1 /*
2  * Copyright (c) 1994, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.invoke.MethodHandles;
29 import java.lang.constant.Constable;
30 import java.lang.constant.ConstantDesc;
31 import java.util.Optional;
32 
33 import jdk.internal.math.FloatingDecimal;
34 import jdk.internal.HotSpotIntrinsicCandidate;
35 
36 /**
37  * The {@code Float} class wraps a value of primitive type
38  * {@code float} in an object. An object of type
39  * {@code Float} contains a single field whose type is
40  * {@code float}.
41  *
42  * <p>In addition, this class provides several methods for converting a
43  * {@code float} to a {@code String} and a
44  * {@code String} to a {@code float}, as well as other
45  * constants and methods useful when dealing with a
46  * {@code float}.
47  *
48  * @author  Lee Boynton
49  * @author  Arthur van Hoff
50  * @author  Joseph D. Darcy
51  * @since 1.0
52  */
53 public final class Float extends Number
54         implements Comparable<Float>, Constable, ConstantDesc {
55     /**
56      * A constant holding the positive infinity of type
57      * {@code float}. It is equal to the value returned by
58      * {@code Float.intBitsToFloat(0x7f800000)}.
59      */
60     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
61 
62     /**
63      * A constant holding the negative infinity of type
64      * {@code float}. It is equal to the value returned by
65      * {@code Float.intBitsToFloat(0xff800000)}.
66      */
67     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
68 
69     /**
70      * A constant holding a Not-a-Number (NaN) value of type
71      * {@code float}.  It is equivalent to the value returned by
72      * {@code Float.intBitsToFloat(0x7fc00000)}.
73      */
74     public static final float NaN = 0.0f / 0.0f;
75 
76     /**
77      * A constant holding the largest positive finite value of type
78      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
79      * It is equal to the hexadecimal floating-point literal
80      * {@code 0x1.fffffeP+127f} and also equal to
81      * {@code Float.intBitsToFloat(0x7f7fffff)}.
82      */
83     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
84 
85     /**
86      * A constant holding the smallest positive normal value of type
87      * {@code float}, 2<sup>-126</sup>.  It is equal to the
88      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
89      * equal to {@code Float.intBitsToFloat(0x00800000)}.
90      *
91      * @since 1.6
92      */
93     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
94 
95     /**
96      * A constant holding the smallest positive nonzero value of type
97      * {@code float}, 2<sup>-149</sup>. It is equal to the
98      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
99      * and also equal to {@code Float.intBitsToFloat(0x1)}.
100      */
101     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
102 
103     /**
104      * Maximum exponent a finite {@code float} variable may have.  It
105      * is equal to the value returned by {@code
106      * Math.getExponent(Float.MAX_VALUE)}.
107      *
108      * @since 1.6
109      */
110     public static final int MAX_EXPONENT = 127;
111 
112     /**
113      * Minimum exponent a normalized {@code float} variable may have.
114      * It is equal to the value returned by {@code
115      * Math.getExponent(Float.MIN_NORMAL)}.
116      *
117      * @since 1.6
118      */
119     public static final int MIN_EXPONENT = -126;
120 
121     /**
122      * The number of bits used to represent a {@code float} value.
123      *
124      * @since 1.5
125      */
126     public static final int SIZE = 32;
127 
128     /**
129      * The number of bytes used to represent a {@code float} value.
130      *
131      * @since 1.8
132      */
133     public static final int BYTES = SIZE / Byte.SIZE;
134 
135     /**
136      * The {@code Class} instance representing the primitive type
137      * {@code float}.
138      *
139      * @since 1.1
140      */
141     @SuppressWarnings("unchecked")
142     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
143 
144     /**
145      * Returns a string representation of the {@code float}
146      * argument. All characters mentioned below are ASCII characters.
147      * <ul>
148      * <li>If the argument is NaN, the result is the string
149      * "{@code NaN}".
150      * <li>Otherwise, the result is a string that represents the sign and
151      *     magnitude (absolute value) of the argument. If the sign is
152      *     negative, the first character of the result is
153      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
154      *     positive, no sign character appears in the result. As for
155      *     the magnitude <i>m</i>:
156      * <ul>
157      * <li>If <i>m</i> is infinity, it is represented by the characters
158      *     {@code "Infinity"}; thus, positive infinity produces
159      *     the result {@code "Infinity"} and negative infinity
160      *     produces the result {@code "-Infinity"}.
