1 /*
2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_CodeStubs.hpp"
27 #include "c1/c1_InstructionPrinter.hpp"
28 #include "c1/c1_LIR.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_ValueStack.hpp"
31 #include "ci/ciInstance.hpp"
32 #include "runtime/safepointMechanism.inline.hpp"
33 #include "runtime/sharedRuntime.hpp"
34 
as_register() const35 Register LIR_OprDesc::as_register() const {
36   return FrameMap::cpu_rnr2reg(cpu_regnr());
37 }
38 
as_register_lo() const39 Register LIR_OprDesc::as_register_lo() const {
40   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
41 }
42 
as_register_hi() const43 Register LIR_OprDesc::as_register_hi() const {
44   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
45 }
46 
47 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
48 
value_type(ValueType * type)49 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
50   ValueTag tag = type->tag();
51   switch (tag) {
52   case metaDataTag : {
53     ClassConstant* c = type->as_ClassConstant();
54     if (c != NULL && !c->value()->is_loaded()) {
55       return LIR_OprFact::metadataConst(NULL);
56     } else if (c != NULL) {
57       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
58     } else {
59       MethodConstant* m = type->as_MethodConstant();
60       assert (m != NULL, "not a class or a method?");
61       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
62     }
63   }
64   case objectTag : {
65       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
66     }
67   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
68   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
69   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
70   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
71   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
72   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
73   }
74 }
75 
76 
77 //---------------------------------------------------
78 
79 
scale(BasicType type)80 LIR_Address::Scale LIR_Address::scale(BasicType type) {
81   int elem_size = type2aelembytes(type);
82   switch (elem_size) {
83   case 1: return LIR_Address::times_1;
84   case 2: return LIR_Address::times_2;
85   case 4: return LIR_Address::times_4;
86   case 8: return LIR_Address::times_8;
87   }
88   ShouldNotReachHere();
89   return LIR_Address::times_1;
90 }
91 
92 //---------------------------------------------------
93 
type_char(BasicType t)94 char LIR_OprDesc::type_char(BasicType t) {
95   switch (t) {
96     case T_ARRAY:
97       t = T_OBJECT;
98     case T_BOOLEAN:
99     case T_CHAR:
100     case T_FLOAT:
101     case T_DOUBLE:
102     case T_BYTE:
103     case T_SHORT:
104     case T_INT:
105     case T_LONG:
106     case T_OBJECT:
107     case T_ADDRESS:
108     case T_VOID:
109       return ::type2char(t);
110     case T_METADATA:
111       return 'M';
112     case T_ILLEGAL:
113       return '?';
114 
115     default:
116       ShouldNotReachHere();
117       return '?';
118   }
119 }
120 
121 #ifndef PRODUCT
validate_type() const122 void LIR_OprDesc::validate_type() const {
123 
124 #ifdef ASSERT
125   if (!is_pointer() && !is_illegal()) {
126     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
127     switch (as_BasicType(type_field())) {
128     case T_LONG:
129       assert((kindfield == cpu_register || kindfield == stack_value) &&
130              size_field() == double_size, "must match");
131       break;
132     case T_FLOAT:
133       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
134       assert((kindfield == fpu_register || kindfield == stack_value
135              ARM_ONLY(|| kindfield == cpu_register)
136              PPC32_ONLY(|| kindfield == cpu_register) ) &&
137              size_field() == single_size, "must match");
138       break;
139     case T_DOUBLE:
140       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
141       assert((kindfield == fpu_register || kindfield == stack_value
142              ARM_ONLY(|| kindfield == cpu_register)
143              PPC32_ONLY(|| kindfield == cpu_register) ) &&
144              size_field() == double_size, "must match");
145       break;
146     case T_BOOLEAN:
147     case T_CHAR:
148     case T_BYTE:
149     case T_SHORT:
150     case T_INT:
151     case T_ADDRESS:
152     case T_OBJECT:
153     case T_METADATA:
154     case T_ARRAY:
155       assert((kindfield == cpu_register || kindfield == stack_value) &&
156              size_field() == single_size, "must match");
157       break;
158 
159     case T_ILLEGAL:
160       // XXX TKR also means unknown right now
161       // assert(is_illegal(), "must match");
162       break;
163 
164     default:
165       ShouldNotReachHere();
166     }
167   }
168 #endif
169 
170 }
171 #endif // PRODUCT
172 
173 
is_oop() const174 bool LIR_OprDesc::is_oop() const {
175   if (is_pointer()) {
176     return pointer()->is_oop_pointer();
177   } else {
178     OprType t= type_field();
179     assert(t != unknown_type, "not set");
180     return t == object_type;
181   }
182 }
183 
184 
185 
verify() const186 void LIR_Op2::verify() const {
187 #ifdef ASSERT
188   switch (code()) {
189     case lir_cmove:
190     case lir_xchg:
191       break;
192 
193     default:
194       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
195              "can't produce oops from arith");
196   }
197 
198   if (TwoOperandLIRForm) {
199 
200 #ifdef ASSERT
201     bool threeOperandForm = false;
202 #ifdef S390
203     // There are 3 operand shifts on S390 (see LIR_Assembler::shift_op()).
