1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/barrierSet.hpp"
28 #include "gc/shared/c2/barrierSetC2.hpp"
29 #include "memory/allocation.inline.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/loopnode.hpp"
34 #include "opto/matcher.hpp"
35 #include "opto/movenode.hpp"
36 #include "opto/mulnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/phaseX.hpp"
39 #include "opto/subnode.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 
42 // Portions of code courtesy of Clifford Click
43 
44 // Optimization - Graph Style
45 
46 #include "math.h"
47 
48 //=============================================================================
49 //------------------------------Identity---------------------------------------
50 // If right input is a constant 0, return the left input.
Identity(PhaseGVN * phase)51 Node* SubNode::Identity(PhaseGVN* phase) {
52   assert(in(1) != this, "Must already have called Value");
53   assert(in(2) != this, "Must already have called Value");
54 
55   // Remove double negation
56   const Type *zero = add_id();
57   if( phase->type( in(1) )->higher_equal( zero ) &&
58       in(2)->Opcode() == Opcode() &&
59       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
60     return in(2)->in(2);
61   }
62 
63   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
64   if( in(1)->Opcode() == Op_AddI ) {
65     if( phase->eqv(in(1)->in(2),in(2)) )
66       return in(1)->in(1);
67     if (phase->eqv(in(1)->in(1),in(2)))
68       return in(1)->in(2);
69 
70     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
71     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
72     // are originally used, although the optimizer sometimes jiggers things).
73     // This folding through an O2 removes a loop-exit use of a loop-varying
74     // value and generally lowers register pressure in and around the loop.
75     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
76         phase->eqv(in(1)->in(2)->in(1),in(2)) )
77       return in(1)->in(1);
78   }
79 
80   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
81 }
82 
83 //------------------------------Value------------------------------------------
84 // A subtract node differences it's two inputs.
Value_common(PhaseTransform * phase) const85 const Type* SubNode::Value_common(PhaseTransform *phase) const {
86   const Node* in1 = in(1);
87   const Node* in2 = in(2);
88   // Either input is TOP ==> the result is TOP
89   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
90   if( t1 == Type::TOP ) return Type::TOP;
91   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
92   if( t2 == Type::TOP ) return Type::TOP;
93 
94   // Not correct for SubFnode and AddFNode (must check for infinity)
95   // Equal?  Subtract is zero
96   if (in1->eqv_uncast(in2))  return add_id();
97 
98   // Either input is BOTTOM ==> the result is the local BOTTOM
99   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
100     return bottom_type();
101 
102   return NULL;
103 }
104 
Value(PhaseGVN * phase) const105 const Type* SubNode::Value(PhaseGVN* phase) const {
106   const Type* t = Value_common(phase);
107   if (t != NULL) {
108     return t;
109   }
110   const Type* t1 = phase->type(in(1));
111   const Type* t2 = phase->type(in(2));
112   return sub(t1,t2);            // Local flavor of type subtraction
113 
114 }
115 
116 //=============================================================================
117 //------------------------------Helper function--------------------------------
118 
is_cloop_increment(Node * inc)119 static bool is_cloop_increment(Node* inc) {
120   precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL);
121 
122   if (!inc->in(1)->is_Phi()) {
123     return false;
124   }
125   const PhiNode* phi = inc->in(1)->as_Phi();
126 
127   if (phi->is_copy() || !phi->region()->is_CountedLoop()) {
128     return false;
129   }
130 
131   return inc == phi->region()->as_CountedLoop()->incr();
132 }
133 
134 // Given the expression '(x + C) - v', or
135 //                      'v - (x + C)', we examine nodes '+' and 'v':
136 //
137 //  1. Do not convert if '+' is a counted-loop increment, because the '-' is
138 //     loop invariant and converting extends the live-range of 'x' to overlap
139 //     with the '+', forcing another register to be used in the loop.
140 //
141 //  2. Do not convert if 'v' is a counted-loop induction variable, because
142 //     'x' might be invariant.
143 //
ok_to_convert(Node * inc,Node * var)144 static bool ok_to_convert(Node* inc, Node* var) {
145   return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
146 }
147 
148 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)149 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
150   Node *in1 = in(1);
151   Node *in2 = in(2);
152   uint op1 = in1->Opcode();
153   uint op2 = in2->Opcode();
154 
155 #ifdef ASSERT
156   // Check for dead loop
157   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
158       ( ( op1 == Op_AddI || op1 == Op_SubI ) &&
159         ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
160           phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) ) )
161     assert(false, "dead loop in SubINode::Ideal");
162 #endif
163 
164   const Type *t2 = phase->type( in2 );
165   if( t2 == Type::TOP ) return NULL;
166   // Convert "x-c0" into "x+ -c0".
167   if( t2->base() == Type::Int ){        // Might be bottom or top...
168     const TypeInt *i = t2->is_int();
169     if( i->is_con() )
170       return new AddINode(in1, phase->intcon(-i->get_con()));
171   }
172 
173   // Convert "(x+c0) - y" into (x-y) + c0"
174   // Do not collapse (x+c0)-y if "+" is a loop increment or
175   // if "y" is a loop induction variable.
176   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
177     const Type *tadd = phase->type( in1->in(2) );
178     if( tadd->singleton() && tadd != Type::TOP ) {
179       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
180       return new AddINode( sub2, in1->in(2) );
181     }
182   }
183 
184 
185   // Convert "x - (y+c0)" into "(x-y) - c0"
186   // Need the same check as in above optimization but reversed.
187   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
188     Node* in21 = in2->in(1);
189     Node* in22 = in2->in(2);
190     const TypeInt* tcon = phase->type(in22)->isa_int();
191     if (tcon != NULL && tcon->is_con()) {
192       Node* sub2 = phase->transform( new SubINode(in1, in21) );
193       Node* neg_c0 = phase->intcon(- tcon->get_con());
194       return new AddINode(sub2, neg_c0);
195     }
196   }
197 
198   const Type *t1 = phase->type( in1 );
199   if( t1 == Type::TOP ) return NULL;
200 
201 #ifdef ASSERT
202   // Check for dead loop
203   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
204       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
205         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
206     assert(false, "dead loop in SubINode::Ideal");
207 #endif
208 
209   // Convert "x - (x+y)" into "-y"
210   if( op2 == Op_AddI &&
211       phase->eqv( in1, in2->in(1) ) )
212     return new SubINode( phase->intcon(0),in2->in(2));
213   // Convert "(x-y) - x" into "-y"
214   if( op1 == Op_SubI &&
215       phase->eqv( in1->in(1), in2 ) )
216     return new SubINode( phase->intcon(0),in1->in(2));
217   // Convert "x - (y+x)" into "-y"
218   if( op2 == Op_AddI &&
219       phase->eqv( in1, in2->in(2) ) )
220     return new SubINode( phase->intcon(0),in2->in(1));
221 
222   // Convert "0 - (x-y)" into "y-x"
223   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
224     return new SubINode( in2->in(2), in2->in(1) );
225 
226   // Convert "0 - (x+con)" into "-con-x"
227   jint con;
228   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
229       (con = in2->in(2)->find_int_con(0)) != 0 )
230     return new SubINode( phase->intcon(-con), in2->in(1) );
231 
232   // Convert "(X+A) - (X+B)" into "A - B"
233   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
234     return new SubINode( in1->in(2), in2->in(2) );
235 
236   // Convert "(A+X) - (B+X)" into "A - B"
237   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
238     return new SubINode( in1->in(1), in2->in(1) );
239 
240   // Convert "(A+X) - (X+B)" into "A - B"
241   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
242     return new SubINode( in1->in(1), in2->in(2) );
243 
244   // Convert "(X+A) - (B+X)" into "A - B"
245   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
246     return new SubINode( in1->in(2), in2->in(1) );
247 
248   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
249   // nicer to optimize than subtract.
