1 /*
2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "memory/allocation.inline.hpp"
27 #include "opto/addnode.hpp"
28 #include "opto/castnode.hpp"
29 #include "opto/cfgnode.hpp"
30 #include "opto/connode.hpp"
31 #include "opto/machnode.hpp"
32 #include "opto/movenode.hpp"
33 #include "opto/mulnode.hpp"
34 #include "opto/phaseX.hpp"
35 #include "opto/subnode.hpp"
36 
37 // Portions of code courtesy of Clifford Click
38 
39 // Classic Add functionality.  This covers all the usual 'add' behaviors for
40 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
41 // all inherited from this class.  The various identity values are supplied
42 // by virtual functions.
43 
44 
45 //=============================================================================
46 //------------------------------hash-------------------------------------------
47 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
48 // (commute) inputs to AddNodes willy-nilly so the hash function must return
49 // the same value in the presence of edge swapping.
hash() const50 uint AddNode::hash() const {
51   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
52 }
53 
54 //------------------------------Identity---------------------------------------
55 // If either input is a constant 0, return the other input.
Identity(PhaseGVN * phase)56 Node* AddNode::Identity(PhaseGVN* phase) {
57   const Type *zero = add_id();  // The additive identity
58   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
59   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
60   return this;
61 }
62 
63 //------------------------------commute----------------------------------------
64 // Commute operands to move loads and constants to the right.
commute(Node * add,bool con_left,bool con_right)65 static bool commute(Node *add, bool con_left, bool con_right) {
66   Node *in1 = add->in(1);
67   Node *in2 = add->in(2);
68 
69   // Convert "1+x" into "x+1".
70   // Right is a constant; leave it
71   if( con_right ) return false;
72   // Left is a constant; move it right.
73   if( con_left ) {
74     add->swap_edges(1, 2);
75     return true;
76   }
77 
78   // Convert "Load+x" into "x+Load".
79   // Now check for loads
80   if (in2->is_Load()) {
81     if (!in1->is_Load()) {
82       // already x+Load to return
83       return false;
84     }
85     // both are loads, so fall through to sort inputs by idx
86   } else if( in1->is_Load() ) {
87     // Left is a Load and Right is not; move it right.
88     add->swap_edges(1, 2);
89     return true;
90   }
91 
92   PhiNode *phi;
93   // Check for tight loop increments: Loop-phi of Add of loop-phi
94   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
95     return false;
96   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
97     add->swap_edges(1, 2);
98     return true;
99   }
100 
101   // Otherwise, sort inputs (commutativity) to help value numbering.
102   if( in1->_idx > in2->_idx ) {
103     add->swap_edges(1, 2);
104     return true;
105   }
106   return false;
107 }
108 
109 //------------------------------Idealize---------------------------------------
110 // If we get here, we assume we are associative!
Ideal(PhaseGVN * phase,bool can_reshape)111 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
112   const Type *t1 = phase->type( in(1) );
113   const Type *t2 = phase->type( in(2) );
114   bool con_left  = t1->singleton();
115   bool con_right = t2->singleton();
116 
117   // Check for commutative operation desired
118   if( commute(this,con_left,con_right) ) return this;
119 
120   AddNode *progress = NULL;             // Progress flag
121 
122   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
123   // constant, and the left input is an add of a constant, flatten the
124   // expression tree.
125   Node *add1 = in(1);
126   Node *add2 = in(2);
127   int add1_op = add1->Opcode();
128   int this_op = Opcode();
129   if( con_right && t2 != Type::TOP && // Right input is a constant?
130       add1_op == this_op ) { // Left input is an Add?
131 
132     // Type of left _in right input
133     const Type *t12 = phase->type( add1->in(2) );
134     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
135       // Check for rare case of closed data cycle which can happen inside
136       // unreachable loops. In these cases the computation is undefined.
137 #ifdef ASSERT
138       Node *add11    = add1->in(1);
139       int   add11_op = add11->Opcode();
140       if( (add1 == add1->in(1))
141          || (add11_op == this_op && add11->in(1) == add1) ) {
142         assert(false, "dead loop in AddNode::Ideal");
143       }
144 #endif
145       // The Add of the flattened expression
146       Node *x1 = add1->in(1);
147       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
148       PhaseIterGVN *igvn = phase->is_IterGVN();
149       if( igvn ) {
150         set_req_X(2,x2,igvn);
151         set_req_X(1,x1,igvn);
152       } else {
153         set_req(2,x2);
154         set_req(1,x1);
155       }
156       progress = this;            // Made progress
157       add1 = in(1);
158       add1_op = add1->Opcode();
159     }
160   }
161 
162   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
163   if( add1_op == this_op && !con_right ) {
164     Node *a12 = add1->in(2);
165     const Type *t12 = phase->type( a12 );
166     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
167        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
168       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
169       add2 = add1->clone();
170       add2->set_req(2, in(2));
171       add2 = phase->transform(add2);
172       set_req(1, add2);
173       set_req(2, a12);
174       progress = this;
175       add2 = a12;
176     }
177   }
178 
179   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
180   int add2_op = add2->Opcode();
181   if( add2_op == this_op && !con_left ) {
182     Node *a22 = add2->in(2);
183     const Type *t22 = phase->type( a22 );
184     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
185        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
186       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
187       Node *addx = add2->clone();
188       addx->set_req(1, in(1));
189       addx->set_req(2, add2->in(1));
190       addx = phase->transform(addx);
191       set_req(1, addx);
192       set_req(2, a22);
193       progress = this;
194       PhaseIterGVN *igvn = phase->is_IterGVN();
195       if (add2->outcnt() == 0 && igvn) {
196         // add disconnected.
