1 /*
2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/collectedHeap.inline.hpp"
28 #include "libadt/vectset.hpp"
29 #include "memory/universe.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/arraycopynode.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/cfgnode.hpp"
35 #include "opto/compile.hpp"
36 #include "opto/convertnode.hpp"
37 #include "opto/graphKit.hpp"
38 #include "opto/intrinsicnode.hpp"
39 #include "opto/locknode.hpp"
40 #include "opto/loopnode.hpp"
41 #include "opto/macro.hpp"
42 #include "opto/memnode.hpp"
43 #include "opto/narrowptrnode.hpp"
44 #include "opto/node.hpp"
45 #include "opto/opaquenode.hpp"
46 #include "opto/phaseX.hpp"
47 #include "opto/rootnode.hpp"
48 #include "opto/runtime.hpp"
49 #include "opto/subnode.hpp"
50 #include "opto/subtypenode.hpp"
51 #include "opto/type.hpp"
52 #include "runtime/sharedRuntime.hpp"
53 #include "utilities/macros.hpp"
54 #include "utilities/powerOfTwo.hpp"
55 #if INCLUDE_G1GC
56 #include "gc/g1/g1ThreadLocalData.hpp"
57 #endif // INCLUDE_G1GC
58 #if INCLUDE_SHENANDOAHGC
59 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
60 #endif
61 
62 
63 //
64 // Replace any references to "oldref" in inputs to "use" with "newref".
65 // Returns the number of replacements made.
66 //
replace_input(Node * use,Node * oldref,Node * newref)67 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
68   int nreplacements = 0;
69   uint req = use->req();
70   for (uint j = 0; j < use->len(); j++) {
71     Node *uin = use->in(j);
72     if (uin == oldref) {
73       if (j < req)
74         use->set_req(j, newref);
75       else
76         use->set_prec(j, newref);
77       nreplacements++;
78     } else if (j >= req && uin == NULL) {
79       break;
80     }
81   }
82   return nreplacements;
83 }
84 
migrate_outs(Node * old,Node * target)85 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
86   assert(old != NULL, "sanity");
87   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
88     Node* use = old->fast_out(i);
89     _igvn.rehash_node_delayed(use);
90     imax -= replace_input(use, old, target);
91     // back up iterator
92     --i;
93   }
94   assert(old->outcnt() == 0, "all uses must be deleted");
95 }
96 
copy_call_debug_info(CallNode * oldcall,CallNode * newcall)97 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
98   // Copy debug information and adjust JVMState information
99   uint old_dbg_start = oldcall->tf()->domain()->cnt();
100   uint new_dbg_start = newcall->tf()->domain()->cnt();
101   int jvms_adj  = new_dbg_start - old_dbg_start;
102   assert (new_dbg_start == newcall->req(), "argument count mismatch");
103 
104   // SafePointScalarObject node could be referenced several times in debug info.
105   // Use Dict to record cloned nodes.
106   Dict* sosn_map = new Dict(cmpkey,hashkey);
107   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
108     Node* old_in = oldcall->in(i);
109     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
110     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
111       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
112       uint old_unique = C->unique();
113       Node* new_in = old_sosn->clone(sosn_map);
114       if (old_unique != C->unique()) { // New node?
115         new_in->set_req(0, C->root()); // reset control edge
116         new_in = transform_later(new_in); // Register new node.
117       }
118       old_in = new_in;
119     }
120     newcall->add_req(old_in);
121   }
122 
123   // JVMS may be shared so clone it before we modify it
124   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
125   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
126     jvms->set_map(newcall);
127     jvms->set_locoff(jvms->locoff()+jvms_adj);
128     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
129     jvms->set_monoff(jvms->monoff()+jvms_adj);
130     jvms->set_scloff(jvms->scloff()+jvms_adj);
131     jvms->set_endoff(jvms->endoff()+jvms_adj);
132   }
133 }
134 
opt_bits_test(Node * ctrl,Node * region,int edge,Node * word,int mask,int bits,bool return_fast_path)135 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
136   Node* cmp;
137   if (mask != 0) {
138     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
139     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
140   } else {
141     cmp = word;
142   }
143   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
144   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
145   transform_later(iff);
146 
147   // Fast path taken.
148   Node *fast_taken = transform_later(new IfFalseNode(iff));
149 
150   // Fast path not-taken, i.e. slow path
151   Node *slow_taken = transform_later(new IfTrueNode(iff));
152 
153   if (return_fast_path) {
154     region->init_req(edge, slow_taken); // Capture slow-control
155     return fast_taken;
156   } else {
157     region->init_req(edge, fast_taken); // Capture fast-control
158     return slow_taken;
159   }
160 }
161 
162 //--------------------copy_predefined_input_for_runtime_call--------------------
copy_predefined_input_for_runtime_call(Node * ctrl,CallNode * oldcall,CallNode * call)163 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
164   // Set fixed predefined input arguments
165   call->init_req( TypeFunc::Control, ctrl );
166   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
167   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
168   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
169   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
170 }
171 
172 //------------------------------make_slow_call---------------------------------
make_slow_call(CallNode * oldcall,const TypeFunc * slow_call_type,address slow_call,const char * leaf_name,Node * slow_path,Node * parm0,Node * parm1,Node * parm2)173 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
174                                            address slow_call, const char* leaf_name, Node* slow_path,
175                                            Node* parm0, Node* parm1, Node* parm2) {
176 
177   // Slow-path call
178  CallNode *call = leaf_name
179    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
180    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
181 
182   // Slow path call has no side-effects, uses few values
183   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
184   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
185   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
186   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
187   copy_call_debug_info(oldcall, call);
188   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
189   _igvn.replace_node(oldcall, call);
190   transform_later(call);
191 
192   return call;
193 }
194 
extract_call_projections(CallNode * call)195 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
196   _fallthroughproj = NULL;
197   _fallthroughcatchproj = NULL;
198   _ioproj_fallthrough = NULL;
199   _ioproj_catchall = NULL;
200   _catchallcatchproj = NULL;
201   _memproj_fallthrough = NULL;
202   _memproj_catchall = NULL;
203   _resproj = NULL;
204   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
205     ProjNode *pn = call->fast_out(i)->as_Proj();
206     switch (pn->_con) {
207       case TypeFunc::Control:
208       {
209         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
210         _fallthroughproj = pn;
211         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
212         const Node *cn = pn->fast_out(j);
213         if (cn->is_Catch()) {
214           ProjNode *cpn = NULL;
215           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
216             cpn = cn->fast_out(k)->as_Proj();
217             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
218             if (cpn->_con == CatchProjNode::fall_through_index)
219               _fallthroughcatchproj = cpn;
220             else {
221               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
222               _catchallcatchproj = cpn;
223             }
224           }
225         }
226         break;
227       }
228       case TypeFunc::I_O:
229         if (pn->_is_io_use)
230           _ioproj_catchall = pn;
231         else
232           _ioproj_fallthrough = pn;
233         break;
234       case TypeFunc::Memory:
235         if (pn->_is_io_use)
236           _memproj_catchall = pn;
237         else
238           _memproj_fallthrough = pn;
239         break;
240       case TypeFunc::Parms:
241         _resproj = pn;
242         break;
243       default:
244         assert(false, "unexpected projection from allocation node.");
245     }
246   }
247 
248 }
249 
eliminate_gc_barrier(Node * p2x)250 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
251   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
252   bs->eliminate_gc_barrier(this, p2x);
253 }
254 
255 // Search for a memory operation for the specified memory slice.
scan_mem_chain(Node * mem,int alias_idx,int offset,Node * start_mem,Node * alloc,PhaseGVN * phase)256 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
257   Node *orig_mem = mem;
258   Node *alloc_mem = alloc->in(TypeFunc::Memory);
259   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
260   while (true) {
261     if (mem == alloc_mem || mem == start_mem ) {
262       return mem;  // hit one of our sentinels
263     } else if (mem->is_MergeMem()) {
264       mem = mem->as_MergeMem()->memory_at(alias_idx);
265     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
266       Node *in = mem->in(0);
267       // we can safely skip over safepoints, calls, locks and membars because we
268       // already know that the object is safe to eliminate.
269       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
270         return in;
271       } else if (in->is_Call()) {
272         CallNode *call = in->as_Call();
273         if (call->may_modify(tinst, phase)) {
274           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
275           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
276             return in;
277           }
278         }
279         mem = in->in(TypeFunc::Memory);
280       } else if (in->is_MemBar()) {
281         ArrayCopyNode* ac = NULL;
282         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
283           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
284           return ac;
285         }
286         mem = in->in(TypeFunc::Memory);
287       } else {
288         assert(false, "unexpected projection");
289       }
290     } else if (mem->is_Store()) {
291       const TypePtr* atype = mem->as_Store()->adr_type();
292       int adr_idx = phase->C->get_alias_index(atype);
293       if (adr_idx == alias_idx) {
294         assert(atype->isa_oopptr(), "address type must be oopptr");
295         int adr_offset = atype->offset();
296         uint adr_iid = atype->is_oopptr()->instance_id();
297         // Array elements references have the same alias_idx
298         // but different offset and different instance_id.
299         if (adr_offset == offset && adr_iid == alloc->_idx)
300           return mem;
301       } else {
302         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
303       }
304       mem = mem->in(MemNode::Memory);
305     } else if (mem->is_ClearArray()) {
306       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
307         // Can not bypass initialization of the instance
308         // we are looking.
309         debug_only(intptr_t offset;)
310         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
311         InitializeNode* init = alloc->as_Allocate()->initialization();
312         // We are looking for stored value, return Initialize node
313         // or memory edge from Allocate node.
314         if (init != NULL)
315           return init;
316         else
317           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
318       }
319       // Otherwise skip it (the call updated 'mem' value).
320     } else if (mem->Opcode() == Op_SCMemProj) {
321       mem = mem->in(0);
322       Node* adr = NULL;
323       if (mem->is_LoadStore()) {
324         adr = mem->in(MemNode::Address);
325       } else {
326         assert(mem->Opcode() == Op_EncodeISOArray ||
327                mem->Opcode() == Op_StrCompressedCopy, "sanity");
328         adr = mem->in(3); // Destination array
329       }
330       const TypePtr* atype = adr->bottom_type()->is_ptr();
331       int adr_idx = phase->C->get_alias_index(atype);
332       if (adr_idx == alias_idx) {
333         DEBUG_ONLY(mem->dump();)
334         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
335         return NULL;
336       }
337       mem = mem->in(MemNode::Memory);
338    } else if (mem->Opcode() == Op_StrInflatedCopy) {
339       Node* adr = mem->in(3); // Destination array
340       const TypePtr* atype = adr->bottom_type()->is_ptr();
341       int adr_idx = phase->C->get_alias_index(atype);
342       if (adr_idx == alias_idx) {
343         DEBUG_ONLY(mem->dump();)
344         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
345         return NULL;
346       }
347       mem = mem->in(MemNode::Memory);
348     } else {
349       return mem;
350     }
351     assert(mem != orig_mem, "dead memory loop");
352   }
353 }
354 
355 // Generate loads from source of the arraycopy for fields of
356 // destination needed at a deoptimization point
make_arraycopy_load(ArrayCopyNode * ac,intptr_t offset,Node * ctl,Node * mem,BasicType ft,const Type * ftype,AllocateNode * alloc)357 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
358   BasicType bt = ft;
359   const Type *type = ftype;
360   if (ft == T_NARROWOOP) {
361     bt = T_OBJECT;
362     type = ftype->make_oopptr();
363   }
364   Node* res = NULL;
365   if (ac->is_clonebasic()) {
366     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
367     Node* base = ac->in(ArrayCopyNode::Src);
368     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
369     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
370     MergeMemNode* mergemen = MergeMemNode::make(mem);
371     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
372     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
373   } else {
374     if (ac->modifies(offset, offset, &_igvn, true)) {
375       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
376       uint shift = exact_log2(type2aelembytes(bt));
377       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
378       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
379       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
380       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
381 
382       Node* adr = NULL;
383       const TypePtr* adr_type = NULL;
384       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
385         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
386         Node* base = ac->in(ArrayCopyNode::Src);
387         adr = _igvn.transform(new AddPNode(base, base, MakeConX(off)));
388         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
389         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
390           // Don't emit a new load from src if src == dst but try to get the value from memory instead
391           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
392         }
393       } else {
394         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
395 #ifdef _LP64
396         diff = _igvn.transform(new ConvI2LNode(diff));
397 #endif
398         diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
399 
400         Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
401         Node* base = ac->in(ArrayCopyNode::Src);
402         adr = _igvn.transform(new AddPNode(base, base, off));
403         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
404         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
405           // Non constant offset in the array: we can't statically
406           // determine the value
407           return NULL;
408         }
409       }
410       MergeMemNode* mergemen = MergeMemNode::make(mem);
411       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
412       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
413     }
414   }
415   if (res != NULL) {
416     if (ftype->isa_narrowoop()) {
417       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
418       res = _igvn.transform(new EncodePNode(res, ftype));
419     }
420     return res;
421   }
422   return NULL;
423 }
424 
425 //
426 // Given a Memory Phi, compute a value Phi containing the values from stores
427 // on the input paths.