250   if( op2 == Op_SubI && in2->outcnt() == 1) {
251     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
252     return new SubINode( add1, in2->in(1) );
253   }
254 
255   // Convert "0-(A>>31)" into "(A>>>31)"
256   if ( op2 == Op_RShiftI ) {
257     Node *in21 = in2->in(1);
258     Node *in22 = in2->in(2);
259     const TypeInt *zero = phase->type(in1)->isa_int();
260     const TypeInt *t21 = phase->type(in21)->isa_int();
261     const TypeInt *t22 = phase->type(in22)->isa_int();
262     if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
263       return new URShiftINode(in21, in22);
264     }
265   }
266 
267   return NULL;
268 }
269 
270 //------------------------------sub--------------------------------------------
271 // A subtract node differences it's two inputs.
sub(const Type * t1,const Type * t2) const272 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
273   const TypeInt *r0 = t1->is_int(); // Handy access
274   const TypeInt *r1 = t2->is_int();
275   int32_t lo = java_subtract(r0->_lo, r1->_hi);
276   int32_t hi = java_subtract(r0->_hi, r1->_lo);
277 
278   // We next check for 32-bit overflow.
279   // If that happens, we just assume all integers are possible.
280   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
281        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
282       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
283        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
284     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
285   else                          // Overflow; assume all integers
286     return TypeInt::INT;
287 }
288 
289 //=============================================================================
290 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)291 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
292   Node *in1 = in(1);
293   Node *in2 = in(2);
294   uint op1 = in1->Opcode();
295   uint op2 = in2->Opcode();
296 
297 #ifdef ASSERT
298   // Check for dead loop
299   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
300       ( ( op1 == Op_AddL || op1 == Op_SubL ) &&
301         ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
302           phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) ) )
303     assert(false, "dead loop in SubLNode::Ideal");
304 #endif
305 
306   if( phase->type( in2 ) == Type::TOP ) return NULL;
307   const TypeLong *i = phase->type( in2 )->isa_long();
308   // Convert "x-c0" into "x+ -c0".
309   if( i &&                      // Might be bottom or top...
310       i->is_con() )
311     return new AddLNode(in1, phase->longcon(-i->get_con()));
312 
313   // Convert "(x+c0) - y" into (x-y) + c0"
314   // Do not collapse (x+c0)-y if "+" is a loop increment or
315   // if "y" is a loop induction variable.
316   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
317     Node *in11 = in1->in(1);
318     const Type *tadd = phase->type( in1->in(2) );
319     if( tadd->singleton() && tadd != Type::TOP ) {
320       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
321       return new AddLNode( sub2, in1->in(2) );
322     }
323   }
324 
325   // Convert "x - (y+c0)" into "(x-y) - c0"
326   // Need the same check as in above optimization but reversed.
327   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
328     Node* in21 = in2->in(1);
329     Node* in22 = in2->in(2);
330     const TypeLong* tcon = phase->type(in22)->isa_long();
331     if (tcon != NULL && tcon->is_con()) {
332       Node* sub2 = phase->transform( new SubLNode(in1, in21) );
333       Node* neg_c0 = phase->longcon(- tcon->get_con());
334       return new AddLNode(sub2, neg_c0);
335     }
336   }
337 
338   const Type *t1 = phase->type( in1 );
339   if( t1 == Type::TOP ) return NULL;
340 
341 #ifdef ASSERT
342   // Check for dead loop
343   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
344       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
345         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
346     assert(false, "dead loop in SubLNode::Ideal");
347 #endif
348 
349   // Convert "x - (x+y)" into "-y"
350   if( op2 == Op_AddL &&
351       phase->eqv( in1, in2->in(1) ) )
352     return new SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
353   // Convert "x - (y+x)" into "-y"
354   if( op2 == Op_AddL &&
355       phase->eqv( in1, in2->in(2) ) )
356     return new SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
357 
358   // Convert "0 - (x-y)" into "y-x"
359   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
360     return new SubLNode( in2->in(2), in2->in(1) );
361 
362   // Convert "(X+A) - (X+B)" into "A - B"
363   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
364     return new SubLNode( in1->in(2), in2->in(2) );
365 
366   // Convert "(A+X) - (B+X)" into "A - B"
367   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
368     return new SubLNode( in1->in(1), in2->in(1) );
369 
370   // Convert "A-(B-C)" into (A+C)-B"
371   if( op2 == Op_SubL && in2->outcnt() == 1) {
372     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
373     return new SubLNode( add1, in2->in(1) );
374   }
375 
376   // Convert "0L-(A>>63)" into "(A>>>63)"
377   if ( op2 == Op_RShiftL ) {
378     Node *in21 = in2->in(1);
379     Node *in22 = in2->in(2);
380     const TypeLong *zero = phase->type(in1)->isa_long();
381     const TypeLong *t21 = phase->type(in21)->isa_long();
382     const TypeInt *t22 = phase->type(in22)->isa_int();
383     if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
384       return new URShiftLNode(in21, in22);
385     }
386   }
387 
388   return NULL;
389 }
390 
391 //------------------------------sub--------------------------------------------
392 // A subtract node differences it's two inputs.
sub(const Type * t1,const Type * t2) const393 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
394   const TypeLong *r0 = t1->is_long(); // Handy access
395   const TypeLong *r1 = t2->is_long();
396   jlong lo = java_subtract(r0->_lo, r1->_hi);
397   jlong hi = java_subtract(r0->_hi, r1->_lo);
398 
399   // We next check for 32-bit overflow.
400   // If that happens, we just assume all integers are possible.
401   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
402        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
403       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
404        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
405     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
406   else                          // Overflow; assume all integers
407     return TypeLong::LONG;
408 }
409 
410 //=============================================================================
411 //------------------------------Value------------------------------------------
412 // A subtract node differences its two inputs.
Value(PhaseGVN * phase) const413 const Type* SubFPNode::Value(PhaseGVN* phase) const {
414   const Node* in1 = in(1);
415   const Node* in2 = in(2);
416   // Either input is TOP ==> the result is TOP
417   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
418   if( t1 == Type::TOP ) return Type::TOP;
419   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
420   if( t2 == Type::TOP ) return Type::TOP;
421 
422   // if both operands are infinity of same sign, the result is NaN; do
423   // not replace with zero
424   if( (t1->is_finite() && t2->is_finite()) ) {
425     if( phase->eqv(in1, in2) ) return add_id();
426   }
427 
428   // Either input is BOTTOM ==> the result is the local BOTTOM
429   const Type *bot = bottom_type();
430   if( (t1 == bot) || (t2 == bot) ||
431       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
432     return bot;
433 
434   return sub(t1,t2);            // Local flavor of type subtraction
435 }
436 
437 
438 //=============================================================================
439 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)440 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
441   const Type *t2 = phase->type( in(2) );
442   // Convert "x-c0" into "x+ -c0".
443   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
444     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
445   }
446 
447   // Not associative because of boundary conditions (infinity)
448   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
449     // Convert "x - (x+y)" into "-y"
450     if( in(2)->is_Add() &&
451         phase->eqv(in(1),in(2)->in(1) ) )
452       return new SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
453   }
454 
455   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
456   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
457   //if( phase->type(in(1)) == TypeF::ZERO )
458   //return new (phase->C, 2) NegFNode(in(2));
459 
460   return NULL;
461 }
462 
463 //------------------------------sub--------------------------------------------
464 // A subtract node differences its two inputs.
sub(const Type * t1,const Type * t2) const465 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
466   // no folding if one of operands is infinity or NaN, do not do constant folding
467   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
468     return TypeF::make( t1->getf() - t2->getf() );
469   }
470   else if( g_isnan(t1->getf()) ) {
471     return t1;
472   }
473   else if( g_isnan(t2->getf()) ) {
474     return t2;
475   }
476   else {
477     return Type::FLOAT;
478   }
479 }
480 
481 //=============================================================================
482 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)483 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
484   const Type *t2 = phase->type( in(2) );
485   // Convert "x-c0" into "x+ -c0".
