1 /*
2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP
26 #define SHARE_GC_G1_G1CONCURRENTMARK_HPP
27 
28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
30 #include "gc/g1/g1HeapVerifier.hpp"
31 #include "gc/g1/g1RegionMarkStatsCache.hpp"
32 #include "gc/g1/heapRegionSet.hpp"
33 #include "gc/shared/taskTerminator.hpp"
34 #include "gc/shared/taskqueue.hpp"
35 #include "gc/shared/verifyOption.hpp"
36 #include "gc/shared/workgroup.hpp"
37 #include "memory/allocation.hpp"
38 #include "utilities/compilerWarnings.hpp"
39 
40 class ConcurrentGCTimer;
41 class G1ConcurrentMarkThread;
42 class G1CollectedHeap;
43 class G1CMOopClosure;
44 class G1CMTask;
45 class G1ConcurrentMark;
46 class G1OldTracer;
47 class G1RegionToSpaceMapper;
48 class G1SurvivorRegions;
49 class ThreadClosure;
50 
51 PRAGMA_DIAG_PUSH
52 // warning C4522: multiple assignment operators specified
53 PRAGMA_DISABLE_MSVC_WARNING(4522)
54 
55 // This is a container class for either an oop or a continuation address for
56 // mark stack entries. Both are pushed onto the mark stack.
57 class G1TaskQueueEntry {
58 private:
59   void* _holder;
60 
61   static const uintptr_t ArraySliceBit = 1;
62 
G1TaskQueueEntry(oop obj)63   G1TaskQueueEntry(oop obj) : _holder(obj) {
64     assert(_holder != NULL, "Not allowed to set NULL task queue element");
65   }
G1TaskQueueEntry(HeapWord * addr)66   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
67 public:
68 
G1TaskQueueEntry()69   G1TaskQueueEntry() : _holder(NULL) { }
70   // Trivially copyable, for use in GenericTaskQueue.
71 
from_slice(HeapWord * what)72   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
from_oop(oop obj)73   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
74 
obj() const75   oop obj() const {
76     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
77     return (oop)_holder;
78   }
79 
slice() const80   HeapWord* slice() const {
81     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
82     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
83   }
84 
is_oop() const85   bool is_oop() const { return !is_array_slice(); }
is_array_slice() const86   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
is_null() const87   bool is_null() const { return _holder == NULL; }
88 };
89 
90 PRAGMA_DIAG_POP
91 
92 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
93 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
94 
95 // Closure used by CM during concurrent reference discovery
96 // and reference processing (during remarking) to determine
97 // if a particular object is alive. It is primarily used
98 // to determine if referents of discovered reference objects
99 // are alive. An instance is also embedded into the
100 // reference processor as the _is_alive_non_header field
101 class G1CMIsAliveClosure : public BoolObjectClosure {
102   G1CollectedHeap* _g1h;
103 public:
G1CMIsAliveClosure(G1CollectedHeap * g1h)104   G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
105   bool do_object_b(oop obj);
106 };
107 
108 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure {
109   G1CollectedHeap* _g1h;
110 public:
G1CMSubjectToDiscoveryClosure(G1CollectedHeap * g1h)111   G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
112   bool do_object_b(oop obj);
113 };
114 
115 // Represents the overflow mark stack used by concurrent marking.
116 //
117 // Stores oops in a huge buffer in virtual memory that is always fully committed.
118 // Resizing may only happen during a STW pause when the stack is empty.
119 //
120 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
121 // stack memory is split into evenly sized chunks of oops. Users can only
122 // add or remove entries on that basis.
123 // Chunks are filled in increasing address order. Not completely filled chunks
124 // have a NULL element as a terminating element.
125 //
126 // Every chunk has a header containing a single pointer element used for memory
127 // management. This wastes some space, but is negligible (< .1% with current sizing).
128 //
129 // Memory management is done using a mix of tracking a high water-mark indicating
130 // that all chunks at a lower address are valid chunks, and a singly linked free
131 // list connecting all empty chunks.
