr(Rexception);
2129     __ verify_thread();
2130     __ verify_oop(Rexception);
2131     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2132 
2133     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2134     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2135 
2136     __ get_vm_result(Rexception);
2137 
2138     // We are done with this activation frame; find out where to go next.
2139     // The continuation point will be an exception handler, which expects
2140     // the following registers set up:
2141     //
2142     // RET:  exception oop
2143     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2144 
2145     Register return_pc = R31; // Needs to survive the runtime call.
2146     __ ld(return_pc, 0, R1_SP);
2147     __ ld(return_pc, _abi(lr), return_pc);
2148     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2149 
2150     // Remove the current activation.
2151     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2152 
2153     __ mr(R4_ARG2, return_pc);
2154     __ mtlr(R3_RET);
2155     __ mr(R3_RET, Rexception);
2156     __ blr();
2157   }
2158 }
2159 
2160 // JVMTI ForceEarlyReturn support.
2161 // Returns "in the middle" of a method with a "fake" return value.
generate_earlyret_entry_for(TosState state)2162 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2163 
2164   Register Rscratch1 = R11_scratch1,
2165            Rscratch2 = R12_scratch2;
2166 
2167   address entry = __ pc();
2168   __ empty_expression_stack();
2169 
2170   __ load_earlyret_value(state, Rscratch1);
2171 
2172   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2173   // Clear the earlyret state.
2174   __ li(R0, 0);
2175   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2176 
2177   __ remove_activation(state, false, false);
2178   // Copied from TemplateTable::_return.
2179   // Restoration of lr done by remove_activation.
2180   switch (state) {
2181     // Narrow result if state is itos but result type is smaller.
2182     case btos:
2183     case ztos:
2184     case ctos:
2185     case stos:
2186     case itos: __ narrow(R17_tos); /* fall through */
2187     case ltos:
2188     case atos: __ mr(R3_RET, R17_tos); break;
2189     case ftos:
2190     case dtos: __ fmr(F1_RET, F15_ftos); break;
2191     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2192                // to get visible before the reference to the object gets stored anywhere.
2193                __ membar(Assembler::StoreStore); break;
2194     default  : ShouldNotReachHere();
2195   }
2196   __ blr();
2197 
2198   return entry;
2199 } // end of ForceEarlyReturn support
2200 
2201 //-----------------------------------------------------------------------------
2202 // Helper for vtos entry point generation
2203 
set_vtos_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)2204 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2205                                                          address& bep,
2206                                                          address& cep,
2207                                                          address& sep,
2208                                                          address& aep,
2209                                                          address& iep,
2210                                                          address& lep,
2211                                                          address& fep,
2212                                                          address& dep,
2213                                                          address& vep) {
2214   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2215   Label L;
2216 
2217   aep = __ pc();  __ push_ptr();  __ b(L);
2218   fep = __ pc();  __ push_f();    __ b(L);
2219   dep = __ pc();  __ push_d();    __ b(L);
2220   lep = __ pc();  __ push_l();    __ b(L);
2221   __ align(32, 12, 24); // align L
2222   bep = cep = sep =
2223   iep = __ pc();  __ push_i();
2224   vep = __ pc();
2225   __ bind(L);
2226   generate_and_dispatch(t);
2227 }
2228 
2229 //-----------------------------------------------------------------------------
2230 
2231 // Non-product code
2232 #ifndef PRODUCT
generate_trace_code(TosState state)2233 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2234   //__ flush_bundle();
2235   address entry = __ pc();
2236 
2237   const char *bname = NULL;
2238   uint tsize = 0;
2239   switch(state) {
2240   case ftos:
2241     bname = "trace_code_ftos {";
2242     tsize = 2;
2243     break;
2244   case btos:
2245     bname = "trace_code_btos {";
2246     tsize = 2;
2247     break;
2248   case ztos:
2249     bname = "trace_code_ztos {";
2250     tsize = 2;
2251     break;
2252   case ctos:
2253     bname = "trace_code_ctos {";
2254     tsize = 2;
2255     break;
2256   case stos:
2257     bname = "trace_code_stos {";
2258     tsize = 2;
2259     break;
2260   case itos:
2261     bname = "trace_code_itos {";
2262     tsize = 2;
2263     break;
2264   case ltos:
2265     bname = "trace_code_ltos {";
2266     tsize = 3;
2267     break;
2268   case atos:
2269     bname = "trace_code_atos {";
2270     tsize = 2;
2271     break;
2272   case vtos:
2273     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2274     // In case of a double (2 slots) we won't see the 2nd stack value.