486   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
487     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
488   }
489 
490   // Not associative because of boundary conditions (infinity)
491   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
492     // Convert "x - (x+y)" into "-y"
493     if( in(2)->is_Add() &&
494         phase->eqv(in(1),in(2)->in(1) ) )
495       return new SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
496   }
497 
498   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
499   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
500   //if( phase->type(in(1)) == TypeD::ZERO )
501   //return new (phase->C, 2) NegDNode(in(2));
502 
503   return NULL;
504 }
505 
506 //------------------------------sub--------------------------------------------
507 // A subtract node differences its two inputs.
sub(const Type * t1,const Type * t2) const508 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
509   // no folding if one of operands is infinity or NaN, do not do constant folding
510   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
511     return TypeD::make( t1->getd() - t2->getd() );
512   }
513   else if( g_isnan(t1->getd()) ) {
514     return t1;
515   }
516   else if( g_isnan(t2->getd()) ) {
517     return t2;
518   }
519   else {
520     return Type::DOUBLE;
521   }
522 }
523 
524 //=============================================================================
525 //------------------------------Idealize---------------------------------------
526 // Unlike SubNodes, compare must still flatten return value to the
527 // range -1, 0, 1.
528 // And optimizations like those for (X + Y) - X fail if overflow happens.
Identity(PhaseGVN * phase)529 Node* CmpNode::Identity(PhaseGVN* phase) {
530   return this;
531 }
532 
533 #ifndef PRODUCT
534 //----------------------------related------------------------------------------
535 // Related nodes of comparison nodes include all data inputs (until hitting a
536 // control boundary) as well as all outputs until and including control nodes
537 // as well as their projections. In compact mode, data inputs till depth 1 and
538 // all outputs till depth 1 are considered.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const539 void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
540   if (compact) {
541     this->collect_nodes(in_rel, 1, false, true);
542     this->collect_nodes(out_rel, -1, false, false);
543   } else {
544     this->collect_nodes_in_all_data(in_rel, false);
545     this->collect_nodes_out_all_ctrl_boundary(out_rel);
546     // Now, find all control nodes in out_rel, and include their projections
547     // and projection targets (if any) in the result.
548     GrowableArray<Node*> proj(Compile::current()->unique());
549     for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
550       Node* n = *it;
551       if (n->is_CFG() && !n->is_Proj()) {
552         // Assume projections and projection targets are found at levels 1 and 2.
553         n->collect_nodes(&proj, -2, false, false);
554         for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
555           out_rel->append_if_missing(*p);
556         }
557         proj.clear();
558       }
559     }
560   }
561 }
562 #endif
563 
564 //=============================================================================
565 //------------------------------cmp--------------------------------------------
566 // Simplify a CmpI (compare 2 integers) node, based on local information.
567 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const568 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
569   const TypeInt *r0 = t1->is_int(); // Handy access
570   const TypeInt *r1 = t2->is_int();
571 
572   if( r0->_hi < r1->_lo )       // Range is always low?
573     return TypeInt::CC_LT;
574   else if( r0->_lo > r1->_hi )  // Range is always high?
575     return TypeInt::CC_GT;
576 
577   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
578     assert(r0->get_con() == r1->get_con(), "must be equal");
579     return TypeInt::CC_EQ;      // Equal results.
580   } else if( r0->_hi == r1->_lo ) // Range is never high?
581     return TypeInt::CC_LE;
582   else if( r0->_lo == r1->_hi ) // Range is never low?
583     return TypeInt::CC_GE;
584   return TypeInt::CC;           // else use worst case results
585 }
586 
587 // Simplify a CmpU (compare 2 integers) node, based on local information.
588 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const589 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
590   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
591 
592   // comparing two unsigned ints
593   const TypeInt *r0 = t1->is_int();   // Handy access
594   const TypeInt *r1 = t2->is_int();
595 
596   // Current installed version
597   // Compare ranges for non-overlap
598   juint lo0 = r0->_lo;
599   juint hi0 = r0->_hi;
600   juint lo1 = r1->_lo;
601   juint hi1 = r1->_hi;
602 
603   // If either one has both negative and positive values,
604   // it therefore contains both 0 and -1, and since [0..-1] is the
605   // full unsigned range, the type must act as an unsigned bottom.
606   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
607   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
608 
609   if (bot0 || bot1) {
610     // All unsigned values are LE -1 and GE 0.
611     if (lo0 == 0 && hi0 == 0) {
612       return TypeInt::CC_LE;            //   0 <= bot
613     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
614       return TypeInt::CC_GE;            // -1 >= bot
615     } else if (lo1 == 0 && hi1 == 0) {
616       return TypeInt::CC_GE;            // bot >= 0
617     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
618       return TypeInt::CC_LE;            // bot <= -1
619     }
620   } else {
621     // We can use ranges of the form [lo..hi] if signs are the same.
622     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
623     // results are reversed, '-' > '+' for unsigned compare
624     if (hi0 < lo1) {
625       return TypeInt::CC_LT;            // smaller
626     } else if (lo0 > hi1) {
627       return TypeInt::CC_GT;            // greater
628     } else if (hi0 == lo1 && lo0 == hi1) {
629       return TypeInt::CC_EQ;            // Equal results
630     } else if (lo0 >= hi1) {
631       return TypeInt::CC_GE;
632     } else if (hi0 <= lo1) {
633       // Check for special case in Hashtable::get.  (See below.)
634       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
635         return TypeInt::CC_LT;
636       return TypeInt::CC_LE;
637     }
638   }
639   // Check for special case in Hashtable::get - the hash index is
640   // mod'ed to the table size so the following range check is useless.
641   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
642   // to be positive.
643   // (This is a gross hack, since the sub method never
644   // looks at the structure of the node in any other case.)
645   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
646     return TypeInt::CC_LT;
647   return TypeInt::CC;                   // else use worst case results
648 }
649 
Value(PhaseGVN * phase) const650 const Type* CmpUNode::Value(PhaseGVN* phase) const {
651   const Type* t = SubNode::Value_common(phase);
652   if (t != NULL) {
653     return t;
654   }
655   const Node* in1 = in(1);
656   const Node* in2 = in(2);
657   const Type* t1 = phase->type(in1);
658   const Type* t2 = phase->type(in2);
659   assert(t1->isa_int(), "CmpU has only Int type inputs");
660   if (t2 == TypeInt::INT) { // Compare to bottom?
661     return bottom_type();
662   }
663   uint in1_op = in1->Opcode();
664   if (in1_op == Op_AddI || in1_op == Op_SubI) {
665     // The problem rise when result of AddI(SubI) may overflow
666     // signed integer value. Let say the input type is
667     // [256, maxint] then +128 will create 2 ranges due to
668     // overflow: [minint, minint+127] and [384, maxint].
669     // But C2 type system keep only 1 type range and as result
670     // it use general [minint, maxint] for this case which we
671     // can't optimize.
672     //
673     // Make 2 separate type ranges based on types of AddI(SubI) inputs
674     // and compare results of their compare. If results are the same
675     // CmpU node can be optimized.
676     const Node* in11 = in1->in(1);
677     const Node* in12 = in1->in(2);
678     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
679     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
680     // Skip cases when input types are top or bottom.