161      * <li>If <i>m</i> is zero, it is represented by the characters
162      *     {@code "0.0"}; thus, negative zero produces the result
163      *     {@code "-0.0"} and positive zero produces the result
164      *     {@code "0.0"}.
165      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
166      *      less than 10<sup>7</sup>, then it is represented as the
167      *      integer part of <i>m</i>, in decimal form with no leading
168      *      zeroes, followed by '{@code .}'
169      *      ({@code '\u005Cu002E'}), followed by one or more
170      *      decimal digits representing the fractional part of
171      *      <i>m</i>.
172      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
173      *      equal to 10<sup>7</sup>, then it is represented in
174      *      so-called "computerized scientific notation." Let <i>n</i>
175      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
176      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
177      *      be the mathematically exact quotient of <i>m</i> and
178      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
179      *      The magnitude is then represented as the integer part of
180      *      <i>a</i>, as a single decimal digit, followed by
181      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
182      *      decimal digits representing the fractional part of
183      *      <i>a</i>, followed by the letter '{@code E}'
184      *      ({@code '\u005Cu0045'}), followed by a representation
185      *      of <i>n</i> as a decimal integer, as produced by the
186      *      method {@link java.lang.Integer#toString(int)}.
187      *
188      * </ul>
189      * </ul>
190      * How many digits must be printed for the fractional part of
191      * <i>m</i> or <i>a</i>? There must be at least one digit
192      * to represent the fractional part, and beyond that as many, but
193      * only as many, more digits as are needed to uniquely distinguish
194      * the argument value from adjacent values of type
195      * {@code float}. That is, suppose that <i>x</i> is the
196      * exact mathematical value represented by the decimal
197      * representation produced by this method for a finite nonzero
198      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
199      * value nearest to <i>x</i>; or, if two {@code float} values are
200      * equally close to <i>x</i>, then <i>f</i> must be one of
201      * them and the least significant bit of the significand of
202      * <i>f</i> must be {@code 0}.
203      *
204      * <p>To create localized string representations of a floating-point
205      * value, use subclasses of {@link java.text.NumberFormat}.
206      *
207      * @param   f   the float to be converted.
208      * @return a string representation of the argument.
209      */
toString(float f)210     public static String toString(float f) {
211         return FloatingDecimal.toJavaFormatString(f);
212     }
213 
214     /**
215      * Returns a hexadecimal string representation of the
216      * {@code float} argument. All characters mentioned below are
217      * ASCII characters.
218      *
219      * <ul>
220      * <li>If the argument is NaN, the result is the string
221      *     "{@code NaN}".
222      * <li>Otherwise, the result is a string that represents the sign and
223      * magnitude (absolute value) of the argument. If the sign is negative,
224      * the first character of the result is '{@code -}'
225      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
226      * appears in the result. As for the magnitude <i>m</i>:
227      *
228      * <ul>
229      * <li>If <i>m</i> is infinity, it is represented by the string
230      * {@code "Infinity"}; thus, positive infinity produces the
231      * result {@code "Infinity"} and negative infinity produces
232      * the result {@code "-Infinity"}.
233      *
234      * <li>If <i>m</i> is zero, it is represented by the string
235      * {@code "0x0.0p0"}; thus, negative zero produces the result
236      * {@code "-0x0.0p0"} and positive zero produces the result
237      * {@code "0x0.0p0"}.
238      *
239      * <li>If <i>m</i> is a {@code float} value with a
240      * normalized representation, substrings are used to represent the
241      * significand and exponent fields.  The significand is
242      * represented by the characters {@code "0x1."}
243      * followed by a lowercase hexadecimal representation of the rest
244      * of the significand as a fraction.  Trailing zeros in the
245      * hexadecimal representation are removed unless all the digits
246      * are zero, in which case a single zero is used. Next, the
247      * exponent is represented by {@code "p"} followed
248      * by a decimal string of the unbiased exponent as if produced by
249      * a call to {@link Integer#toString(int) Integer.toString} on the
250      * exponent value.
251      *
252      * <li>If <i>m</i> is a {@code float} value with a subnormal
253      * representation, the significand is represented by the
254      * characters {@code "0x0."} followed by a
255      * hexadecimal representation of the rest of the significand as a
256      * fraction.  Trailing zeros in the hexadecimal representation are
257      * removed. Next, the exponent is represented by
258      * {@code "p-126"}.  Note that there must be at
259      * least one nonzero digit in a subnormal significand.