197         igvn->_worklist.push(add2);
198       }
199     }
200   }
201 
202   return progress;
203 }
204 
205 //------------------------------Value-----------------------------------------
206 // An add node sums it's two _in.  If one input is an RSD, we must mixin
207 // the other input's symbols.
Value(PhaseGVN * phase) const208 const Type* AddNode::Value(PhaseGVN* phase) const {
209   // Either input is TOP ==> the result is TOP
210   const Type *t1 = phase->type( in(1) );
211   const Type *t2 = phase->type( in(2) );
212   if( t1 == Type::TOP ) return Type::TOP;
213   if( t2 == Type::TOP ) return Type::TOP;
214 
215   // Either input is BOTTOM ==> the result is the local BOTTOM
216   const Type *bot = bottom_type();
217   if( (t1 == bot) || (t2 == bot) ||
218       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
219     return bot;
220 
221   // Check for an addition involving the additive identity
222   const Type *tadd = add_of_identity( t1, t2 );
223   if( tadd ) return tadd;
224 
225   return add_ring(t1,t2);               // Local flavor of type addition
226 }
227 
228 //------------------------------add_identity-----------------------------------
229 // Check for addition of the identity
add_of_identity(const Type * t1,const Type * t2) const230 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
231   const Type *zero = add_id();  // The additive identity
232   if( t1->higher_equal( zero ) ) return t2;
233   if( t2->higher_equal( zero ) ) return t1;
234 
235   return NULL;
236 }
237 
238 
239 //=============================================================================
240 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)241 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
242   Node* in1 = in(1);
243   Node* in2 = in(2);
244   int op1 = in1->Opcode();
245   int op2 = in2->Opcode();
246   // Fold (con1-x)+con2 into (con1+con2)-x
247   if ( op1 == Op_AddI && op2 == Op_SubI ) {
248     // Swap edges to try optimizations below
249     in1 = in2;
250     in2 = in(1);
251     op1 = op2;
252     op2 = in2->Opcode();
253   }
254   if( op1 == Op_SubI ) {
255     const Type *t_sub1 = phase->type( in1->in(1) );
256     const Type *t_2    = phase->type( in2        );
257     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
258       return new SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) );
259     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
260     if( op2 == Op_SubI ) {
261       // Check for dead cycle: d = (a-b)+(c-d)
262       assert( in1->in(2) != this && in2->in(2) != this,
263               "dead loop in AddINode::Ideal" );
264       Node *sub  = new SubINode(NULL, NULL);
265       sub->init_req(1, phase->transform(new AddINode(in1->in(1), in2->in(1) ) ));
266       sub->init_req(2, phase->transform(new AddINode(in1->in(2), in2->in(2) ) ));
267       return sub;
268     }
269     // Convert "(a-b)+(b+c)" into "(a+c)"
270     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
271       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
272       return new AddINode(in1->in(1), in2->in(2));
273     }
274     // Convert "(a-b)+(c+b)" into "(a+c)"
275     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
276       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
277       return new AddINode(in1->in(1), in2->in(1));
278     }
279     // Convert "(a-b)+(b-c)" into "(a-c)"
280     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
281       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
282       return new SubINode(in1->in(1), in2->in(2));
283     }
284     // Convert "(a-b)+(c-a)" into "(c-b)"
285     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
286       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
287       return new SubINode(in2->in(1), in1->in(2));
288     }
289   }
290 
291   // Convert "x+(0-y)" into "(x-y)"
292   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
293     return new SubINode(in1, in2->in(2) );
294 
295   // Convert "(0-y)+x" into "(x-y)"
296   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
297     return new SubINode( in2, in1->in(2) );
298 
299   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
300   // Helps with array allocation math constant folding
301   // See 4790063:
302   // Unrestricted transformation is unsafe for some runtime values of 'x'
303   // ( x ==  0, z == 1, y == -1 ) fails
304   // ( x == -5, z == 1, y ==  1 ) fails
305   // Transform works for small z and small negative y when the addition
306   // (x + (y << z)) does not cross zero.