681     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
682         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
683       const TypeInt *r0 = t11->is_int();
684       const TypeInt *r1 = t12->is_int();
685       jlong lo_r0 = r0->_lo;
686       jlong hi_r0 = r0->_hi;
687       jlong lo_r1 = r1->_lo;
688       jlong hi_r1 = r1->_hi;
689       if (in1_op == Op_SubI) {
690         jlong tmp = hi_r1;
691         hi_r1 = -lo_r1;
692         lo_r1 = -tmp;
693         // Note, for substructing [minint,x] type range
694         // long arithmetic provides correct overflow answer.
695         // The confusion come from the fact that in 32-bit
696         // -minint == minint but in 64-bit -minint == maxint+1.
697       }
698       jlong lo_long = lo_r0 + lo_r1;
699       jlong hi_long = hi_r0 + hi_r1;
700       int lo_tr1 = min_jint;
701       int hi_tr1 = (int)hi_long;
702       int lo_tr2 = (int)lo_long;
703       int hi_tr2 = max_jint;
704       bool underflow = lo_long != (jlong)lo_tr2;
705       bool overflow  = hi_long != (jlong)hi_tr1;
706       // Use sub(t1, t2) when there is no overflow (one type range)
707       // or when both overflow and underflow (too complex).
708       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
709         // Overflow only on one boundary, compare 2 separate type ranges.
710         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
711         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
712         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
713         const Type* cmp1 = sub(tr1, t2);
714         const Type* cmp2 = sub(tr2, t2);
715         if (cmp1 == cmp2) {
716           return cmp1; // Hit!
717         }
718       }
719     }
720   }
721 
722   return sub(t1, t2);            // Local flavor of type subtraction
723 }
724 
is_index_range_check() const725 bool CmpUNode::is_index_range_check() const {
726   // Check for the "(X ModI Y) CmpU Y" shape
727   return (in(1)->Opcode() == Op_ModI &&
728           in(1)->in(2)->eqv_uncast(in(2)));
729 }
730 
731 //------------------------------Idealize---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)732 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
733   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
734     switch (in(1)->Opcode()) {
735     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
736       return new CmpLNode(in(1)->in(1),in(1)->in(2));
737     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
738       return new CmpFNode(in(1)->in(1),in(1)->in(2));
739     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
740       return new CmpDNode(in(1)->in(1),in(1)->in(2));
741     //case Op_SubI:
742       // If (x - y) cannot overflow, then ((x - y) <?> 0)
743       // can be turned into (x <?> y).
744       // This is handled (with more general cases) by Ideal_sub_algebra.
745     }
746   }
747   return NULL;                  // No change
748 }
749 
750 
751 //=============================================================================
752 // Simplify a CmpL (compare 2 longs ) node, based on local information.
753 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const754 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
755   const TypeLong *r0 = t1->is_long(); // Handy access
756   const TypeLong *r1 = t2->is_long();
757 
758   if( r0->_hi < r1->_lo )       // Range is always low?
759     return TypeInt::CC_LT;
760   else if( r0->_lo > r1->_hi )  // Range is always high?
761     return TypeInt::CC_GT;
762 
763   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
764     assert(r0->get_con() == r1->get_con(), "must be equal");
765     return TypeInt::CC_EQ;      // Equal results.
766   } else if( r0->_hi == r1->_lo ) // Range is never high?
767     return TypeInt::CC_LE;
768   else if( r0->_lo == r1->_hi ) // Range is never low?
769     return TypeInt::CC_GE;
770   return TypeInt::CC;           // else use worst case results
771 }
772 
773 
774 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
775 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const776 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
777   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
778 
779   // comparing two unsigned longs
780   const TypeLong* r0 = t1->is_long();   // Handy access
781   const TypeLong* r1 = t2->is_long();
782 
783   // Current installed version
784   // Compare ranges for non-overlap
785   julong lo0 = r0->_lo;
786   julong hi0 = r0->_hi;
787   julong lo1 = r1->_lo;
788   julong hi1 = r1->_hi;
789 
790   // If either one has both negative and positive values,
791   // it therefore contains both 0 and -1, and since [0..-1] is the
792   // full unsigned range, the type must act as an unsigned bottom.
793   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
794   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
795 
796   if (bot0 || bot1) {
797     // All unsigned values are LE -1 and GE 0.
798     if (lo0 == 0 && hi0 == 0) {
799       return TypeInt::CC_LE;            //   0 <= bot
800     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
801       return TypeInt::CC_GE;            // -1 >= bot
802     } else if (lo1 == 0 && hi1 == 0) {
803       return TypeInt::CC_GE;            // bot >= 0
804     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
805       return TypeInt::CC_LE;            // bot <= -1
806     }
807   } else {
808     // We can use ranges of the form [lo..hi] if signs are the same.
809     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
810     // results are reversed, '-' > '+' for unsigned compare
811     if (hi0 < lo1) {
812       return TypeInt::CC_LT;            // smaller
813     } else if (lo0 > hi1) {
814       return TypeInt::CC_GT;            // greater
815     } else if (hi0 == lo1 && lo0 == hi1) {
816       return TypeInt::CC_EQ;            // Equal results
817     } else if (lo0 >= hi1) {
818       return TypeInt::CC_GE;
819     } else if (hi0 <= lo1) {
820       return TypeInt::CC_LE;
821     }
822   }
823 
824   return TypeInt::CC;                   // else use worst case results
825 }
826 
827 //=============================================================================
828 //------------------------------sub--------------------------------------------
829 // Simplify an CmpP (compare 2 pointers) node, based on local information.
830 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const831 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
832   const TypePtr *r0 = t1->is_ptr(); // Handy access
833   const TypePtr *r1 = t2->is_ptr();
834 
835   // Undefined inputs makes for an undefined result
836   if( TypePtr::above_centerline(r0->_ptr) ||
837       TypePtr::above_centerline(r1->_ptr) )
838     return Type::TOP;
839 
840   if (r0 == r1 && r0->singleton()) {
841     // Equal pointer constants (klasses, nulls, etc.)
842     return TypeInt::CC_EQ;
843   }
844 
845   // See if it is 2 unrelated classes.
846   const TypeOopPtr* oop_p0 = r0->isa_oopptr();
847   const TypeOopPtr* oop_p1 = r1->isa_oopptr();
848   bool both_oop_ptr = oop_p0 && oop_p1;
849 
850   if (both_oop_ptr) {
851     Node* in1 = in(1)->uncast();
852     Node* in2 = in(2)->uncast();
853     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
854     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
855     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
856       return TypeInt::CC_GT;  // different pointers
857     }
858   }
859 
860   const TypeKlassPtr* klass_p0 = r0->isa_klassptr();
861   const TypeKlassPtr* klass_p1 = r1->isa_klassptr();
862 
863   if (both_oop_ptr || (klass_p0 && klass_p1)) { // both or neither are klass pointers
864     ciKlass* klass0 = NULL;
865     bool    xklass0 = false;
866     ciKlass* klass1 = NULL;
867     bool    xklass1 = false;
868 
869     if (oop_p0) {
870       klass0 = oop_p0->klass();
871       xklass0 = oop_p0->klass_is_exact();
872     } else {
873       assert(klass_p0, "must be non-null if oop_p0 is null");
874       klass0 = klass_p0->klass();
875       xklass0 = klass_p0->klass_is_exact();
876     }
877 
878     if (oop_p1) {
879       klass1 = oop_p1->klass();
880       xklass1 = oop_p1->klass_is_exact();
881     } else {
882       assert(klass_p1, "must be non-null if oop_p1 is null");
883       klass1 = klass_p1->klass();
884       xklass1 = klass_p1->klass_is_exact();
885     }
886 
887     if (klass0 && klass1 &&
888         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
889         klass1->is_loaded() && !klass1->is_interface() &&
890         (!klass0->is_obj_array_klass() ||
891          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
892         (!klass1->is_obj_array_klass() ||
893          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
894       bool unrelated_classes = false;
895       // See if neither subclasses the other, or if the class on top
896       // is precise.  In either of these cases, the compare is known
897       // to fail if at least one of the pointers is provably not null.