132 class G1CMMarkStack {
133 public:
134   // Number of TaskQueueEntries that can fit in a single chunk.
135   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
136 private:
137   struct TaskQueueEntryChunk {
138     TaskQueueEntryChunk* next;
139     G1TaskQueueEntry data[EntriesPerChunk];
140   };
141 
142   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
143 
144   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
145   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
146 
147   char _pad0[DEFAULT_CACHE_LINE_SIZE];
148   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
149   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
150   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
151   volatile size_t _chunks_in_chunk_list;
152   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
153 
154   volatile size_t _hwm;          // High water mark within the reserved space.
155   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
156 
157   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
158   // NULL if out of memory.
159   TaskQueueEntryChunk* allocate_new_chunk();
160 
161   // Atomically add the given chunk to the list.
162   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
163   // Atomically remove and return a chunk from the given list. Returns NULL if the
164   // list is empty.
165   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
166 
167   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
168   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
169 
170   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
171   TaskQueueEntryChunk* remove_chunk_from_free_list();
172 
173   // Resizes the mark stack to the given new capacity. Releases any previous
174   // memory if successful.
175   bool resize(size_t new_capacity);
176 
177  public:
178   G1CMMarkStack();
179   ~G1CMMarkStack();
180 
181   // Alignment and minimum capacity of this mark stack in number of oops.
182   static size_t capacity_alignment();
183 
184   // Allocate and initialize the mark stack with the given number of oops.
185   bool initialize(size_t initial_capacity, size_t max_capacity);
186 
187   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
188   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
189   // be terminated with a NULL.
190   // Returns whether the buffer contents were successfully pushed to the global mark
191   // stack.
192   bool par_push_chunk(G1TaskQueueEntry* buffer);
193 
194   // Pops a chunk from this mark stack, copying them into the given buffer. This
195   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
196   // element in the array is a NULL pointer.
197   bool par_pop_chunk(G1TaskQueueEntry* buffer);
198 
199   // Return whether the chunk list is empty. Racy due to unsynchronized access to
200   // _chunk_list.
is_empty() const201   bool is_empty() const { return _chunk_list == NULL; }
202 
capacity() const203   size_t capacity() const  { return _chunk_capacity; }
204 
205   // Expand the stack, typically in response to an overflow condition
206   void expand();
207 
208   // Return the approximate number of oops on this mark stack. Racy due to
209   // unsynchronized access to _chunks_in_chunk_list.
size() const210   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
211 
212   void set_empty();
213 
214   // Apply Fn to every oop on the mark stack. The mark stack must not
215   // be modified while iterating.
216   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
217 };
218 
219 // Root MemRegions are memory areas that contain objects which references are
220 // roots wrt to the marking. They must be scanned before marking to maintain the
221 // SATB invariant.
222 // Typically they contain the areas from nTAMS to top of the regions.
223 // We could scan and mark through these objects during the initial-mark pause, but for
224 // pause time reasons we move this work to the concurrent phase.
225 // We need to complete this procedure before the next GC because it might determine
226 // that some of these "root objects" are dead, potentially dropping some required
227 // references.
228 // Root MemRegions comprise of the contents of survivor regions at the end
229 // of the GC, and any objects copied into the old gen during GC.
230 class G1CMRootMemRegions {
231   // The set of root MemRegions.
232   MemRegion*   _root_regions;
233   size_t const _max_regions;
234 
235   volatile size_t _num_root_regions; // Actual number of root regions.
236 
237   volatile size_t _claimed_root_regions; // Number of root regions currently claimed.
238 
239   volatile bool _scan_in_progress;
240   volatile bool _should_abort;
241 
242   void notify_scan_done();
243 
244 public:
245   G1CMRootMemRegions(uint const max_regions);
246   ~G1CMRootMemRegions();
247 
248   // Reset the data structure to allow addition of new root regions.
249   void reset();
250 
251   void add(HeapWord* start, HeapWord* end);
252 
253   // Reset the claiming / scanning of the root regions.