428 // Note: this function is recursive, its depth is limited by the "level" argument
429 // Returns the computed Phi, or NULL if it cannot compute it.
value_from_mem_phi(Node * mem,BasicType ft,const Type * phi_type,const TypeOopPtr * adr_t,AllocateNode * alloc,Node_Stack * value_phis,int level)430 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
431   assert(mem->is_Phi(), "sanity");
432   int alias_idx = C->get_alias_index(adr_t);
433   int offset = adr_t->offset();
434   int instance_id = adr_t->instance_id();
435 
436   // Check if an appropriate value phi already exists.
437   Node* region = mem->in(0);
438   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
439     Node* phi = region->fast_out(k);
440     if (phi->is_Phi() && phi != mem &&
441         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
442       return phi;
443     }
444   }
445   // Check if an appropriate new value phi already exists.
446   Node* new_phi = value_phis->find(mem->_idx);
447   if (new_phi != NULL)
448     return new_phi;
449 
450   if (level <= 0) {
451     return NULL; // Give up: phi tree too deep
452   }
453   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
454   Node *alloc_mem = alloc->in(TypeFunc::Memory);
455 
456   uint length = mem->req();
457   GrowableArray <Node *> values(length, length, NULL, false);
458 
459   // create a new Phi for the value
460   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
461   transform_later(phi);
462   value_phis->push(phi, mem->_idx);
463 
464   for (uint j = 1; j < length; j++) {
465     Node *in = mem->in(j);
466     if (in == NULL || in->is_top()) {
467       values.at_put(j, in);
468     } else  {
469       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
470       if (val == start_mem || val == alloc_mem) {
471         // hit a sentinel, return appropriate 0 value
472         values.at_put(j, _igvn.zerocon(ft));
473         continue;
474       }
475       if (val->is_Initialize()) {
476         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
477       }
478       if (val == NULL) {
479         return NULL;  // can't find a value on this path
480       }
481       if (val == mem) {
482         values.at_put(j, mem);
483       } else if (val->is_Store()) {
484         Node* n = val->in(MemNode::ValueIn);
485         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
486         n = bs->step_over_gc_barrier(n);
487         values.at_put(j, n);
488       } else if(val->is_Proj() && val->in(0) == alloc) {
489         values.at_put(j, _igvn.zerocon(ft));
490       } else if (val->is_Phi()) {
491         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
492         if (val == NULL) {
493           return NULL;
494         }
495         values.at_put(j, val);
496       } else if (val->Opcode() == Op_SCMemProj) {
497         assert(val->in(0)->is_LoadStore() ||
498                val->in(0)->Opcode() == Op_EncodeISOArray ||
499                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
500         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
501         return NULL;
502       } else if (val->is_ArrayCopy()) {
503         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
504         if (res == NULL) {
505           return NULL;
506         }
507         values.at_put(j, res);
508       } else {
509 #ifdef ASSERT
510         val->dump();
511         assert(false, "unknown node on this path");
512 #endif
513         return NULL;  // unknown node on this path
514       }
515     }
516   }
517   // Set Phi's inputs
518   for (uint j = 1; j < length; j++) {
519     if (values.at(j) == mem) {
520       phi->init_req(j, phi);
521     } else {
522       phi->init_req(j, values.at(j));
523     }
524   }
525   return phi;
526 }
527 
528 // Search the last value stored into the object's field.
value_from_mem(Node * sfpt_mem,Node * sfpt_ctl,BasicType ft,const Type * ftype,const TypeOopPtr * adr_t,AllocateNode * alloc)529 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
530   assert(adr_t->is_known_instance_field(), "instance required");
531   int instance_id = adr_t->instance_id();
532   assert((uint)instance_id == alloc->_idx, "wrong allocation");
533 
534   int alias_idx = C->get_alias_index(adr_t);
535   int offset = adr_t->offset();
536   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
537   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
538   Node *alloc_mem = alloc->in(TypeFunc::Memory);
539   Arena *a = Thread::current()->resource_area();
540   VectorSet visited(a);
541 
542   bool done = sfpt_mem == alloc_mem;
543   Node *mem = sfpt_mem;
544   while (!done) {
545     if (visited.test_set(mem->_idx)) {
546       return NULL;  // found a loop, give up
547     }
548     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
549     if (mem == start_mem || mem == alloc_mem) {
550       done = true;  // hit a sentinel, return appropriate 0 value
551     } else if (mem->is_Initialize()) {
552       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
553       if (mem == NULL) {
554         done = true; // Something go wrong.
555       } else if (mem->is_Store()) {
556         const TypePtr* atype = mem->as_Store()->adr_type();
557         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
558         done = true;
559       }
560     } else if (mem->is_Store()) {
561       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
562       assert(atype != NULL, "address type must be oopptr");
563       assert(C->get_alias_index(atype) == alias_idx &&
564              atype->is_known_instance_field() && atype->offset() == offset &&
565              atype->instance_id() == instance_id, "store is correct memory slice");
566       done = true;
567     } else if (mem->is_Phi()) {
568       // try to find a phi's unique input
569       Node *unique_input = NULL;
570       Node *top = C->top();
571       for (uint i = 1; i < mem->req(); i++) {
572         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
573         if (n == NULL || n == top || n == mem) {
574           continue;
575         } else if (unique_input == NULL) {
576           unique_input = n;
577         } else if (unique_input != n) {
578           unique_input = top;
579           break;
580         }
581       }
582       if (unique_input != NULL && unique_input != top) {
583         mem = unique_input;
584       } else {
585         done = true;
586       }
587     } else if (mem->is_ArrayCopy()) {
588       done = true;
589     } else {
590       assert(false, "unexpected node");
591     }
592   }
593   if (mem != NULL) {
594     if (mem == start_mem || mem == alloc_mem) {
595       // hit a sentinel, return appropriate 0 value
596       return _igvn.zerocon(ft);
597     } else if (mem->is_Store()) {
598       Node* n = mem->in(MemNode::ValueIn);
599       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
600       n = bs->step_over_gc_barrier(n);
601       return n;
602     } else if (mem->is_Phi()) {
603       // attempt to produce a Phi reflecting the values on the input paths of the Phi
604       Node_Stack value_phis(a, 8);
605       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
606       if (phi != NULL) {
607         return phi;
608       } else {
609         // Kill all new Phis
610         while(value_phis.is_nonempty()) {
611           Node* n = value_phis.node();
612           _igvn.replace_node(n, C->top());
613           value_phis.pop();
614         }
615       }
616     } else if (mem->is_ArrayCopy()) {
617       Node* ctl = mem->in(0);
618       Node* m = mem->in(TypeFunc::Memory);
619       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
620         // pin the loads in the uncommon trap path
621         ctl = sfpt_ctl;
622         m = sfpt_mem;
623       }
624       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
625     }
626   }
627   // Something go wrong.
628   return NULL;
629 }
630 
631 // Check the possibility of scalar replacement.
can_eliminate_allocation(AllocateNode * alloc,GrowableArray<SafePointNode * > & safepoints)632 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
633   //  Scan the uses of the allocation to check for anything that would
634   //  prevent us from eliminating it.
635   NOT_PRODUCT( const char* fail_eliminate = NULL; )
636   DEBUG_ONLY( Node* disq_node = NULL; )
637   bool  can_eliminate = true;
638 
639   Node* res = alloc->result_cast();
640   const TypeOopPtr* res_type = NULL;
641   if (res == NULL) {
642     // All users were eliminated.
643   } else if (!res->is_CheckCastPP()) {
644     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
645     can_eliminate = false;
646   } else {
647     res_type = _igvn.type(res)->isa_oopptr();
648     if (res_type == NULL) {
649       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
650       can_eliminate = false;
651     } else if (res_type->isa_aryptr()) {
652       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
653       if (length < 0) {
654         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
655         can_eliminate = false;
656       }
657     }
658   }
659 
660   if (can_eliminate && res != NULL) {
661     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
662                                j < jmax && can_eliminate; j++) {
663       Node* use = res->fast_out(j);
664 
665       if (use->is_AddP()) {
666         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
667         int offset = addp_type->offset();
668 
669         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
670           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
671           can_eliminate = false;
672           break;
673         }
674         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
675                                    k < kmax && can_eliminate; k++) {
676           Node* n = use->fast_out(k);
677           if (!n->is_Store() && n->Opcode() != Op_CastP2X
678               SHENANDOAHGC_ONLY(&& (!UseShenandoahGC || !ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(n))) ) {
679             DEBUG_ONLY(disq_node = n;)
680             if (n->is_Load() || n->is_LoadStore()) {
681               NOT_PRODUCT(fail_eliminate = "Field load";)
682             } else {
683               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
684             }
685             can_eliminate = false;
686           }
687         }
688       } else if (use->is_ArrayCopy() &&
689                  (use->as_ArrayCopy()->is_clonebasic() ||
690                   use->as_ArrayCopy()->is_arraycopy_validated() ||
691                   use->as_ArrayCopy()->is_copyof_validated() ||
692                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
693                  use->in(ArrayCopyNode::Dest) == res) {
694         // ok to eliminate
695       } else if (use->is_SafePoint()) {
696         SafePointNode* sfpt = use->as_SafePoint();
697         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
698           // Object is passed as argument.
699           DEBUG_ONLY(disq_node = use;)
700           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
701           can_eliminate = false;
702         }
703         Node* sfptMem = sfpt->memory();
704         if (sfptMem == NULL || sfptMem->is_top()) {
705           DEBUG_ONLY(disq_node = use;)
706           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
707           can_eliminate = false;
708         } else {
709           safepoints.append_if_missing(sfpt);
710         }
711       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
712         if (use->is_Phi()) {
713           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
714             NOT_PRODUCT(fail_eliminate = "Object is return value";)
715           } else {
716             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
717           }
718           DEBUG_ONLY(disq_node = use;)
719         } else {
720           if (use->Opcode() == Op_Return) {
721             NOT_PRODUCT(fail_eliminate = "Object is return value";)
722           }else {
723             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
724           }
725           DEBUG_ONLY(disq_node = use;)
726         }
727         can_eliminate = false;
728       }
729     }
730   }
731 
732 #ifndef PRODUCT
733   if (PrintEliminateAllocations) {
734     if (can_eliminate) {
735       tty->print("Scalar ");
736       if (res == NULL)
737         alloc->dump();
738       else
739         res->dump();
740     } else if (alloc->_is_scalar_replaceable) {
741       tty->print("NotScalar (%s)", fail_eliminate);
742       if (res == NULL)
743         alloc->dump();
744       else
745         res->dump();
746 #ifdef ASSERT
747       if (disq_node != NULL) {
748           tty->print("  >>>> ");
749           disq_node->dump();
750       }
751 #endif /*ASSERT*/
752     }
753   }
754 #endif
755   return can_eliminate;
756 }
757 
758 // Do scalar replacement.
scalar_replacement(AllocateNode * alloc,GrowableArray<SafePointNode * > & safepoints)759 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
760   GrowableArray <SafePointNode *> safepoints_done;
761 
762   ciKlass* klass = NULL;
763   ciInstanceKlass* iklass = NULL;
764   int nfields = 0;
765   int array_base = 0;
766   int element_size = 0;
767   BasicType basic_elem_type = T_ILLEGAL;
768   ciType* elem_type = NULL;
769 
770   Node* res = alloc->result_cast();
771   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
772   const TypeOopPtr* res_type = NULL;
773   if (res != NULL) { // Could be NULL when there are no users
774     res_type = _igvn.type(res)->isa_oopptr();
775   }
776 
777   if (res != NULL) {
778     klass = res_type->klass();
779     if (res_type->isa_instptr()) {
780       // find the fields of the class which will be needed for safepoint debug information
781       assert(klass->is_instance_klass(), "must be an instance klass.");
782       iklass = klass->as_instance_klass();
783       nfields = iklass->nof_nonstatic_fields();
784     } else {
785       // find the array's elements which will be needed for safepoint debug information
786       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
787       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
788       elem_type = klass->as_array_klass()->element_type();
789       basic_elem_type = elem_type->basic_type();
790       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
791       element_size = type2aelembytes(basic_elem_type);
792     }
793   }
794   //
795   // Process the safepoint uses
796   //
797   while (safepoints.length() > 0) {
798     SafePointNode* sfpt = safepoints.pop();
799     Node* mem = sfpt->memory();
800     Node* ctl = sfpt->control();
801     assert(sfpt->jvms() != NULL, "missed JVMS");
802     // Fields of scalar objs are referenced only at the end
803     // of regular debuginfo at the last (youngest) JVMS.