898       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
899         // Do nothing; we know nothing for imprecise types
900       } else if (klass0->is_subtype_of(klass1)) {
901         // If klass1's type is PRECISE, then classes are unrelated.
902         unrelated_classes = xklass1;
903       } else if (klass1->is_subtype_of(klass0)) {
904         // If klass0's type is PRECISE, then classes are unrelated.
905         unrelated_classes = xklass0;
906       } else {                  // Neither subtypes the other
907         unrelated_classes = true;
908       }
909       if (unrelated_classes) {
910         // The oops classes are known to be unrelated. If the joined PTRs of
911         // two oops is not Null and not Bottom, then we are sure that one
912         // of the two oops is non-null, and the comparison will always fail.
913         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
914         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
915           return TypeInt::CC_GT;
916         }
917       }
918     }
919   }
920 
921   // Known constants can be compared exactly
922   // Null can be distinguished from any NotNull pointers
923   // Unknown inputs makes an unknown result
924   if( r0->singleton() ) {
925     intptr_t bits0 = r0->get_con();
926     if( r1->singleton() )
927       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
928     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
929   } else if( r1->singleton() ) {
930     intptr_t bits1 = r1->get_con();
931     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
932   } else
933     return TypeInt::CC;
934 }
935 
isa_java_mirror_load(PhaseGVN * phase,Node * n)936 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
937   // Return the klass node for (indirect load from OopHandle)
938   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
939   //   or NULL if not matching.
940   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
941     n = bs->step_over_gc_barrier(n);
942 
943   if (n->Opcode() != Op_LoadP) return NULL;
944 
945   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
946   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
947 
948   Node* adr = n->in(MemNode::Address);
949   // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
950   if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL;
951   adr = adr->in(MemNode::Address);
952 
953   intptr_t off = 0;
954   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
955   if (k == NULL)  return NULL;
956   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
957   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
958 
959   // We've found the klass node of a Java mirror load.
960   return k;
961 }
962 
isa_const_java_mirror(PhaseGVN * phase,Node * n)963 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
964   // for ConP(Foo.class) return ConP(Foo.klass)
965   // otherwise return NULL
966   if (!n->is_Con()) return NULL;
967 
968   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
969   if (!tp) return NULL;
970 
971   ciType* mirror_type = tp->java_mirror_type();
972   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
973   // time Class constants only.
974   if (!mirror_type) return NULL;
975 
976   // x.getClass() == int.class can never be true (for all primitive types)
977   // Return a ConP(NULL) node for this case.
978   if (mirror_type->is_classless()) {
979     return phase->makecon(TypePtr::NULL_PTR);
980   }
981 
982   // return the ConP(Foo.klass)
983   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
984   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
985 }
986 
987 //------------------------------Ideal------------------------------------------
988 // Normalize comparisons between Java mirror loads to compare the klass instead.
989 //
990 // Also check for the case of comparing an unknown klass loaded from the primary
991 // super-type array vs a known klass with no subtypes.  This amounts to
992 // checking to see an unknown klass subtypes a known klass with no subtypes;
993 // this only happens on an exact match.  We can shorten this test by 1 load.
Ideal(PhaseGVN * phase,bool can_reshape)994 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
995   // Normalize comparisons between Java mirrors into comparisons of the low-
996   // level klass, where a dependent load could be shortened.
997   //
998   // The new pattern has a nice effect of matching the same pattern used in the
999   // fast path of instanceof/checkcast/Class.isInstance(), which allows
1000   // redundant exact type check be optimized away by GVN.
1001   // For example, in
1002   //   if (x.getClass() == Foo.class) {
1003   //     Foo foo = (Foo) x;
1004   //     // ... use a ...
1005   //   }
1006   // a CmpPNode could be shared between if_acmpne and checkcast
1007   {
1008     Node* k1 = isa_java_mirror_load(phase, in(1));
1009     Node* k2 = isa_java_mirror_load(phase, in(2));
1010     Node* conk2 = isa_const_java_mirror(phase, in(2));
1011 
1012     if (k1 && (k2 || conk2)) {
1013       Node* lhs = k1;
1014       Node* rhs = (k2 != NULL) ? k2 : conk2;
1015       PhaseIterGVN* igvn = phase->is_IterGVN();
1016       if (igvn != NULL) {
1017         set_req_X(1, lhs, igvn);
1018         set_req_X(2, rhs, igvn);
1019       } else {
1020         set_req(1, lhs);
1021         set_req(2, rhs);
1022       }
1023       return this;
1024     }
1025   }
1026 
1027   // Constant pointer on right?
1028   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1029   if (t2 == NULL || !t2->klass_is_exact())
1030     return NULL;
1031   // Get the constant klass we are comparing to.
1032   ciKlass* superklass = t2->klass();
1033 
1034   // Now check for LoadKlass on left.
1035   Node* ldk1 = in(1);
1036   if (ldk1->is_DecodeNKlass()) {
1037     ldk1 = ldk1->in(1);
1038     if (ldk1->Opcode() != Op_LoadNKlass )
1039       return NULL;
1040   } else if (ldk1->Opcode() != Op_LoadKlass )
1041     return NULL;
1042   // Take apart the address of the LoadKlass:
1043   Node* adr1 = ldk1->in(MemNode::Address);
1044   intptr_t con2 = 0;
1045   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1046   if (ldk2 == NULL)
1047     return NULL;
1048   if (con2 == oopDesc::klass_offset_in_bytes()) {
1049     // We are inspecting an object's concrete class.
1050     // Short-circuit the check if the query is abstract.
1051     if (superklass->is_interface() ||
1052         superklass->is_abstract()) {
1053       // Make it come out always false:
1054       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1055       return this;
1056     }
1057   }
1058 
1059   // Check for a LoadKlass from primary supertype array.
1060   // Any nested loadklass from loadklass+con must be from the p.s. array.
1061   if (ldk2->is_DecodeNKlass()) {
1062     // Keep ldk2 as DecodeN since it could be used in CmpP below.
1063     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1064       return NULL;
1065   } else if (ldk2->Opcode() != Op_LoadKlass)
1066     return NULL;
1067 
1068   // Verify that we understand the situation
1069   if (con2 != (intptr_t) superklass->super_check_offset())
1070     return NULL;                // Might be element-klass loading from array klass
1071 
1072   // If 'superklass' has no subklasses and is not an interface, then we are
1073   // assured that the only input which will pass the type check is
1074   // 'superklass' itself.
1075   //
1076   // We could be more liberal here, and allow the optimization on interfaces
1077   // which have a single implementor.  This would require us to increase the
1078   // expressiveness of the add_dependency() mechanism.
1079   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
1080 
1081   // Object arrays must have their base element have no subtypes
1082   while (superklass->is_obj_array_klass()) {
1083     ciType* elem = superklass->as_obj_array_klass()->element_type();
1084     superklass = elem->as_klass();
1085   }
1086   if (superklass->is_instance_klass()) {
1087     ciInstanceKlass* ik = superklass->as_instance_klass();
1088     if (ik->has_subklass() || ik->is_interface())  return NULL;
1089     // Add a dependency if there is a chance that a subclass will be added later.