254   void prepare_for_scan();
255 
256   // Forces get_next() to return NULL so that the iteration aborts early.
abort()257   void abort() { _should_abort = true; }
258 
259   // Return true if the CM thread are actively scanning root regions,
260   // false otherwise.
scan_in_progress()261   bool scan_in_progress() { return _scan_in_progress; }
262 
263   // Claim the next root MemRegion to scan atomically, or return NULL if
264   // all have been claimed.
265   const MemRegion* claim_next();
266 
267   // The number of root regions to scan.
268   uint num_root_regions() const;
269 
270   void cancel_scan();
271 
272   // Flag that we're done with root region scanning and notify anyone
273   // who's waiting on it. If aborted is false, assume that all regions
274   // have been claimed.
275   void scan_finished();
276 
277   // If CM threads are still scanning root regions, wait until they
278   // are done. Return true if we had to wait, false otherwise.
279   bool wait_until_scan_finished();
280 };
281 
282 // This class manages data structures and methods for doing liveness analysis in
283 // G1's concurrent cycle.
284 class G1ConcurrentMark : public CHeapObj<mtGC> {
285   friend class G1ConcurrentMarkThread;
286   friend class G1CMRefProcTaskProxy;
287   friend class G1CMRefProcTaskExecutor;
288   friend class G1CMKeepAliveAndDrainClosure;
289   friend class G1CMDrainMarkingStackClosure;
290   friend class G1CMBitMapClosure;
291   friend class G1CMConcurrentMarkingTask;
292   friend class G1CMRemarkTask;
293   friend class G1CMTask;
294 
295   G1ConcurrentMarkThread* _cm_thread;     // The thread doing the work
296   G1CollectedHeap*        _g1h;           // The heap
297 
298   // Concurrent marking support structures
299   G1CMBitMap              _mark_bitmap_1;
300   G1CMBitMap              _mark_bitmap_2;
301   G1CMBitMap*             _prev_mark_bitmap; // Completed mark bitmap
302   G1CMBitMap*             _next_mark_bitmap; // Under-construction mark bitmap
303 
304   // Heap bounds
305   MemRegion const         _heap;
306 
307   // Root region tracking and claiming
308   G1CMRootMemRegions         _root_regions;
309 
310   // For grey objects
311   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
312   HeapWord* volatile      _finger;            // The global finger, region aligned,
313                                               // always pointing to the end of the
314                                               // last claimed region
315 
316   uint                    _worker_id_offset;
317   uint                    _max_num_tasks;    // Maximum number of marking tasks
318   uint                    _num_active_tasks; // Number of tasks currently active
319   G1CMTask**              _tasks;            // Task queue array (max_worker_id length)
320 
321   G1CMTaskQueueSet*       _task_queues; // Task queue set
322   TaskTerminator          _terminator;  // For termination
323 
324   // Two sync barriers that are used to synchronize tasks when an
325   // overflow occurs. The algorithm is the following. All tasks enter
326   // the first one to ensure that they have all stopped manipulating
327   // the global data structures. After they exit it, they re-initialize
328   // their data structures and task 0 re-initializes the global data
329   // structures. Then, they enter the second sync barrier. This
330   // ensure, that no task starts doing work before all data
331   // structures (local and global) have been re-initialized. When they
332   // exit it, they are free to start working again.