804     // Record relative start index.
805     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
806     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
807 #ifdef ASSERT
808                                                  alloc,
809 #endif
810                                                  first_ind, nfields);
811     sobj->init_req(0, C->root());
812     transform_later(sobj);
813 
814     // Scan object's fields adding an input to the safepoint for each field.
815     for (int j = 0; j < nfields; j++) {
816       intptr_t offset;
817       ciField* field = NULL;
818       if (iklass != NULL) {
819         field = iklass->nonstatic_field_at(j);
820         offset = field->offset();
821         elem_type = field->type();
822         basic_elem_type = field->layout_type();
823       } else {
824         offset = array_base + j * (intptr_t)element_size;
825       }
826 
827       const Type *field_type;
828       // The next code is taken from Parse::do_get_xxx().
829       if (is_reference_type(basic_elem_type)) {
830         if (!elem_type->is_loaded()) {
831           field_type = TypeInstPtr::BOTTOM;
832         } else if (field != NULL && field->is_static_constant()) {
833           // This can happen if the constant oop is non-perm.
834           ciObject* con = field->constant_value().as_object();
835           // Do not "join" in the previous type; it doesn't add value,
836           // and may yield a vacuous result if the field is of interface type.
837           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
838           assert(field_type != NULL, "field singleton type must be consistent");
839         } else {
840           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
841         }
842         if (UseCompressedOops) {
843           field_type = field_type->make_narrowoop();
844           basic_elem_type = T_NARROWOOP;
845         }
846       } else {
847         field_type = Type::get_const_basic_type(basic_elem_type);
848       }
849 
850       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
851 
852       Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
853       if (field_val == NULL) {
854         // We weren't able to find a value for this field,
855         // give up on eliminating this allocation.
856 
857         // Remove any extra entries we added to the safepoint.
858         uint last = sfpt->req() - 1;
859         for (int k = 0;  k < j; k++) {
860           sfpt->del_req(last--);
861         }
862         _igvn._worklist.push(sfpt);
863         // rollback processed safepoints
864         while (safepoints_done.length() > 0) {
865           SafePointNode* sfpt_done = safepoints_done.pop();
866           // remove any extra entries we added to the safepoint
867           last = sfpt_done->req() - 1;
868           for (int k = 0;  k < nfields; k++) {
869             sfpt_done->del_req(last--);
870           }
871           JVMState *jvms = sfpt_done->jvms();
872           jvms->set_endoff(sfpt_done->req());
873           // Now make a pass over the debug information replacing any references
874           // to SafePointScalarObjectNode with the allocated object.
875           int start = jvms->debug_start();
876           int end   = jvms->debug_end();
877           for (int i = start; i < end; i++) {
878             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
879               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
880               if (scobj->first_index(jvms) == sfpt_done->req() &&
881                   scobj->n_fields() == (uint)nfields) {
882                 assert(scobj->alloc() == alloc, "sanity");
883                 sfpt_done->set_req(i, res);
884               }
885             }
886           }
887           _igvn._worklist.push(sfpt_done);
888         }
889 #ifndef PRODUCT
890         if (PrintEliminateAllocations) {
891           if (field != NULL) {
892             tty->print("=== At SafePoint node %d can't find value of Field: ",
893                        sfpt->_idx);
894             field->print();
895             int field_idx = C->get_alias_index(field_addr_type);
896             tty->print(" (alias_idx=%d)", field_idx);
897           } else { // Array's element
898             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
899                        sfpt->_idx, j);
900           }
901           tty->print(", which prevents elimination of: ");
902           if (res == NULL)
903             alloc->dump();
904           else
905             res->dump();
906         }
907 #endif
908         return false;
909       }
910       if (UseCompressedOops && field_type->isa_narrowoop()) {
911         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
912         // to be able scalar replace the allocation.
913         if (field_val->is_EncodeP()) {
914           field_val = field_val->in(1);
915         } else {
916           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
917         }
918       }
919       sfpt->add_req(field_val);
920     }
921     JVMState *jvms = sfpt->jvms();
922     jvms->set_endoff(sfpt->req());
923     // Now make a pass over the debug information replacing any references
924     // to the allocated object with "sobj"
925     int start = jvms->debug_start();
926     int end   = jvms->debug_end();
927     sfpt->replace_edges_in_range(res, sobj, start, end);
928     _igvn._worklist.push(sfpt);
929     safepoints_done.append_if_missing(sfpt); // keep it for rollback
930   }
931   return true;
932 }
933 
disconnect_projections(MultiNode * n,PhaseIterGVN & igvn)934 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
935   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
936   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
937   if (ctl_proj != NULL) {
938     igvn.replace_node(ctl_proj, n->in(0));
939   }
940   if (mem_proj != NULL) {
941     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
942   }
943 }
944 
945 // Process users of eliminated allocation.
process_users_of_allocation(CallNode * alloc)946 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
947   Node* res = alloc->result_cast();
948   if (res != NULL) {
949     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
950       Node *use = res->last_out(j);
951       uint oc1 = res->outcnt();
952 
953       if (use->is_AddP()) {
954         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
955           Node *n = use->last_out(k);
956           uint oc2 = use->outcnt();
957           if (n->is_Store()) {
958 #ifdef ASSERT
959             // Verify that there is no dependent MemBarVolatile nodes,
960             // they should be removed during IGVN, see MemBarNode::Ideal().
961             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
962                                        p < pmax; p++) {
963               Node* mb = n->fast_out(p);
964               assert(mb->is_Initialize() || !mb->is_MemBar() ||
965                      mb->req() <= MemBarNode::Precedent ||
966                      mb->in(MemBarNode::Precedent) != n,
967                      "MemBarVolatile should be eliminated for non-escaping object");
968             }
969 #endif
970             _igvn.replace_node(n, n->in(MemNode::Memory));
971           } else {
972             eliminate_gc_barrier(n);
973           }
974           k -= (oc2 - use->outcnt());
975         }
976         _igvn.remove_dead_node(use);
977       } else if (use->is_ArrayCopy()) {
978         // Disconnect ArrayCopy node
979         ArrayCopyNode* ac = use->as_ArrayCopy();
980         if (ac->is_clonebasic()) {
981           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
982           disconnect_projections(ac, _igvn);
983           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
984           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
985           disconnect_projections(membar_before->as_MemBar(), _igvn);
986           if (membar_after->is_MemBar()) {
987             disconnect_projections(membar_after->as_MemBar(), _igvn);
988           }
989         } else {
990           assert(ac->is_arraycopy_validated() ||
991                  ac->is_copyof_validated() ||
992                  ac->is_copyofrange_validated(), "unsupported");
993           CallProjections callprojs;
994           ac->extract_projections(&callprojs, true);
995 
996           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
997           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
998           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
999 
1000           // Set control to top. IGVN will remove the remaining projections
1001           ac->set_req(0, top());
1002           ac->replace_edge(res, top());
1003 
1004           // Disconnect src right away: it can help find new
1005           // opportunities for allocation elimination
1006           Node* src = ac->in(ArrayCopyNode::Src);
1007           ac->replace_edge(src, top());
1008           // src can be top at this point if src and dest of the
1009           // arraycopy were the same
1010           if (src->outcnt() == 0 && !src->is_top()) {
1011             _igvn.remove_dead_node(src);
1012           }
1013         }
1014         _igvn._worklist.push(ac);
1015       } else {
1016         eliminate_gc_barrier(use);
1017       }
1018       j -= (oc1 - res->outcnt());
1019     }
1020     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1021     _igvn.remove_dead_node(res);
1022   }
1023 
1024   //
1025   // Process other users of allocation's projections
1026   //
1027   if (_resproj != NULL && _resproj->outcnt() != 0) {
1028     // First disconnect stores captured by Initialize node.
1029     // If Initialize node is eliminated first in the following code,
1030     // it will kill such stores and DUIterator_Last will assert.
1031     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1032       Node *use = _resproj->fast_out(j);
1033       if (use->is_AddP()) {
1034         // raw memory addresses used only by the initialization
1035         _igvn.replace_node(use, C->top());
1036         --j; --jmax;
1037       }
1038     }
1039     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1040       Node *use = _resproj->last_out(j);
1041       uint oc1 = _resproj->outcnt();
1042       if (use->is_Initialize()) {
1043         // Eliminate Initialize node.
1044         InitializeNode *init = use->as_Initialize();
1045         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1046         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1047         if (ctrl_proj != NULL) {
1048           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1049 #ifdef ASSERT
1050           Node* tmp = init->in(TypeFunc::Control);
1051           assert(tmp == _fallthroughcatchproj, "allocation control projection");
1052 #endif
1053         }
1054         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1055         if (mem_proj != NULL) {
1056           Node *mem = init->in(TypeFunc::Memory);
1057 #ifdef ASSERT
1058           if (mem->is_MergeMem()) {
1059             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1060           } else {
1061             assert(mem == _memproj_fallthrough, "allocation memory projection");
1062           }
1063 #endif
1064           _igvn.replace_node(mem_proj, mem);
1065         }
1066       } else  {
1067         assert(false, "only Initialize or AddP expected");
1068       }
1069       j -= (oc1 - _resproj->outcnt());
1070     }
1071   }
1072   if (_fallthroughcatchproj != NULL) {
1073     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1074   }
1075   if (_memproj_fallthrough != NULL) {
1076     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1077   }
1078   if (_memproj_catchall != NULL) {
1079     _igvn.replace_node(_memproj_catchall, C->top());
1080   }
1081   if (_ioproj_fallthrough != NULL) {
1082     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1083   }
1084   if (_ioproj_catchall != NULL) {
1085     _igvn.replace_node(_ioproj_catchall, C->top());
1086   }
1087   if (_catchallcatchproj != NULL) {
1088     _igvn.replace_node(_catchallcatchproj, C->top());
1089   }
1090 }
1091 
eliminate_allocate_node(AllocateNode * alloc)1092 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1093   // Don't do scalar replacement if the frame can be popped by JVMTI:
1094   // if reallocation fails during deoptimization we'll pop all
1095   // interpreter frames for this compiled frame and that won't play
1096   // nice with JVMTI popframe.
1097   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1098     return false;
1099   }
1100   Node* klass = alloc->in(AllocateNode::KlassNode);
1101   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1102   Node* res = alloc->result_cast();
1103   // Eliminate boxing allocations which are not used
1104   // regardless scalar replacable status.
1105   bool boxing_alloc = C->eliminate_boxing() &&
1106                       tklass->klass()->is_instance_klass()  &&
1107                       tklass->klass()->as_instance_klass()->is_box_klass();
1108   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1109     return false;
1110   }
1111 
1112   extract_call_projections(alloc);
1113 
1114   GrowableArray <SafePointNode *> safepoints;
1115   if (!can_eliminate_allocation(alloc, safepoints)) {
1116     return false;
1117   }
1118 
1119   if (!alloc->_is_scalar_replaceable) {
1120     assert(res == NULL, "sanity");
1121     // We can only eliminate allocation if all debug info references
1122     // are already replaced with SafePointScalarObject because
1123     // we can't search for a fields value without instance_id.