307   // Implement support for negative y and (x >= -(y << z))
308   // Have not observed cases where type information exists to support
309   // positive y and (x <= -(y << z))
310   if( op1 == Op_URShiftI && op2 == Op_ConI &&
311       in1->in(2)->Opcode() == Op_ConI ) {
312     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
313     jint y = phase->type( in2 )->is_int()->get_con();
314 
315     if( z < 5 && -5 < y && y < 0 ) {
316       const Type *t_in11 = phase->type(in1->in(1));
317       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
318         Node *a = phase->transform( new AddINode( in1->in(1), phase->intcon(y<<z) ) );
319         return new URShiftINode( a, in1->in(2) );
320       }
321     }
322   }
323 
324   return AddNode::Ideal(phase, can_reshape);
325 }
326 
327 
328 //------------------------------Identity---------------------------------------
329 // Fold (x-y)+y  OR  y+(x-y)  into  x
Identity(PhaseGVN * phase)330 Node* AddINode::Identity(PhaseGVN* phase) {
331   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
332     return in(1)->in(1);
333   }
334   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
335     return in(2)->in(1);
336   }
337   return AddNode::Identity(phase);
338 }
339 
340 
341 //------------------------------add_ring---------------------------------------
342 // Supplied function returns the sum of the inputs.  Guaranteed never
343 // to be passed a TOP or BOTTOM type, these are filtered out by
344 // pre-check.
add_ring(const Type * t0,const Type * t1) const345 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
346   const TypeInt *r0 = t0->is_int(); // Handy access
347   const TypeInt *r1 = t1->is_int();
348   int lo = java_add(r0->_lo, r1->_lo);
349   int hi = java_add(r0->_hi, r1->_hi);
350   if( !(r0->is_con() && r1->is_con()) ) {
351     // Not both constants, compute approximate result
352     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
353       lo = min_jint; hi = max_jint; // Underflow on the low side
354     }
355     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
356       lo = min_jint; hi = max_jint; // Overflow on the high side
357     }
358     if( lo > hi ) {               // Handle overflow
359       lo = min_jint; hi = max_jint;
360     }
361   } else {
362     // both constants, compute precise result using 'lo' and 'hi'
363     // Semantics define overflow and underflow for integer addition
364     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
365   }
366   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
367 }
368 
369 
370 //=============================================================================
371 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)372 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
373   Node* in1 = in(1);
374   Node* in2 = in(2);
375   int op1 = in1->Opcode();
376   int op2 = in2->Opcode();
377   // Fold (con1-x)+con2 into (con1+con2)-x
378   if ( op1 == Op_AddL && op2 == Op_SubL ) {
379     // Swap edges to try optimizations below
380     in1 = in2;
381     in2 = in(1);
382     op1 = op2;
383     op2 = in2->Opcode();
384   }
385   // Fold (con1-x)+con2 into (con1+con2)-x
386   if( op1 == Op_SubL ) {
387     const Type *t_sub1 = phase->type( in1->in(1) );
388     const Type *t_2    = phase->type( in2        );
389     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
390       return new SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) );
391     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
392     if( op2 == Op_SubL ) {
393       // Check for dead cycle: d = (a-b)+(c-d)
394       assert( in1->in(2) != this && in2->in(2) != this,
395               "dead loop in AddLNode::Ideal" );
396       Node *sub  = new SubLNode(NULL, NULL);
397       sub->init_req(1, phase->transform(new AddLNode(in1->in(1), in2->in(1) ) ));
398       sub->init_req(2, phase->transform(new AddLNode(in1->in(2), in2->in(2) ) ));
399       return sub;
400     }
401     // Convert "(a-b)+(b+c)" into "(a+c)"
402     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
403       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
404       return new AddLNode(in1->in(1), in2->in(2));
405     }
406     // Convert "(a-b)+(c+b)" into "(a+c)"
407     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
408       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
409       return new AddLNode(in1->in(1), in2->in(1));
410     }
411     // Convert "(a-b)+(b-c)" into "(a-c)"
412     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
413       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
414       return new SubLNode(in1->in(1), in2->in(2));
415     }
416     // Convert "(a-b)+(c-a)" into "(c-b)"
417     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
418       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
419       return new SubLNode(in2->in(1), in1->in(2));
420     }
421   }
422 
423   // Convert "x+(0-y)" into "(x-y)"
424   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
425     return new SubLNode( in1, in2->in(2) );
426 
427   // Convert "(0-y)+x" into "(x-y)"
428   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
429     return new SubLNode( in2, in1->in(2) );
430 
431   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
432   // into "(X<<1)+Y" and let shift-folding happen.