333   WorkGangBarrierSync     _first_overflow_barrier_sync;
334   WorkGangBarrierSync     _second_overflow_barrier_sync;
335 
336   // This is set by any task, when an overflow on the global data
337   // structures is detected
338   volatile bool           _has_overflown;
339   // True: marking is concurrent, false: we're in remark
340   volatile bool           _concurrent;
341   // Set at the end of a Full GC so that marking aborts
342   volatile bool           _has_aborted;
343 
344   // Used when remark aborts due to an overflow to indicate that
345   // another concurrent marking phase should start
346   volatile bool           _restart_for_overflow;
347 
348   ConcurrentGCTimer*      _gc_timer_cm;
349 
350   G1OldTracer*            _gc_tracer_cm;
351 
352   // Timing statistics. All of them are in ms
353   NumberSeq _init_times;
354   NumberSeq _remark_times;
355   NumberSeq _remark_mark_times;
356   NumberSeq _remark_weak_ref_times;
357   NumberSeq _cleanup_times;
358   double    _total_cleanup_time;
359 
360   double*   _accum_task_vtime;   // Accumulated task vtime
361 
362   WorkGang* _concurrent_workers;
363   uint      _num_concurrent_workers; // The number of marking worker threads we're using
364   uint      _max_concurrent_workers; // Maximum number of marking worker threads
365 
366   void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller);
367 
368   void finalize_marking();
369 
370   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
371   void weak_refs_work(bool clear_all_soft_refs);
372 
373   void report_object_count(bool mark_completed);
374 
375   void swap_mark_bitmaps();
376 
377   void reclaim_empty_regions();
378 
379   // After reclaiming empty regions, update heap sizes.
380   void compute_new_sizes();
381 
382   // Clear statistics gathered during the concurrent cycle for the given region after
383   // it has been reclaimed.
384   void clear_statistics(HeapRegion* r);
385 
386   // Resets the global marking data structures, as well as the
387   // task local ones; should be called during initial mark.
388   void reset();
389 
390   // Resets all the marking data structures. Called when we have to restart
391   // marking or when marking completes (via set_non_marking_state below).
392   void reset_marking_for_restart();
393 
394   // We do this after we're done with marking so that the marking data
395   // structures are initialized to a sensible and predictable state.
396   void reset_at_marking_complete();
397 
398   // Called to indicate how many threads are currently active.
399   void set_concurrency(uint active_tasks);
400 
401   // Should be called to indicate which phase we're in (concurrent
402   // mark or remark) and how many threads are currently active.
403   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
404 
405   // Prints all gathered CM-related statistics
406   void print_stats();
407 
finger()408   HeapWord*           finger()       { return _finger;   }
concurrent()409   bool                concurrent()   { return _concurrent; }
active_tasks()410   uint                active_tasks() { return _num_active_tasks; }
terminator()411   TaskTerminator*     terminator()   { return &_terminator; }
412 
413   // Claims the next available region to be scanned by a marking
414   // task/thread. It might return NULL if the next region is empty or
415   // we have run out of regions. In the latter case, out_of_regions()
416   // determines whether we've really run out of regions or the task
417   // should call claim_region() again. This might seem a bit
418   // awkward. Originally, the code was written so that claim_region()
419   // either successfully returned with a non-empty region or there
420   // were no more regions to be claimed. The problem with this was
421   // that, in certain circumstances, it iterated over large chunks of
422   // the heap finding only empty regions and, while it was working, it
423   // was preventing the calling task to call its regular clock
424   // method. So, this way, each task will spend very little time in
425   // claim_region() and is allowed to call the regular clock method
426   // frequently.
427   HeapRegion* claim_region(uint worker_id);
428 
429   // Determines whether we've run out of regions to scan. Note that
430   // the finger can point past the heap end in case the heap was expanded
431   // to satisfy an allocation without doing a GC. This is fine, because all
432   // objects in those regions will be considered live anyway because of
433   // SATB guarantees (i.e. their TAMS will be equal to bottom).
out_of_regions()434   bool out_of_regions() { return _finger >= _heap.end(); }
435 
436   // Returns the task with the given id
task(uint id)437   G1CMTask* task(uint id) {
438     // During initial mark we use the parallel gc threads to do some work, so
439     // we can only compare against _max_num_tasks.
440     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
441     return _tasks[id];
442   }
443 
444   // Access / manipulation of the overflow flag which is set to
445   // indicate that the global stack has overflown
has_overflown()446   bool has_overflown()           { return _has_overflown; }
set_has_overflown()447   void set_has_overflown()       { _has_overflown = true; }
clear_has_overflown()448   void clear_has_overflown()     { _has_overflown = false; }
restart_for_overflow()449   bool restart_for_overflow()    { return _restart_for_overflow; }
450 
451   // Methods to enter the two overflow sync barriers
452   void enter_first_sync_barrier(uint worker_id);
453   void enter_second_sync_barrier(uint worker_id);
454 
455   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
456   // true, periodically insert checks to see if this method should exit prematurely.