260      *
261      * </ul>
262      *
263      * </ul>
264      *
265      * <table class="striped">
266      * <caption>Examples</caption>
267      * <thead>
268      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
269      * </thead>
270      * <tbody>
271      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
272      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
273      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
274      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
275      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
276      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
277      * <tr><th scope="row">{@code Float.MAX_VALUE}</th>
278      *     <td>{@code 0x1.fffffep127}</td>
279      * <tr><th scope="row">{@code Minimum Normal Value}</th>
280      *     <td>{@code 0x1.0p-126}</td>
281      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
282      *     <td>{@code 0x0.fffffep-126}</td>
283      * <tr><th scope="row">{@code Float.MIN_VALUE}</th>
284      *     <td>{@code 0x0.000002p-126}</td>
285      * </tbody>
286      * </table>
287      * @param   f   the {@code float} to be converted.
288      * @return a hex string representation of the argument.
289      * @since 1.5
290      * @author Joseph D. Darcy
291      */
toHexString(float f)292     public static String toHexString(float f) {
293         if (Math.abs(f) < Float.MIN_NORMAL
294             &&  f != 0.0f ) {// float subnormal
295             // Adjust exponent to create subnormal double, then
296             // replace subnormal double exponent with subnormal float
297             // exponent
298             String s = Double.toHexString(Math.scalb((double)f,
299                                                      /* -1022+126 */
300                                                      Double.MIN_EXPONENT-
301                                                      Float.MIN_EXPONENT));
302             return s.replaceFirst("p-1022$", "p-126");
303         }
304         else // double string will be the same as float string
305             return Double.toHexString(f);
306     }
307 
308     /**
309      * Returns a {@code Float} object holding the
310      * {@code float} value represented by the argument string
311      * {@code s}.
312      *
313      * <p>If {@code s} is {@code null}, then a
314      * {@code NullPointerException} is thrown.
315      *
316      * <p>Leading and trailing whitespace characters in {@code s}
317      * are ignored.  Whitespace is removed as if by the {@link
318      * String#trim} method; that is, both ASCII space and control
319      * characters are removed. The rest of {@code s} should
320      * constitute a <i>FloatValue</i> as described by the lexical
321      * syntax rules:
322      *
323      * <blockquote>
324      * <dl>
325      * <dt><i>FloatValue:</i>
326      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
327      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
328      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
329      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
330      * <dd><i>SignedInteger</i>
331      * </dl>
332      *
333      * <dl>
334      * <dt><i>HexFloatingPointLiteral</i>:
335      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
336      * </dl>
337      *
338      * <dl>
339      * <dt><i>HexSignificand:</i>
340      * <dd><i>HexNumeral</i>
341      * <dd><i>HexNumeral</i> {@code .}
342      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
343      *     </i>{@code .}<i> HexDigits</i>
344      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
345      *     </i>{@code .} <i>HexDigits</i>
346      * </dl>
347      *
348      * <dl>
349      * <dt><i>BinaryExponent:</i>
350      * <dd><i>BinaryExponentIndicator SignedInteger</i>
351      * </dl>
352      *
353      * <dl>
354      * <dt><i>BinaryExponentIndicator:</i>
355      * <dd>{@code p}
356      * <dd>{@code P}
357      * </dl>
358      *
359      * </blockquote>
360      *
361      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
362      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
363      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
364      * sections of
365      * <cite>The Java Language Specification</cite>,
366      * except that underscores are not accepted between digits.
367      * If {@code s} does not have the form of
368      * a <i>FloatValue</i>, then a {@code NumberFormatException}
369      * is thrown. Otherwise, {@code s} is regarded as
370      * representing an exact decimal value in the usual
371      * "computerized scientific notation" or as an exact
372      * hexadecimal value; this exact numerical value is then
373      * conceptually converted to an "infinitely precise"
374      * binary value that is then rounded to type {@code float}
375      * by the usual round-to-nearest rule of IEEE 754 floating-point
376      * arithmetic, which includes preserving the sign of a zero
377      * value.
378      *
379      * Note that the round-to-nearest rule also implies overflow and
380      * underflow behaviour; if the exact value of {@code s} is large
381      * enough in magnitude (greater than or equal to ({@link
382      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
383      * rounding to {@code float} will result in an infinity and if the
384      * exact value of {@code s} is small enough in magnitude (less
385      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
386      * result in a zero.
387      *
388      * Finally, after rounding a {@code Float} object representing
389      * this {@code float} value is returned.
390      *
391      * <p>To interpret localized string representations of a
392      * floating-point value, use subclasses of {@link
393      * java.text.NumberFormat}.