1124     if (safepoints.length() > 0) {
1125       return false;
1126     }
1127   }
1128 
1129   if (!scalar_replacement(alloc, safepoints)) {
1130     return false;
1131   }
1132 
1133   CompileLog* log = C->log();
1134   if (log != NULL) {
1135     log->head("eliminate_allocation type='%d'",
1136               log->identify(tklass->klass()));
1137     JVMState* p = alloc->jvms();
1138     while (p != NULL) {
1139       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1140       p = p->caller();
1141     }
1142     log->tail("eliminate_allocation");
1143   }
1144 
1145   process_users_of_allocation(alloc);
1146 
1147 #ifndef PRODUCT
1148   if (PrintEliminateAllocations) {
1149     if (alloc->is_AllocateArray())
1150       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1151     else
1152       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1153   }
1154 #endif
1155 
1156   return true;
1157 }
1158 
eliminate_boxing_node(CallStaticJavaNode * boxing)1159 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1160   // EA should remove all uses of non-escaping boxing node.
1161   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1162     return false;
1163   }
1164 
1165   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1166 
1167   extract_call_projections(boxing);
1168 
1169   const TypeTuple* r = boxing->tf()->range();
1170   assert(r->cnt() > TypeFunc::Parms, "sanity");
1171   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1172   assert(t != NULL, "sanity");
1173 
1174   CompileLog* log = C->log();
1175   if (log != NULL) {
1176     log->head("eliminate_boxing type='%d'",
1177               log->identify(t->klass()));
1178     JVMState* p = boxing->jvms();
1179     while (p != NULL) {
1180       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1181       p = p->caller();
1182     }
1183     log->tail("eliminate_boxing");
1184   }
1185 
1186   process_users_of_allocation(boxing);
1187 
1188 #ifndef PRODUCT
1189   if (PrintEliminateAllocations) {
1190     tty->print("++++ Eliminated: %d ", boxing->_idx);
1191     boxing->method()->print_short_name(tty);
1192     tty->cr();
1193   }
1194 #endif
1195 
1196   return true;
1197 }
1198 
1199 //---------------------------set_eden_pointers-------------------------
set_eden_pointers(Node * & eden_top_adr,Node * & eden_end_adr)1200 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1201   if (UseTLAB) {                // Private allocation: load from TLS
1202     Node* thread = transform_later(new ThreadLocalNode());
1203     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1204     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1205     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1206     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1207   } else {                      // Shared allocation: load from globals
1208     CollectedHeap* ch = Universe::heap();
1209     address top_adr = (address)ch->top_addr();
1210     address end_adr = (address)ch->end_addr();
1211     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1212     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1213   }
1214 }
1215 
1216 
make_load(Node * ctl,Node * mem,Node * base,int offset,const Type * value_type,BasicType bt)1217 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1218   Node* adr = basic_plus_adr(base, offset);
1219   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1220   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1221   transform_later(value);
1222   return value;
1223 }
1224 
1225 
make_store(Node * ctl,Node * mem,Node * base,int offset,Node * value,BasicType bt)1226 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1227   Node* adr = basic_plus_adr(base, offset);
1228   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1229   transform_later(mem);
1230   return mem;
1231 }
1232 
1233 //=============================================================================
1234 //
1235 //                              A L L O C A T I O N
1236 //
1237 // Allocation attempts to be fast in the case of frequent small objects.
1238 // It breaks down like this:
1239 //
1240 // 1) Size in doublewords is computed.  This is a constant for objects and
1241 // variable for most arrays.  Doubleword units are used to avoid size
1242 // overflow of huge doubleword arrays.  We need doublewords in the end for
1243 // rounding.
1244 //
1245 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1246 // the slow path into the VM.  The slow path can throw any required
1247 // exceptions, and does all the special checks for very large arrays.  The
1248 // size test can constant-fold away for objects.  For objects with
1249 // finalizers it constant-folds the otherway: you always go slow with
1250 // finalizers.
1251 //
1252 // 3) If NOT using TLABs, this is the contended loop-back point.
1253 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1254 //
1255 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1256 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1257 // "size*8" we always enter the VM, where "largish" is a constant picked small
1258 // enough that there's always space between the eden max and 4Gig (old space is
1259 // there so it's quite large) and large enough that the cost of entering the VM
1260 // is dwarfed by the cost to initialize the space.
1261 //
1262 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1263 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1264 // adjusted heap top back down; there is no contention.
1265 //
1266 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1267 // fields.
1268 //
1269 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1270 // oop flavor.
1271 //
1272 //=============================================================================
1273 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1274 // Allocations bigger than this always go the slow route.
1275 // This value must be small enough that allocation attempts that need to
1276 // trigger exceptions go the slow route.  Also, it must be small enough so
1277 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1278 //=============================================================================j//
1279 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1280 // The allocator will coalesce int->oop copies away.  See comment in
1281 // coalesce.cpp about how this works.  It depends critically on the exact
1282 // code shape produced here, so if you are changing this code shape
1283 // make sure the GC info for the heap-top is correct in and around the
1284 // slow-path call.
1285 //
1286 
expand_allocate_common(AllocateNode * alloc,Node * length,const TypeFunc * slow_call_type,address slow_call_address)1287 void PhaseMacroExpand::expand_allocate_common(
1288             AllocateNode* alloc, // allocation node to be expanded
1289             Node* length,  // array length for an array allocation
1290             const TypeFunc* slow_call_type, // Type of slow call
1291             address slow_call_address  // Address of slow call
1292     )
1293 {
1294   Node* ctrl = alloc->in(TypeFunc::Control);
1295   Node* mem  = alloc->in(TypeFunc::Memory);
1296   Node* i_o  = alloc->in(TypeFunc::I_O);
1297   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1298   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1299   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1300   assert(ctrl != NULL, "must have control");
1301 
1302   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1303   // they will not be used if "always_slow" is set
1304   enum { slow_result_path = 1, fast_result_path = 2 };
1305   Node *result_region = NULL;
1306   Node *result_phi_rawmem = NULL;
1307   Node *result_phi_rawoop = NULL;
1308   Node *result_phi_i_o = NULL;
1309 
1310   // The initial slow comparison is a size check, the comparison
1311   // we want to do is a BoolTest::gt
1312   bool expand_fast_path = true;
1313   int tv = _igvn.find_int_con(initial_slow_test, -1);
1314   if (tv >= 0) {
1315     // InitialTest has constant result
1316     //   0 - can fit in TLAB
1317     //   1 - always too big or negative
1318     assert(tv <= 1, "0 or 1 if a constant");
1319     expand_fast_path = (tv == 0);
1320     initial_slow_test = NULL;
1321   } else {
1322     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1323   }
1324 
1325   if (C->env()->dtrace_alloc_probes() ||
1326       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1327     // Force slow-path allocation
1328     expand_fast_path = false;
1329     initial_slow_test = NULL;
1330   }
1331 
1332   bool allocation_has_use = (alloc->result_cast() != NULL);
1333   if (!allocation_has_use) {
1334     InitializeNode* init = alloc->initialization();
1335     if (init != NULL) {
1336       init->remove(&_igvn);
1337     }
1338     if (expand_fast_path && (initial_slow_test == NULL)) {
1339       // Remove allocation node and return.
1340       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1341       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1342 #ifndef PRODUCT
1343       if (PrintEliminateAllocations) {
1344         tty->print("NotUsed ");
1345         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1346         if (res != NULL) {
1347           res->dump();
1348         } else {
1349           alloc->dump();
1350         }
1351       }
1352 #endif
1353       yank_alloc_node(alloc);
1354       return;
1355     }
1356   }
1357 
1358   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1359   Node *slow_region = NULL;
1360   Node *toobig_false = ctrl;
1361 
1362   // generate the initial test if necessary
1363   if (initial_slow_test != NULL ) {
1364     assert (expand_fast_path, "Only need test if there is a fast path");
1365     slow_region = new RegionNode(3);
1366 
1367     // Now make the initial failure test.  Usually a too-big test but
1368     // might be a TRUE for finalizers or a fancy class check for
1369     // newInstance0.
1370     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1371     transform_later(toobig_iff);
1372     // Plug the failing-too-big test into the slow-path region
1373     Node *toobig_true = new IfTrueNode( toobig_iff );
1374     transform_later(toobig_true);
1375     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1376     toobig_false = new IfFalseNode( toobig_iff );
1377     transform_later(toobig_false);
1378   } else {
1379     // No initial test, just fall into next case
1380     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1381     toobig_false = ctrl;
1382     debug_only(slow_region = NodeSentinel);
1383   }
1384 
1385   // If we are here there are several possibilities
1386   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1387   // no_initial_check means a constant allocation.
1388   // - If check always evaluates to false -> expand_fast_path is false (see above)
1389   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1390   // if !allocation_has_use the fast path is empty
1391   // if !allocation_has_use && no_initial_check
1392   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1393   //   removed by yank_alloc_node above.
1394 
1395   Node *slow_mem = mem;  // save the current memory state for slow path
1396   // generate the fast allocation code unless we know that the initial test will always go slow
1397   if (expand_fast_path) {
1398     // Fast path modifies only raw memory.
1399     if (mem->is_MergeMem()) {
1400       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1401     }
1402 
1403     // allocate the Region and Phi nodes for the result
1404     result_region = new RegionNode(3);
1405     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1406     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1407 
1408     // Grab regular I/O before optional prefetch may change it.
1409     // Slow-path does no I/O so just set it to the original I/O.
1410     result_phi_i_o->init_req(slow_result_path, i_o);
1411 
1412     // Name successful fast-path variables
1413     Node* fast_oop_ctrl;
1414     Node* fast_oop_rawmem;
1415     if (allocation_has_use) {
1416       Node* needgc_ctrl = NULL;
1417       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1418 
1419       intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1420       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1421       Node* fast_oop = bs->obj_allocate(this, ctrl, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1422                                         fast_oop_ctrl, fast_oop_rawmem,
1423                                         prefetch_lines);
1424 
1425       if (initial_slow_test != NULL) {
1426         // This completes all paths into the slow merge point
1427         slow_region->init_req(need_gc_path, needgc_ctrl);
1428         transform_later(slow_region);
1429       } else {
1430         // No initial slow path needed!
1431         // Just fall from the need-GC path straight into the VM call.
1432         slow_region = needgc_ctrl;
1433       }
1434 
1435       InitializeNode* init = alloc->initialization();
1436       fast_oop_rawmem = initialize_object(alloc,
1437                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1438                                           klass_node, length, size_in_bytes);
1439       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1440       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1441 
1442       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1443     } else {
1444       assert (initial_slow_test != NULL, "sanity");
1445       fast_oop_ctrl   = toobig_false;
1446       fast_oop_rawmem = mem;
1447       transform_later(slow_region);
1448     }
1449 
1450     // Plug in the successful fast-path into the result merge point
1451     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1452     result_phi_i_o   ->init_req(fast_result_path, i_o);
1453     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1454   } else {
1455     slow_region = ctrl;
1456     result_phi_i_o = i_o; // Rename it to use in the following code.
1457   }
1458 
1459   // Generate slow-path call
1460   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1461                                OptoRuntime::stub_name(slow_call_address),
1462                                alloc->jvms()->bci(),
1463                                TypePtr::BOTTOM);
1464   call->init_req(TypeFunc::Control,   slow_region);
1465   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1466   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1467   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1468   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1469 
1470   call->init_req(TypeFunc::Parms+0, klass_node);
1471   if (length != NULL) {
1472     call->init_req(TypeFunc::Parms+1, length);
1473   }
1474 
1475   // Copy debug information and adjust JVMState information, then replace
1476   // allocate node with the call
1477   copy_call_debug_info((CallNode *) alloc,  call);
1478   if (expand_fast_path) {
1479     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1480   } else {
1481     // Hook i_o projection to avoid its elimination during allocation
1482     // replacement (when only a slow call is generated).