457   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
458 
459   // Region statistics gathered during marking.
460   G1RegionMarkStats* _region_mark_stats;
461   // Top pointer for each region at the start of the rebuild remembered set process
462   // for regions which remembered sets need to be rebuilt. A NULL for a given region
463   // means that this region does not be scanned during the rebuilding remembered
464   // set phase at all.
465   HeapWord* volatile* _top_at_rebuild_starts;
466 public:
467   void add_to_liveness(uint worker_id, oop const obj, size_t size);
468   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
469   // live words between bottom and nTAMS.
liveness(uint region) const470   size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; }
471 
472   // Sets the internal top_at_region_start for the given region to current top of the region.
473   inline void update_top_at_rebuild_start(HeapRegion* r);
474   // TARS for the given region during remembered set rebuilding.
475   inline HeapWord* top_at_rebuild_start(uint region) const;
476 
477   // Clear statistics gathered during the concurrent cycle for the given region after
478   // it has been reclaimed.
479   void clear_statistics_in_region(uint region_idx);
480   // Notification for eagerly reclaimed regions to clean up.
481   void humongous_object_eagerly_reclaimed(HeapRegion* r);
482   // Manipulation of the global mark stack.
483   // The push and pop operations are used by tasks for transfers
484   // between task-local queues and the global mark stack.
mark_stack_push(G1TaskQueueEntry * arr)485   bool mark_stack_push(G1TaskQueueEntry* arr) {
486     if (!_global_mark_stack.par_push_chunk(arr)) {
487       set_has_overflown();
488       return false;
489     }
490     return true;
491   }
mark_stack_pop(G1TaskQueueEntry * arr)492   bool mark_stack_pop(G1TaskQueueEntry* arr) {
493     return _global_mark_stack.par_pop_chunk(arr);
494   }
mark_stack_size() const495   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
partial_mark_stack_size_target() const496   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
mark_stack_empty() const497   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
498 
root_regions()499   G1CMRootMemRegions* root_regions() { return &_root_regions; }
500 
501   void concurrent_cycle_start();
502   // Abandon current marking iteration due to a Full GC.
503   void concurrent_cycle_abort();
504   void concurrent_cycle_end();
505 
update_accum_task_vtime(int i,double vtime)506   void update_accum_task_vtime(int i, double vtime) {
507     _accum_task_vtime[i] += vtime;
508   }
509 
all_task_accum_vtime()510   double all_task_accum_vtime() {
511     double ret = 0.0;
512     for (uint i = 0; i < _max_num_tasks; ++i)
513       ret += _accum_task_vtime[i];
514     return ret;
515   }
516 
517   // Attempts to steal an object from the task queues of other tasks
518   bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry);
519 
520   G1ConcurrentMark(G1CollectedHeap* g1h,
521                    G1RegionToSpaceMapper* prev_bitmap_storage,
522                    G1RegionToSpaceMapper* next_bitmap_storage);
523   ~G1ConcurrentMark();
524 
cm_thread()525   G1ConcurrentMarkThread* cm_thread() { return _cm_thread; }
526 
prev_mark_bitmap() const527   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
next_mark_bitmap() const528   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
529 
530   // Calculates the number of concurrent GC threads to be used in the marking phase.
531   uint calc_active_marking_workers();
532 
533   // Moves all per-task cached data into global state.
534   void flush_all_task_caches();
535   // Prepare internal data structures for the next mark cycle. This includes clearing
536   // the next mark bitmap and some internal data structures. This method is intended
537   // to be called concurrently to the mutator. It will yield to safepoint requests.
538   void cleanup_for_next_mark();
539 
540   // Clear the previous marking bitmap during safepoint.
