1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/method.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/locknode.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/opaquenode.hpp"
37 #include "opto/parse.hpp"
38 #include "opto/rootnode.hpp"
39 #include "opto/runtime.hpp"
40 #include "runtime/arguments.hpp"
41 #include "runtime/handles.inline.hpp"
42 #include "runtime/safepointMechanism.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "utilities/bitMap.inline.hpp"
45 #include "utilities/copy.hpp"
46 
47 // Static array so we can figure out which bytecodes stop us from compiling
48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
50 
51 #ifndef PRODUCT
52 int nodes_created              = 0;
53 int methods_parsed             = 0;
54 int methods_seen               = 0;
55 int blocks_parsed              = 0;
56 int blocks_seen                = 0;
57 
58 int explicit_null_checks_inserted = 0;
59 int explicit_null_checks_elided   = 0;
60 int all_null_checks_found         = 0;
61 int implicit_null_checks          = 0;
62 
63 bool Parse::BytecodeParseHistogram::_initialized = false;
64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
68 
69 //------------------------------print_statistics-------------------------------
print_statistics()70 void Parse::print_statistics() {
71   tty->print_cr("--- Compiler Statistics ---");
72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
73   tty->print("  Nodes created: %d", nodes_created);
74   tty->cr();
75   if (methods_seen != methods_parsed) {
76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
77   }
78   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
79 
80   if (explicit_null_checks_inserted) {
81     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
82                   explicit_null_checks_inserted, explicit_null_checks_elided,
83                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
84                   all_null_checks_found);
85   }
86   if (all_null_checks_found) {
87     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
88                   (100*implicit_null_checks)/all_null_checks_found);
89   }
90   if (SharedRuntime::_implicit_null_throws) {
91     tty->print_cr("%d implicit null exceptions at runtime",
92                   SharedRuntime::_implicit_null_throws);
93   }
94 
95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
96     BytecodeParseHistogram::print();
97   }
98 }
99 #endif
100 
101 //------------------------------ON STACK REPLACEMENT---------------------------
102 
103 // Construct a node which can be used to get incoming state for
104 // on stack replacement.
fetch_interpreter_state(int index,BasicType bt,Node * local_addrs,Node * local_addrs_base)105 Node *Parse::fetch_interpreter_state(int index,
106                                      BasicType bt,
107                                      Node *local_addrs,
108                                      Node *local_addrs_base) {
109   Node *mem = memory(Compile::AliasIdxRaw);
110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
111   Node *ctl = control();
112 
113   // Very similar to LoadNode::make, except we handle un-aligned longs and
114   // doubles on Sparc.  Intel can handle them just fine directly.
115   Node *l = NULL;
116   switch (bt) {                // Signature is flattened
117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
121   case T_LONG:
122   case T_DOUBLE: {
123     // Since arguments are in reverse order, the argument address 'adr'
124     // refers to the back half of the long/double.  Recompute adr.
125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
126     if (Matcher::misaligned_doubles_ok) {
127       l = (bt == T_DOUBLE)
128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
129         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
130     } else {
131       l = (bt == T_DOUBLE)
132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
134     }
135     break;
136   }
137   default: ShouldNotReachHere();
138   }
139   return _gvn.transform(l);
140 }
141 
142 // Helper routine to prevent the interpreter from handing
143 // unexpected typestate to an OSR method.
144 // The Node l is a value newly dug out of the interpreter frame.
145 // The type is the type predicted by ciTypeFlow.  Note that it is
146 // not a general type, but can only come from Type::get_typeflow_type.
147 // The safepoint is a map which will feed an uncommon trap.
check_interpreter_type(Node * l,const Type * type,SafePointNode * & bad_type_exit)148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
149                                     SafePointNode* &bad_type_exit) {
150 
151   const TypeOopPtr* tp = type->isa_oopptr();
152 
153   // TypeFlow may assert null-ness if a type appears unloaded.
154   if (type == TypePtr::NULL_PTR ||
155       (tp != NULL && !tp->klass()->is_loaded())) {
156     // Value must be null, not a real oop.
157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
160     set_control(_gvn.transform( new IfTrueNode(iff) ));
161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
162     bad_type_exit->control()->add_req(bad_type);
163     l = null();
164   }
165 
166   // Typeflow can also cut off paths from the CFG, based on
167   // types which appear unloaded, or call sites which appear unlinked.
168   // When paths are cut off, values at later merge points can rise
169   // toward more specific classes.  Make sure these specific classes
170   // are still in effect.
171   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
172     // TypeFlow asserted a specific object type.  Value must have that type.
173     Node* bad_type_ctrl = NULL;
174     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
175     bad_type_exit->control()->add_req(bad_type_ctrl);
176   }
177 
178   BasicType bt_l = _gvn.type(l)->basic_type();
179   BasicType bt_t = type->basic_type();
180   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
181   return l;
182 }
183 
184 // Helper routine which sets up elements of the initial parser map when
185 // performing a parse for on stack replacement.  Add values into map.
186 // The only parameter contains the address of a interpreter arguments.
load_interpreter_state(Node * osr_buf)187 void Parse::load_interpreter_state(Node* osr_buf) {
188   int index;
189   int max_locals = jvms()->loc_size();
190   int max_stack  = jvms()->stk_size();
191 
192 
193   // Mismatch between method and jvms can occur since map briefly held
194   // an OSR entry state (which takes up one RawPtr word).
195   assert(max_locals == method()->max_locals(), "sanity");
196   assert(max_stack  >= method()->max_stack(),  "sanity");
197   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
198   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
199 
200   // Find the start block.
201   Block* osr_block = start_block();
202   assert(osr_block->start() == osr_bci(), "sanity");
203 
204   // Set initial BCI.
205   set_parse_bci(osr_block->start());
206 
207   // Set initial stack depth.
208   set_sp(osr_block->start_sp());
209 
210   // Check bailouts.  We currently do not perform on stack replacement
211   // of loops in catch blocks or loops which branch with a non-empty stack.
212   if (sp() != 0) {
213     C->record_method_not_compilable("OSR starts with non-empty stack");
214     return;
215   }
216   // Do not OSR inside finally clauses:
217   if (osr_block->has_trap_at(osr_block->start())) {
218     C->record_method_not_compilable("OSR starts with an immediate trap");
219     return;
220   }
221 
222   // Commute monitors from interpreter frame to compiler frame.
223   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
224   int mcnt = osr_block->flow()->monitor_count();
225   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
226   for (index = 0; index < mcnt; index++) {
227     // Make a BoxLockNode for the monitor.
228     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
229 
230 
231     // Displaced headers and locked objects are interleaved in the
232     // temp OSR buffer.  We only copy the locked objects out here.
233     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
234     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
235     // Try and copy the displaced header to the BoxNode
236     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
237 
238 
239     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
240 
241     // Build a bogus FastLockNode (no code will be generated) and push the
242     // monitor into our debug info.
243     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
244     map()->push_monitor(flock);
245 
246     // If the lock is our method synchronization lock, tuck it away in
247     // _sync_lock for return and rethrow exit paths.
248     if (index == 0 && method()->is_synchronized()) {
249       _synch_lock = flock;
250     }
251   }
252 
253   // Use the raw liveness computation to make sure that unexpected
254   // values don't propagate into the OSR frame.
255   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
256   if (!live_locals.is_valid()) {
257     // Degenerate or breakpointed method.
258     C->record_method_not_compilable("OSR in empty or breakpointed method");
259     return;
260   }
261 
262   // Extract the needed locals from the interpreter frame.
263   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
264 
265   // find all the locals that the interpreter thinks contain live oops
266   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
267   for (index = 0; index < max_locals; index++) {
268 
269     if (!live_locals.at(index)) {
270       continue;
271     }
272 
273     const Type *type = osr_block->local_type_at(index);
274 
275     if (type->isa_oopptr() != NULL) {
276 
277       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
278       // else we might load a stale oop if the MethodLiveness disagrees with the
279       // result of the interpreter. If the interpreter says it is dead we agree
280       // by making the value go to top.
281       //
282 
283       if (!live_oops.at(index)) {
284         if (C->log() != NULL) {
285           C->log()->elem("OSR_mismatch local_index='%d'",index);
286         }
287         set_local(index, null());
288         // and ignore it for the loads
289         continue;
290       }
291     }
292 
293     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
294     if (type == Type::TOP || type == Type::HALF) {
295       continue;
296     }
297     // If the type falls to bottom, then this must be a local that
298     // is mixing ints and oops or some such.  Forcing it to top
299     // makes it go dead.
300     if (type == Type::BOTTOM) {
301       continue;
302     }
303     // Construct code to access the appropriate local.
304     BasicType bt = type->basic_type();
305     if (type == TypePtr::NULL_PTR) {
306       // Ptr types are mixed together with T_ADDRESS but NULL is
307       // really for T_OBJECT types so correct it.
308       bt = T_OBJECT;
309     }
310     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
311     set_local(index, value);
312   }
313 
314   // Extract the needed stack entries from the interpreter frame.
315   for (index = 0; index < sp(); index++) {
316     const Type *type = osr_block->stack_type_at(index);
317     if (type != Type::TOP) {
318       // Currently the compiler bails out when attempting to on stack replace
319       // at a bci with a non-empty stack.  We should not reach here.
320       ShouldNotReachHere();
321     }
322   }
323 
324   // End the OSR migration
325   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
326                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
327                     "OSR_migration_end", TypeRawPtr::BOTTOM,
328                     osr_buf);
329 
330   // Now that the interpreter state is loaded, make sure it will match
331   // at execution time what the compiler is expecting now:
332   SafePointNode* bad_type_exit = clone_map();
333   bad_type_exit->set_control(new RegionNode(1));
334 
335   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
336   for (index = 0; index < max_locals; index++) {
337     if (stopped())  break;
338     Node* l = local(index);
339     if (l->is_top())  continue;  // nothing here
340     const Type *type = osr_block->local_type_at(index);
341     if (type->isa_oopptr() != NULL) {
342       if (!live_oops.at(index)) {
343         // skip type check for dead oops
344         continue;
345       }
346     }
347     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
348       // In our current system it's illegal for jsr addresses to be
349       // live into an OSR entry point because the compiler performs
350       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
351       // case and aborts the compile if addresses are live into an OSR
352       // entry point.  Because of that we can assume that any address
353       // locals at the OSR entry point are dead.  Method liveness
354       // isn't precise enought to figure out that they are dead in all
355       // cases so simply skip checking address locals all
356       // together. Any type check is guaranteed to fail since the
357       // interpreter type is the result of a load which might have any
358       // value and the expected type is a constant.