433   if( op2 == Op_AddL &&
434       in2->in(1) == in1 &&
435       op1 != Op_ConL &&
436       0 ) {
437     Node *shift = phase->transform(new LShiftLNode(in1,phase->intcon(1)));
438     return new AddLNode(shift,in2->in(2));
439   }
440 
441   return AddNode::Ideal(phase, can_reshape);
442 }
443 
444 
445 //------------------------------Identity---------------------------------------
446 // Fold (x-y)+y  OR  y+(x-y)  into  x
Identity(PhaseGVN * phase)447 Node* AddLNode::Identity(PhaseGVN* phase) {
448   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
449     return in(1)->in(1);
450   }
451   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
452     return in(2)->in(1);
453   }
454   return AddNode::Identity(phase);
455 }
456 
457 
458 //------------------------------add_ring---------------------------------------
459 // Supplied function returns the sum of the inputs.  Guaranteed never
460 // to be passed a TOP or BOTTOM type, these are filtered out by
461 // pre-check.
add_ring(const Type * t0,const Type * t1) const462 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
463   const TypeLong *r0 = t0->is_long(); // Handy access
464   const TypeLong *r1 = t1->is_long();
465   jlong lo = java_add(r0->_lo, r1->_lo);
466   jlong hi = java_add(r0->_hi, r1->_hi);
467   if( !(r0->is_con() && r1->is_con()) ) {
468     // Not both constants, compute approximate result
469     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
470       lo =min_jlong; hi = max_jlong; // Underflow on the low side
471     }
472     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
473       lo = min_jlong; hi = max_jlong; // Overflow on the high side
474     }
475     if( lo > hi ) {               // Handle overflow
476       lo = min_jlong; hi = max_jlong;
477     }
478   } else {
479     // both constants, compute precise result using 'lo' and 'hi'
480     // Semantics define overflow and underflow for integer addition
481     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
482   }
483   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
484 }
485 
486 
487 //=============================================================================
488 //------------------------------add_of_identity--------------------------------
489 // Check for addition of the identity
add_of_identity(const Type * t1,const Type * t2) const490 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
491   // x ADD 0  should return x unless 'x' is a -zero
492   //
493   // const Type *zero = add_id();     // The additive identity
494   // jfloat f1 = t1->getf();
495   // jfloat f2 = t2->getf();
496   //
497   // if( t1->higher_equal( zero ) ) return t2;
498   // if( t2->higher_equal( zero ) ) return t1;
499 
500   return NULL;
501 }
502 
503 //------------------------------add_ring---------------------------------------
504 // Supplied function returns the sum of the inputs.
505 // This also type-checks the inputs for sanity.  Guaranteed never to
506 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
add_ring(const Type * t0,const Type * t1) const507 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
508   // We must be adding 2 float constants.
509   return TypeF::make( t0->getf() + t1->getf() );
510 }
511 
512 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)513 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
514   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
515     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
516   }
517 
518   // Floating point additions are not associative because of boundary conditions (infinity)
519   return commute(this,
520                  phase->type( in(1) )->singleton(),
521                  phase->type( in(2) )->singleton() ) ? this : NULL;
522 }
523 
524 
525 //=============================================================================
526 //------------------------------add_of_identity--------------------------------
527 // Check for addition of the identity
add_of_identity(const Type * t1,const Type * t2) const528 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
529   // x ADD 0  should return x unless 'x' is a -zero
530   //
531   // const Type *zero = add_id();     // The additive identity
532   // jfloat f1 = t1->getf();
533   // jfloat f2 = t2->getf();
534   //
535   // if( t1->higher_equal( zero ) ) return t2;
536   // if( t2->higher_equal( zero ) ) return t1;
537 
538   return NULL;
539 }
540 //------------------------------add_ring---------------------------------------
541 // Supplied function returns the sum of the inputs.
542 // This also type-checks the inputs for sanity.  Guaranteed never to
543 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
add_ring(const Type * t0,const Type * t1) const544 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
545   // We must be adding 2 double constants.
546   return TypeD::make( t0->getd() + t1->getd() );
547 }
548 
549 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)550 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
551   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
552     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
553   }
554 
555   // Floating point additions are not associative because of boundary conditions (infinity)
556   return commute(this,
557                  phase->type( in(1) )->singleton(),
558                  phase->type( in(2) )->singleton() ) ? this : NULL;
559 }
560 
561 
562 //=============================================================================
563 //------------------------------Identity---------------------------------------
564 // If one input is a constant 0, return the other input.
Identity(PhaseGVN * phase)565 Node* AddPNode::Identity(PhaseGVN* phase) {
566   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
567 }
568 
569 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)570 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
571   // Bail out if dead inputs
572   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
573 
574   // If the left input is an add of a constant, flatten the expression tree.