394      *
395      * <p>Note that trailing format specifiers, specifiers that
396      * determine the type of a floating-point literal
397      * ({@code 1.0f} is a {@code float} value;
398      * {@code 1.0d} is a {@code double} value), do
399      * <em>not</em> influence the results of this method.  In other
400      * words, the numerical value of the input string is converted
401      * directly to the target floating-point type.  In general, the
402      * two-step sequence of conversions, string to {@code double}
403      * followed by {@code double} to {@code float}, is
404      * <em>not</em> equivalent to converting a string directly to
405      * {@code float}.  For example, if first converted to an
406      * intermediate {@code double} and then to
407      * {@code float}, the string<br>
408      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
409      * results in the {@code float} value
410      * {@code 1.0000002f}; if the string is converted directly to
411      * {@code float}, <code>1.000000<b>1</b>f</code> results.
412      *
413      * <p>To avoid calling this method on an invalid string and having
414      * a {@code NumberFormatException} be thrown, the documentation
415      * for {@link Double#valueOf Double.valueOf} lists a regular
416      * expression which can be used to screen the input.
417      *
418      * @param   s   the string to be parsed.
419      * @return  a {@code Float} object holding the value
420      *          represented by the {@code String} argument.
421      * @throws  NumberFormatException  if the string does not contain a
422      *          parsable number.
423      */
valueOf(String s)424     public static Float valueOf(String s) throws NumberFormatException {
425         return new Float(parseFloat(s));
426     }
427 
428     /**
429      * Returns a {@code Float} instance representing the specified
430      * {@code float} value.
431      * If a new {@code Float} instance is not required, this method
432      * should generally be used in preference to the constructor
433      * {@link #Float(float)}, as this method is likely to yield
434      * significantly better space and time performance by caching
435      * frequently requested values.
436      *
437      * @param  f a float value.
438      * @return a {@code Float} instance representing {@code f}.
439      * @since  1.5
440      */
441     @HotSpotIntrinsicCandidate
valueOf(float f)442     public static Float valueOf(float f) {
443         return new Float(f);
444     }
445 
446     /**
447      * Returns a new {@code float} initialized to the value
448      * represented by the specified {@code String}, as performed
449      * by the {@code valueOf} method of class {@code Float}.
450      *
451      * @param  s the string to be parsed.
452      * @return the {@code float} value represented by the string
453      *         argument.
454      * @throws NullPointerException  if the string is null
455      * @throws NumberFormatException if the string does not contain a
456      *               parsable {@code float}.
457      * @see    java.lang.Float#valueOf(String)
458      * @since 1.2
459      */
parseFloat(String s)460     public static float parseFloat(String s) throws NumberFormatException {
461         return FloatingDecimal.parseFloat(s);
462     }
463 
464     /**
465      * Returns {@code true} if the specified number is a
466      * Not-a-Number (NaN) value, {@code false} otherwise.
467      *
468      * @param   v   the value to be tested.
469      * @return  {@code true} if the argument is NaN;
470      *          {@code false} otherwise.
471      */
isNaN(float v)472     public static boolean isNaN(float v) {
473         return (v != v);
474     }
475 
476     /**
477      * Returns {@code true} if the specified number is infinitely
478      * large in magnitude, {@code false} otherwise.
479      *
480      * @param   v   the value to be tested.
481      * @return  {@code true} if the argument is positive infinity or
482      *          negative infinity; {@code false} otherwise.
483      */
isInfinite(float v)484     public static boolean isInfinite(float v) {
485         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
486     }
487 
488 
489     /**
490      * Returns {@code true} if the argument is a finite floating-point
491      * value; returns {@code false} otherwise (for NaN and infinity
492      * arguments).
493      *
494      * @param f the {@code float} value to be tested
495      * @return {@code true} if the argument is a finite
496      * floating-point value, {@code false} otherwise.
497      * @since 1.8
498      */
isFinite(float f)499      public static boolean isFinite(float f) {
500         return Math.abs(f) <= Float.MAX_VALUE;
501     }
502 
503     /**
504      * The value of the Float.
505      *
506      * @serial
507      */
508     private final float value;
509 
510     /**
511      * Constructs a newly allocated {@code Float} object that
512      * represents the primitive {@code float} argument.
513      *
514      * @param   value   the value to be represented by the {@code Float}.
515      *
516      * @deprecated
517      * It is rarely appropriate to use this constructor. The static factory
518      * {@link #valueOf(float)} is generally a better choice, as it is
519      * likely to yield significantly better space and time performance.