1483     call->set_req(TypeFunc::I_O, result_phi_i_o);
1484   }
1485   _igvn.replace_node(alloc, call);
1486   transform_later(call);
1487 
1488   // Identify the output projections from the allocate node and
1489   // adjust any references to them.
1490   // The control and io projections look like:
1491   //
1492   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1493   //  Allocate                   Catch
1494   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1495   //
1496   //  We are interested in the CatchProj nodes.
1497   //
1498   extract_call_projections(call);
1499 
1500   // An allocate node has separate memory projections for the uses on
1501   // the control and i_o paths. Replace the control memory projection with
1502   // result_phi_rawmem (unless we are only generating a slow call when
1503   // both memory projections are combined)
1504   if (expand_fast_path && _memproj_fallthrough != NULL) {
1505     migrate_outs(_memproj_fallthrough, result_phi_rawmem);
1506   }
1507   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1508   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1509   if (_memproj_catchall != NULL ) {
1510     if (_memproj_fallthrough == NULL) {
1511       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1512       transform_later(_memproj_fallthrough);
1513     }
1514     migrate_outs(_memproj_catchall, _memproj_fallthrough);
1515     _igvn.remove_dead_node(_memproj_catchall);
1516   }
1517 
1518   // An allocate node has separate i_o projections for the uses on the control
1519   // and i_o paths. Always replace the control i_o projection with result i_o
1520   // otherwise incoming i_o become dead when only a slow call is generated
1521   // (it is different from memory projections where both projections are
1522   // combined in such case).
1523   if (_ioproj_fallthrough != NULL) {
1524     migrate_outs(_ioproj_fallthrough, result_phi_i_o);
1525   }
1526   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1527   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1528   if (_ioproj_catchall != NULL ) {
1529     if (_ioproj_fallthrough == NULL) {
1530       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1531       transform_later(_ioproj_fallthrough);
1532     }
1533     migrate_outs(_ioproj_catchall, _ioproj_fallthrough);
1534     _igvn.remove_dead_node(_ioproj_catchall);
1535   }
1536 
1537   // if we generated only a slow call, we are done
1538   if (!expand_fast_path) {
1539     // Now we can unhook i_o.
1540     if (result_phi_i_o->outcnt() > 1) {
1541       call->set_req(TypeFunc::I_O, top());
1542     } else {
1543       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1544       // Case of new array with negative size known during compilation.
1545       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1546       // following code since call to runtime will throw exception.
1547       // As result there will be no users of i_o after the call.
1548       // Leave i_o attached to this call to avoid problems in preceding graph.
1549     }
1550     return;
1551   }
1552 
1553   if (_fallthroughcatchproj != NULL) {
1554     ctrl = _fallthroughcatchproj->clone();
1555     transform_later(ctrl);
1556     _igvn.replace_node(_fallthroughcatchproj, result_region);
1557   } else {
1558     ctrl = top();
1559   }
1560   Node *slow_result;
1561   if (_resproj == NULL) {
1562     // no uses of the allocation result
1563     slow_result = top();
1564   } else {
1565     slow_result = _resproj->clone();
1566     transform_later(slow_result);
1567     _igvn.replace_node(_resproj, result_phi_rawoop);
1568   }
1569 
1570   // Plug slow-path into result merge point
1571   result_region->init_req( slow_result_path, ctrl);
1572   transform_later(result_region);
1573   if (allocation_has_use) {
1574     result_phi_rawoop->init_req(slow_result_path, slow_result);
1575     transform_later(result_phi_rawoop);
1576   }
1577   result_phi_rawmem->init_req(slow_result_path, _memproj_fallthrough);
1578   transform_later(result_phi_rawmem);
1579   transform_later(result_phi_i_o);
1580   // This completes all paths into the result merge point
1581 }
1582 
1583 // Remove alloc node that has no uses.
yank_alloc_node(AllocateNode * alloc)1584 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1585   Node* ctrl = alloc->in(TypeFunc::Control);
1586   Node* mem  = alloc->in(TypeFunc::Memory);
1587   Node* i_o  = alloc->in(TypeFunc::I_O);
1588 
1589   extract_call_projections(alloc);
1590   if (_resproj != NULL) {
1591     for (DUIterator_Fast imax, i = _resproj->fast_outs(imax); i < imax; i++) {
1592       Node* use = _resproj->fast_out(i);
1593       use->isa_MemBar()->remove(&_igvn);
1594       --imax;
1595       --i; // back up iterator
1596     }
1597     assert(_resproj->outcnt() == 0, "all uses must be deleted");
1598     _igvn.remove_dead_node(_resproj);
1599   }
1600   if (_fallthroughcatchproj != NULL) {
1601     migrate_outs(_fallthroughcatchproj, ctrl);
1602     _igvn.remove_dead_node(_fallthroughcatchproj);
1603   }
1604   if (_catchallcatchproj != NULL) {
1605     _igvn.rehash_node_delayed(_catchallcatchproj);
1606     _catchallcatchproj->set_req(0, top());
1607   }
1608   if (_fallthroughproj != NULL) {
1609     Node* catchnode = _fallthroughproj->unique_ctrl_out();
1610     _igvn.remove_dead_node(catchnode);
1611     _igvn.remove_dead_node(_fallthroughproj);
1612   }
1613   if (_memproj_fallthrough != NULL) {
1614     migrate_outs(_memproj_fallthrough, mem);
1615     _igvn.remove_dead_node(_memproj_fallthrough);
1616   }
1617   if (_ioproj_fallthrough != NULL) {
1618     migrate_outs(_ioproj_fallthrough, i_o);
1619     _igvn.remove_dead_node(_ioproj_fallthrough);
1620   }
1621   if (_memproj_catchall != NULL) {
1622     _igvn.rehash_node_delayed(_memproj_catchall);
1623     _memproj_catchall->set_req(0, top());
1624   }
1625   if (_ioproj_catchall != NULL) {
1626     _igvn.rehash_node_delayed(_ioproj_catchall);
1627     _ioproj_catchall->set_req(0, top());
1628   }
1629 #ifndef PRODUCT
1630   if (PrintEliminateAllocations) {
1631     if (alloc->is_AllocateArray()) {
1632       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1633     } else {
1634       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1635     }
1636   }
1637 #endif
1638   _igvn.remove_dead_node(alloc);
1639 }
1640 
expand_initialize_membar(AllocateNode * alloc,InitializeNode * init,Node * & fast_oop_ctrl,Node * & fast_oop_rawmem)1641 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1642                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1643   // If initialization is performed by an array copy, any required
1644   // MemBarStoreStore was already added. If the object does not
1645   // escape no need for a MemBarStoreStore. If the object does not
1646   // escape in its initializer and memory barrier (MemBarStoreStore or
1647   // stronger) is already added at exit of initializer, also no need
1648   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1649   // so that stores that initialize this object can't be reordered
1650   // with a subsequent store that makes this object accessible by
1651   // other threads.
1652   // Other threads include java threads and JVM internal threads
1653   // (for example concurrent GC threads). Current concurrent GC
1654   // implementation: G1 will not scan newly created object,
1655   // so it's safe to skip storestore barrier when allocation does
1656   // not escape.
1657   if (!alloc->does_not_escape_thread() &&
1658     !alloc->is_allocation_MemBar_redundant() &&
1659     (init == NULL || !init->is_complete_with_arraycopy())) {
1660     if (init == NULL || init->req() < InitializeNode::RawStores) {
1661       // No InitializeNode or no stores captured by zeroing
1662       // elimination. Simply add the MemBarStoreStore after object
1663       // initialization.
1664       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1665       transform_later(mb);
1666 
1667       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1668       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1669       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1670       transform_later(fast_oop_ctrl);
1671       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1672       transform_later(fast_oop_rawmem);
1673     } else {
1674       // Add the MemBarStoreStore after the InitializeNode so that
1675       // all stores performing the initialization that were moved
1676       // before the InitializeNode happen before the storestore
1677       // barrier.
1678 
1679       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1680       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1681 
1682       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1683       transform_later(mb);
1684 
1685       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1686       transform_later(ctrl);
1687       Node* mem = new ProjNode(init, TypeFunc::Memory);
1688       transform_later(mem);
1689 
1690       // The MemBarStoreStore depends on control and memory coming
1691       // from the InitializeNode
1692       mb->init_req(TypeFunc::Memory, mem);
1693       mb->init_req(TypeFunc::Control, ctrl);
1694 
1695       ctrl = new ProjNode(mb, TypeFunc::Control);
1696       transform_later(ctrl);
1697       mem = new ProjNode(mb, TypeFunc::Memory);
1698       transform_later(mem);
1699 
1700       // All nodes that depended on the InitializeNode for control
1701       // and memory must now depend on the MemBarNode that itself
1702       // depends on the InitializeNode
1703       if (init_ctrl != NULL) {
1704         _igvn.replace_node(init_ctrl, ctrl);
1705       }
1706       if (init_mem != NULL) {
1707         _igvn.replace_node(init_mem, mem);
1708       }
1709     }
1710   }
1711 }
1712 
expand_dtrace_alloc_probe(AllocateNode * alloc,Node * oop,Node * & ctrl,Node * & rawmem)1713 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1714                                                 Node*& ctrl, Node*& rawmem) {
1715   if (C->env()->dtrace_extended_probes()) {
1716     // Slow-path call
1717     int size = TypeFunc::Parms + 2;
1718     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1719                                           CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1720                                           "dtrace_object_alloc",
1721                                           TypeRawPtr::BOTTOM);
1722 
1723     // Get base of thread-local storage area
1724     Node* thread = new ThreadLocalNode();
1725     transform_later(thread);
1726 
1727     call->init_req(TypeFunc::Parms + 0, thread);
1728     call->init_req(TypeFunc::Parms + 1, oop);
1729     call->init_req(TypeFunc::Control, ctrl);
1730     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1731     call->init_req(TypeFunc::Memory , ctrl);
1732     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1733     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1734     transform_later(call);
1735     ctrl = new ProjNode(call, TypeFunc::Control);
1736     transform_later(ctrl);
1737     rawmem = new ProjNode(call, TypeFunc::Memory);
1738     transform_later(rawmem);
1739   }
1740 }
1741 
1742 // Helper for PhaseMacroExpand::expand_allocate_common.
1743 // Initializes the newly-allocated storage.
1744 Node*
initialize_object(AllocateNode * alloc,Node * control,Node * rawmem,Node * object,Node * klass_node,Node * length,Node * size_in_bytes)1745 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1746                                     Node* control, Node* rawmem, Node* object,
1747                                     Node* klass_node, Node* length,
1748                                     Node* size_in_bytes) {
1749   InitializeNode* init = alloc->initialization();
1750   // Store the klass & mark bits
1751   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1752   if (!mark_node->is_Con()) {
1753     transform_later(mark_node);
1754   }
1755   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1756 
1757   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1758   int header_size = alloc->minimum_header_size();  // conservatively small
1759 
1760   // Array length
1761   if (length != NULL) {         // Arrays need length field
1762     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1763     // conservatively small header size:
1764     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1765     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1766     if (k->is_array_klass())    // we know the exact header size in most cases:
1767       header_size = Klass::layout_helper_header_size(k->layout_helper());
1768   }
1769 
1770   // Clear the object body, if necessary.
1771   if (init == NULL) {
1772     // The init has somehow disappeared; be cautious and clear everything.
1773     //
1774     // This can happen if a node is allocated but an uncommon trap occurs
1775     // immediately.  In this case, the Initialize gets associated with the
1776     // trap, and may be placed in a different (outer) loop, if the Allocate
1777     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1778     // there can be two Allocates to one Initialize.  The answer in all these
1779     // edge cases is safety first.  It is always safe to clear immediately
1780     // within an Allocate, and then (maybe or maybe not) clear some more later.
1781     if (!(UseTLAB && ZeroTLAB)) {
1782       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1783                                             header_size, size_in_bytes,
1784                                             &_igvn);
1785     }
1786   } else {
1787     if (!init->is_complete()) {
1788       // Try to win by zeroing only what the init does not store.
1789       // We can also try to do some peephole optimizations,
1790       // such as combining some adjacent subword stores.