575   const Node *n = in(Address);
576   if (n->is_AddP() && n->in(Base) == in(Base)) {
577     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
578     assert( !addp->in(Address)->is_AddP() ||
579              addp->in(Address)->as_AddP() != addp,
580             "dead loop in AddPNode::Ideal" );
581     // Type of left input's right input
582     const Type *t = phase->type( addp->in(Offset) );
583     if( t == Type::TOP ) return NULL;
584     const TypeX *t12 = t->is_intptr_t();
585     if( t12->is_con() ) {       // Left input is an add of a constant?
586       // If the right input is a constant, combine constants
587       const Type *temp_t2 = phase->type( in(Offset) );
588       if( temp_t2 == Type::TOP ) return NULL;
589       const TypeX *t2 = temp_t2->is_intptr_t();
590       Node* address;
591       Node* offset;
592       if( t2->is_con() ) {
593         // The Add of the flattened expression
594         address = addp->in(Address);
595         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
596       } else {
597         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
598         address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset)));
599         offset  = addp->in(Offset);
600       }
601       PhaseIterGVN *igvn = phase->is_IterGVN();
602       if( igvn ) {
603         set_req_X(Address,address,igvn);
604         set_req_X(Offset,offset,igvn);
605       } else {
606         set_req(Address,address);
607         set_req(Offset,offset);
608       }
609       return this;
610     }
611   }
612 
613   // Raw pointers?
614   if( in(Base)->bottom_type() == Type::TOP ) {
615     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
616     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
617       Node* offset = in(Offset);
618       return new CastX2PNode(offset);
619     }
620   }
621 
622   // If the right is an add of a constant, push the offset down.
623   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
624   // The idea is to merge array_base+scaled_index groups together,
625   // and only have different constant offsets from the same base.
626   const Node *add = in(Offset);
627   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
628     const Type *t22 = phase->type( add->in(2) );
629     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
630       set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1))));
631       set_req(Offset, add->in(2));
632       PhaseIterGVN *igvn = phase->is_IterGVN();
633       if (add->outcnt() == 0 && igvn) {
634         // add disconnected.
635         igvn->_worklist.push((Node*)add);
636       }
637       return this;              // Made progress
638     }
639   }
640 
641   return NULL;                  // No progress
642 }
643 
644 //------------------------------bottom_type------------------------------------
645 // Bottom-type is the pointer-type with unknown offset.
bottom_type() const646 const Type *AddPNode::bottom_type() const {
647   if (in(Address) == NULL)  return TypePtr::BOTTOM;
648   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
649   if( !tp ) return Type::TOP;   // TOP input means TOP output
650   assert( in(Offset)->Opcode() != Op_ConP, "" );
651   const Type *t = in(Offset)->bottom_type();
652   if( t == Type::TOP )
653     return tp->add_offset(Type::OffsetTop);
654   const TypeX *tx = t->is_intptr_t();
655   intptr_t txoffset = Type::OffsetBot;
656   if (tx->is_con()) {   // Left input is an add of a constant?
657     txoffset = tx->get_con();
658   }
659   return tp->add_offset(txoffset);
660 }
661 
662 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const663 const Type* AddPNode::Value(PhaseGVN* phase) const {
664   // Either input is TOP ==> the result is TOP
665   const Type *t1 = phase->type( in(Address) );
666   const Type *t2 = phase->type( in(Offset) );
667   if( t1 == Type::TOP ) return Type::TOP;
668   if( t2 == Type::TOP ) return Type::TOP;
669 
670   // Left input is a pointer
671   const TypePtr *p1 = t1->isa_ptr();
672   // Right input is an int
673   const TypeX *p2 = t2->is_intptr_t();
674   // Add 'em
675   intptr_t p2offset = Type::OffsetBot;
676   if (p2->is_con()) {   // Left input is an add of a constant?
677     p2offset = p2->get_con();
678   }
679   return p1->add_offset(p2offset);
680 }
681 
682 //------------------------Ideal_base_and_offset--------------------------------
683 // Split an oop pointer into a base and offset.
684 // (The offset might be Type::OffsetBot in the case of an array.)
685 // Return the base, or NULL if failure.
Ideal_base_and_offset(Node * ptr,PhaseTransform * phase,intptr_t & offset)686 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
687                                       // second return value:
688                                       intptr_t& offset) {
689   if (ptr->is_AddP()) {
690     Node* base = ptr->in(AddPNode::Base);
691     Node* addr = ptr->in(AddPNode::Address);
692     Node* offs = ptr->in(AddPNode::Offset);
693     if (base == addr || base->is_top()) {
694       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
695       if (offset != Type::OffsetBot) {
696         return addr;
697       }
698     }
699   }
700   offset = Type::OffsetBot;
701   return NULL;
702 }
703 
704 //------------------------------unpack_offsets----------------------------------
705 // Collect the AddP offset values into the elements array, giving up
706 // if there are more than length.