359       continue;
360     }
361     set_local(index, check_interpreter_type(l, type, bad_type_exit));
362   }
363 
364   for (index = 0; index < sp(); index++) {
365     if (stopped())  break;
366     Node* l = stack(index);
367     if (l->is_top())  continue;  // nothing here
368     const Type *type = osr_block->stack_type_at(index);
369     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
370   }
371 
372   if (bad_type_exit->control()->req() > 1) {
373     // Build an uncommon trap here, if any inputs can be unexpected.
374     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
375     record_for_igvn(bad_type_exit->control());
376     SafePointNode* types_are_good = map();
377     set_map(bad_type_exit);
378     // The unexpected type happens because a new edge is active
379     // in the CFG, which typeflow had previously ignored.
380     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
381     // This x will be typed as Integer if notReached is not yet linked.
382     // It could also happen due to a problem in ciTypeFlow analysis.
383     uncommon_trap(Deoptimization::Reason_constraint,
384                   Deoptimization::Action_reinterpret);
385     set_map(types_are_good);
386   }
387 }
388 
389 //------------------------------Parse------------------------------------------
390 // Main parser constructor.
Parse(JVMState * caller,ciMethod * parse_method,float expected_uses)391 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
392   : _exits(caller)
393 {
394   // Init some variables
395   _caller = caller;
396   _method = parse_method;
397   _expected_uses = expected_uses;
398   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
399   _wrote_final = false;
400   _wrote_volatile = false;
401   _wrote_stable = false;
402   _wrote_fields = false;
403   _alloc_with_final = NULL;
404   _entry_bci = InvocationEntryBci;
405   _tf = NULL;
406   _block = NULL;
407   _first_return = true;
408   _replaced_nodes_for_exceptions = false;
409   _new_idx = C->unique();
410   debug_only(_block_count = -1);
411   debug_only(_blocks = (Block*)-1);
412 #ifndef PRODUCT
413   if (PrintCompilation || PrintOpto) {
414     // Make sure I have an inline tree, so I can print messages about it.
415     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
416     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
417   }
418   _max_switch_depth = 0;
419   _est_switch_depth = 0;
420 #endif
421 
422   if (parse_method->has_reserved_stack_access()) {
423     C->set_has_reserved_stack_access(true);
424   }
425 
426   _tf = TypeFunc::make(method());
427   _iter.reset_to_method(method());
428   _flow = method()->get_flow_analysis();
429   if (_flow->failing()) {
430     C->record_method_not_compilable(_flow->failure_reason());
431   }
432 
433 #ifndef PRODUCT
434   if (_flow->has_irreducible_entry()) {
435     C->set_parsed_irreducible_loop(true);
436   }
437 #endif
438 
439   if (_expected_uses <= 0) {
440     _prof_factor = 1;
441   } else {
442     float prof_total = parse_method->interpreter_invocation_count();
443     if (prof_total <= _expected_uses) {
444       _prof_factor = 1;
445     } else {
446       _prof_factor = _expected_uses / prof_total;
447     }
448   }
449 
450   CompileLog* log = C->log();
451   if (log != NULL) {
452     log->begin_head("parse method='%d' uses='%f'",
453                     log->identify(parse_method), expected_uses);
454     if (depth() == 1 && C->is_osr_compilation()) {
455       log->print(" osr_bci='%d'", C->entry_bci());
456     }
457     log->stamp();
458     log->end_head();
459   }
460 
461   // Accumulate deoptimization counts.
462   // (The range_check and store_check counts are checked elsewhere.)
463   ciMethodData* md = method()->method_data();
464   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
465     uint md_count = md->trap_count(reason);
466     if (md_count != 0) {
467       if (md_count == md->trap_count_limit())
468         md_count += md->overflow_trap_count();
469       uint total_count = C->trap_count(reason);
470       uint old_count   = total_count;
471       total_count += md_count;
472       // Saturate the add if it overflows.
473       if (total_count < old_count || total_count < md_count)
474         total_count = (uint)-1;
475       C->set_trap_count(reason, total_count);
476       if (log != NULL)
477         log->elem("observe trap='%s' count='%d' total='%d'",
478                   Deoptimization::trap_reason_name(reason),
479                   md_count, total_count);
480     }
481   }
482   // Accumulate total sum of decompilations, also.
483   C->set_decompile_count(C->decompile_count() + md->decompile_count());
484 
485   _count_invocations = C->do_count_invocations();
486   _method_data_update = C->do_method_data_update();
487 
488   if (log != NULL && method()->has_exception_handlers()) {
489     log->elem("observe that='has_exception_handlers'");
490   }
491 
492   assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier");
493   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
494 
495   // Always register dependence if JVMTI is enabled, because
496   // either breakpoint setting or hotswapping of methods may
497   // cause deoptimization.
498   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
499     C->dependencies()->assert_evol_method(method());
500   }
501 
502   NOT_PRODUCT(methods_seen++);
503 
504   // Do some special top-level things.
505   if (depth() == 1 && C->is_osr_compilation()) {
506     _entry_bci = C->entry_bci();
507     _flow = method()->get_osr_flow_analysis(osr_bci());
508     if (_flow->failing()) {
509       C->record_method_not_compilable(_flow->failure_reason());
510 #ifndef PRODUCT
511       if (PrintOpto && (Verbose || WizardMode)) {
512         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
513         if (Verbose) {
514           method()->print();
515           method()->print_codes();
516           _flow->print();
517         }
518       }
519 #endif
520     }
521     _tf = C->tf();     // the OSR entry type is different
522   }
523 
524 #ifdef ASSERT
525   if (depth() == 1) {
526     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
527   } else {
528     assert(!this->is_osr_parse(), "no recursive OSR");
529   }
530 #endif
531 
532 #ifndef PRODUCT
533   methods_parsed++;
534   // add method size here to guarantee that inlined methods are added too
535   if (CITime)
536     _total_bytes_compiled += method()->code_size();
537 
538   show_parse_info();
539 #endif
540 
541   if (failing()) {
542     if (log)  log->done("parse");
543     return;
544   }
545 
546   gvn().set_type(root(), root()->bottom_type());
547   gvn().transform(top());
548 
549   // Import the results of the ciTypeFlow.
550   init_blocks();
551 
552   // Merge point for all normal exits
553   build_exits();
554 
555   // Setup the initial JVM state map.
556   SafePointNode* entry_map = create_entry_map();
557 
558   // Check for bailouts during map initialization
559   if (failing() || entry_map == NULL) {
560     if (log)  log->done("parse");
561     return;
562   }
563 
564   Node_Notes* caller_nn = C->default_node_notes();
565   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
566   if (DebugInlinedCalls || depth() == 1) {
567     C->set_default_node_notes(make_node_notes(caller_nn));
568   }
569 
570   if (is_osr_parse()) {
571     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
572     entry_map->set_req(TypeFunc::Parms+0, top());
573     set_map(entry_map);
574     load_interpreter_state(osr_buf);
575   } else {
576     set_map(entry_map);
577     do_method_entry();
578     if (depth() == 1 && C->age_code()) {
579       decrement_age();
580     }
581   }
582 
583   if (depth() == 1 && !failing()) {
584     if (C->clinit_barrier_on_entry()) {
585       // Add check to deoptimize the nmethod once the holder class is fully initialized
586       clinit_deopt();
587     }
588 
589     // Add check to deoptimize the nmethod if RTM state was changed
590     rtm_deopt();
591   }
592 
593   // Check for bailouts during method entry or RTM state check setup.
594   if (failing()) {
595     if (log)  log->done("parse");
596     C->set_default_node_notes(caller_nn);
597     return;
598   }
599 
600   entry_map = map();  // capture any changes performed by method setup code
601   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
602 
603   // We begin parsing as if we have just encountered a jump to the
604   // method entry.
605   Block* entry_block = start_block();
606   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
607   set_map_clone(entry_map);
608   merge_common(entry_block, entry_block->next_path_num());
609 
610 #ifndef PRODUCT
611   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
612   set_parse_histogram( parse_histogram_obj );
613 #endif
614 
615   // Parse all the basic blocks.
616   do_all_blocks();
617 
618   C->set_default_node_notes(caller_nn);
619 
620   // Check for bailouts during conversion to graph
621   if (failing()) {
622     if (log)  log->done("parse");
623     return;
624   }
625 
626   // Fix up all exiting control flow.
627   set_map(entry_map);
628   do_exits();
629 
630   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
631                       C->unique(), C->live_nodes(), C->node_arena()->used());
632 }
633 
634 //---------------------------do_all_blocks-------------------------------------
do_all_blocks()635 void Parse::do_all_blocks() {
636   bool has_irreducible = flow()->has_irreducible_entry();
637 
638   // Walk over all blocks in Reverse Post-Order.
639   while (true) {
640     bool progress = false;
641     for (int rpo = 0; rpo < block_count(); rpo++) {
642       Block* block = rpo_at(rpo);
643 
644       if (block->is_parsed()) continue;
645 
646       if (!block->is_merged()) {
647         // Dead block, no state reaches this block
648         continue;
649       }
650 
651       // Prepare to parse this block.
652       load_state_from(block);
653 
654       if (stopped()) {
655         // Block is dead.
656         continue;
657       }
658 
659       NOT_PRODUCT(blocks_parsed++);
660 
661       progress = true;
662       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
663         // Not all preds have been parsed.  We must build phis everywhere.
664         // (Note that dead locals do not get phis built, ever.)
665         ensure_phis_everywhere();
666 
667         if (block->is_SEL_head()) {
668           // Add predicate to single entry (not irreducible) loop head.
669           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
670           // Predicates may have been added after a dominating if
671           if (!block->has_predicates()) {
672             // Need correct bci for predicate.
673             // It is fine to set it here since do_one_block() will set it anyway.