204     threeOperandForm =
205       code() == lir_shl ||
206       ((code() == lir_shr || code() == lir_ushr) && (result_opr()->is_double_cpu() || in_opr1()->type() == T_OBJECT));
207 #endif
208 #endif
209 
210     switch (code()) {
211     case lir_add:
212     case lir_sub:
213     case lir_mul:
214     case lir_mul_strictfp:
215     case lir_div:
216     case lir_div_strictfp:
217     case lir_rem:
218     case lir_logic_and:
219     case lir_logic_or:
220     case lir_logic_xor:
221     case lir_shl:
222     case lir_shr:
223       assert(in_opr1() == result_opr() || threeOperandForm, "opr1 and result must match");
224       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
225       break;
226 
227     // special handling for lir_ushr because of write barriers
228     case lir_ushr:
229       assert(in_opr1() == result_opr() || in_opr2()->is_constant() || threeOperandForm, "opr1 and result must match or shift count is constant");
230       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
231       break;
232 
233     default:
234       break;
235     }
236   }
237 #endif
238 }
239 
240 
LIR_OpBranch(LIR_Condition cond,BlockBegin * block)241 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block)
242   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
243   , _cond(cond)
244   , _label(block->label())
245   , _block(block)
246   , _ublock(NULL)
247   , _stub(NULL) {
248 }
249 
LIR_OpBranch(LIR_Condition cond,CodeStub * stub)250 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, CodeStub* stub) :
251   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
252   , _cond(cond)
253   , _label(stub->entry())
254   , _block(NULL)
255   , _ublock(NULL)
256   , _stub(stub) {
257 }
258 
LIR_OpBranch(LIR_Condition cond,BlockBegin * block,BlockBegin * ublock)259 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock)
260   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
261   , _cond(cond)
262   , _label(block->label())
263   , _block(block)
264   , _ublock(ublock)
265   , _stub(NULL)
266 {
267 }
268 
change_block(BlockBegin * b)269 void LIR_OpBranch::change_block(BlockBegin* b) {
270   assert(_block != NULL, "must have old block");
271   assert(_block->label() == label(), "must be equal");
272 
273   _block = b;
274   _label = b->label();
275 }
276 
change_ublock(BlockBegin * b)277 void LIR_OpBranch::change_ublock(BlockBegin* b) {
278   assert(_ublock != NULL, "must have old block");
279   _ublock = b;
280 }
281 
negate_cond()282 void LIR_OpBranch::negate_cond() {
283   switch (_cond) {
284     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
285     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
286     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
287     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
288     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
289     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
290     default: ShouldNotReachHere();
291   }
292 }
293 
294 
LIR_OpTypeCheck(LIR_Code code,LIR_Opr result,LIR_Opr object,ciKlass * klass,LIR_Opr tmp1,LIR_Opr tmp2,LIR_Opr tmp3,bool fast_check,CodeEmitInfo * info_for_exception,CodeEmitInfo * info_for_patch,CodeStub * stub)295 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
296                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
297                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
298                                  CodeStub* stub)
299 
300   : LIR_Op(code, result, NULL)
301   , _object(object)
302   , _array(LIR_OprFact::illegalOpr)
303   , _klass(klass)
304   , _tmp1(tmp1)
305   , _tmp2(tmp2)
306   , _tmp3(tmp3)
307   , _fast_check(fast_check)
308   , _info_for_patch(info_for_patch)
309   , _info_for_exception(info_for_exception)
310   , _stub(stub)
311   , _profiled_method(NULL)
312   , _profiled_bci(-1)
313   , _should_profile(false)
314 {
315   if (code == lir_checkcast) {
316     assert(info_for_exception != NULL, "checkcast throws exceptions");
317   } else if (code == lir_instanceof) {
318     assert(info_for_exception == NULL, "instanceof throws no exceptions");
319   } else {
320     ShouldNotReachHere();
321   }
322 }
323 
324 
325 
LIR_OpTypeCheck(LIR_Code code,LIR_Opr object,LIR_Opr array,LIR_Opr tmp1,LIR_Opr tmp2,LIR_Opr tmp3,CodeEmitInfo * info_for_exception)326 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
327   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
328   , _object(object)
329   , _array(array)
330   , _klass(NULL)
331   , _tmp1(tmp1)
332   , _tmp2(tmp2)
333   , _tmp3(tmp3)
334   , _fast_check(false)
335   , _info_for_patch(NULL)