1090     if (!ik->is_final()) {
1091       phase->C->dependencies()->assert_leaf_type(ik);
1092     }
1093   }
1094 
1095   // Bypass the dependent load, and compare directly
1096   this->set_req(1,ldk2);
1097 
1098   return this;
1099 }
1100 
1101 //=============================================================================
1102 //------------------------------sub--------------------------------------------
1103 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1104 // If both inputs are constants, compare them.
sub(const Type * t1,const Type * t2) const1105 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1106   ShouldNotReachHere();
1107   return bottom_type();
1108 }
1109 
1110 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1111 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1112   return NULL;
1113 }
1114 
1115 //=============================================================================
1116 //------------------------------Value------------------------------------------
1117 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1118 // If both inputs are constants, compare them.
Value(PhaseGVN * phase) const1119 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1120   const Node* in1 = in(1);
1121   const Node* in2 = in(2);
1122   // Either input is TOP ==> the result is TOP
1123   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1124   if( t1 == Type::TOP ) return Type::TOP;
1125   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1126   if( t2 == Type::TOP ) return Type::TOP;
1127 
1128   // Not constants?  Don't know squat - even if they are the same
1129   // value!  If they are NaN's they compare to LT instead of EQ.
1130   const TypeF *tf1 = t1->isa_float_constant();
1131   const TypeF *tf2 = t2->isa_float_constant();
1132   if( !tf1 || !tf2 ) return TypeInt::CC;
1133 
1134   // This implements the Java bytecode fcmpl, so unordered returns -1.
1135   if( tf1->is_nan() || tf2->is_nan() )
1136     return TypeInt::CC_LT;
1137 
1138   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1139   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1140   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1141   return TypeInt::CC_EQ;
1142 }
1143 
1144 
1145 //=============================================================================
1146 //------------------------------Value------------------------------------------
1147 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1148 // If both inputs are constants, compare them.
Value(PhaseGVN * phase) const1149 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1150   const Node* in1 = in(1);
1151   const Node* in2 = in(2);
1152   // Either input is TOP ==> the result is TOP
1153   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1154   if( t1 == Type::TOP ) return Type::TOP;
1155   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1156   if( t2 == Type::TOP ) return Type::TOP;
1157 
1158   // Not constants?  Don't know squat - even if they are the same
1159   // value!  If they are NaN's they compare to LT instead of EQ.
1160   const TypeD *td1 = t1->isa_double_constant();
1161   const TypeD *td2 = t2->isa_double_constant();
1162   if( !td1 || !td2 ) return TypeInt::CC;
1163 
1164   // This implements the Java bytecode dcmpl, so unordered returns -1.
1165   if( td1->is_nan() || td2->is_nan() )
1166     return TypeInt::CC_LT;
1167 
1168   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1169   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1170   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1171   return TypeInt::CC_EQ;
1172 }
1173 
1174 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1175 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1176   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1177   // Change  (CMPD (F2D (float)) (ConD value))
1178   // To      (CMPF      (float)  (ConF value))
1179   // Valid when 'value' does not lose precision as a float.
1180   // Benefits: eliminates conversion, does not require 24-bit mode
1181 
1182   // NaNs prevent commuting operands.  This transform works regardless of the
1183   // order of ConD and ConvF2D inputs by preserving the original order.
1184   int idx_f2d = 1;              // ConvF2D on left side?
1185   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1186     idx_f2d = 2;                // No, swap to check for reversed args
1187   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1188 
1189   if( ConvertCmpD2CmpF &&
1190       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1191       in(idx_con)->Opcode() == Op_ConD ) {
1192     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1193     double t2_value_as_double = t2->_d;
1194     float  t2_value_as_float  = (float)t2_value_as_double;
1195     if( t2_value_as_double == (double)t2_value_as_float ) {
1196       // Test value can be represented as a float
1197       // Eliminate the conversion to double and create new comparison
1198       Node *new_in1 = in(idx_f2d)->in(1);
1199       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1200       if( idx_f2d != 1 ) {      // Must flip args to match original order
1201         Node *tmp = new_in1;
1202         new_in1 = new_in2;
1203         new_in2 = tmp;
1204       }
1205       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1206         ? new CmpF3Node( new_in1, new_in2 )
1207         : new CmpFNode ( new_in1, new_in2 ) ;
1208       return new_cmp;           // Changed to CmpFNode
1209     }
1210     // Testing value required the precision of a double
1211   }
1212   return NULL;                  // No change
1213 }
1214 
1215 
1216 //=============================================================================
1217 //------------------------------cc2logical-------------------------------------
1218 // Convert a condition code type to a logical type
cc2logical(const Type * CC) const1219 const Type *BoolTest::cc2logical( const Type *CC ) const {
1220   if( CC == Type::TOP ) return Type::TOP;
1221   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1222   const TypeInt *ti = CC->is_int();
1223   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1224     // Match low order 2 bits
1225     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1226     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1227     return TypeInt::make(tmp);       // Boolean result
1228   }
1229 
1230   if( CC == TypeInt::CC_GE ) {
1231     if( _test == ge ) return TypeInt::ONE;
1232     if( _test == lt ) return TypeInt::ZERO;
1233   }
1234   if( CC == TypeInt::CC_LE ) {
1235     if( _test == le ) return TypeInt::ONE;
1236     if( _test == gt ) return TypeInt::ZERO;
1237   }
1238 
1239   return TypeInt::BOOL;
1240 }
1241 
1242 //------------------------------dump_spec-------------------------------------
1243 // Print special per-node info
dump_on(outputStream * st) const1244 void BoolTest::dump_on(outputStream *st) const {
1245   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1246   st->print("%s", msg[_test]);
1247 }
1248 
1249 // Returns the logical AND of two tests (or 'never' if both tests can never be true).
1250 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
merge(BoolTest other) const1251 BoolTest::mask BoolTest::merge(BoolTest other) const {
1252   const mask res[illegal+1][illegal+1] = {
1253     // eq,      gt,      of,      lt,      ne,      le,      nof,     ge,      never,   illegal
1254       {eq,      never,   illegal, never,   never,   eq,      illegal, eq,      never,   illegal},  // eq
1255       {never,   gt,      illegal, never,   gt,      never,   illegal, gt,      never,   illegal},  // gt
1256       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // of
1257       {never,   never,   illegal, lt,      lt,      lt,      illegal, never,   never,   illegal},  // lt
1258       {never,   gt,      illegal, lt,      ne,      lt,      illegal, gt,      never,   illegal},  // ne
1259       {eq,      never,   illegal, lt,      lt,      le,      illegal, eq,      never,   illegal},  // le
1260       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // nof
1261       {eq,      gt,      illegal, never,   gt,      eq,      illegal, ge,      never,   illegal},  // ge
1262       {never,   never,   never,   never,   never,   never,   never,   never,   never,   illegal},  // never
1263       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1264   return res[_test][other._test];
1265 }
1266 
1267 //=============================================================================
hash() const1268 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
size_of() const1269 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1270 
1271 //------------------------------operator==-------------------------------------
cmp(const Node & n) const1272 bool BoolNode::cmp( const Node &n ) const {
1273   const BoolNode *b = (const BoolNode *)&n; // Cast up
1274   return (_test._test == b->_test._test);
1275 }
1276 
1277 //-------------------------------make_predicate--------------------------------
make_predicate(Node * test_value,PhaseGVN * phase)1278 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1279   if (test_value->is_Con())   return test_value;
1280   if (test_value->is_Bool())  return test_value;
1281   if (test_value->is_CMove() &&
1282       test_value->in(CMoveNode::Condition)->is_Bool()) {
1283     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1284     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1285     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1286     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1287       return bol;
1288     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1289       return phase->transform( bol->negate(phase) );
1290     }
1291     // Else fall through.  The CMove gets in the way of the test.