674             set_parse_bci(block->start());
675             add_empty_predicates();
676           }
677           // Add new region for back branches.
678           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
679           RegionNode *r = new RegionNode(edges+1);
680           _gvn.set_type(r, Type::CONTROL);
681           record_for_igvn(r);
682           r->init_req(edges, control());
683           set_control(r);
684           // Add new phis.
685           ensure_phis_everywhere();
686         }
687 
688         // Leave behind an undisturbed copy of the map, for future merges.
689         set_map(clone_map());
690       }
691 
692       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
693         // In the absence of irreducible loops, the Region and Phis
694         // associated with a merge that doesn't involve a backedge can
695         // be simplified now since the RPO parsing order guarantees
696         // that any path which was supposed to reach here has already
697         // been parsed or must be dead.
698         Node* c = control();
699         Node* result = _gvn.transform_no_reclaim(control());
700         if (c != result && TraceOptoParse) {
701           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
702         }
703         if (result != top()) {
704           record_for_igvn(result);
705         }
706       }
707 
708       // Parse the block.
709       do_one_block();
710 
711       // Check for bailouts.
712       if (failing())  return;
713     }
714 
715     // with irreducible loops multiple passes might be necessary to parse everything
716     if (!has_irreducible || !progress) {
717       break;
718     }
719   }
720 
721 #ifndef PRODUCT
722   blocks_seen += block_count();
723 
724   // Make sure there are no half-processed blocks remaining.
725   // Every remaining unprocessed block is dead and may be ignored now.
726   for (int rpo = 0; rpo < block_count(); rpo++) {
727     Block* block = rpo_at(rpo);
728     if (!block->is_parsed()) {
729       if (TraceOptoParse) {
730         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
731       }
732       assert(!block->is_merged(), "no half-processed blocks");
733     }
734   }
735 #endif
736 }
737 
mask_int_value(Node * v,BasicType bt,PhaseGVN * gvn)738 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
739   switch (bt) {
740   case T_BYTE:
741     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
742     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
743     break;
744   case T_SHORT:
745     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
746     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
747     break;
748   case T_CHAR:
749     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
750     break;
751   case T_BOOLEAN:
752     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
753     break;
754   default:
755     break;
756   }
757   return v;
758 }
759 
760 //-------------------------------build_exits----------------------------------
761 // Build normal and exceptional exit merge points.
build_exits()762 void Parse::build_exits() {
763   // make a clone of caller to prevent sharing of side-effects
764   _exits.set_map(_exits.clone_map());
765   _exits.clean_stack(_exits.sp());
766   _exits.sync_jvms();
767 
768   RegionNode* region = new RegionNode(1);
769   record_for_igvn(region);
770   gvn().set_type_bottom(region);
771   _exits.set_control(region);
772 
773   // Note:  iophi and memphi are not transformed until do_exits.
774   Node* iophi  = new PhiNode(region, Type::ABIO);
775   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
776   gvn().set_type_bottom(iophi);
777   gvn().set_type_bottom(memphi);
778   _exits.set_i_o(iophi);
779   _exits.set_all_memory(memphi);
780 
781   // Add a return value to the exit state.  (Do not push it yet.)
782   if (tf()->range()->cnt() > TypeFunc::Parms) {
783     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
784     if (ret_type->isa_int()) {
785       BasicType ret_bt = method()->return_type()->basic_type();
786       if (ret_bt == T_BOOLEAN ||
787           ret_bt == T_CHAR ||
788           ret_bt == T_BYTE ||
789           ret_bt == T_SHORT) {
790         ret_type = TypeInt::INT;
791       }
792     }
793 
794     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
795     // becomes loaded during the subsequent parsing, the loaded and unloaded
796     // types will not join when we transform and push in do_exits().
797     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
798     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
799       ret_type = TypeOopPtr::BOTTOM;
800     }
801     int         ret_size = type2size[ret_type->basic_type()];
802     Node*       ret_phi  = new PhiNode(region, ret_type);
803     gvn().set_type_bottom(ret_phi);
804     _exits.ensure_stack(ret_size);
805     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
806     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
807     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
808     // Note:  ret_phi is not yet pushed, until do_exits.
809   }
810 }
811 
812 
813 //----------------------------build_start_state-------------------------------
814 // Construct a state which contains only the incoming arguments from an
815 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
build_start_state(StartNode * start,const TypeFunc * tf)816 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
817   int        arg_size = tf->domain()->cnt();
818   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
819   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
820   SafePointNode* map  = new SafePointNode(max_size, NULL);
821   record_for_igvn(map);
822   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
823   Node_Notes* old_nn = default_node_notes();
824   if (old_nn != NULL && has_method()) {
825     Node_Notes* entry_nn = old_nn->clone(this);
826     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
827     entry_jvms->set_offsets(0);
828     entry_jvms->set_bci(entry_bci());
829     entry_nn->set_jvms(entry_jvms);
830     set_default_node_notes(entry_nn);
831   }
832   uint i;
833   for (i = 0; i < (uint)arg_size; i++) {
834     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
835     map->init_req(i, parm);
836     // Record all these guys for later GVN.
837     record_for_igvn(parm);
838   }
839   for (; i < map->req(); i++) {
840     map->init_req(i, top());
841   }
842   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
843   set_default_node_notes(old_nn);
844   map->set_jvms(jvms);
845   jvms->set_map(map);
846   return jvms;
847 }
848 
849 //-----------------------------make_node_notes---------------------------------
make_node_notes(Node_Notes * caller_nn)850 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
851   if (caller_nn == NULL)  return NULL;
852   Node_Notes* nn = caller_nn->clone(C);
853   JVMState* caller_jvms = nn->jvms();
854   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
855   jvms->set_offsets(0);
856   jvms->set_bci(_entry_bci);
857   nn->set_jvms(jvms);
858   return nn;
859 }
860 
861 
862 //--------------------------return_values--------------------------------------
return_values(JVMState * jvms)863 void Compile::return_values(JVMState* jvms) {
864   GraphKit kit(jvms);
865   Node* ret = new ReturnNode(TypeFunc::Parms,
866                              kit.control(),
867                              kit.i_o(),
868                              kit.reset_memory(),
869                              kit.frameptr(),
870                              kit.returnadr());
871   // Add zero or 1 return values
872   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
873   if (ret_size > 0) {
874     kit.inc_sp(-ret_size);  // pop the return value(s)
875     kit.sync_jvms();
876     ret->add_req(kit.argument(0));
877     // Note:  The second dummy edge is not needed by a ReturnNode.
878   }
879   // bind it to root
880   root()->add_req(ret);
881   record_for_igvn(ret);
882   initial_gvn()->transform_no_reclaim(ret);
883 }
884 
885 //------------------------rethrow_exceptions-----------------------------------
886 // Bind all exception states in the list into a single RethrowNode.
rethrow_exceptions(JVMState * jvms)887 void Compile::rethrow_exceptions(JVMState* jvms) {
888   GraphKit kit(jvms);
889   if (!kit.has_exceptions())  return;  // nothing to generate
890   // Load my combined exception state into the kit, with all phis transformed:
891   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
892   Node* ex_oop = kit.use_exception_state(ex_map);
893   RethrowNode* exit = new RethrowNode(kit.control(),
894                                       kit.i_o(), kit.reset_memory(),
895                                       kit.frameptr(), kit.returnadr(),
896                                       // like a return but with exception input
897                                       ex_oop);
898   // bind to root
899   root()->add_req(exit);
900   record_for_igvn(exit);
901   initial_gvn()->transform_no_reclaim(exit);
902 }
903 
904 //---------------------------do_exceptions-------------------------------------
905 // Process exceptions arising from the current bytecode.
906 // Send caught exceptions to the proper handler within this method.
907 // Unhandled exceptions feed into _exit.
do_exceptions()908 void Parse::do_exceptions() {
909   if (!has_exceptions())  return;
910 
911   if (failing()) {
912     // Pop them all off and throw them away.
913     while (pop_exception_state() != NULL) ;
914     return;
915   }
916 
917   PreserveJVMState pjvms(this, false);
918 
919   SafePointNode* ex_map;
920   while ((ex_map = pop_exception_state()) != NULL) {
921     if (!method()->has_exception_handlers()) {
922       // Common case:  Transfer control outward.
923       // Doing it this early allows the exceptions to common up
924       // even between adjacent method calls.
925       throw_to_exit(ex_map);
926     } else {
927       // Have to look at the exception first.
928       assert(stopped(), "catch_inline_exceptions trashes the map");
929       catch_inline_exceptions(ex_map);
930       stop_and_kill_map();      // we used up this exception state; kill it
931     }
932   }
933 
934   // We now return to our regularly scheduled program:
935 }
936 
937 //---------------------------throw_to_exit-------------------------------------
938 // Merge the given map into an exception exit from this method.
939 // The exception exit will handle any unlocking of receiver.
940 // The ex_oop must be saved within the ex_map, unlike merge_exception.
throw_to_exit(SafePointNode * ex_map)941 void Parse::throw_to_exit(SafePointNode* ex_map) {
942   // Pop the JVMS to (a copy of) the caller.
943   GraphKit caller;
944   caller.set_map_clone(_caller->map());
945   caller.set_bci(_caller->bci());
946   caller.set_sp(_caller->sp());
947   // Copy out the standard machine state:
948   for (uint i = 0; i < TypeFunc::Parms; i++) {
949     caller.map()->set_req(i, ex_map->in(i));
950   }
951   if (ex_map->has_replaced_nodes()) {
952     _replaced_nodes_for_exceptions = true;
953   }
954   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
955   // ...and the exception:
956   Node*          ex_oop        = saved_ex_oop(ex_map);
957   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
958   // Finally, collect the new exception state in my exits:
959   _exits.add_exception_state(caller_ex_map);
960 }
961 
962 //------------------------------do_exits---------------------------------------
do_exits()963 void Parse::do_exits() {
964   set_parse_bci(InvocationEntryBci);
965 
966   // Now peephole on the return bits
967   Node* region = _exits.control();
968   _exits.set_control(gvn().transform(region));
969 
970   Node* iophi = _exits.i_o();
971   _exits.set_i_o(gvn().transform(iophi));
972 
973   // Figure out if we need to emit the trailing barrier. The barrier is only
974   // needed in the constructors, and only in three cases:
975   //
976   // 1. The constructor wrote a final. The effects of all initializations
977   //    must be committed to memory before any code after the constructor
978   //    publishes the reference to the newly constructed object. Rather
979   //    than wait for the publication, we simply block the writes here.