unpack_offsets(Node * elements[],int length)707 int AddPNode::unpack_offsets(Node* elements[], int length) {
708   int count = 0;
709   Node* addr = this;
710   Node* base = addr->in(AddPNode::Base);
711   while (addr->is_AddP()) {
712     if (addr->in(AddPNode::Base) != base) {
713       // give up
714       return -1;
715     }
716     elements[count++] = addr->in(AddPNode::Offset);
717     if (count == length) {
718       // give up
719       return -1;
720     }
721     addr = addr->in(AddPNode::Address);
722   }
723   if (addr != base) {
724     return -1;
725   }
726   return count;
727 }
728 
729 //------------------------------match_edge-------------------------------------
730 // Do we Match on this edge index or not?  Do not match base pointer edge
match_edge(uint idx) const731 uint AddPNode::match_edge(uint idx) const {
732   return idx > Base;
733 }
734 
735 //=============================================================================
736 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)737 Node* OrINode::Identity(PhaseGVN* phase) {
738   // x | x => x
739   if (phase->eqv(in(1), in(2))) {
740     return in(1);
741   }
742 
743   return AddNode::Identity(phase);
744 }
745 
746 //------------------------------add_ring---------------------------------------
747 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
748 // the logical operations the ring's ADD is really a logical OR function.
749 // This also type-checks the inputs for sanity.  Guaranteed never to
750 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
add_ring(const Type * t0,const Type * t1) const751 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
752   const TypeInt *r0 = t0->is_int(); // Handy access
753   const TypeInt *r1 = t1->is_int();
754 
755   // If both args are bool, can figure out better types
756   if ( r0 == TypeInt::BOOL ) {
757     if ( r1 == TypeInt::ONE) {
758       return TypeInt::ONE;
759     } else if ( r1 == TypeInt::BOOL ) {
760       return TypeInt::BOOL;
761     }
762   } else if ( r0 == TypeInt::ONE ) {
763     if ( r1 == TypeInt::BOOL ) {
764       return TypeInt::ONE;
765     }
766   }
767 
768   // If either input is not a constant, just return all integers.
769   if( !r0->is_con() || !r1->is_con() )
770     return TypeInt::INT;        // Any integer, but still no symbols.
771 
772   // Otherwise just OR them bits.
773   return TypeInt::make( r0->get_con() | r1->get_con() );
774 }
775 
776 //=============================================================================
777 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)778 Node* OrLNode::Identity(PhaseGVN* phase) {
779   // x | x => x
780   if (phase->eqv(in(1), in(2))) {
781     return in(1);
782   }
783 
784   return AddNode::Identity(phase);
785 }
786 
787 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const788 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
789   const TypeLong *r0 = t0->is_long(); // Handy access
790   const TypeLong *r1 = t1->is_long();
791 
792   // If either input is not a constant, just return all integers.
793   if( !r0->is_con() || !r1->is_con() )
794     return TypeLong::LONG;      // Any integer, but still no symbols.
795 
796   // Otherwise just OR them bits.
797   return TypeLong::make( r0->get_con() | r1->get_con() );
798 }
799 
800 //=============================================================================
801 //------------------------------add_ring---------------------------------------
802 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
803 // the logical operations the ring's ADD is really a logical OR function.
804 // This also type-checks the inputs for sanity.  Guaranteed never to
805 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
add_ring(const Type * t0,const Type * t1) const806 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
807   const TypeInt *r0 = t0->is_int(); // Handy access
808   const TypeInt *r1 = t1->is_int();
809 
810   // Complementing a boolean?
811   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
812                                || r1 == TypeInt::BOOL))
813     return TypeInt::BOOL;
814 
815   if( !r0->is_con() || !r1->is_con() ) // Not constants
816     return TypeInt::INT;        // Any integer, but still no symbols.
817 
818   // Otherwise just XOR them bits.
819   return TypeInt::make( r0->get_con() ^ r1->get_con() );
820 }
821 
822 //=============================================================================
823 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const824 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
825   const TypeLong *r0 = t0->is_long(); // Handy access
826   const TypeLong *r1 = t1->is_long();
827 
828   // If either input is not a constant, just return all integers.
829   if( !r0->is_con() || !r1->is_con() )
830     return TypeLong::LONG;      // Any integer, but still no symbols.
831 
832   // Otherwise just OR them bits.