520      */
521     @Deprecated(since="9")
Float(float value)522     public Float(float value) {
523         this.value = value;
524     }
525 
526     /**
527      * Constructs a newly allocated {@code Float} object that
528      * represents the argument converted to type {@code float}.
529      *
530      * @param   value   the value to be represented by the {@code Float}.
531      *
532      * @deprecated
533      * It is rarely appropriate to use this constructor. Instead, use the
534      * static factory method {@link #valueOf(float)} method as follows:
535      * {@code Float.valueOf((float)value)}.
536      */
537     @Deprecated(since="9")
Float(double value)538     public Float(double value) {
539         this.value = (float)value;
540     }
541 
542     /**
543      * Constructs a newly allocated {@code Float} object that
544      * represents the floating-point value of type {@code float}
545      * represented by the string. The string is converted to a
546      * {@code float} value as if by the {@code valueOf} method.
547      *
548      * @param   s   a string to be converted to a {@code Float}.
549      * @throws      NumberFormatException if the string does not contain a
550      *              parsable number.
551      *
552      * @deprecated
553      * It is rarely appropriate to use this constructor.
554      * Use {@link #parseFloat(String)} to convert a string to a
555      * {@code float} primitive, or use {@link #valueOf(String)}
556      * to convert a string to a {@code Float} object.
557      */
558     @Deprecated(since="9")
Float(String s)559     public Float(String s) throws NumberFormatException {
560         value = parseFloat(s);
561     }
562 
563     /**
564      * Returns {@code true} if this {@code Float} value is a
565      * Not-a-Number (NaN), {@code false} otherwise.
566      *
567      * @return  {@code true} if the value represented by this object is
568      *          NaN; {@code false} otherwise.
569      */
isNaN()570     public boolean isNaN() {
571         return isNaN(value);
572     }
573 
574     /**
575      * Returns {@code true} if this {@code Float} value is
576      * infinitely large in magnitude, {@code false} otherwise.
577      *
578      * @return  {@code true} if the value represented by this object is
579      *          positive infinity or negative infinity;
580      *          {@code false} otherwise.
581      */
isInfinite()582     public boolean isInfinite() {
583         return isInfinite(value);
584     }
585 
586     /**
587      * Returns a string representation of this {@code Float} object.
588      * The primitive {@code float} value represented by this object
589      * is converted to a {@code String} exactly as if by the method
590      * {@code toString} of one argument.
591      *
592      * @return  a {@code String} representation of this object.
593      * @see java.lang.Float#toString(float)
594      */
toString()595     public String toString() {
596         return Float.toString(value);
597     }
598 
599     /**
600      * Returns the value of this {@code Float} as a {@code byte} after
601      * a narrowing primitive conversion.
602      *
603      * @return  the {@code float} value represented by this object
604      *          converted to type {@code byte}
605      * @jls 5.1.3 Narrowing Primitive Conversion
606      */
byteValue()607     public byte byteValue() {
608         return (byte)value;
609     }
610 
611     /**
612      * Returns the value of this {@code Float} as a {@code short}
613      * after a narrowing primitive conversion.
614      *
615      * @return  the {@code float} value represented by this object
616      *          converted to type {@code short}
617      * @jls 5.1.3 Narrowing Primitive Conversion
618      * @since 1.1
619      */
shortValue()620     public short shortValue() {
621         return (short)value;
622     }
623 
624     /**
625      * Returns the value of this {@code Float} as an {@code int} after
626      * a narrowing primitive conversion.
627      *
628      * @return  the {@code float} value represented by this object
629      *          converted to type {@code int}
630      * @jls 5.1.3 Narrowing Primitive Conversion
631      */
intValue()632     public int intValue() {
633         return (int)value;
634     }
635 
636     /**
637      * Returns value of this {@code Float} as a {@code long} after a
638      * narrowing primitive conversion.
639      *
640      * @return  the {@code float} value represented by this object
641      *          converted to type {@code long}
642      * @jls 5.1.3 Narrowing Primitive Conversion
643      */
longValue()644     public long longValue() {
645         return (long)value;
646     }
647 
648     /**
649      * Returns the {@code float} value of this {@code Float} object.
650      *
651      * @return the {@code float} value represented by this object
652      */
653     @HotSpotIntrinsicCandidate
floatValue()654     public float floatValue() {
655         return value;
656     }
657 
658     /**
659      * Returns the value of this {@code Float} as a {@code double}
660      * after a widening primitive conversion.