980   //    Rather than put a barrier on only those writes which are required
981   //    to complete, we force all writes to complete.
982   //
983   // 2. Experimental VM option is used to force the barrier if any field
984   //    was written out in the constructor.
985   //
986   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
987   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
988   //    MemBarVolatile is used before volatile load instead of after volatile
989   //    store, so there's no barrier after the store.
990   //    We want to guarantee the same behavior as on platforms with total store
991   //    order, although this is not required by the Java memory model.
992   //    In this case, we want to enforce visibility of volatile field
993   //    initializations which are performed in constructors.
994   //    So as with finals, we add a barrier here.
995   //
996   // "All bets are off" unless the first publication occurs after a
997   // normal return from the constructor.  We do not attempt to detect
998   // such unusual early publications.  But no barrier is needed on
999   // exceptional returns, since they cannot publish normally.
1000   //
1001   if (method()->is_initializer() &&
1002        (wrote_final() ||
1003          (AlwaysSafeConstructors && wrote_fields()) ||
1004          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1005     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1006 
1007     // If Memory barrier is created for final fields write
1008     // and allocation node does not escape the initialize method,
1009     // then barrier introduced by allocation node can be removed.
1010     if (DoEscapeAnalysis && alloc_with_final()) {
1011       AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1012       alloc->compute_MemBar_redundancy(method());
1013     }
1014     if (PrintOpto && (Verbose || WizardMode)) {
1015       method()->print_name();
1016       tty->print_cr(" writes finals and needs a memory barrier");
1017     }
1018   }
1019 
1020   // Any method can write a @Stable field; insert memory barriers
1021   // after those also. Can't bind predecessor allocation node (if any)
1022   // with barrier because allocation doesn't always dominate
1023   // MemBarRelease.
1024   if (wrote_stable()) {
1025     _exits.insert_mem_bar(Op_MemBarRelease);
1026     if (PrintOpto && (Verbose || WizardMode)) {
1027       method()->print_name();
1028       tty->print_cr(" writes @Stable and needs a memory barrier");
1029     }
1030   }
1031 
1032   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1033     // transform each slice of the original memphi:
1034     mms.set_memory(_gvn.transform(mms.memory()));
1035   }
1036   // Clean up input MergeMems created by transforming the slices
1037   _gvn.transform(_exits.merged_memory());
1038 
1039   if (tf()->range()->cnt() > TypeFunc::Parms) {
1040     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1041     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1042     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1043       // If the type we set for the ret_phi in build_exits() is too optimistic and
1044       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1045       // loading.  It could also be due to an error, so mark this method as not compilable because
1046       // otherwise this could lead to an infinite compile loop.
1047       // In any case, this code path is rarely (and never in my testing) reached.
1048       C->record_method_not_compilable("Can't determine return type.");
1049       return;
1050     }
1051     if (ret_type->isa_int()) {
1052       BasicType ret_bt = method()->return_type()->basic_type();
1053       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1054     }
1055     _exits.push_node(ret_type->basic_type(), ret_phi);
1056   }
1057 
1058   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1059 
1060   // Unlock along the exceptional paths.
1061   // This is done late so that we can common up equivalent exceptions
1062   // (e.g., null checks) arising from multiple points within this method.
1063   // See GraphKit::add_exception_state, which performs the commoning.
1064   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1065 
1066   // record exit from a method if compiled while Dtrace is turned on.
1067   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1068     // First move the exception list out of _exits:
1069     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1070     SafePointNode* normal_map = kit.map();  // keep this guy safe
1071     // Now re-collect the exceptions into _exits:
1072     SafePointNode* ex_map;
1073     while ((ex_map = kit.pop_exception_state()) != NULL) {
1074       Node* ex_oop = kit.use_exception_state(ex_map);
1075       // Force the exiting JVM state to have this method at InvocationEntryBci.
1076       // The exiting JVM state is otherwise a copy of the calling JVMS.
1077       JVMState* caller = kit.jvms();
1078       JVMState* ex_jvms = caller->clone_shallow(C);
1079       ex_jvms->set_map(kit.clone_map());
1080       ex_jvms->map()->set_jvms(ex_jvms);
1081       ex_jvms->set_bci(   InvocationEntryBci);
1082       kit.set_jvms(ex_jvms);
1083       if (do_synch) {
1084         // Add on the synchronized-method box/object combo
1085         kit.map()->push_monitor(_synch_lock);
1086         // Unlock!
1087         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1088       }
1089       if (C->env()->dtrace_method_probes()) {
1090         kit.make_dtrace_method_exit(method());
1091       }
1092       if (_replaced_nodes_for_exceptions) {
1093         kit.map()->apply_replaced_nodes(_new_idx);
1094       }
1095       // Done with exception-path processing.
1096       ex_map = kit.make_exception_state(ex_oop);
1097       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1098       // Pop the last vestige of this method:
1099       ex_map->set_jvms(caller->clone_shallow(C));
1100       ex_map->jvms()->set_map(ex_map);
1101       _exits.push_exception_state(ex_map);
1102     }
1103     assert(_exits.map() == normal_map, "keep the same return state");
1104   }
1105 
1106   {
1107     // Capture very early exceptions (receiver null checks) from caller JVMS
1108     GraphKit caller(_caller);
1109     SafePointNode* ex_map;
1110     while ((ex_map = caller.pop_exception_state()) != NULL) {
1111       _exits.add_exception_state(ex_map);
1112     }
1113   }
1114   _exits.map()->apply_replaced_nodes(_new_idx);
1115 }
1116 
1117 //-----------------------------create_entry_map-------------------------------
1118 // Initialize our parser map to contain the types at method entry.
1119 // For OSR, the map contains a single RawPtr parameter.
1120 // Initial monitor locking for sync. methods is performed by do_method_entry.
create_entry_map()1121 SafePointNode* Parse::create_entry_map() {
1122   // Check for really stupid bail-out cases.
1123   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1124   if (len >= 32760) {
1125     C->record_method_not_compilable("too many local variables");
1126     return NULL;
1127   }
1128 
1129   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1130   _caller->map()->delete_replaced_nodes();
1131 
1132   // If this is an inlined method, we may have to do a receiver null check.
1133   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1134     GraphKit kit(_caller);
1135     kit.null_check_receiver_before_call(method());
1136     _caller = kit.transfer_exceptions_into_jvms();
1137     if (kit.stopped()) {
1138       _exits.add_exception_states_from(_caller);
1139       _exits.set_jvms(_caller);
1140       return NULL;
1141     }
1142   }
1143 
1144   assert(method() != NULL, "parser must have a method");
1145 
1146   // Create an initial safepoint to hold JVM state during parsing
1147   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1148   set_map(new SafePointNode(len, jvms));
1149   jvms->set_map(map());
1150   record_for_igvn(map());
1151   assert(jvms->endoff() == len, "correct jvms sizing");
1152 
1153   SafePointNode* inmap = _caller->map();
1154   assert(inmap != NULL, "must have inmap");
1155   // In case of null check on receiver above
1156   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1157 
1158   uint i;
1159 
1160   // Pass thru the predefined input parameters.
1161   for (i = 0; i < TypeFunc::Parms; i++) {
1162     map()->init_req(i, inmap->in(i));
1163   }
1164 
1165   if (depth() == 1) {
1166     assert(map()->memory()->Opcode() == Op_Parm, "");
1167     // Insert the memory aliasing node
1168     set_all_memory(reset_memory());
1169   }
1170   assert(merged_memory(), "");
1171 
1172   // Now add the locals which are initially bound to arguments:
1173   uint arg_size = tf()->domain()->cnt();
1174   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1175   for (i = TypeFunc::Parms; i < arg_size; i++) {
1176     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1177   }
1178 
1179   // Clear out the rest of the map (locals and stack)
1180   for (i = arg_size; i < len; i++) {
1181     map()->init_req(i, top());
1182   }
1183 
1184   SafePointNode* entry_map = stop();
1185   return entry_map;
1186 }
1187 
1188 //-----------------------------do_method_entry--------------------------------
1189 // Emit any code needed in the pseudo-block before BCI zero.
1190 // The main thing to do is lock the receiver of a synchronized method.
do_method_entry()1191 void Parse::do_method_entry() {
1192   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1193   set_sp(0);                         // Java Stack Pointer
1194 
1195   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1196 
1197   if (C->env()->dtrace_method_probes()) {
1198     make_dtrace_method_entry(method());
1199   }
1200 
1201   // If the method is synchronized, we need to construct a lock node, attach
1202   // it to the Start node, and pin it there.
1203   if (method()->is_synchronized()) {
1204     // Insert a FastLockNode right after the Start which takes as arguments
1205     // the current thread pointer, the "this" pointer & the address of the
1206     // stack slot pair used for the lock.  The "this" pointer is a projection
1207     // off the start node, but the locking spot has to be constructed by
1208     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1209     // becomes the second argument to the FastLockNode call.  The
1210     // FastLockNode becomes the new control parent to pin it to the start.
1211 
1212     // Setup Object Pointer
1213     Node *lock_obj = NULL;
1214     if(method()->is_static()) {
1215       ciInstance* mirror = _method->holder()->java_mirror();
1216       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1217       lock_obj = makecon(t_lock);
1218     } else {                  // Else pass the "this" pointer,
1219       lock_obj = local(0);    // which is Parm0 from StartNode
1220     }
1221     // Clear out dead values from the debug info.
1222     kill_dead_locals();
1223     // Build the FastLockNode
1224     _synch_lock = shared_lock(lock_obj);
1225   }
1226 
1227   // Feed profiling data for parameters to the type system so it can
1228   // propagate it as speculative types
1229   record_profiled_parameters_for_speculation();
1230 
1231   if (depth() == 1) {
1232     increment_and_test_invocation_counter(Tier2CompileThreshold);
1233   }
1234 }
1235 
1236 //------------------------------init_blocks------------------------------------
1237 // Initialize our parser map to contain the types/monitors at method entry.
init_blocks()1238 void Parse::init_blocks() {
1239   // Create the blocks.