1292     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1293   }
1294   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1295   cmp = phase->transform(cmp);
1296   Node* bol = new BoolNode(cmp, BoolTest::ne);
1297   return phase->transform(bol);
1298 }
1299 
1300 //--------------------------------as_int_value---------------------------------
as_int_value(PhaseGVN * phase)1301 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1302   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1303   Node* cmov = CMoveNode::make(NULL, this,
1304                                phase->intcon(0), phase->intcon(1),
1305                                TypeInt::BOOL);
1306   return phase->transform(cmov);
1307 }
1308 
1309 //----------------------------------negate-------------------------------------
negate(PhaseGVN * phase)1310 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1311   return new BoolNode(in(1), _test.negate());
1312 }
1313 
1314 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1315 // overflows and we can prove that C is not in the two resulting ranges.
1316 // This optimization is similar to the one performed by CmpUNode::Value().
fold_cmpI(PhaseGVN * phase,SubNode * cmp,Node * cmp1,int cmp_op,int cmp1_op,const TypeInt * cmp2_type)1317 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1318                           int cmp1_op, const TypeInt* cmp2_type) {
1319   // Only optimize eq/ne integer comparison of add/sub
1320   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1321      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1322     // Skip cases were inputs of add/sub are not integers or of bottom type
1323     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1324     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1325     if ((r0 != NULL) && (r0 != TypeInt::INT) &&
1326         (r1 != NULL) && (r1 != TypeInt::INT) &&
1327         (cmp2_type != TypeInt::INT)) {
1328       // Compute exact (long) type range of add/sub result
1329       jlong lo_long = r0->_lo;
1330       jlong hi_long = r0->_hi;
1331       if (cmp1_op == Op_AddI) {
1332         lo_long += r1->_lo;
1333         hi_long += r1->_hi;
1334       } else {
1335         lo_long -= r1->_hi;
1336         hi_long -= r1->_lo;
1337       }
1338       // Check for over-/underflow by casting to integer
1339       int lo_int = (int)lo_long;
1340       int hi_int = (int)hi_long;
1341       bool underflow = lo_long != (jlong)lo_int;
1342       bool overflow  = hi_long != (jlong)hi_int;
1343       if ((underflow != overflow) && (hi_int < lo_int)) {
1344         // Overflow on one boundary, compute resulting type ranges:
1345         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1346         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1347         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1348         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1349         // Compare second input of cmp to both type ranges
1350         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1351         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1352         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1353           // The result of the add/sub will never equal cmp2. Replace BoolNode
1354           // by false (0) if it tests for equality and by true (1) otherwise.
1355           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1356         }
1357       }
1358     }
1359   }
1360   return NULL;
1361 }
1362 
is_counted_loop_cmp(Node * cmp)1363 static bool is_counted_loop_cmp(Node *cmp) {
1364   Node *n = cmp->in(1)->in(1);
1365   return n != NULL &&
1366          n->is_Phi() &&
1367          n->in(0) != NULL &&
1368          n->in(0)->is_CountedLoop() &&
1369          n->in(0)->as_CountedLoop()->phi() == n;
1370 }
1371 
1372 //------------------------------Ideal------------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)1373 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1374   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1375   // This moves the constant to the right.  Helps value-numbering.
1376   Node *cmp = in(1);
1377   if( !cmp->is_Sub() ) return NULL;
1378   int cop = cmp->Opcode();
1379   if( cop == Op_FastLock || cop == Op_FastUnlock || cmp->is_SubTypeCheck()) return NULL;
1380   Node *cmp1 = cmp->in(1);
1381   Node *cmp2 = cmp->in(2);
1382   if( !cmp1 ) return NULL;
1383 
1384   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1385     return NULL;
1386   }
1387 
1388   // Constant on left?
1389   Node *con = cmp1;
1390   uint op2 = cmp2->Opcode();
1391   // Move constants to the right of compare's to canonicalize.
1392   // Do not muck with Opaque1 nodes, as this indicates a loop
1393   // guard that cannot change shape.
1394   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1395       // Because of NaN's, CmpD and CmpF are not commutative
1396       cop != Op_CmpD && cop != Op_CmpF &&
1397       // Protect against swapping inputs to a compare when it is used by a
1398       // counted loop exit, which requires maintaining the loop-limit as in(2)
1399       !is_counted_loop_exit_test() ) {
1400     // Ok, commute the constant to the right of the cmp node.
1401     // Clone the Node, getting a new Node of the same class
1402     cmp = cmp->clone();
1403     // Swap inputs to the clone
1404     cmp->swap_edges(1, 2);
1405     cmp = phase->transform( cmp );
1406     return new BoolNode( cmp, _test.commute() );
1407   }
1408 
1409   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1410   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1411   // test instead.
1412   int cmp1_op = cmp1->Opcode();
1413   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1414   if (cmp2_type == NULL)  return NULL;
1415   Node* j_xor = cmp1;
1416   if( cmp2_type == TypeInt::ZERO &&
1417       cmp1_op == Op_XorI &&
1418       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1419       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1420       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1421       (_test._test == BoolTest::eq ||
1422        _test._test == BoolTest::ne) ) {
1423     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1424     return new BoolNode( ncmp, _test.negate() );
1425   }
1426 
1427   // Change ((x & m) u<= m) or ((m & x) u<= m) to always true
1428   // Same with ((x & m) u< m+1) and ((m & x) u< m+1)
1429   if (cop == Op_CmpU &&
1430       cmp1_op == Op_AndI) {
1431     Node* bound = NULL;
1432     if (_test._test == BoolTest::le) {
1433       bound = cmp2;
1434     } else if (_test._test == BoolTest::lt &&
1435                cmp2->Opcode() == Op_AddI &&
1436                cmp2->in(2)->find_int_con(0) == 1) {
1437       bound = cmp2->in(1);
1438     }
1439     if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
1440       return ConINode::make(1);
1441     }
1442   }
1443 
1444   // Change ((x & (m - 1)) u< m) into (m > 0)
1445   // This is the off-by-one variant of the above
1446   if (cop == Op_CmpU &&
1447       _test._test == BoolTest::lt &&
1448       cmp1_op == Op_AndI) {
1449     Node* l = cmp1->in(1);
1450     Node* r = cmp1->in(2);
1451     for (int repeat = 0; repeat < 2; repeat++) {
1452       bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
1453                    r->in(1) == cmp2;
1454       if (match) {
1455         // arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
1456         // but to be compatible with the array range check pattern, use (arraylength u> 0)
1457         Node* ncmp = cmp2->Opcode() == Op_LoadRange
1458                      ? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
1459                      : phase->transform(new CmpINode(cmp2, phase->intcon(0)));
1460         return new BoolNode(ncmp, BoolTest::gt);
1461       } else {
1462         // commute and try again
1463         l = cmp1->in(2);
1464         r = cmp1->in(1);
1465       }
1466     }
1467   }
1468 
1469   // Change x u< 1 or x u<= 0 to x == 0
1470   if (cop == Op_CmpU &&
1471       cmp1_op != Op_LoadRange &&
1472       ((_test._test == BoolTest::lt &&
1473         cmp2->find_int_con(-1) == 1) ||
1474        (_test._test == BoolTest::le &&
1475         cmp2->find_int_con(-1) == 0))) {
1476     Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1477     return new BoolNode(ncmp, BoolTest::eq);
1478   }
1479 
1480   // Change (arraylength <= 0) or (arraylength == 0)
1481   //   into (arraylength u<= 0)
1482   // Also change (arraylength != 0) into (arraylength u> 0)
1483   // The latter version matches the code pattern generated for
1484   // array range checks, which will more likely be optimized later.