661      *
662      * @return the {@code float} value represented by this
663      *         object converted to type {@code double}
664      * @jls 5.1.2 Widening Primitive Conversion
665      */
doubleValue()666     public double doubleValue() {
667         return (double)value;
668     }
669 
670     /**
671      * Returns a hash code for this {@code Float} object. The
672      * result is the integer bit representation, exactly as produced
673      * by the method {@link #floatToIntBits(float)}, of the primitive
674      * {@code float} value represented by this {@code Float}
675      * object.
676      *
677      * @return a hash code value for this object.
678      */
679     @Override
hashCode()680     public int hashCode() {
681         return Float.hashCode(value);
682     }
683 
684     /**
685      * Returns a hash code for a {@code float} value; compatible with
686      * {@code Float.hashCode()}.
687      *
688      * @param value the value to hash
689      * @return a hash code value for a {@code float} value.
690      * @since 1.8
691      */
hashCode(float value)692     public static int hashCode(float value) {
693         return floatToIntBits(value);
694     }
695 
696     /**
697      * Compares this object against the specified object.  The result
698      * is {@code true} if and only if the argument is not
699      * {@code null} and is a {@code Float} object that
700      * represents a {@code float} with the same value as the
701      * {@code float} represented by this object. For this
702      * purpose, two {@code float} values are considered to be the
703      * same if and only if the method {@link #floatToIntBits(float)}
704      * returns the identical {@code int} value when applied to
705      * each.
706      *
707      * <p>Note that in most cases, for two instances of class
708      * {@code Float}, {@code f1} and {@code f2}, the value
709      * of {@code f1.equals(f2)} is {@code true} if and only if
710      *
711      * <blockquote><pre>
712      *   f1.floatValue() == f2.floatValue()
713      * </pre></blockquote>
714      *
715      * <p>also has the value {@code true}. However, there are two exceptions:
716      * <ul>
717      * <li>If {@code f1} and {@code f2} both represent
718      *     {@code Float.NaN}, then the {@code equals} method returns
719      *     {@code true}, even though {@code Float.NaN==Float.NaN}
720      *     has the value {@code false}.
721      * <li>If {@code f1} represents {@code +0.0f} while
722      *     {@code f2} represents {@code -0.0f}, or vice
723      *     versa, the {@code equal} test has the value
724      *     {@code false}, even though {@code 0.0f==-0.0f}
725      *     has the value {@code true}.
726      * </ul>
727      *
728      * This definition allows hash tables to operate properly.
729      *
730      * @param obj the object to be compared
731      * @return  {@code true} if the objects are the same;
732      *          {@code false} otherwise.
733      * @see java.lang.Float#floatToIntBits(float)
734      */
equals(Object obj)735     public boolean equals(Object obj) {
736         return (obj instanceof Float)
737                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
738     }
739 
740     /**
741      * Returns a representation of the specified floating-point value
742      * according to the IEEE 754 floating-point "single format" bit
743      * layout.
744      *
745      * <p>Bit 31 (the bit that is selected by the mask
746      * {@code 0x80000000}) represents the sign of the floating-point
747      * number.
748      * Bits 30-23 (the bits that are selected by the mask
749      * {@code 0x7f800000}) represent the exponent.
750      * Bits 22-0 (the bits that are selected by the mask
751      * {@code 0x007fffff}) represent the significand (sometimes called
752      * the mantissa) of the floating-point number.
753      *
754      * <p>If the argument is positive infinity, the result is
755      * {@code 0x7f800000}.
756      *
757      * <p>If the argument is negative infinity, the result is
758      * {@code 0xff800000}.
759      *
760      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
761      *
762      * <p>In all cases, the result is an integer that, when given to the
763      * {@link #intBitsToFloat(int)} method, will produce a floating-point
764      * value the same as the argument to {@code floatToIntBits}
765      * (except all NaN values are collapsed to a single
766      * "canonical" NaN value).
767      *
768      * @param   value   a floating-point number.
769      * @return the bits that represent the floating-point number.
770      */
771     @HotSpotIntrinsicCandidate
floatToIntBits(float value)772     public static int floatToIntBits(float value) {
773         if (!isNaN(value)) {
774             return floatToRawIntBits(value);
775         }
776         return 0x7fc00000;
777     }
778 
779     /**
780      * Returns a representation of the specified floating-point value
781      * according to the IEEE 754 floating-point "single format" bit
782      * layout, preserving Not-a-Number (NaN) values.
783      *
784      * <p>Bit 31 (the bit that is selected by the mask
785      * {@code 0x80000000}) represents the sign of the floating-point
786      * number.