541   void clear_prev_bitmap(WorkGang* workers);
542 
543   // These two methods do the work that needs to be done at the start and end of the
544   // initial mark pause.
545   void pre_initial_mark();
546   void post_initial_mark();
547 
548   // Scan all the root regions and mark everything reachable from
549   // them.
550   void scan_root_regions();
551 
552   // Scan a single root MemRegion to mark everything reachable from it.
553   void scan_root_region(const MemRegion* region, uint worker_id);
554 
555   // Do concurrent phase of marking, to a tentative transitive closure.
556   void mark_from_roots();
557 
558   // Do concurrent preclean work.
559   void preclean();
560 
561   void remark();
562 
563   void cleanup();
564   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
565   // this carefully.
566   inline void mark_in_prev_bitmap(oop p);
567 
568   // Clears marks for all objects in the given range, for the prev or
569   // next bitmaps.  Caution: the previous bitmap is usually
570   // read-only, so use this carefully!
571   void clear_range_in_prev_bitmap(MemRegion mr);
572 
573   inline bool is_marked_in_prev_bitmap(oop p) const;
574 
575   // Verify that there are no collection set oops on the stacks (taskqueues /
576   // global mark stack) and fingers (global / per-task).
577   // If marking is not in progress, it's a no-op.
578   void verify_no_collection_set_oops() PRODUCT_RETURN;
579 
580   inline bool do_yield_check();
581 
has_aborted()582   bool has_aborted()      { return _has_aborted; }
583 
584   void print_summary_info();
585 
586   void threads_do(ThreadClosure* tc) const;
587 
588   void print_on_error(outputStream* st) const;
589 
590   // Mark the given object on the next bitmap if it is below nTAMS.
591   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj);
592   inline bool mark_in_next_bitmap(uint worker_id, oop const obj);
593 
594   inline bool is_marked_in_next_bitmap(oop p) const;
595 
gc_timer_cm() const596   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
gc_tracer_cm() const597   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
598 
599 private:
600   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
601   void rebuild_rem_set_concurrently();
602 };
603 
604 // A class representing a marking task.
605 class G1CMTask : public TerminatorTerminator {
606 private:
607   enum PrivateConstants {
608     // The regular clock call is called once the scanned words reaches
609     // this limit
610     words_scanned_period          = 12*1024,
611     // The regular clock call is called once the number of visited
612     // references reaches this limit
613     refs_reached_period           = 1024,
614     // Initial value for the hash seed, used in the work stealing code
615     init_hash_seed                = 17
616   };
617 
618   // Number of entries in the per-task stats entry. This seems enough to have a very
619   // low cache miss rate.
620   static const uint RegionMarkStatsCacheSize = 1024;
621 
622   G1CMObjArrayProcessor       _objArray_processor;
623 
624   uint                        _worker_id;
625   G1CollectedHeap*            _g1h;
626   G1ConcurrentMark*           _cm;
627   G1CMBitMap*                 _next_mark_bitmap;
628   // the task queue of this task
629   G1CMTaskQueue*              _task_queue;
630 
631   G1RegionMarkStatsCache      _mark_stats_cache;
632   // Number of calls to this task
633   uint                        _calls;
634 
635   // When the virtual timer reaches this time, the marking step should exit
636   double                      _time_target_ms;
637   // Start time of the current marking step
638   double                      _start_time_ms;
639 
640   // Oop closure used for iterations over oops
641   G1CMOopClosure*             _cm_oop_closure;
642 
643   // Region this task is scanning, NULL if we're not scanning any
644   HeapRegion*                 _curr_region;
645   // Local finger of this task, NULL if we're not scanning a region
646   HeapWord*                   _finger;
647   // Limit of the region this task is scanning, NULL if we're not scanning one
648   HeapWord*                   _region_limit;
649 
650   // Number of words this task has scanned
651   size_t                      _words_scanned;
652   // When _words_scanned reaches this limit, the regular clock is
653   // called. Notice that this might be decreased under certain
654   // circumstances (i.e. when we believe that we did an expensive
655   // operation).