1485   if (cop == Op_CmpI &&
1486       cmp1_op == Op_LoadRange &&
1487       cmp2->find_int_con(-1) == 0) {
1488     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1489       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1490       return new BoolNode(ncmp, BoolTest::le);
1491     } else if (_test._test == BoolTest::ne) {
1492       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1493       return new BoolNode(ncmp, BoolTest::gt);
1494     }
1495   }
1496 
1497   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1498   // This is a standard idiom for branching on a boolean value.
1499   Node *c2b = cmp1;
1500   if( cmp2_type == TypeInt::ZERO &&
1501       cmp1_op == Op_Conv2B &&
1502       (_test._test == BoolTest::eq ||
1503        _test._test == BoolTest::ne) ) {
1504     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1505        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1506        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1507     );
1508     return new BoolNode( ncmp, _test._test );
1509   }
1510 
1511   // Comparing a SubI against a zero is equal to comparing the SubI
1512   // arguments directly.  This only works for eq and ne comparisons
1513   // due to possible integer overflow.
1514   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1515         (cop == Op_CmpI) &&
1516         (cmp1_op == Op_SubI) &&
1517         ( cmp2_type == TypeInt::ZERO ) ) {
1518     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1519     return new BoolNode( ncmp, _test._test );
1520   }
1521 
1522   // Same as above but with and AddI of a constant
1523   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1524       cop == Op_CmpI &&
1525       cmp1_op == Op_AddI &&
1526       cmp1->in(2) != NULL &&
1527       phase->type(cmp1->in(2))->isa_int() &&
1528       phase->type(cmp1->in(2))->is_int()->is_con() &&
1529       cmp2_type == TypeInt::ZERO &&
1530       !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1531       ) {
1532     const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1533     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1534     return new BoolNode( ncmp, _test._test );
1535   }
1536 
1537   // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1538   // since zero check of conditional negation of an integer is equal to
1539   // zero check of the integer directly.
1540   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1541       (cop == Op_CmpI) &&
1542       (cmp2_type == TypeInt::ZERO) &&
1543       (cmp1_op == Op_Phi)) {
1544     // There should be a diamond phi with true path at index 1 or 2
1545     PhiNode *phi = cmp1->as_Phi();
1546     int idx_true = phi->is_diamond_phi();
1547     if (idx_true != 0) {
1548       // True input is in(idx_true) while false input is in(3 - idx_true)
1549       Node *tin = phi->in(idx_true);
1550       Node *fin = phi->in(3 - idx_true);
1551       if ((tin->Opcode() == Op_SubI) &&
1552           (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1553           (tin->in(2) == fin)) {
1554         // Found conditional negation at true path, create a new CmpINode without that
1555         Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1556         return new BoolNode(ncmp, _test._test);
1557       }
1558       if ((fin->Opcode() == Op_SubI) &&
1559           (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1560           (fin->in(2) == tin)) {
1561         // Found conditional negation at false path, create a new CmpINode without that
1562         Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1563         return new BoolNode(ncmp, _test._test);
1564       }
1565     }
1566   }
1567 
1568   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1569   // most general case because negating 0x80000000 does nothing.  Needed for
1570   // the CmpF3/SubI/CmpI idiom.
1571   if( cop == Op_CmpI &&
1572       cmp1_op == Op_SubI &&
1573       cmp2_type == TypeInt::ZERO &&
1574       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1575       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1576     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1577     return new BoolNode( ncmp, _test.commute() );
1578   }
1579 
1580   // Try to optimize signed integer comparison
1581   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1582 
1583   //  The transformation below is not valid for either signed or unsigned
1584   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1585   //  This transformation can be resurrected when we are able to
1586   //  make inferences about the range of values being subtracted from
1587   //  (or added to) relative to the wraparound point.
1588   //
1589   //    // Remove +/-1's if possible.
1590   //    // "X <= Y-1" becomes "X <  Y"
1591   //    // "X+1 <= Y" becomes "X <  Y"
1592   //    // "X <  Y+1" becomes "X <= Y"
1593   //    // "X-1 <  Y" becomes "X <= Y"
1594   //    // Do not this to compares off of the counted-loop-end.  These guys are
1595   //    // checking the trip counter and they want to use the post-incremented
1596   //    // counter.  If they use the PRE-incremented counter, then the counter has
1597   //    // to be incremented in a private block on a loop backedge.
1598   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1599   //      return NULL;
1600   //  #ifndef PRODUCT
1601   //    // Do not do this in a wash GVN pass during verification.
1602   //    // Gets triggered by too many simple optimizations to be bothered with
1603   //    // re-trying it again and again.
1604   //    if( !phase->allow_progress() ) return NULL;
1605   //  #endif
1606   //    // Not valid for unsigned compare because of corner cases in involving zero.
1607   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1608   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1609   //    // "0 <=u Y" is always true).
1610   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1611   //    int cmp2_op = cmp2->Opcode();
1612   //    if( _test._test == BoolTest::le ) {
1613   //      if( cmp1_op == Op_AddI &&
1614   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1615   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1616   //      else if( cmp2_op == Op_AddI &&
1617   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1618   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1619   //    } else if( _test._test == BoolTest::lt ) {
1620   //      if( cmp1_op == Op_AddI &&
1621   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1622   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1623   //      else if( cmp2_op == Op_AddI &&
1624   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1625   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1626   //    }
1627 }
1628 
1629 //------------------------------Value------------------------------------------
1630 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1631 // based on local information.   If the input is constant, do it.
Value(PhaseGVN * phase) const1632 const Type* BoolNode::Value(PhaseGVN* phase) const {
1633   return _test.cc2logical( phase->type( in(1) ) );
1634 }
1635 
1636 #ifndef PRODUCT
1637 //------------------------------dump_spec--------------------------------------
1638 // Dump special per-node info
dump_spec(outputStream * st) const1639 void BoolNode::dump_spec(outputStream *st) const {
1640   st->print("[");
1641   _test.dump_on(st);
1642   st->print("]");
1643 }
1644 
1645 //-------------------------------related---------------------------------------
1646 // A BoolNode's related nodes are all of its data inputs, and all of its
1647 // outputs until control nodes are hit, which are included. In compact
1648 // representation, inputs till level 3 and immediate outputs are included.
related(GrowableArray<Node * > * in_rel,GrowableArray<Node * > * out_rel,bool compact) const1649 void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1650   if (compact) {
1651     this->collect_nodes(in_rel, 3, false, true);
1652     this->collect_nodes(out_rel, -1, false, false);
1653   } else {
1654     this->collect_nodes_in_all_data(in_rel, false);
1655     this->collect_nodes_out_all_ctrl_boundary(out_rel);
1656   }
1657 }
1658 #endif
1659 
1660 //----------------------is_counted_loop_exit_test------------------------------
1661 // Returns true if node is used by a counted loop node.
is_counted_loop_exit_test()1662 bool BoolNode::is_counted_loop_exit_test() {
1663   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1664     Node* use = fast_out(i);
1665     if (use->is_CountedLoopEnd()) {
1666       return true;
1667     }
1668   }
1669   return false;
1670 }
1671 
1672 //=============================================================================
1673 //------------------------------Value------------------------------------------
1674 // Compute sqrt
Value(PhaseGVN * phase) const1675 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1676   const Type *t1 = phase->type( in(1) );
1677   if( t1 == Type::TOP ) return Type::TOP;
1678   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1679   double d = t1->getd();
1680   if( d < 0.0 ) return Type::DOUBLE;
1681   return TypeD::make( sqrt( d ) );
1682 }
1683 
Value(PhaseGVN * phase) const1684 const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1685   const Type *t1 = phase->type( in(1) );
1686   if( t1 == Type::TOP ) return Type::TOP;
1687   if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1688   float f = t1->getf();
1689   if( f < 0.0f ) return Type::FLOAT;
1690   return TypeF::make( (float)sqrt( (double)f ) );
1691 }
1692