2275     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2276     bname = "trace_code_vtos {";
2277     tsize = 2;
2278 
2279     break;
2280   case dtos:
2281     bname = "trace_code_dtos {";
2282     tsize = 3;
2283     break;
2284   default:
2285     ShouldNotReachHere();
2286   }
2287   BLOCK_COMMENT(bname);
2288 
2289   // Support short-cut for TraceBytecodesAt.
2290   // Don't call into the VM if we don't want to trace to speed up things.
2291   Label Lskip_vm_call;
2292   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2293     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2294     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2295     __ ld(R11_scratch1, offs1, R11_scratch1);
2296     __ lwa(R12_scratch2, offs2, R12_scratch2);
2297     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2298     __ blt(CCR0, Lskip_vm_call);
2299   }
2300 
2301   __ push(state);
2302   // Load 2 topmost expression stack values.
2303   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2304   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2305   __ mflr(R31);
2306   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2307   __ mtlr(R31);
2308   __ pop(state);
2309 
2310   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2311     __ bind(Lskip_vm_call);
2312   }
2313   __ blr();
2314   BLOCK_COMMENT("} trace_code");
2315   return entry;
2316 }
2317 
count_bytecode()2318 void TemplateInterpreterGenerator::count_bytecode() {
2319   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2320   __ lwz(R12_scratch2, offs, R11_scratch1);
2321   __ addi(R12_scratch2, R12_scratch2, 1);
2322   __ stw(R12_scratch2, offs, R11_scratch1);
2323 }
2324 
histogram_bytecode(Template * t)2325 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2326   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2327   __ lwz(R12_scratch2, offs, R11_scratch1);
2328   __ addi(R12_scratch2, R12_scratch2, 1);
2329   __ stw(R12_scratch2, offs, R11_scratch1);
2330 }
2331 
histogram_bytecode_pair(Template * t)2332 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2333   const Register addr = R11_scratch1,
2334                  tmp  = R12_scratch2;
2335   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2336   // _index = (_index >> log2_number_of_codes) |
2337   //          (bytecode << log2_number_of_codes);
2338   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2339   __ lwz(tmp, offs1, addr);
2340   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2341   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2342   __ stw(tmp, offs1, addr);
2343 
2344   // Bump bucket contents.
2345   // _counters[_index] ++;
2346   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2347   __ sldi(tmp, tmp, LogBytesPerInt);
2348   __ add(addr, tmp, addr);
2349   __ lwz(tmp, offs2, addr);
2350   __ addi(tmp, tmp, 1);
2351   __ stw(tmp, offs2, addr);
2352 }
2353 
trace_bytecode(Template * t)2354 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2355   // Call a little run-time stub to avoid blow-up for each bytecode.
2356   // The run-time runtime saves the right registers, depending on
2357   // the tosca in-state for the given template.
2358 
2359   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2360          "entry must have been generated");
2361 
2362   // Note: we destroy LR here.
2363   __ bl(Interpreter::trace_code(t->tos_in()));
2364 }
2365 
stop_interpreter_at()2366 void TemplateInterpreterGenerator::stop_interpreter_at() {
2367   Label L;
2368   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2369   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2370   __ ld(R11_scratch1, offs1, R11_scratch1);
2371   __ lwa(R12_scratch2, offs2, R12_scratch2);
2372   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2373   __ bne(CCR0, L);
2374   __ illtrap();
2375   __ bind(L);
2376 }
2377 
2378 #endif // !PRODUCT
2379