656   size_t                      _words_scanned_limit;
657   // Initial value of _words_scanned_limit (i.e. what it was
658   // before it was decreased).
659   size_t                      _real_words_scanned_limit;
660 
661   // Number of references this task has visited
662   size_t                      _refs_reached;
663   // When _refs_reached reaches this limit, the regular clock is
664   // called. Notice this this might be decreased under certain
665   // circumstances (i.e. when we believe that we did an expensive
666   // operation).
667   size_t                      _refs_reached_limit;
668   // Initial value of _refs_reached_limit (i.e. what it was before
669   // it was decreased).
670   size_t                      _real_refs_reached_limit;
671 
672   // If true, then the task has aborted for some reason
673   bool                        _has_aborted;
674   // Set when the task aborts because it has met its time quota
675   bool                        _has_timed_out;
676   // True when we're draining SATB buffers; this avoids the task
677   // aborting due to SATB buffers being available (as we're already
678   // dealing with them)
679   bool                        _draining_satb_buffers;
680 
681   // Number sequence of past step times
682   NumberSeq                   _step_times_ms;
683   // Elapsed time of this task
684   double                      _elapsed_time_ms;
685   // Termination time of this task
686   double                      _termination_time_ms;
687   // When this task got into the termination protocol
688   double                      _termination_start_time_ms;
689 
690   TruncatedSeq                _marking_step_diff_ms;
691 
692   // Updates the local fields after this task has claimed
693   // a new region to scan
694   void setup_for_region(HeapRegion* hr);
695   // Makes the limit of the region up-to-date
696   void update_region_limit();
697 
698   // Called when either the words scanned or the refs visited limit
699   // has been reached
700   void reached_limit();
701   // Recalculates the words scanned and refs visited limits
702   void recalculate_limits();
703   // Decreases the words scanned and refs visited limits when we reach
704   // an expensive operation
705   void decrease_limits();
706   // Checks whether the words scanned or refs visited reached their
707   // respective limit and calls reached_limit() if they have
check_limits()708   void check_limits() {
709     if (_words_scanned >= _words_scanned_limit ||
710         _refs_reached >= _refs_reached_limit) {
711       reached_limit();
712     }
713   }
714   // Supposed to be called regularly during a marking step as
715   // it checks a bunch of conditions that might cause the marking step
716   // to abort
717   // Return true if the marking step should continue. Otherwise, return false to abort
718   bool regular_clock_call();
719 
720   // Set abort flag if regular_clock_call() check fails
721   inline void abort_marking_if_regular_check_fail();
722 
723   // Test whether obj might have already been passed over by the
724   // mark bitmap scan, and so needs to be pushed onto the mark stack.
725   bool is_below_finger(oop obj, HeapWord* global_finger) const;
726 
727   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
728 public:
729   // Apply the closure on the given area of the objArray. Return the number of words
730   // scanned.
731   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
732   // Resets the task; should be called right at the beginning of a marking phase.
733   void reset(G1CMBitMap* next_mark_bitmap);
734   // Clears all the fields that correspond to a claimed region.
735   void clear_region_fields();
736 
737   // The main method of this class which performs a marking step
738   // trying not to exceed the given duration. However, it might exit
739   // prematurely, according to some conditions (i.e. SATB buffers are
740   // available for processing).
741   void do_marking_step(double target_ms,
742                        bool do_termination,
743                        bool is_serial);
744 
745   // These two calls start and stop the timer
record_start_time()746   void record_start_time() {
747     _elapsed_time_ms = os::elapsedTime() * 1000.0;
748   }
record_end_time()749   void record_end_time() {
750     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
751   }
752 
753   // Returns the worker ID associated with this task.
worker_id()754   uint worker_id() { return _worker_id; }
755 
756   // From TerminatorTerminator. It determines whether this task should
757   // exit the termination protocol after it's entered it.
758   virtual bool should_exit_termination();
759 
760   // Resets the local region fields after a task has finished scanning a
761   // region; or when they have become stale as a result of the region
762   // being evacuated.