1240   _block_count = flow()->block_count();
1241   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1242 
1243   // Initialize the structs.
1244   for (int rpo = 0; rpo < block_count(); rpo++) {
1245     Block* block = rpo_at(rpo);
1246     new(block) Block(this, rpo);
1247   }
1248 
1249   // Collect predecessor and successor information.
1250   for (int rpo = 0; rpo < block_count(); rpo++) {
1251     Block* block = rpo_at(rpo);
1252     block->init_graph(this);
1253   }
1254 }
1255 
1256 //-------------------------------init_node-------------------------------------
Block(Parse * outer,int rpo)1257 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1258   _flow = outer->flow()->rpo_at(rpo);
1259   _pred_count = 0;
1260   _preds_parsed = 0;
1261   _count = 0;
1262   _is_parsed = false;
1263   _is_handler = false;
1264   _has_merged_backedge = false;
1265   _start_map = NULL;
1266   _has_predicates = false;
1267   _num_successors = 0;
1268   _all_successors = 0;
1269   _successors = NULL;
1270   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1271   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1272   assert(_live_locals.size() == 0, "sanity");
1273 
1274   // entry point has additional predecessor
1275   if (flow()->is_start())  _pred_count++;
1276   assert(flow()->is_start() == (this == outer->start_block()), "");
1277 }
1278 
1279 //-------------------------------init_graph------------------------------------
init_graph(Parse * outer)1280 void Parse::Block::init_graph(Parse* outer) {
1281   // Create the successor list for this parser block.
1282   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1283   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1284   int ns = tfs->length();
1285   int ne = tfe->length();
1286   _num_successors = ns;
1287   _all_successors = ns+ne;
1288   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1289   int p = 0;
1290   for (int i = 0; i < ns+ne; i++) {
1291     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1292     Block* block2 = outer->rpo_at(tf2->rpo());
1293     _successors[i] = block2;
1294 
1295     // Accumulate pred info for the other block, too.
1296     // Note: We also need to set _pred_count for exception blocks since they could
1297     // also have normal predecessors (reached without athrow by an explicit jump).
1298     // This also means that next_path_num can be called along exception paths.
1299     block2->_pred_count++;
1300     if (i >= ns) {
1301       block2->_is_handler = true;
1302     }
1303 
1304     #ifdef ASSERT
1305     // A block's successors must be distinguishable by BCI.
1306     // That is, no bytecode is allowed to branch to two different
1307     // clones of the same code location.
1308     for (int j = 0; j < i; j++) {
1309       Block* block1 = _successors[j];
1310       if (block1 == block2)  continue;  // duplicates are OK
1311       assert(block1->start() != block2->start(), "successors have unique bcis");
1312     }
1313     #endif
1314   }
1315 }
1316 
1317 //---------------------------successor_for_bci---------------------------------
successor_for_bci(int bci)1318 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1319   for (int i = 0; i < all_successors(); i++) {
1320     Block* block2 = successor_at(i);
1321     if (block2->start() == bci)  return block2;
1322   }
1323   // We can actually reach here if ciTypeFlow traps out a block
1324   // due to an unloaded class, and concurrently with compilation the
1325   // class is then loaded, so that a later phase of the parser is
1326   // able to see more of the bytecode CFG.  Or, the flow pass and
1327   // the parser can have a minor difference of opinion about executability
1328   // of bytecodes.  For example, "obj.field = null" is executable even
1329   // if the field's type is an unloaded class; the flow pass used to
1330   // make a trap for such code.
1331   return NULL;
1332 }
1333 
1334 
1335 //-----------------------------stack_type_at-----------------------------------
stack_type_at(int i) const1336 const Type* Parse::Block::stack_type_at(int i) const {
1337   return get_type(flow()->stack_type_at(i));
1338 }
1339 
1340 
1341 //-----------------------------local_type_at-----------------------------------
local_type_at(int i) const1342 const Type* Parse::Block::local_type_at(int i) const {
1343   // Make dead locals fall to bottom.
1344   if (_live_locals.size() == 0) {
1345     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1346     // This bitmap can be zero length if we saw a breakpoint.
1347     // In such cases, pretend they are all live.
1348     ((Block*)this)->_live_locals = live_locals;
1349   }
1350   if (_live_locals.size() > 0 && !_live_locals.at(i))
1351     return Type::BOTTOM;
1352 
1353   return get_type(flow()->local_type_at(i));
1354 }
1355 
1356 
1357 #ifndef PRODUCT
1358 
1359 //----------------------------name_for_bc--------------------------------------
1360 // helper method for BytecodeParseHistogram
name_for_bc(int i)1361 static const char* name_for_bc(int i) {
1362   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1363 }
1364 
1365 //----------------------------BytecodeParseHistogram------------------------------------
BytecodeParseHistogram(Parse * p,Compile * c)1366 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1367   _parser   = p;
1368   _compiler = c;
1369   if( ! _initialized ) { _initialized = true; reset(); }
1370 }
1371 
1372 //----------------------------current_count------------------------------------
current_count(BPHType bph_type)1373 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1374   switch( bph_type ) {
1375   case BPH_transforms: { return _parser->gvn().made_progress(); }
1376   case BPH_values:     { return _parser->gvn().made_new_values(); }
1377   default: { ShouldNotReachHere(); return 0; }
1378   }
1379 }
1380 
1381 //----------------------------initialized--------------------------------------
initialized()1382 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1383 
1384 //----------------------------reset--------------------------------------------
reset()1385 void Parse::BytecodeParseHistogram::reset() {
1386   int i = Bytecodes::number_of_codes;
1387   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1388 }
1389 
1390 //----------------------------set_initial_state--------------------------------
1391 // Record info when starting to parse one bytecode
set_initial_state(Bytecodes::Code bc)1392 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1393   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1394     _initial_bytecode    = bc;
1395     _initial_node_count  = _compiler->unique();
1396     _initial_transforms  = current_count(BPH_transforms);
1397     _initial_values      = current_count(BPH_values);
1398   }
1399 }
1400 
1401 //----------------------------record_change--------------------------------
1402 // Record results of parsing one bytecode
record_change()1403 void Parse::BytecodeParseHistogram::record_change() {
1404   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1405     ++_bytecodes_parsed[_initial_bytecode];
1406     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1407     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1408     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1409   }
1410 }
1411 
1412 
1413 //----------------------------print--------------------------------------------
print(float cutoff)1414 void Parse::BytecodeParseHistogram::print(float cutoff) {
1415   ResourceMark rm;
1416   // print profile
1417   int total  = 0;
1418   int i      = 0;
1419   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1420   int abs_sum = 0;
1421   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1422   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1423   if( total == 0 ) { return; }
1424   tty->cr();
1425   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1426   tty->print_cr("relative:  percentage contribution to compiled nodes");
1427   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1428   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1429   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1430   tty->print_cr("values  :  Average number of node values improved per bytecode");
1431   tty->print_cr("name    :  Bytecode name");
1432   tty->cr();
1433   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1434   tty->print_cr("----------------------------------------------------------------------");
1435   while (--i > 0) {
1436     int       abs = _bytecodes_parsed[i];
1437     float     rel = abs * 100.0F / total;
1438     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1439     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1440     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1441     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1442     if (cutoff <= rel) {
1443       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1444       abs_sum += abs;
1445     }
1446   }
1447   tty->print_cr("----------------------------------------------------------------------");
1448   float rel_sum = abs_sum * 100.0F / total;
1449   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1450   tty->print_cr("----------------------------------------------------------------------");
1451   tty->cr();
1452 }
1453 #endif
1454 
1455 //----------------------------load_state_from----------------------------------
1456 // Load block/map/sp.  But not do not touch iter/bci.
load_state_from(Block * block)1457 void Parse::load_state_from(Block* block) {
1458   set_block(block);
1459   // load the block's JVM state:
1460   set_map(block->start_map());
1461   set_sp( block->start_sp());
1462 }
1463 
1464 
1465 //-----------------------------record_state------------------------------------
record_state(Parse * p)1466 void Parse::Block::record_state(Parse* p) {
1467   assert(!is_merged(), "can only record state once, on 1st inflow");
1468   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1469   set_start_map(p->stop());
1470 }
1471 
1472 
1473 //------------------------------do_one_block-----------------------------------
do_one_block()1474 void Parse::do_one_block() {
1475   if (TraceOptoParse) {
1476     Block *b = block();
1477     int ns = b->num_successors();
1478     int nt = b->all_successors();
1479 
1480     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1481                   block()->rpo(), block()->start(), block()->limit());
1482     for (int i = 0; i < nt; i++) {
1483       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1484     }
1485     if (b->is_loop_head()) tty->print("  lphd");
1486     tty->cr();
1487   }
1488 
1489   assert(block()->is_merged(), "must be merged before being parsed");
1490   block()->mark_parsed();
1491 
1492   // Set iterator to start of block.
1493   iter().reset_to_bci(block()->start());
1494 
1495   CompileLog* log = C->log();
1496 
1497   // Parse bytecodes
1498   while (!stopped() && !failing()) {
1499     iter().next();
1500 
1501     // Learn the current bci from the iterator:
1502     set_parse_bci(iter().cur_bci());
1503 
1504     if (bci() == block()->limit()) {
1505       // Do not walk into the next block until directed by do_all_blocks.
1506       merge(bci());
1507       break;
1508     }
1509     assert(bci() < block()->limit(), "bci still in block");
1510 
1511     if (log != NULL) {
1512       // Output an optional context marker, to help place actions
1513       // that occur during parsing of this BC.  If there is no log
1514       // output until the next context string, this context string
1515       // will be silently ignored.
1516       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1517     }
1518 
1519     if (block()->has_trap_at(bci())) {
1520       // We must respect the flow pass's traps, because it will refuse
1521       // to produce successors for trapping blocks.