1791       rawmem = init->complete_stores(control, rawmem, object,
1792                                      header_size, size_in_bytes, &_igvn);
1793     }
1794     // We have no more use for this link, since the AllocateNode goes away:
1795     init->set_req(InitializeNode::RawAddress, top());
1796     // (If we keep the link, it just confuses the register allocator,
1797     // who thinks he sees a real use of the address by the membar.)
1798   }
1799 
1800   return rawmem;
1801 }
1802 
1803 // Generate prefetch instructions for next allocations.
prefetch_allocation(Node * i_o,Node * & needgc_false,Node * & contended_phi_rawmem,Node * old_eden_top,Node * new_eden_top,intx lines)1804 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1805                                         Node*& contended_phi_rawmem,
1806                                         Node* old_eden_top, Node* new_eden_top,
1807                                         intx lines) {
1808    enum { fall_in_path = 1, pf_path = 2 };
1809    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1810       // Generate prefetch allocation with watermark check.
1811       // As an allocation hits the watermark, we will prefetch starting
1812       // at a "distance" away from watermark.
1813 
1814       Node *pf_region = new RegionNode(3);
1815       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1816                                                 TypeRawPtr::BOTTOM );
1817       // I/O is used for Prefetch
1818       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1819 
1820       Node *thread = new ThreadLocalNode();
1821       transform_later(thread);
1822 
1823       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1824                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1825       transform_later(eden_pf_adr);
1826 
1827       Node *old_pf_wm = new LoadPNode(needgc_false,
1828                                    contended_phi_rawmem, eden_pf_adr,
1829                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1830                                    MemNode::unordered);
1831       transform_later(old_pf_wm);
1832 
1833       // check against new_eden_top
1834       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1835       transform_later(need_pf_cmp);
1836       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1837       transform_later(need_pf_bol);
1838       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1839                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1840       transform_later(need_pf_iff);
1841 
1842       // true node, add prefetchdistance
1843       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1844       transform_later(need_pf_true);
1845 
1846       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1847       transform_later(need_pf_false);
1848 
1849       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1850                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1851       transform_later(new_pf_wmt );
1852       new_pf_wmt->set_req(0, need_pf_true);
1853 
1854       Node *store_new_wmt = new StorePNode(need_pf_true,
1855                                        contended_phi_rawmem, eden_pf_adr,
1856                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1857                                        MemNode::unordered);
1858       transform_later(store_new_wmt);
1859 
1860       // adding prefetches
1861       pf_phi_abio->init_req( fall_in_path, i_o );
1862 
1863       Node *prefetch_adr;
1864       Node *prefetch;
1865       uint step_size = AllocatePrefetchStepSize;
1866       uint distance = 0;
1867 
1868       for ( intx i = 0; i < lines; i++ ) {
1869         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1870                                             _igvn.MakeConX(distance) );
1871         transform_later(prefetch_adr);
1872         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1873         transform_later(prefetch);
1874         distance += step_size;
1875         i_o = prefetch;
1876       }
1877       pf_phi_abio->set_req( pf_path, i_o );
1878 
1879       pf_region->init_req( fall_in_path, need_pf_false );
1880       pf_region->init_req( pf_path, need_pf_true );
1881 
1882       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1883       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1884 
1885       transform_later(pf_region);
1886       transform_later(pf_phi_rawmem);
1887       transform_later(pf_phi_abio);
1888 
1889       needgc_false = pf_region;
1890       contended_phi_rawmem = pf_phi_rawmem;
1891       i_o = pf_phi_abio;
1892    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1893       // Insert a prefetch instruction for each allocation.
1894       // This code is used to generate 1 prefetch instruction per cache line.
1895 
1896       // Generate several prefetch instructions.
1897       uint step_size = AllocatePrefetchStepSize;
1898       uint distance = AllocatePrefetchDistance;
1899 
1900       // Next cache address.
1901       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1902                                      _igvn.MakeConX(step_size + distance));
1903       transform_later(cache_adr);
1904       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1905       transform_later(cache_adr);
1906       // Address is aligned to execute prefetch to the beginning of cache line size
1907       // (it is important when BIS instruction is used on SPARC as prefetch).
1908       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1909       cache_adr = new AndXNode(cache_adr, mask);
1910       transform_later(cache_adr);
1911       cache_adr = new CastX2PNode(cache_adr);
1912       transform_later(cache_adr);
1913 
1914       // Prefetch
1915       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1916       prefetch->set_req(0, needgc_false);
1917       transform_later(prefetch);
1918       contended_phi_rawmem = prefetch;
1919       Node *prefetch_adr;
1920       distance = step_size;
1921       for ( intx i = 1; i < lines; i++ ) {
1922         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1923                                             _igvn.MakeConX(distance) );
1924         transform_later(prefetch_adr);
1925         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1926         transform_later(prefetch);
1927         distance += step_size;
1928         contended_phi_rawmem = prefetch;
1929       }
1930    } else if( AllocatePrefetchStyle > 0 ) {
1931       // Insert a prefetch for each allocation only on the fast-path
1932       Node *prefetch_adr;
1933       Node *prefetch;
1934       // Generate several prefetch instructions.
1935       uint step_size = AllocatePrefetchStepSize;
1936       uint distance = AllocatePrefetchDistance;
1937       for ( intx i = 0; i < lines; i++ ) {
1938         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1939                                             _igvn.MakeConX(distance) );
1940         transform_later(prefetch_adr);
1941         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1942         // Do not let it float too high, since if eden_top == eden_end,
1943         // both might be null.
1944         if( i == 0 ) { // Set control for first prefetch, next follows it
1945           prefetch->init_req(0, needgc_false);
1946         }
1947         transform_later(prefetch);
1948         distance += step_size;
1949         i_o = prefetch;
1950       }
1951    }
1952    return i_o;
1953 }
1954 
1955 
expand_allocate(AllocateNode * alloc)1956 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1957   expand_allocate_common(alloc, NULL,
1958                          OptoRuntime::new_instance_Type(),
1959                          OptoRuntime::new_instance_Java());
1960 }
1961 
expand_allocate_array(AllocateArrayNode * alloc)1962 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1963   Node* length = alloc->in(AllocateNode::ALength);
1964   InitializeNode* init = alloc->initialization();
1965   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1966   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1967   address slow_call_address;  // Address of slow call
1968   if (init != NULL && init->is_complete_with_arraycopy() &&
1969       k->is_type_array_klass()) {
1970     // Don't zero type array during slow allocation in VM since
1971     // it will be initialized later by arraycopy in compiled code.
1972     slow_call_address = OptoRuntime::new_array_nozero_Java();
1973   } else {
1974     slow_call_address = OptoRuntime::new_array_Java();
1975   }
1976   expand_allocate_common(alloc, length,
1977                          OptoRuntime::new_array_Type(),
1978                          slow_call_address);
1979 }
1980 
1981 //-------------------mark_eliminated_box----------------------------------
1982 //
1983 // During EA obj may point to several objects but after few ideal graph
1984 // transformations (CCP) it may point to only one non escaping object
1985 // (but still using phi), corresponding locks and unlocks will be marked
1986 // for elimination. Later obj could be replaced with a new node (new phi)
1987 // and which does not have escape information. And later after some graph
1988 // reshape other locks and unlocks (which were not marked for elimination
1989 // before) are connected to this new obj (phi) but they still will not be
1990 // marked for elimination since new obj has no escape information.
1991 // Mark all associated (same box and obj) lock and unlock nodes for
1992 // elimination if some of them marked already.
mark_eliminated_box(Node * oldbox,Node * obj)1993 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1994   if (oldbox->as_BoxLock()->is_eliminated())
1995     return; // This BoxLock node was processed already.
1996 
1997   // New implementation (EliminateNestedLocks) has separate BoxLock
1998   // node for each locked region so mark all associated locks/unlocks as
1999   // eliminated even if different objects are referenced in one locked region
2000   // (for example, OSR compilation of nested loop inside locked scope).
2001   if (EliminateNestedLocks ||
2002       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2003     // Box is used only in one lock region. Mark this box as eliminated.
2004     _igvn.hash_delete(oldbox);
2005     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2006      _igvn.hash_insert(oldbox);
2007 
2008     for (uint i = 0; i < oldbox->outcnt(); i++) {
2009       Node* u = oldbox->raw_out(i);
2010       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2011         AbstractLockNode* alock = u->as_AbstractLock();
2012         // Check lock's box since box could be referenced by Lock's debug info.
2013         if (alock->box_node() == oldbox) {
2014           // Mark eliminated all related locks and unlocks.
2015 #ifdef ASSERT
2016           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2017 #endif
2018           alock->set_non_esc_obj();
2019         }
2020       }
2021     }
2022     return;
2023   }
2024 
2025   // Create new "eliminated" BoxLock node and use it in monitor debug info
2026   // instead of oldbox for the same object.
2027   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2028 
2029   // Note: BoxLock node is marked eliminated only here and it is used
2030   // to indicate that all associated lock and unlock nodes are marked
2031   // for elimination.
2032   newbox->set_eliminated();
2033   transform_later(newbox);
2034 
2035   // Replace old box node with new box for all users of the same object.
2036   for (uint i = 0; i < oldbox->outcnt();) {
2037     bool next_edge = true;
2038 
2039     Node* u = oldbox->raw_out(i);
2040     if (u->is_AbstractLock()) {
2041       AbstractLockNode* alock = u->as_AbstractLock();
2042       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2043         // Replace Box and mark eliminated all related locks and unlocks.
2044 #ifdef ASSERT
2045         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2046 #endif
2047         alock->set_non_esc_obj();
2048         _igvn.rehash_node_delayed(alock);
2049         alock->set_box_node(newbox);
2050         next_edge = false;
2051       }
2052     }
2053     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2054       FastLockNode* flock = u->as_FastLock();
2055       assert(flock->box_node() == oldbox, "sanity");
2056       _igvn.rehash_node_delayed(flock);
2057       flock->set_box_node(newbox);
2058       next_edge = false;
2059     }
2060 
2061     // Replace old box in monitor debug info.
2062     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2063       SafePointNode* sfn = u->as_SafePoint();
2064       JVMState* youngest_jvms = sfn->jvms();
2065       int max_depth = youngest_jvms->depth();
2066       for (int depth = 1; depth <= max_depth; depth++) {
2067         JVMState* jvms = youngest_jvms->of_depth(depth);
2068         int num_mon  = jvms->nof_monitors();
2069         // Loop over monitors
2070         for (int idx = 0; idx < num_mon; idx++) {
2071           Node* obj_node = sfn->monitor_obj(jvms, idx);
2072           Node* box_node = sfn->monitor_box(jvms, idx);
2073           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2074             int j = jvms->monitor_box_offset(idx);
2075             _igvn.replace_input_of(u, j, newbox);
2076             next_edge = false;
2077           }
2078         }
2079       }
2080     }
2081     if (next_edge) i++;
2082   }
2083 }
2084 
2085 //-----------------------mark_eliminated_locking_nodes-----------------------
mark_eliminated_locking_nodes(AbstractLockNode * alock)2086 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2087   if (EliminateNestedLocks) {
2088     if (alock->is_nested()) {
2089        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2090        return;
2091     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2092       // Only Lock node has JVMState needed here.
2093       // Not that preceding claim is documented anywhere else.
2094       if (alock->jvms() != NULL) {
2095         if (alock->as_Lock()->is_nested_lock_region()) {
2096           // Mark eliminated related nested locks and unlocks.
2097           Node* obj = alock->obj_node();
2098           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2099           assert(!box_node->is_eliminated(), "should not be marked yet");
2100           // Note: BoxLock node is marked eliminated only here
2101           // and it is used to indicate that all associated lock
2102           // and unlock nodes are marked for elimination.
2103           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2104           for (uint i = 0; i < box_node->outcnt(); i++) {
2105             Node* u = box_node->raw_out(i);
2106             if (u->is_AbstractLock()) {
2107               alock = u->as_AbstractLock();
2108               if (alock->box_node() == box_node) {
2109                 // Verify that this Box is referenced only by related locks.
2110                 assert(alock->obj_node()->eqv_uncast(obj), "");
2111                 // Mark all related locks and unlocks.