833   return TypeLong::make( r0->get_con() ^ r1->get_con() );
834 }
835 
836 
build_min_max(Node * a,Node * b,bool is_max,bool is_unsigned,const Type * t,PhaseGVN & gvn)837 Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) {
838   bool is_int = gvn.type(a)->isa_int();
839   assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
840   assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs");
841   if (!is_unsigned) {
842     if (is_max) {
843       if (is_int) {
844         Node* res =  gvn.transform(new MaxINode(a, b));
845         assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
846         return res;
847       } else {
848         Node* cmp = gvn.transform(new CmpLNode(a, b));
849         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
850         return gvn.transform(new CMoveLNode(bol, a, b, t->is_long()));
851       }
852     } else {
853       if (is_int) {
854         Node* res =  gvn.transform(new MinINode(a, b));
855         assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
856         return res;
857       } else {
858         Node* cmp = gvn.transform(new CmpLNode(b, a));
859         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
860         return gvn.transform(new CMoveLNode(bol, a, b, t->is_long()));
861       }
862     }
863   } else {
864     if (is_max) {
865       if (is_int) {
866         Node* cmp = gvn.transform(new CmpUNode(a, b));
867         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
868         return gvn.transform(new CMoveINode(bol, a, b, t->is_int()));
869       } else {
870         Node* cmp = gvn.transform(new CmpULNode(a, b));
871         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
872         return gvn.transform(new CMoveLNode(bol, a, b, t->is_long()));
873       }
874     } else {
875       if (is_int) {
876         Node* cmp = gvn.transform(new CmpUNode(b, a));
877         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
878         return gvn.transform(new CMoveINode(bol, a, b, t->is_int()));
879       } else {
880         Node* cmp = gvn.transform(new CmpULNode(b, a));
881         Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
882         return gvn.transform(new CMoveLNode(bol, a, b, t->is_long()));
883       }
884     }
885   }
886 }
887 
build_min_max_diff_with_zero(Node * a,Node * b,bool is_max,const Type * t,PhaseGVN & gvn)888 Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) {
889   bool is_int = gvn.type(a)->isa_int();
890   assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
891   assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs");
892   Node* zero = NULL;
893   if (is_int) {
894     zero = gvn.intcon(0);
895   } else {
896     zero = gvn.longcon(0);
897   }
898   if (is_max) {
899     if (is_int) {
900       Node* cmp = gvn.transform(new CmpINode(a, b));
901       Node* sub = gvn.transform(new SubINode(a, b));
902       Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
903       return gvn.transform(new CMoveINode(bol, sub, zero, t->is_int()));
904     } else {
905       Node* cmp = gvn.transform(new CmpLNode(a, b));
906       Node* sub = gvn.transform(new SubLNode(a, b));
907       Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
908       return gvn.transform(new CMoveLNode(bol, sub, zero, t->is_long()));
909     }
910   } else {
911     if (is_int) {
912       Node* cmp = gvn.transform(new CmpINode(b, a));
913       Node* sub = gvn.transform(new SubINode(a, b));
914       Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
915       return gvn.transform(new CMoveINode(bol, sub, zero, t->is_int()));
916     } else {
917       Node* cmp = gvn.transform(new CmpLNode(b, a));
918       Node* sub = gvn.transform(new SubLNode(a, b));
919       Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
920       return gvn.transform(new CMoveLNode(bol, sub, zero, t->is_long()));
921     }
922   }
923 }
924 
925 //=============================================================================
926 //------------------------------add_ring---------------------------------------
927 // Supplied function returns the sum of the inputs.
add_ring(const Type * t0,const Type * t1) const928 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
929   const TypeInt *r0 = t0->is_int(); // Handy access
930   const TypeInt *r1 = t1->is_int();
931 
932   // Otherwise just MAX them bits.
933   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
934 }
935 
936 // Check if addition of an integer with type 't' and a constant 'c' can overflow
can_overflow(const TypeInt * t,jint c)937 static bool can_overflow(const TypeInt* t, jint c) {
938   jint t_lo = t->_lo;
939   jint t_hi = t->_hi;
940   return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
941           (c > 0 && (java_add(t_hi, c) < t_hi)));
942 }
943 
944 //=============================================================================
945 //------------------------------Idealize---------------------------------------
946 // MINs show up in range-check loop limit calculations.  Look for
947 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
Ideal(PhaseGVN * phase,bool can_reshape)948 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
949   Node *progress = NULL;
950   // Force a right-spline graph
951   Node *l = in(1);
952   Node *r = in(2);
953   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
954   // to force a right-spline graph for the rest of MinINode::Ideal().