1522       int trap_index = block()->flow()->trap_index();
1523       assert(trap_index != 0, "trap index must be valid");
1524       uncommon_trap(trap_index);
1525       break;
1526     }
1527 
1528     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1529 
1530 #ifdef ASSERT
1531     int pre_bc_sp = sp();
1532     int inputs, depth;
1533     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1534     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1535 #endif //ASSERT
1536 
1537     do_one_bytecode();
1538 
1539     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1540            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1541 
1542     do_exceptions();
1543 
1544     NOT_PRODUCT( parse_histogram()->record_change(); );
1545 
1546     if (log != NULL)
1547       log->clear_context();  // skip marker if nothing was printed
1548 
1549     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1550     // successor which is typically made ready by visiting this bytecode.
1551     // If the successor has several predecessors, then it is a merge
1552     // point, starts a new basic block, and is handled like other basic blocks.
1553   }
1554 }
1555 
1556 
1557 //------------------------------merge------------------------------------------
set_parse_bci(int bci)1558 void Parse::set_parse_bci(int bci) {
1559   set_bci(bci);
1560   Node_Notes* nn = C->default_node_notes();
1561   if (nn == NULL)  return;
1562 
1563   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1564   if (!DebugInlinedCalls && depth() > 1) {
1565     return;
1566   }
1567 
1568   // Update the JVMS annotation, if present.
1569   JVMState* jvms = nn->jvms();
1570   if (jvms != NULL && jvms->bci() != bci) {
1571     // Update the JVMS.
1572     jvms = jvms->clone_shallow(C);
1573     jvms->set_bci(bci);
1574     nn->set_jvms(jvms);
1575   }
1576 }
1577 
1578 //------------------------------merge------------------------------------------
1579 // Merge the current mapping into the basic block starting at bci
merge(int target_bci)1580 void Parse::merge(int target_bci) {
1581   Block* target = successor_for_bci(target_bci);
1582   if (target == NULL) { handle_missing_successor(target_bci); return; }
1583   assert(!target->is_ready(), "our arrival must be expected");
1584   int pnum = target->next_path_num();
1585   merge_common(target, pnum);
1586 }
1587 
1588 //-------------------------merge_new_path--------------------------------------
1589 // Merge the current mapping into the basic block, using a new path
merge_new_path(int target_bci)1590 void Parse::merge_new_path(int target_bci) {
1591   Block* target = successor_for_bci(target_bci);
1592   if (target == NULL) { handle_missing_successor(target_bci); return; }
1593   assert(!target->is_ready(), "new path into frozen graph");
1594   int pnum = target->add_new_path();
1595   merge_common(target, pnum);
1596 }
1597 
1598 //-------------------------merge_exception-------------------------------------
1599 // Merge the current mapping into the basic block starting at bci
1600 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
merge_exception(int target_bci)1601 void Parse::merge_exception(int target_bci) {
1602   assert(sp() == 1, "must have only the throw exception on the stack");
1603   Block* target = successor_for_bci(target_bci);
1604   if (target == NULL) { handle_missing_successor(target_bci); return; }
1605   assert(target->is_handler(), "exceptions are handled by special blocks");
1606   int pnum = target->add_new_path();
1607   merge_common(target, pnum);
1608 }
1609 
1610 //--------------------handle_missing_successor---------------------------------
handle_missing_successor(int target_bci)1611 void Parse::handle_missing_successor(int target_bci) {
1612 #ifndef PRODUCT
1613   Block* b = block();
1614   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1615   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1616 #endif
1617   ShouldNotReachHere();
1618 }
1619 
1620 //--------------------------merge_common---------------------------------------
merge_common(Parse::Block * target,int pnum)1621 void Parse::merge_common(Parse::Block* target, int pnum) {
1622   if (TraceOptoParse) {
1623     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1624   }
1625 
1626   // Zap extra stack slots to top
1627   assert(sp() == target->start_sp(), "");
1628   clean_stack(sp());
1629 
1630   if (!target->is_merged()) {   // No prior mapping at this bci
1631     if (TraceOptoParse) { tty->print(" with empty state");  }
1632 
1633     // If this path is dead, do not bother capturing it as a merge.
1634     // It is "as if" we had 1 fewer predecessors from the beginning.
1635     if (stopped()) {
1636       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1637       return;
1638     }
1639 
1640     // Make a region if we know there are multiple or unpredictable inputs.
1641     // (Also, if this is a plain fall-through, we might see another region,
1642     // which must not be allowed into this block's map.)
1643     if (pnum > PhiNode::Input         // Known multiple inputs.
1644         || target->is_handler()       // These have unpredictable inputs.
1645         || target->is_loop_head()     // Known multiple inputs
1646         || control()->is_Region()) {  // We must hide this guy.
1647 
1648       int current_bci = bci();
1649       set_parse_bci(target->start()); // Set target bci
1650       if (target->is_SEL_head()) {
1651         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1652         if (target->start() == 0) {
1653           // Add loop predicate for the special case when
1654           // there are backbranches to the method entry.
1655           add_empty_predicates();
1656         }
1657       }
1658       // Add a Region to start the new basic block.  Phis will be added
1659       // later lazily.
1660       int edges = target->pred_count();
1661       if (edges < pnum)  edges = pnum;  // might be a new path!
1662       RegionNode *r = new RegionNode(edges+1);
1663       gvn().set_type(r, Type::CONTROL);
1664       record_for_igvn(r);
1665       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1666       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1667       r->init_req(pnum, control());
1668       set_control(r);
1669       set_parse_bci(current_bci); // Restore bci
1670     }
1671 
1672     // Convert the existing Parser mapping into a mapping at this bci.
1673     store_state_to(target);
1674     assert(target->is_merged(), "do not come here twice");
1675 
1676   } else {                      // Prior mapping at this bci
1677     if (TraceOptoParse) {  tty->print(" with previous state"); }
1678 #ifdef ASSERT
1679     if (target->is_SEL_head()) {
1680       target->mark_merged_backedge(block());
1681     }
1682 #endif
1683     // We must not manufacture more phis if the target is already parsed.
1684     bool nophi = target->is_parsed();
1685 
1686     SafePointNode* newin = map();// Hang on to incoming mapping
1687     Block* save_block = block(); // Hang on to incoming block;
1688     load_state_from(target);    // Get prior mapping
1689 
1690     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1691     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1692     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1693     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1694 
1695     // Iterate over my current mapping and the old mapping.
1696     // Where different, insert Phi functions.
1697     // Use any existing Phi functions.
1698     assert(control()->is_Region(), "must be merging to a region");
1699     RegionNode* r = control()->as_Region();
1700 
1701     // Compute where to merge into
1702     // Merge incoming control path
1703     r->init_req(pnum, newin->control());
1704 
1705     if (pnum == 1) {            // Last merge for this Region?
1706       if (!block()->flow()->is_irreducible_entry()) {
1707         Node* result = _gvn.transform_no_reclaim(r);
1708         if (r != result && TraceOptoParse) {
1709           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1710         }
1711       }
1712       record_for_igvn(r);
1713     }
1714 
1715     // Update all the non-control inputs to map:
1716     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1717     bool check_elide_phi = target->is_SEL_backedge(save_block);
1718     for (uint j = 1; j < newin->req(); j++) {
1719       Node* m = map()->in(j);   // Current state of target.
1720       Node* n = newin->in(j);   // Incoming change to target state.
1721       PhiNode* phi;
1722       if (m->is_Phi() && m->as_Phi()->region() == r)
1723         phi = m->as_Phi();
1724       else
1725         phi = NULL;
1726       if (m != n) {             // Different; must merge
1727         switch (j) {
1728         // Frame pointer and Return Address never changes
1729         case TypeFunc::FramePtr:// Drop m, use the original value
1730         case TypeFunc::ReturnAdr:
1731           break;
1732         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1733           assert(phi == NULL, "the merge contains phis, not vice versa");
1734           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1735           continue;
1736         default:                // All normal stuff
1737           if (phi == NULL) {
1738             const JVMState* jvms = map()->jvms();
1739             if (EliminateNestedLocks &&
1740                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1741               // BoxLock nodes are not commoning.
1742               // Use old BoxLock node as merged box.
1743               assert(newin->jvms()->is_monitor_box(j), "sanity");
1744               // This assert also tests that nodes are BoxLock.
1745               assert(BoxLockNode::same_slot(n, m), "sanity");
1746               C->gvn_replace_by(n, m);
1747             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1748               phi = ensure_phi(j, nophi);
1749             }
1750           }
1751           break;
1752         }
1753       }
1754       // At this point, n might be top if:
1755       //  - there is no phi (because TypeFlow detected a conflict), or
1756       //  - the corresponding control edges is top (a dead incoming path)
1757       // It is a bug if we create a phi which sees a garbage value on a live path.
1758 
1759       if (phi != NULL) {
1760         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1761         assert(phi->region() == r, "");
1762         phi->set_req(pnum, n);  // Then add 'n' to the merge
1763         if (pnum == PhiNode::Input) {
1764           // Last merge for this Phi.
1765           // So far, Phis have had a reasonable type from ciTypeFlow.
1766           // Now _gvn will join that with the meet of current inputs.
1767           // BOTTOM is never permissible here, 'cause pessimistically
1768           // Phis of pointers cannot lose the basic pointer type.
1769           debug_only(const Type* bt1 = phi->bottom_type());
1770           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1771           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1772           debug_only(const Type* bt2 = phi->bottom_type());
1773           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1774           record_for_igvn(phi);
1775         }
1776       }
1777     } // End of for all values to be merged
1778 
1779     if (pnum == PhiNode::Input &&
1780         !r->in(0)) {         // The occasional useless Region
1781       assert(control() == r, "");
1782       set_control(r->nonnull_req());
1783     }
1784 
1785     map()->merge_replaced_nodes_with(newin);
1786 
1787     // newin has been subsumed into the lazy merge, and is now dead.
1788     set_block(save_block);
1789 
1790     stop();                     // done with this guy, for now
1791   }
1792 
1793   if (TraceOptoParse) {
1794     tty->print_cr(" on path %d", pnum);
1795   }
1796 
1797   // Done with this parser state.