2112 #ifdef ASSERT
2113                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2114 #endif
2115                 alock->set_nested();
2116               }
2117             }
2118           }
2119         } else {
2120 #ifdef ASSERT
2121           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2122           if (C->log() != NULL)
2123             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2124 #endif
2125         }
2126       }
2127       return;
2128     }
2129     // Process locks for non escaping object
2130     assert(alock->is_non_esc_obj(), "");
2131   } // EliminateNestedLocks
2132 
2133   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2134     // Look for all locks of this object and mark them and
2135     // corresponding BoxLock nodes as eliminated.
2136     Node* obj = alock->obj_node();
2137     for (uint j = 0; j < obj->outcnt(); j++) {
2138       Node* o = obj->raw_out(j);
2139       if (o->is_AbstractLock() &&
2140           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2141         alock = o->as_AbstractLock();
2142         Node* box = alock->box_node();
2143         // Replace old box node with new eliminated box for all users
2144         // of the same object and mark related locks as eliminated.
2145         mark_eliminated_box(box, obj);
2146       }
2147     }
2148   }
2149 }
2150 
2151 // we have determined that this lock/unlock can be eliminated, we simply
2152 // eliminate the node without expanding it.
2153 //
2154 // Note:  The membar's associated with the lock/unlock are currently not
2155 //        eliminated.  This should be investigated as a future enhancement.
2156 //
eliminate_locking_node(AbstractLockNode * alock)2157 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2158 
2159   if (!alock->is_eliminated()) {
2160     return false;
2161   }
2162 #ifdef ASSERT
2163   if (!alock->is_coarsened()) {
2164     // Check that new "eliminated" BoxLock node is created.
2165     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2166     assert(oldbox->is_eliminated(), "should be done already");
2167   }
2168 #endif
2169 
2170   alock->log_lock_optimization(C, "eliminate_lock");
2171 
2172 #ifndef PRODUCT
2173   if (PrintEliminateLocks) {
2174     if (alock->is_Lock()) {
2175       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2176     } else {
2177       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2178     }
2179   }
2180 #endif
2181 
2182   Node* mem  = alock->in(TypeFunc::Memory);
2183   Node* ctrl = alock->in(TypeFunc::Control);
2184   guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL");
2185 
2186   extract_call_projections(alock);
2187   // There are 2 projections from the lock.  The lock node will
2188   // be deleted when its last use is subsumed below.
2189   assert(alock->outcnt() == 2 &&
2190          _fallthroughproj != NULL &&
2191          _memproj_fallthrough != NULL,
2192          "Unexpected projections from Lock/Unlock");
2193 
2194   Node* fallthroughproj = _fallthroughproj;
2195   Node* memproj_fallthrough = _memproj_fallthrough;
2196 
2197   // The memory projection from a lock/unlock is RawMem
2198   // The input to a Lock is merged memory, so extract its RawMem input
2199   // (unless the MergeMem has been optimized away.)
2200   if (alock->is_Lock()) {
2201     // Seach for MemBarAcquireLock node and delete it also.
2202     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2203     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2204     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2205     Node* memproj = membar->proj_out(TypeFunc::Memory);
2206     _igvn.replace_node(ctrlproj, fallthroughproj);
2207     _igvn.replace_node(memproj, memproj_fallthrough);
2208 
2209     // Delete FastLock node also if this Lock node is unique user
2210     // (a loop peeling may clone a Lock node).
2211     Node* flock = alock->as_Lock()->fastlock_node();
2212     if (flock->outcnt() == 1) {
2213       assert(flock->unique_out() == alock, "sanity");
2214       _igvn.replace_node(flock, top());
2215     }
2216   }
2217 
2218   // Seach for MemBarReleaseLock node and delete it also.
2219   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2220     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2221     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2222            mem->is_Proj() && membar == mem->in(0), "");
2223     _igvn.replace_node(fallthroughproj, ctrl);
2224     _igvn.replace_node(memproj_fallthrough, mem);
2225     fallthroughproj = ctrl;
2226     memproj_fallthrough = mem;
2227     ctrl = membar->in(TypeFunc::Control);
2228     mem  = membar->in(TypeFunc::Memory);
2229   }
2230 
2231   _igvn.replace_node(fallthroughproj, ctrl);
2232   _igvn.replace_node(memproj_fallthrough, mem);
2233   return true;
2234 }
2235 
2236 
2237 //------------------------------expand_lock_node----------------------
expand_lock_node(LockNode * lock)2238 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2239 
2240   Node* ctrl = lock->in(TypeFunc::Control);
2241   Node* mem = lock->in(TypeFunc::Memory);
2242   Node* obj = lock->obj_node();
2243   Node* box = lock->box_node();
2244   Node* flock = lock->fastlock_node();
2245 
2246   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2247 
2248   // Make the merge point
2249   Node *region;
2250   Node *mem_phi;
2251   Node *slow_path;
2252 
2253   if (UseOptoBiasInlining) {
2254     /*
2255      *  See the full description in MacroAssembler::biased_locking_enter().
2256      *
2257      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2258      *    // The object is biased.
2259      *    proto_node = klass->prototype_header;
2260      *    o_node = thread | proto_node;
2261      *    x_node = o_node ^ mark_word;
2262      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2263      *      // Done.
2264      *    } else {
2265      *      if( (x_node & biased_lock_mask) != 0 ) {
2266      *        // The klass's prototype header is no longer biased.
2267      *        cas(&mark_word, mark_word, proto_node)
2268      *        goto cas_lock;
2269      *      } else {
2270      *        // The klass's prototype header is still biased.
2271      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2272      *          old = mark_word;
2273      *          new = o_node;
2274      *        } else {
2275      *          // Different thread or anonymous biased.
2276      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2277      *          new = thread | old;
2278      *        }
2279      *        // Try to rebias.
2280      *        if( cas(&mark_word, old, new) == 0 ) {
2281      *          // Done.
2282      *        } else {
2283      *          goto slow_path; // Failed.
2284      *        }
2285      *      }
2286      *    }
2287      *  } else {
2288      *    // The object is not biased.
2289      *    cas_lock:
2290      *    if( FastLock(obj) == 0 ) {
2291      *      // Done.
2292      *    } else {
2293      *      slow_path:
2294      *      OptoRuntime::complete_monitor_locking_Java(obj);
2295      *    }
2296      *  }
2297      */
2298 
2299     region  = new RegionNode(5);
2300     // create a Phi for the memory state
2301     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2302 
2303     Node* fast_lock_region  = new RegionNode(3);
2304     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2305 
2306     // First, check mark word for the biased lock pattern.
2307     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2308 
2309     // Get fast path - mark word has the biased lock pattern.
2310     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2311                          markWord::biased_lock_mask_in_place,
2312                          markWord::biased_lock_pattern, true);
2313     // fast_lock_region->in(1) is set to slow path.
2314     fast_lock_mem_phi->init_req(1, mem);
2315 
2316     // Now check that the lock is biased to the current thread and has
2317     // the same epoch and bias as Klass::_prototype_header.
2318 
2319     // Special-case a fresh allocation to avoid building nodes:
2320     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2321     if (klass_node == NULL) {
2322       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2323       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2324 #ifdef _LP64
2325       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2326         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2327         klass_node->in(1)->init_req(0, ctrl);
2328       } else
2329 #endif
2330       klass_node->init_req(0, ctrl);
2331     }
2332     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2333 
2334     Node* thread = transform_later(new ThreadLocalNode());
2335     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2336     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2337     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2338 
2339     // Get slow path - mark word does NOT match the value.
2340     STATIC_ASSERT(markWord::age_mask_in_place <= INT_MAX);
2341     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2342                                       (~(int)markWord::age_mask_in_place), 0);
2343     // region->in(3) is set to fast path - the object is biased to the current thread.
2344     mem_phi->init_req(3, mem);
2345 
2346 
2347     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2348 
2349 
2350     // First, check biased pattern.
2351     // Get fast path - _prototype_header has the same biased lock pattern.
2352     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2353                           markWord::biased_lock_mask_in_place, 0, true);
2354 
2355     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2356     // fast_lock_region->in(2) - the prototype header is no longer biased
2357     // and we have to revoke the bias on this object.
2358     // We are going to try to reset the mark of this object to the prototype
2359     // value and fall through to the CAS-based locking scheme.
2360     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2361     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2362                                           proto_node, mark_node);
2363     transform_later(cas);
2364     Node* proj = transform_later(new SCMemProjNode(cas));
2365     fast_lock_mem_phi->init_req(2, proj);
2366 
2367 
2368     // Second, check epoch bits.
2369     Node* rebiased_region  = new RegionNode(3);
2370     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2371     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2372 
2373     // Get slow path - mark word does NOT match epoch bits.
2374     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2375                                       markWord::epoch_mask_in_place, 0);
2376     // The epoch of the current bias is not valid, attempt to rebias the object
2377     // toward the current thread.
2378     rebiased_region->init_req(2, epoch_ctrl);
2379     old_phi->init_req(2, mark_node);
2380     new_phi->init_req(2, o_node);
2381 
2382     // rebiased_region->in(1) is set to fast path.
2383     // The epoch of the current bias is still valid but we know
2384     // nothing about the owner; it might be set or it might be clear.
2385     Node* cmask   = MakeConX(markWord::biased_lock_mask_in_place |
2386                              markWord::age_mask_in_place |
2387                              markWord::epoch_mask_in_place);
2388     Node* old = transform_later(new AndXNode(mark_node, cmask));
2389     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2390     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2391     old_phi->init_req(1, old);
2392     new_phi->init_req(1, new_mark);
2393 
2394     transform_later(rebiased_region);
2395     transform_later(old_phi);
2396     transform_later(new_phi);
2397 
2398     // Try to acquire the bias of the object using an atomic operation.
2399     // If this fails we will go in to the runtime to revoke the object's bias.
2400     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2401     transform_later(cas);
2402     proj = transform_later(new SCMemProjNode(cas));
2403 
2404     // Get slow path - Failed to CAS.
2405     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2406     mem_phi->init_req(4, proj);
2407     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2408 
2409     // Failed to CAS.
2410     slow_path  = new RegionNode(3);
2411     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2412 
2413     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2414     slow_mem->init_req(1, proj);
2415 
2416     // Call CAS-based locking scheme (FastLock node).
2417 
2418     transform_later(fast_lock_region);
2419     transform_later(fast_lock_mem_phi);
2420 
2421     // Get slow path - FastLock failed to lock the object.
2422     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2423     mem_phi->init_req(2, fast_lock_mem_phi);
2424     // region->in(2) is set to fast path - the object is locked to the current thread.
2425 
2426     slow_path->init_req(2, ctrl); // Capture slow-control
2427     slow_mem->init_req(2, fast_lock_mem_phi);
2428 
2429     transform_later(slow_path);
2430     transform_later(slow_mem);
2431     // Reset lock's memory edge.
2432     lock->set_req(TypeFunc::Memory, slow_mem);
2433 
2434   } else {
2435     region  = new RegionNode(3);
2436     // create a Phi for the memory state
2437     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2438 
2439     // Optimize test; set region slot 2
2440     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2441     mem_phi->init_req(2, mem);
2442   }
2443 
2444   // Make slow path call
2445   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2446                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2447                                   obj, box, NULL);
2448 
2449   extract_call_projections(call);
2450 
2451   // Slow path can only throw asynchronous exceptions, which are always
2452   // de-opted.  So the compiler thinks the slow-call can never throw an
2453   // exception.  If it DOES throw an exception we would need the debug
2454   // info removed first (since if it throws there is no monitor).