787      * Bits 30-23 (the bits that are selected by the mask
788      * {@code 0x7f800000}) represent the exponent.
789      * Bits 22-0 (the bits that are selected by the mask
790      * {@code 0x007fffff}) represent the significand (sometimes called
791      * the mantissa) of the floating-point number.
792      *
793      * <p>If the argument is positive infinity, the result is
794      * {@code 0x7f800000}.
795      *
796      * <p>If the argument is negative infinity, the result is
797      * {@code 0xff800000}.
798      *
799      * <p>If the argument is NaN, the result is the integer representing
800      * the actual NaN value.  Unlike the {@code floatToIntBits}
801      * method, {@code floatToRawIntBits} does not collapse all the
802      * bit patterns encoding a NaN to a single "canonical"
803      * NaN value.
804      *
805      * <p>In all cases, the result is an integer that, when given to the
806      * {@link #intBitsToFloat(int)} method, will produce a
807      * floating-point value the same as the argument to
808      * {@code floatToRawIntBits}.
809      *
810      * @param   value   a floating-point number.
811      * @return the bits that represent the floating-point number.
812      * @since 1.3
813      */
814     @HotSpotIntrinsicCandidate
floatToRawIntBits(float value)815     public static native int floatToRawIntBits(float value);
816 
817     /**
818      * Returns the {@code float} value corresponding to a given
819      * bit representation.
820      * The argument is considered to be a representation of a
821      * floating-point value according to the IEEE 754 floating-point
822      * "single format" bit layout.
823      *
824      * <p>If the argument is {@code 0x7f800000}, the result is positive
825      * infinity.
826      *
827      * <p>If the argument is {@code 0xff800000}, the result is negative
828      * infinity.
829      *
830      * <p>If the argument is any value in the range
831      * {@code 0x7f800001} through {@code 0x7fffffff} or in
832      * the range {@code 0xff800001} through
833      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
834      * floating-point operation provided by Java can distinguish
835      * between two NaN values of the same type with different bit
836      * patterns.  Distinct values of NaN are only distinguishable by
837      * use of the {@code Float.floatToRawIntBits} method.
838      *
839      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
840      * values that can be computed from the argument:
841      *
842      * <blockquote><pre>{@code
843      * int s = ((bits >> 31) == 0) ? 1 : -1;
844      * int e = ((bits >> 23) & 0xff);
845      * int m = (e == 0) ?
846      *                 (bits & 0x7fffff) << 1 :
847      *                 (bits & 0x7fffff) | 0x800000;
848      * }</pre></blockquote>
849      *
850      * Then the floating-point result equals the value of the mathematical
851      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
852      *
853      * <p>Note that this method may not be able to return a
854      * {@code float} NaN with exactly same bit pattern as the
855      * {@code int} argument.  IEEE 754 distinguishes between two
856      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
857      * differences between the two kinds of NaN are generally not
858      * visible in Java.  Arithmetic operations on signaling NaNs turn
859      * them into quiet NaNs with a different, but often similar, bit
860      * pattern.  However, on some processors merely copying a
861      * signaling NaN also performs that conversion.  In particular,
862      * copying a signaling NaN to return it to the calling method may
863      * perform this conversion.  So {@code intBitsToFloat} may
864      * not be able to return a {@code float} with a signaling NaN
865      * bit pattern.  Consequently, for some {@code int} values,
866      * {@code floatToRawIntBits(intBitsToFloat(start))} may
867      * <i>not</i> equal {@code start}.  Moreover, which
868      * particular bit patterns represent signaling NaNs is platform
869      * dependent; although all NaN bit patterns, quiet or signaling,
870      * must be in the NaN range identified above.
871      *
872      * @param   bits   an integer.
873      * @return  the {@code float} floating-point value with the same bit
874      *          pattern.
875      */
876     @HotSpotIntrinsicCandidate
intBitsToFloat(int bits)877     public static native float intBitsToFloat(int bits);
878 
879     /**
880      * Compares two {@code Float} objects numerically.  There are
881      * two ways in which comparisons performed by this method differ
882      * from those performed by the Java language numerical comparison
883      * operators ({@code <, <=, ==, >=, >}) when
884      * applied to primitive {@code float} values:
885      *
886      * <ul><li>
887      *          {@code Float.NaN} is considered by this method to
888      *          be equal to itself and greater than all other
889      *          {@code float} values
890      *          (including {@code Float.POSITIVE_INFINITY}).