1798   assert(stopped(), "");
1799 }
1800 
1801 
1802 //--------------------------merge_memory_edges---------------------------------
merge_memory_edges(MergeMemNode * n,int pnum,bool nophi)1803 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1804   // (nophi means we must not create phis, because we already parsed here)
1805   assert(n != NULL, "");
1806   // Merge the inputs to the MergeMems
1807   MergeMemNode* m = merged_memory();
1808 
1809   assert(control()->is_Region(), "must be merging to a region");
1810   RegionNode* r = control()->as_Region();
1811 
1812   PhiNode* base = NULL;
1813   MergeMemNode* remerge = NULL;
1814   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1815     Node *p = mms.force_memory();
1816     Node *q = mms.memory2();
1817     if (mms.is_empty() && nophi) {
1818       // Trouble:  No new splits allowed after a loop body is parsed.
1819       // Instead, wire the new split into a MergeMem on the backedge.
1820       // The optimizer will sort it out, slicing the phi.
1821       if (remerge == NULL) {
1822         guarantee(base != NULL, "");
1823         assert(base->in(0) != NULL, "should not be xformed away");
1824         remerge = MergeMemNode::make(base->in(pnum));
1825         gvn().set_type(remerge, Type::MEMORY);
1826         base->set_req(pnum, remerge);
1827       }
1828       remerge->set_memory_at(mms.alias_idx(), q);
1829       continue;
1830     }
1831     assert(!q->is_MergeMem(), "");
1832     PhiNode* phi;
1833     if (p != q) {
1834       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1835     } else {
1836       if (p->is_Phi() && p->as_Phi()->region() == r)
1837         phi = p->as_Phi();
1838       else
1839         phi = NULL;
1840     }
1841     // Insert q into local phi
1842     if (phi != NULL) {
1843       assert(phi->region() == r, "");
1844       p = phi;
1845       phi->set_req(pnum, q);
1846       if (mms.at_base_memory()) {
1847         base = phi;  // delay transforming it
1848       } else if (pnum == 1) {
1849         record_for_igvn(phi);
1850         p = _gvn.transform_no_reclaim(phi);
1851       }
1852       mms.set_memory(p);// store back through the iterator
1853     }
1854   }
1855   // Transform base last, in case we must fiddle with remerging.
1856   if (base != NULL && pnum == 1) {
1857     record_for_igvn(base);
1858     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1859   }
1860 }
1861 
1862 
1863 //------------------------ensure_phis_everywhere-------------------------------
ensure_phis_everywhere()1864 void Parse::ensure_phis_everywhere() {
1865   ensure_phi(TypeFunc::I_O);
1866 
1867   // Ensure a phi on all currently known memories.
1868   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1869     ensure_memory_phi(mms.alias_idx());
1870     debug_only(mms.set_memory());  // keep the iterator happy
1871   }
1872 
1873   // Note:  This is our only chance to create phis for memory slices.
1874   // If we miss a slice that crops up later, it will have to be
1875   // merged into the base-memory phi that we are building here.
1876   // Later, the optimizer will comb out the knot, and build separate
1877   // phi-loops for each memory slice that matters.
1878 
1879   // Monitors must nest nicely and not get confused amongst themselves.
1880   // Phi-ify everything up to the monitors, though.
1881   uint monoff = map()->jvms()->monoff();
1882   uint nof_monitors = map()->jvms()->nof_monitors();
1883 
1884   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1885   bool check_elide_phi = block()->is_SEL_head();
1886   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1887     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1888       ensure_phi(i);
1889     }
1890   }
1891 
1892   // Even monitors need Phis, though they are well-structured.
1893   // This is true for OSR methods, and also for the rare cases where
1894   // a monitor object is the subject of a replace_in_map operation.
1895   // See bugs 4426707 and 5043395.
1896   for (uint m = 0; m < nof_monitors; m++) {
1897     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1898   }
1899 }
1900 
1901 
1902 //-----------------------------add_new_path------------------------------------
1903 // Add a previously unaccounted predecessor to this block.
add_new_path()1904 int Parse::Block::add_new_path() {
1905   // If there is no map, return the lowest unused path number.
1906   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1907 
1908   SafePointNode* map = start_map();
1909   if (!map->control()->is_Region())
1910     return pred_count()+1;  // there may be a region some day
1911   RegionNode* r = map->control()->as_Region();
1912 
1913   // Add new path to the region.
1914   uint pnum = r->req();
1915   r->add_req(NULL);
1916 
1917   for (uint i = 1; i < map->req(); i++) {
1918     Node* n = map->in(i);
1919     if (i == TypeFunc::Memory) {
1920       // Ensure a phi on all currently known memories.
1921       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1922         Node* phi = mms.memory();
1923         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1924           assert(phi->req() == pnum, "must be same size as region");
1925           phi->add_req(NULL);
1926         }
1927       }
1928     } else {
1929       if (n->is_Phi() && n->as_Phi()->region() == r) {
1930         assert(n->req() == pnum, "must be same size as region");
1931         n->add_req(NULL);
1932       }
1933     }
1934   }
1935 
1936   return pnum;
1937 }
1938 
1939 //------------------------------ensure_phi-------------------------------------
1940 // Turn the idx'th entry of the current map into a Phi
ensure_phi(int idx,bool nocreate)1941 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1942   SafePointNode* map = this->map();
1943   Node* region = map->control();
1944   assert(region->is_Region(), "");
1945 
1946   Node* o = map->in(idx);
1947   assert(o != NULL, "");
1948 
1949   if (o == top())  return NULL; // TOP always merges into TOP
1950 
1951   if (o->is_Phi() && o->as_Phi()->region() == region) {
1952     return o->as_Phi();
1953   }
1954 
1955   // Now use a Phi here for merging
1956   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1957   const JVMState* jvms = map->jvms();
1958   const Type* t = NULL;
1959   if (jvms->is_loc(idx)) {
1960     t = block()->local_type_at(idx - jvms->locoff());
1961   } else if (jvms->is_stk(idx)) {
1962     t = block()->stack_type_at(idx - jvms->stkoff());
1963   } else if (jvms->is_mon(idx)) {
1964     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1965     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1966   } else if ((uint)idx < TypeFunc::Parms) {
1967     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1968   } else {
1969     assert(false, "no type information for this phi");
1970   }
1971 
1972   // If the type falls to bottom, then this must be a local that
1973   // is mixing ints and oops or some such.  Forcing it to top
1974   // makes it go dead.
1975   if (t == Type::BOTTOM) {
1976     map->set_req(idx, top());
1977     return NULL;
1978   }
1979 
1980   // Do not create phis for top either.
1981   // A top on a non-null control flow must be an unused even after the.phi.
1982   if (t == Type::TOP || t == Type::HALF) {
1983     map->set_req(idx, top());
1984     return NULL;
1985   }
1986 
1987   PhiNode* phi = PhiNode::make(region, o, t);
1988   gvn().set_type(phi, t);
1989   if (C->do_escape_analysis()) record_for_igvn(phi);
1990   map->set_req(idx, phi);
1991   return phi;
1992 }
1993 
1994 //--------------------------ensure_memory_phi----------------------------------
1995 // Turn the idx'th slice of the current memory into a Phi
ensure_memory_phi(int idx,bool nocreate)1996 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1997   MergeMemNode* mem = merged_memory();
1998   Node* region = control();
1999   assert(region->is_Region(), "");
2000 
2001   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2002   assert(o != NULL && o != top(), "");
2003 
2004   PhiNode* phi;
2005   if (o->is_Phi() && o->as_Phi()->region() == region) {
2006     phi = o->as_Phi();
2007     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2008       // clone the shared base memory phi to make a new memory split
2009       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2010       const Type* t = phi->bottom_type();
2011       const TypePtr* adr_type = C->get_adr_type(idx);
2012       phi = phi->slice_memory(adr_type);
2013       gvn().set_type(phi, t);
2014     }
2015     return phi;
2016   }
2017 
2018   // Now use a Phi here for merging
2019   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2020   const Type* t = o->bottom_type();
2021   const TypePtr* adr_type = C->get_adr_type(idx);
2022   phi = PhiNode::make(region, o, t, adr_type);
2023   gvn().set_type(phi, t);
2024   if (idx == Compile::AliasIdxBot)
2025     mem->set_base_memory(phi);
2026   else
2027     mem->set_memory_at(idx, phi);
2028   return phi;
2029 }
2030 
2031 //------------------------------call_register_finalizer-----------------------
2032 // Check the klass of the receiver and call register_finalizer if the
2033 // class need finalization.
call_register_finalizer()2034 void Parse::call_register_finalizer() {
2035   Node* receiver = local(0);
2036   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2037          "must have non-null instance type");
2038 
2039   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2040   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2041     // The type isn't known exactly so see if CHA tells us anything.
2042     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2043     if (!Dependencies::has_finalizable_subclass(ik)) {
2044       // No finalizable subclasses so skip the dynamic check.
2045       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2046       return;
2047     }
2048   }
2049 
2050   // Insert a dynamic test for whether the instance needs
2051   // finalization.  In general this will fold up since the concrete
2052   // class is often visible so the access flags are constant.
2053   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2054   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2055 
2056   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2057   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2058 
2059   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2060   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2061   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2062 
2063   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2064 
2065   RegionNode* result_rgn = new RegionNode(3);
2066   record_for_igvn(result_rgn);
2067 
2068   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2069   result_rgn->init_req(1, skip_register);
2070 
2071   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2072   set_control(needs_register);
2073   if (stopped()) {
2074     // There is no slow path.
2075     result_rgn->init_req(2, top());
2076   } else {
2077     Node *call = make_runtime_call(RC_NO_LEAF,
2078                                    OptoRuntime::register_finalizer_Type(),
2079                                    OptoRuntime::register_finalizer_Java(),
2080                                    NULL, TypePtr::BOTTOM,
2081                                    receiver);
2082     make_slow_call_ex(call, env()->Throwable_klass(), true);
2083 
2084     Node* fast_io  = call->in(TypeFunc::I_O);
2085     Node* fast_mem = call->in(TypeFunc::Memory);
2086     // These two phis are pre-filled with copies of of the fast IO and Memory
2087     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2088     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2089 
2090     result_rgn->init_req(2, control());
2091     io_phi    ->init_req(2, i_o());
2092     mem_phi   ->init_req(2, reset_memory());
2093 
2094     set_all_memory( _gvn.transform(mem_phi) );
2095     set_i_o(        _gvn.transform(io_phi) );
2096   }
2097 
2098   set_control( _gvn.transform(result_rgn) );
2099 }
2100 
2101 // Add check to deoptimize once holder klass is fully initialized.
clinit_deopt()2102 void Parse::clinit_deopt() {
2103   assert(C->has_method(), "only for normal compilations");
2104   assert(depth() == 1, "only for main compiled method");
2105   assert(is_normal_parse(), "no barrier needed on osr entry");
2106   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2107 
2108   set_parse_bci(0);
2109 
2110   Node* holder = makecon(TypeKlassPtr::make(method()->holder()));
2111   guard_klass_being_initialized(holder);
2112 }
2113 
2114 // Add check to deoptimize if RTM state is not ProfileRTM
rtm_deopt()2115 void Parse::rtm_deopt() {
2116 #if INCLUDE_RTM_OPT
2117   if (C->profile_rtm()) {
2118     assert(C->has_method(), "only for normal compilations");
2119     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2120     assert(depth() == 1, "generate check only for main compiled method");
2121 
2122     // Set starting bci for uncommon trap.