763   void giveup_current_region();
764 
finger()765   HeapWord* finger()            { return _finger; }
766 
has_aborted()767   bool has_aborted()            { return _has_aborted; }
set_has_aborted()768   void set_has_aborted()        { _has_aborted = true; }
clear_has_aborted()769   void clear_has_aborted()      { _has_aborted = false; }
770 
771   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
772 
773   // Increment the number of references this task has visited.
increment_refs_reached()774   void increment_refs_reached() { ++_refs_reached; }
775 
776   // Grey the object by marking it.  If not already marked, push it on
777   // the local queue if below the finger. obj is required to be below its region's NTAMS.
778   // Returns whether there has been a mark to the bitmap.
779   inline bool make_reference_grey(oop obj);
780 
781   // Grey the object (by calling make_grey_reference) if required,
782   // e.g. obj is below its containing region's NTAMS.
783   // Precondition: obj is a valid heap object.
784   // Returns true if the reference caused a mark to be set in the next bitmap.
785   template <class T>
786   inline bool deal_with_reference(T* p);
787 
788   // Scans an object and visits its children.
789   inline void scan_task_entry(G1TaskQueueEntry task_entry);
790 
791   // Pushes an object on the local queue.
792   inline void push(G1TaskQueueEntry task_entry);
793 
794   // Move entries to the global stack.
795   void move_entries_to_global_stack();
796   // Move entries from the global stack, return true if we were successful to do so.
797   bool get_entries_from_global_stack();
798 
799   // Pops and scans objects from the local queue. If partially is
800   // true, then it stops when the queue size is of a given limit. If
801   // partially is false, then it stops when the queue is empty.
802   void drain_local_queue(bool partially);
803   // Moves entries from the global stack to the local queue and
804   // drains the local queue. If partially is true, then it stops when
805   // both the global stack and the local queue reach a given size. If
806   // partially if false, it tries to empty them totally.
807   void drain_global_stack(bool partially);
808   // Keeps picking SATB buffers and processing them until no SATB
809   // buffers are available.
810   void drain_satb_buffers();
811 
812   // Moves the local finger to a new location
move_finger_to(HeapWord * new_finger)813   inline void move_finger_to(HeapWord* new_finger) {
814     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
815     _finger = new_finger;
816   }
817 
818   G1CMTask(uint worker_id,
819            G1ConcurrentMark *cm,
820            G1CMTaskQueue* task_queue,
821            G1RegionMarkStats* mark_stats,
822            uint max_regions);
823 
824   inline void update_liveness(oop const obj, size_t const obj_size);
825 
826   // Clear (without flushing) the mark cache entry for the given region.
827   void clear_mark_stats_cache(uint region_idx);
828   // Evict the whole statistics cache into the global statistics. Returns the
829   // number of cache hits and misses so far.
830   Pair<size_t, size_t> flush_mark_stats_cache();
831   // Prints statistics associated with this task
832   void print_stats();
833 };
834 
835 // Class that's used to to print out per-region liveness
836 // information. It's currently used at the end of marking and also
837 // after we sort the old regions at the end of the cleanup operation.
838 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
839   // Accumulators for these values.
840   size_t _total_used_bytes;
841   size_t _total_capacity_bytes;
842   size_t _total_prev_live_bytes;
843   size_t _total_next_live_bytes;
844 
845   // Accumulator for the remembered set size
846   size_t _total_remset_bytes;
847 
848   // Accumulator for strong code roots memory size
849   size_t _total_strong_code_roots_bytes;
850 
bytes_to_mb(size_t val)851   static double bytes_to_mb(size_t val) {
852     return (double) val / (double) M;
853   }
854 
855 public:
856   // The header and footer are printed in the constructor and
857   // destructor respectively.
858   G1PrintRegionLivenessInfoClosure(const char* phase_name);
859   virtual bool do_heap_region(HeapRegion* r);
860   ~G1PrintRegionLivenessInfoClosure();
861 };
862 
863 #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP
864