2455   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2456            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2457 
2458   // Capture slow path
2459   // disconnect fall-through projection from call and create a new one
2460   // hook up users of fall-through projection to region
2461   Node *slow_ctrl = _fallthroughproj->clone();
2462   transform_later(slow_ctrl);
2463   _igvn.hash_delete(_fallthroughproj);
2464   _fallthroughproj->disconnect_inputs(NULL, C);
2465   region->init_req(1, slow_ctrl);
2466   // region inputs are now complete
2467   transform_later(region);
2468   _igvn.replace_node(_fallthroughproj, region);
2469 
2470   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2471   mem_phi->init_req(1, memproj );
2472   transform_later(mem_phi);
2473   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2474 }
2475 
2476 //------------------------------expand_unlock_node----------------------
expand_unlock_node(UnlockNode * unlock)2477 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2478 
2479   Node* ctrl = unlock->in(TypeFunc::Control);
2480   Node* mem = unlock->in(TypeFunc::Memory);
2481   Node* obj = unlock->obj_node();
2482   Node* box = unlock->box_node();
2483 
2484   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2485 
2486   // No need for a null check on unlock
2487 
2488   // Make the merge point
2489   Node *region;
2490   Node *mem_phi;
2491 
2492   if (UseOptoBiasInlining) {
2493     // Check for biased locking unlock case, which is a no-op.
2494     // See the full description in MacroAssembler::biased_locking_exit().
2495     region  = new RegionNode(4);
2496     // create a Phi for the memory state
2497     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2498     mem_phi->init_req(3, mem);
2499 
2500     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2501     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2502                          markWord::biased_lock_mask_in_place,
2503                          markWord::biased_lock_pattern);
2504   } else {
2505     region  = new RegionNode(3);
2506     // create a Phi for the memory state
2507     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2508   }
2509 
2510   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2511   funlock = transform_later( funlock )->as_FastUnlock();
2512   // Optimize test; set region slot 2
2513   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2514   Node *thread = transform_later(new ThreadLocalNode());
2515 
2516   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2517                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2518                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2519 
2520   extract_call_projections(call);
2521 
2522   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2523            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2524 
2525   // No exceptions for unlocking
2526   // Capture slow path
2527   // disconnect fall-through projection from call and create a new one
2528   // hook up users of fall-through projection to region
2529   Node *slow_ctrl = _fallthroughproj->clone();
2530   transform_later(slow_ctrl);
2531   _igvn.hash_delete(_fallthroughproj);
2532   _fallthroughproj->disconnect_inputs(NULL, C);
2533   region->init_req(1, slow_ctrl);
2534   // region inputs are now complete
2535   transform_later(region);
2536   _igvn.replace_node(_fallthroughproj, region);
2537 
2538   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2539   mem_phi->init_req(1, memproj );
2540   mem_phi->init_req(2, mem);
2541   transform_later(mem_phi);
2542   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2543 }
2544 
expand_subtypecheck_node(SubTypeCheckNode * check)2545 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2546   assert(check->in(SubTypeCheckNode::Control) == NULL, "should be pinned");
2547   Node* bol = check->unique_out();
2548   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2549   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2550   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2551 
2552   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2553     Node* iff = bol->last_out(i);
2554     assert(iff->is_If(), "where's the if?");
2555 
2556     if (iff->in(0)->is_top()) {
2557       _igvn.replace_input_of(iff, 1, C->top());
2558       continue;
2559     }
2560 
2561     Node* iftrue = iff->as_If()->proj_out(1);
2562     Node* iffalse = iff->as_If()->proj_out(0);
2563     Node* ctrl = iff->in(0);
2564 
2565     Node* subklass = NULL;
2566     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2567       subklass = obj_or_subklass;
2568     } else {
2569       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2570       subklass = _igvn.transform(LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2571     }
2572 
2573     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, NULL, _igvn);
2574 
2575     _igvn.replace_input_of(iff, 0, C->top());
2576     _igvn.replace_node(iftrue, not_subtype_ctrl);
2577     _igvn.replace_node(iffalse, ctrl);
2578   }
2579   _igvn.replace_node(check, C->top());
2580 }
2581 
2582 //---------------------------eliminate_macro_nodes----------------------
2583 // Eliminate scalar replaced allocations and associated locks.
eliminate_macro_nodes()2584 void PhaseMacroExpand::eliminate_macro_nodes() {
2585   if (C->macro_count() == 0)
2586     return;
2587 
2588   // First, attempt to eliminate locks
2589   int cnt = C->macro_count();
2590   for (int i=0; i < cnt; i++) {
2591     Node *n = C->macro_node(i);
2592     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2593       // Before elimination mark all associated (same box and obj)
2594       // lock and unlock nodes.
2595       mark_eliminated_locking_nodes(n->as_AbstractLock());
2596     }
2597   }
2598   bool progress = true;
2599   while (progress) {
2600     progress = false;
2601     for (int i = C->macro_count(); i > 0; i--) {
2602       Node * n = C->macro_node(i-1);
2603       bool success = false;
2604       debug_only(int old_macro_count = C->macro_count(););
2605       if (n->is_AbstractLock()) {
2606         success = eliminate_locking_node(n->as_AbstractLock());
2607       }
2608       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2609       progress = progress || success;
2610     }
2611   }
2612   // Next, attempt to eliminate allocations
2613   _has_locks = false;
2614   progress = true;
2615   while (progress) {
2616     progress = false;
2617     for (int i = C->macro_count(); i > 0; i--) {
2618       Node * n = C->macro_node(i-1);
2619       bool success = false;
2620       debug_only(int old_macro_count = C->macro_count(););
2621       switch (n->class_id()) {
2622       case Node::Class_Allocate:
2623       case Node::Class_AllocateArray:
2624         success = eliminate_allocate_node(n->as_Allocate());
2625         break;
2626       case Node::Class_CallStaticJava:
2627         success = eliminate_boxing_node(n->as_CallStaticJava());
2628         break;
2629       case Node::Class_Lock:
2630       case Node::Class_Unlock:
2631         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2632         _has_locks = true;
2633         break;
2634       case Node::Class_ArrayCopy:
2635         break;
2636       case Node::Class_OuterStripMinedLoop:
2637         break;
2638       case Node::Class_SubTypeCheck:
2639         break;
2640       case Node::Class_Opaque1:
2641         break;
2642       default:
2643         assert(n->Opcode() == Op_LoopLimit ||
2644                n->Opcode() == Op_Opaque2   ||
2645                n->Opcode() == Op_Opaque3   ||
2646                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2647                "unknown node type in macro list");
2648       }
2649       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2650       progress = progress || success;
2651     }
2652   }
2653 }
2654 
2655 //------------------------------expand_macro_nodes----------------------
2656 //  Returns true if a failure occurred.
expand_macro_nodes()2657 bool PhaseMacroExpand::expand_macro_nodes() {
2658   // Last attempt to eliminate macro nodes.
2659   eliminate_macro_nodes();
2660 
2661   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2662   bool progress = true;
2663   while (progress) {
2664     progress = false;
2665     for (int i = C->macro_count(); i > 0; i--) {
2666       Node* n = C->macro_node(i-1);
2667       bool success = false;
2668       debug_only(int old_macro_count = C->macro_count(););
2669       if (n->Opcode() == Op_LoopLimit) {
2670         // Remove it from macro list and put on IGVN worklist to optimize.
2671         C->remove_macro_node(n);
2672         _igvn._worklist.push(n);
2673         success = true;
2674       } else if (n->Opcode() == Op_CallStaticJava) {
2675         // Remove it from macro list and put on IGVN worklist to optimize.
2676         C->remove_macro_node(n);
2677         _igvn._worklist.push(n);
2678         success = true;
2679       } else if (n->is_Opaque1() || n->Opcode() == Op_Opaque2) {
2680         _igvn.replace_node(n, n->in(1));
2681         success = true;
2682 #if INCLUDE_RTM_OPT
2683       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2684         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2685         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2686         Node* cmp = n->unique_out();
2687 #ifdef ASSERT
2688         // Validate graph.
2689         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2690         BoolNode* bol = cmp->unique_out()->as_Bool();
2691         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2692                (bol->_test._test == BoolTest::ne), "");
2693         IfNode* ifn = bol->unique_out()->as_If();
2694         assert((ifn->outcnt() == 2) &&
2695                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2696 #endif
2697         Node* repl = n->in(1);
2698         if (!_has_locks) {
2699           // Remove RTM state check if there are no locks in the code.
2700           // Replace input to compare the same value.
2701           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2702         }
2703         _igvn.replace_node(n, repl);
2704         success = true;
2705 #endif
2706       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2707         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2708         C->remove_macro_node(n);
2709         success = true;
2710       }
2711       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2712       progress = progress || success;
2713     }
2714   }
2715 
2716   // Clean up the graph so we're less likely to hit the maximum node
2717   // limit
2718   _igvn.set_delay_transform(false);
2719   _igvn.optimize();
2720   if (C->failing())  return true;
2721   _igvn.set_delay_transform(true);
2722 
2723 
2724   // Because we run IGVN after each expansion, some macro nodes may go
2725   // dead and be removed from the list as we iterate over it. Move
2726   // Allocate nodes (processed in a second pass) at the beginning of
2727   // the list and then iterate from the last element of the list until
2728   // an Allocate node is seen. This is robust to random deletion in
2729   // the list due to nodes going dead.
2730   C->sort_macro_nodes();
2731 
2732   // expand arraycopy "macro" nodes first
2733   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2734   // before the allocate nodes are expanded.
2735   while (C->macro_count() > 0) {
2736     int macro_count = C->macro_count();
2737     Node * n = C->macro_node(macro_count-1);
2738     assert(n->is_macro(), "only macro nodes expected here");
2739     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2740       // node is unreachable, so don't try to expand it
2741       C->remove_macro_node(n);
2742       continue;
2743     }
2744     if (n->is_Allocate()) {
2745       break;
2746     }
2747     // Make sure expansion will not cause node limit to be exceeded.
2748     // Worst case is a macro node gets expanded into about 200 nodes.
2749     // Allow 50% more for optimization.
2750     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2751       return true;
2752     }
2753 
2754     debug_only(int old_macro_count = C->macro_count(););
2755     switch (n->class_id()) {
2756     case Node::Class_Lock:
2757       expand_lock_node(n->as_Lock());
2758       assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2759       break;
2760     case Node::Class_Unlock:
2761       expand_unlock_node(n->as_Unlock());
2762       assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2763       break;
2764     case Node::Class_ArrayCopy:
2765       expand_arraycopy_node(n->as_ArrayCopy());
2766       assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2767       break;
2768     case Node::Class_SubTypeCheck:
2769       expand_subtypecheck_node(n->as_SubTypeCheck());
2770       assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2771       break;
2772     default:
2773       assert(false, "unknown node type in macro list");
2774     }
2775     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2776     if (C->failing())  return true;
2777 
2778     // Clean up the graph so we're less likely to hit the maximum node
2779     // limit
2780     _igvn.set_delay_transform(false);
2781     _igvn.optimize();
2782     if (C->failing())  return true;
2783     _igvn.set_delay_transform(true);
2784   }
2785 
2786   // All nodes except Allocate nodes are expanded now. There could be
2787   // new optimization opportunities (such as folding newly created
2788   // load from a just allocated object). Run IGVN.
2789 
2790   // expand "macro" nodes
2791   // nodes are removed from the macro list as they are processed
2792   while (C->macro_count() > 0) {
2793     int macro_count = C->macro_count();
2794     Node * n = C->macro_node(macro_count-1);
2795     assert(n->is_macro(), "only macro nodes expected here");
2796     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2797       // node is unreachable, so don't try to expand it
2798       C->remove_macro_node(n);
2799       continue;
2800     }
2801     // Make sure expansion will not cause node limit to be exceeded.
2802     // Worst case is a macro node gets expanded into about 200 nodes.
2803     // Allow 50% more for optimization.
2804     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2805       return true;
2806     }
2807     switch (n->class_id()) {
2808     case Node::Class_Allocate:
2809       expand_allocate(n->as_Allocate());
2810       break;
2811     case Node::Class_AllocateArray:
2812       expand_allocate_array(n->as_AllocateArray());
2813       break;
2814     default:
2815       assert(false, "unknown node type in macro list");
2816     }
2817     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2818     if (C->failing())  return true;
2819 
2820     // Clean up the graph so we're less likely to hit the maximum node
2821     // limit
2822     _igvn.set_delay_transform(false);
2823     _igvn.optimize();
2824     if (C->failing())  return true;
2825     _igvn.set_delay_transform(true);
2826   }
2827 
2828   _igvn.set_delay_transform(false);
2829   return false;
2830 }
2831