2123     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2124 
2125     // Load the rtm_state from the MethodData.
2126     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2127     Node* mdo = makecon(adr_type);
2128     int offset = MethodData::rtm_state_offset_in_bytes();
2129     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2130     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2131 
2132     // Separate Load from Cmp by Opaque.
2133     // In expand_macro_nodes() it will be replaced either
2134     // with this load when there are locks in the code
2135     // or with ProfileRTM (cmp->in(2)) otherwise so that
2136     // the check will fold.
2137     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2138     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2139     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2140     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2141     // Branch to failure if state was changed
2142     { BuildCutout unless(this, tst, PROB_ALWAYS);
2143       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2144                     Deoptimization::Action_make_not_entrant);
2145     }
2146   }
2147 #endif
2148 }
2149 
decrement_age()2150 void Parse::decrement_age() {
2151   MethodCounters* mc = method()->ensure_method_counters();
2152   if (mc == NULL) {
2153     C->record_failure("Must have MCs");
2154     return;
2155   }
2156   assert(!is_osr_parse(), "Not doing this for OSRs");
2157 
2158   // Set starting bci for uncommon trap.
2159   set_parse_bci(0);
2160 
2161   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2162   Node* mc_adr = makecon(adr_type);
2163   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2164   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2165   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2166   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2167   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2168   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2169   { BuildCutout unless(this, tst, PROB_ALWAYS);
2170     uncommon_trap(Deoptimization::Reason_tenured,
2171                   Deoptimization::Action_make_not_entrant);
2172   }
2173 }
2174 
2175 //------------------------------return_current---------------------------------
2176 // Append current _map to _exit_return
return_current(Node * value)2177 void Parse::return_current(Node* value) {
2178   if (RegisterFinalizersAtInit &&
2179       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2180     call_register_finalizer();
2181   }
2182 
2183   // Do not set_parse_bci, so that return goo is credited to the return insn.
2184   set_bci(InvocationEntryBci);
2185   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2186     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2187   }
2188   if (C->env()->dtrace_method_probes()) {
2189     make_dtrace_method_exit(method());
2190   }
2191   SafePointNode* exit_return = _exits.map();
2192   exit_return->in( TypeFunc::Control  )->add_req( control() );
2193   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2194   Node *mem = exit_return->in( TypeFunc::Memory   );
2195   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2196     if (mms.is_empty()) {
2197       // get a copy of the base memory, and patch just this one input
2198       const TypePtr* adr_type = mms.adr_type(C);
2199       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2200       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2201       gvn().set_type_bottom(phi);
2202       phi->del_req(phi->req()-1);  // prepare to re-patch
2203       mms.set_memory(phi);
2204     }
2205     mms.memory()->add_req(mms.memory2());
2206   }
2207 
2208   // frame pointer is always same, already captured
2209   if (value != NULL) {
2210     // If returning oops to an interface-return, there is a silent free
2211     // cast from oop to interface allowed by the Verifier.  Make it explicit
2212     // here.
2213     Node* phi = _exits.argument(0);
2214     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2215     if (tr && tr->klass()->is_loaded() &&
2216         tr->klass()->is_interface()) {
2217       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2218       if (tp && tp->klass()->is_loaded() &&
2219           !tp->klass()->is_interface()) {
2220         // sharpen the type eagerly; this eases certain assert checking
2221         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2222           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2223         value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2224       }
2225     } else {
2226       // Also handle returns of oop-arrays to an arrays-of-interface return
2227       const TypeInstPtr* phi_tip;
2228       const TypeInstPtr* val_tip;
2229       Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2230       if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2231           val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2232         value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2233       }
2234     }
2235     phi->add_req(value);
2236   }
2237 
2238   if (_first_return) {
2239     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2240     _first_return = false;
2241   } else {
2242     _exits.map()->merge_replaced_nodes_with(map());
2243   }
2244 
2245   stop_and_kill_map();          // This CFG path dies here
2246 }
2247 
2248 
2249 //------------------------------add_safepoint----------------------------------
add_safepoint()2250 void Parse::add_safepoint() {
2251   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2252   // after a Call (except Leaf Call) or another SafePoint.
2253   Node *proj = control();
2254   uint parms = TypeFunc::Parms+1;
2255   if( proj->is_Proj() ) {
2256     Node *n0 = proj->in(0);
2257     if( n0->is_Catch() ) {
2258       n0 = n0->in(0)->in(0);
2259       assert( n0->is_Call(), "expect a call here" );
2260     }
2261     if( n0->is_Call() ) {
2262       if( n0->as_Call()->guaranteed_safepoint() )
2263         return;
2264     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2265       return;
2266     }
2267   }
2268 
2269   // Clear out dead values from the debug info.
2270   kill_dead_locals();
2271 
2272   // Clone the JVM State
2273   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2274 
2275   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2276   // SafePoint we need our GC state to be safe; i.e. we need all our current
2277   // write barriers (card marks) to not float down after the SafePoint so we
2278   // must read raw memory.  Likewise we need all oop stores to match the card
2279   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2280   // state on a deopt).
2281 
2282   // We do not need to WRITE the memory state after a SafePoint.  The control
2283   // edge will keep card-marks and oop-stores from floating up from below a
2284   // SafePoint and our true dependency added here will keep them from floating
2285   // down below a SafePoint.
2286 
2287   // Clone the current memory state
2288   Node* mem = MergeMemNode::make(map()->memory());
2289 
2290   mem = _gvn.transform(mem);
2291 
2292   // Pass control through the safepoint
2293   sfpnt->init_req(TypeFunc::Control  , control());
2294   // Fix edges normally used by a call
2295   sfpnt->init_req(TypeFunc::I_O      , top() );
2296   sfpnt->init_req(TypeFunc::Memory   , mem   );
2297   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2298   sfpnt->init_req(TypeFunc::FramePtr , top() );
2299 
2300   // Create a node for the polling address
2301   Node *polladr;
2302   Node *thread = _gvn.transform(new ThreadLocalNode());
2303   Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(Thread::polling_page_offset())));
2304   polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2305   sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2306 
2307   // Fix up the JVM State edges
2308   add_safepoint_edges(sfpnt);
2309   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2310   set_control(transformed_sfpnt);
2311 
2312   // Provide an edge from root to safepoint.  This makes the safepoint
2313   // appear useful until the parse has completed.
2314   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2315     assert(C->root() != NULL, "Expect parse is still valid");
2316     C->root()->add_prec(transformed_sfpnt);
2317   }
2318 }
2319 
2320 #ifndef PRODUCT
2321 //------------------------show_parse_info--------------------------------------
show_parse_info()2322 void Parse::show_parse_info() {
2323   InlineTree* ilt = NULL;
2324   if (C->ilt() != NULL) {
2325     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2326     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2327   }
2328   if (PrintCompilation && Verbose) {
2329     if (depth() == 1) {
2330       if( ilt->count_inlines() ) {
2331         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2332                      ilt->count_inline_bcs());
2333         tty->cr();
2334       }
2335     } else {
2336       if (method()->is_synchronized())         tty->print("s");
2337       if (method()->has_exception_handlers())  tty->print("!");
2338       // Check this is not the final compiled version
2339       if (C->trap_can_recompile()) {
2340         tty->print("-");
2341       } else {
2342         tty->print(" ");
2343       }
2344       method()->print_short_name();
2345       if (is_osr_parse()) {
2346         tty->print(" @ %d", osr_bci());
2347       }
2348       tty->print(" (%d bytes)",method()->code_size());
2349       if (ilt->count_inlines()) {
2350         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2351                    ilt->count_inline_bcs());
2352       }
2353       tty->cr();
2354     }
2355   }
2356   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2357     // Print that we succeeded; suppress this message on the first osr parse.
2358 
2359     if (method()->is_synchronized())         tty->print("s");
2360     if (method()->has_exception_handlers())  tty->print("!");
2361     // Check this is not the final compiled version
2362     if (C->trap_can_recompile() && depth() == 1) {
2363       tty->print("-");
2364     } else {
2365       tty->print(" ");
2366     }
2367     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2368     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2369     method()->print_short_name();
2370     if (is_osr_parse()) {
2371       tty->print(" @ %d", osr_bci());
2372     }
2373     if (ilt->caller_bci() != -1) {
2374       tty->print(" @ %d", ilt->caller_bci());
2375     }
2376     tty->print(" (%d bytes)",method()->code_size());
2377     if (ilt->count_inlines()) {
2378       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2379                  ilt->count_inline_bcs());
2380     }
2381     tty->cr();
2382   }
2383 }
2384 
2385 
2386 //------------------------------dump-------------------------------------------
2387 // Dump information associated with the bytecodes of current _method
dump()2388 void Parse::dump() {
2389   if( method() != NULL ) {
2390     // Iterate over bytecodes
2391     ciBytecodeStream iter(method());
2392     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2393       dump_bci( iter.cur_bci() );
2394       tty->cr();
2395     }
2396   }
2397 }
2398 
2399 // Dump information associated with a byte code index, 'bci'
dump_bci(int bci)2400 void Parse::dump_bci(int bci) {
2401   // Output info on merge-points, cloning, and within _jsr..._ret
2402   // NYI
2403   tty->print(" bci:%d", bci);
2404 }
2405 
2406 #endif
2407