955   if( l->Opcode() == Op_MinI ) {
956     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
957     r = phase->transform(new MinINode(l->in(2),r));
958     l = l->in(1);
959     set_req(1, l);
960     set_req(2, r);
961     return this;
962   }
963 
964   // Get left input & constant
965   Node *x = l;
966   jint x_off = 0;
967   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
968       x->in(2)->is_Con() ) {
969     const Type *t = x->in(2)->bottom_type();
970     if( t == Type::TOP ) return NULL;  // No progress
971     x_off = t->is_int()->get_con();
972     x = x->in(1);
973   }
974 
975   // Scan a right-spline-tree for MINs
976   Node *y = r;
977   jint y_off = 0;
978   // Check final part of MIN tree
979   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
980       y->in(2)->is_Con() ) {
981     const Type *t = y->in(2)->bottom_type();
982     if( t == Type::TOP ) return NULL;  // No progress
983     y_off = t->is_int()->get_con();
984     y = y->in(1);
985   }
986   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
987     swap_edges(1, 2);
988     return this;
989   }
990 
991   const TypeInt* tx = phase->type(x)->isa_int();
992 
993   if( r->Opcode() == Op_MinI ) {
994     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
995     y = r->in(1);
996     // Check final part of MIN tree
997     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
998         y->in(2)->is_Con() ) {
999       const Type *t = y->in(2)->bottom_type();
1000       if( t == Type::TOP ) return NULL;  // No progress
1001       y_off = t->is_int()->get_con();
1002       y = y->in(1);
1003     }
1004 
1005     if( x->_idx > y->_idx )
1006       return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2))));
1007 
1008     // Transform MIN2(x + c0, MIN2(x + c1, z)) into MIN2(x + MIN2(c0, c1), z)
1009     // if x == y and the additions can't overflow.
1010     if (phase->eqv(x,y) && tx != NULL &&
1011         !can_overflow(tx, x_off) &&
1012         !can_overflow(tx, y_off)) {
1013       return new MinINode(phase->transform(new AddINode(x, phase->intcon(MIN2(x_off, y_off)))), r->in(2));
1014     }
1015   } else {
1016     // Transform MIN2(x + c0, y + c1) into x + MIN2(c0, c1)
1017     // if x == y and the additions can't overflow.
1018     if (phase->eqv(x,y) && tx != NULL &&
1019         !can_overflow(tx, x_off) &&
1020         !can_overflow(tx, y_off)) {
1021       return new AddINode(x,phase->intcon(MIN2(x_off,y_off)));
1022     }
1023   }
1024   return NULL;
1025 }
1026 
1027 //------------------------------add_ring---------------------------------------
1028 // Supplied function returns the sum of the inputs.
add_ring(const Type * t0,const Type * t1) const1029 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
1030   const TypeInt *r0 = t0->is_int(); // Handy access
1031   const TypeInt *r1 = t1->is_int();
1032 
1033   // Otherwise just MIN them bits.
1034   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
1035 }
1036 
1037 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const1038 const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const {
1039   const TypeF *r0 = t0->is_float_constant();
1040   const TypeF *r1 = t1->is_float_constant();
1041 
1042   if (r0->is_nan()) {
1043     return r0;
1044   }
1045   if (r1->is_nan()) {
1046     return r1;
1047   }
1048 
1049   float f0 = r0->getf();
1050   float f1 = r1->getf();
1051   if (f0 != 0.0f || f1 != 0.0f) {
1052     return f0 < f1 ? r0 : r1;
1053   }
1054 
1055   // handle min of 0.0, -0.0 case.
1056   return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
1057 }
1058 
1059 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const1060 const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const {
1061   const TypeD *r0 = t0->is_double_constant();
1062   const TypeD *r1 = t1->is_double_constant();
1063 
1064   if (r0->is_nan()) {
1065     return r0;
1066   }
1067   if (r1->is_nan()) {
1068     return r1;
1069   }
1070 
1071   double d0 = r0->getd();
1072   double d1 = r1->getd();
1073   if (d0 != 0.0 || d1 != 0.0) {
1074     return d0 < d1 ? r0 : r1;
1075   }
1076 
1077   // handle min of 0.0, -0.0 case.
1078   return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1;
1079 }
1080 
1081 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const1082 const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const {
1083   const TypeF *r0 = t0->is_float_constant();
1084   const TypeF *r1 = t1->is_float_constant();
1085 
1086   if (r0->is_nan()) {
1087     return r0;
1088   }
1089   if (r1->is_nan()) {
1090     return r1;
1091   }
1092 
1093   float f0 = r0->getf();
1094   float f1 = r1->getf();
1095   if (f0 != 0.0f || f1 != 0.0f) {
1096     return f0 > f1 ? r0 : r1;
1097   }
1098 
1099   // handle max of 0.0,-0.0 case.
1100   return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
1101 }
1102 
1103 //------------------------------add_ring---------------------------------------
add_ring(const Type * t0,const Type * t1) const1104 const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const {
1105   const TypeD *r0 = t0->is_double_constant();
1106   const TypeD *r1 = t1->is_double_constant();
1107 
1108   if (r0->is_nan()) {
1109     return r0;
1110   }
1111   if (r1->is_nan()) {
1112     return r1;
1113   }
1114 
1115   double d0 = r0->getd();
1116   double d1 = r1->getd();
1117   if (d0 != 0.0 || d1 != 0.0) {
1118     return d0 > d1 ? r0 : r1;
1119   }
1120 
1121   // handle max of 0.0, -0.0 case.
1122   return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1;
1123 }
1124