891      * <li>
892      *          {@code 0.0f} is considered by this method to be greater
893      *          than {@code -0.0f}.
894      * </ul>
895      *
896      * This ensures that the <i>natural ordering</i> of {@code Float}
897      * objects imposed by this method is <i>consistent with equals</i>.
898      *
899      * @param   anotherFloat   the {@code Float} to be compared.
900      * @return  the value {@code 0} if {@code anotherFloat} is
901      *          numerically equal to this {@code Float}; a value
902      *          less than {@code 0} if this {@code Float}
903      *          is numerically less than {@code anotherFloat};
904      *          and a value greater than {@code 0} if this
905      *          {@code Float} is numerically greater than
906      *          {@code anotherFloat}.
907      *
908      * @since   1.2
909      * @see Comparable#compareTo(Object)
910      */
compareTo(Float anotherFloat)911     public int compareTo(Float anotherFloat) {
912         return Float.compare(value, anotherFloat.value);
913     }
914 
915     /**
916      * Compares the two specified {@code float} values. The sign
917      * of the integer value returned is the same as that of the
918      * integer that would be returned by the call:
919      * <pre>
920      *    new Float(f1).compareTo(new Float(f2))
921      * </pre>
922      *
923      * @param   f1        the first {@code float} to compare.
924      * @param   f2        the second {@code float} to compare.
925      * @return  the value {@code 0} if {@code f1} is
926      *          numerically equal to {@code f2}; a value less than
927      *          {@code 0} if {@code f1} is numerically less than
928      *          {@code f2}; and a value greater than {@code 0}
929      *          if {@code f1} is numerically greater than
930      *          {@code f2}.
931      * @since 1.4
932      */
compare(float f1, float f2)933     public static int compare(float f1, float f2) {
934         if (f1 < f2)
935             return -1;           // Neither val is NaN, thisVal is smaller
936         if (f1 > f2)
937             return 1;            // Neither val is NaN, thisVal is larger
938 
939         // Cannot use floatToRawIntBits because of possibility of NaNs.
940         int thisBits    = Float.floatToIntBits(f1);
941         int anotherBits = Float.floatToIntBits(f2);
942 
943         return (thisBits == anotherBits ?  0 : // Values are equal
944                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
945                  1));                          // (0.0, -0.0) or (NaN, !NaN)
946     }
947 
948     /**
949      * Adds two {@code float} values together as per the + operator.
950      *
951      * @param a the first operand
952      * @param b the second operand
953      * @return the sum of {@code a} and {@code b}
954      * @jls 4.2.4 Floating-Point Operations
955      * @see java.util.function.BinaryOperator
956      * @since 1.8
957      */
sum(float a, float b)958     public static float sum(float a, float b) {
959         return a + b;
960     }
961 
962     /**
963      * Returns the greater of two {@code float} values
964      * as if by calling {@link Math#max(float, float) Math.max}.
965      *
966      * @param a the first operand
967      * @param b the second operand
968      * @return the greater of {@code a} and {@code b}
969      * @see java.util.function.BinaryOperator
970      * @since 1.8
971      */
max(float a, float b)972     public static float max(float a, float b) {
973         return Math.max(a, b);
974     }
975 
976     /**
977      * Returns the smaller of two {@code float} values
978      * as if by calling {@link Math#min(float, float) Math.min}.
979      *
980      * @param a the first operand
981      * @param b the second operand
982      * @return the smaller of {@code a} and {@code b}
983      * @see java.util.function.BinaryOperator
984      * @since 1.8
985      */
min(float a, float b)986     public static float min(float a, float b) {
987         return Math.min(a, b);
988     }
989 
990     /**
991      * Returns an {@link Optional} containing the nominal descriptor for this
992      * instance, which is the instance itself.
993      *
994      * @return an {@link Optional} describing the {@linkplain Float} instance
995      * @since 12
996      */
997     @Override
describeConstable()998     public Optional<Float> describeConstable() {
999         return Optional.of(this);
1000     }
1001 
1002     /**
1003      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1004      * the instance itself.
1005      *
1006      * @param lookup ignored
1007      * @return the {@linkplain Float} instance
1008      * @since 12
1009      */
1010     @Override
resolveConstantDesc(MethodHandles.Lookup lookup)1011     public Float resolveConstantDesc(MethodHandles.Lookup lookup) {
1012         return this;
1013     }
1014 
1015     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1016     @java.io.Serial
1017     private static final long serialVersionUID = -2671257302660747028L;
1018 }
1019