336   , _info_for_exception(info_for_exception)
337   , _stub(NULL)
338   , _profiled_method(NULL)
339   , _profiled_bci(-1)
340   , _should_profile(false)
341 {
342   if (code == lir_store_check) {
343     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
344     assert(info_for_exception != NULL, "store_check throws exceptions");
345   } else {
346     ShouldNotReachHere();
347   }
348 }
349 
350 
LIR_OpArrayCopy(LIR_Opr src,LIR_Opr src_pos,LIR_Opr dst,LIR_Opr dst_pos,LIR_Opr length,LIR_Opr tmp,ciArrayKlass * expected_type,int flags,CodeEmitInfo * info)351 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
352                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
353   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
354   , _src(src)
355   , _src_pos(src_pos)
356   , _dst(dst)
357   , _dst_pos(dst_pos)
358   , _length(length)
359   , _tmp(tmp)
360   , _expected_type(expected_type)
361   , _flags(flags) {
362   _stub = new ArrayCopyStub(this);
363 }
364 
LIR_OpUpdateCRC32(LIR_Opr crc,LIR_Opr val,LIR_Opr res)365 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
366   : LIR_Op(lir_updatecrc32, res, NULL)
367   , _crc(crc)
368   , _val(val) {
369 }
370 
371 //-------------------verify--------------------------
372 
verify() const373 void LIR_Op1::verify() const {
374   switch(code()) {
375   case lir_move:
376     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
377     break;
378   case lir_null_check:
379     assert(in_opr()->is_register(), "must be");
380     break;
381   case lir_return:
382     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
383     break;
384   default:
385     break;
386   }
387 }
388 
verify() const389 void LIR_OpRTCall::verify() const {
390   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
391 }
392 
393 //-------------------visits--------------------------
394 
395 // complete rework of LIR instruction visitor.
396 // The virtual call for each instruction type is replaced by a big
397 // switch that adds the operands for each instruction
398 
visit(LIR_Op * op)399 void LIR_OpVisitState::visit(LIR_Op* op) {
400   // copy information from the LIR_Op
401   reset();
402   set_op(op);
403 
404   switch (op->code()) {
405 
406 // LIR_Op0
407     case lir_backwardbranch_target:    // result and info always invalid
408     case lir_fpop_raw:                 // result and info always invalid
409     case lir_breakpoint:               // result and info always invalid
410     case lir_membar:                   // result and info always invalid
411     case lir_membar_acquire:           // result and info always invalid
412     case lir_membar_release:           // result and info always invalid
413     case lir_membar_loadload:          // result and info always invalid
414     case lir_membar_storestore:        // result and info always invalid
415     case lir_membar_loadstore:         // result and info always invalid
416     case lir_membar_storeload:         // result and info always invalid
417     case lir_on_spin_wait:
418     {
419       assert(op->as_Op0() != NULL, "must be");
420       assert(op->_info == NULL, "info not used by this instruction");
421       assert(op->_result->is_illegal(), "not used");
422       break;
423     }
424 
425     case lir_nop:                      // may have info, result always invalid
426     case lir_std_entry:                // may have result, info always invalid
427     case lir_osr_entry:                // may have result, info always invalid
428     case lir_get_thread:               // may have result, info always invalid
429     {
430       assert(op->as_Op0() != NULL, "must be");
431       if (op->_info != NULL)           do_info(op->_info);
432       if (op->_result->is_valid())     do_output(op->_result);
433       break;
434     }
435 
436 
437 // LIR_OpLabel
438     case lir_label:                    // result and info always invalid
439     {
440       assert(op->as_OpLabel() != NULL, "must be");
441       assert(op->_info == NULL, "info not used by this instruction");
442       assert(op->_result->is_illegal(), "not used");
443       break;
444     }
445 
446 
447 // LIR_Op1
448     case lir_fxch:           // input always valid, result and info always invalid
449     case lir_fld:            // input always valid, result and info always invalid
450     case lir_push:           // input always valid, result and info always invalid
451     case lir_pop:            // input always valid, result and info always invalid
452     case lir_leal:           // input and result always valid, info always invalid
453     case lir_monaddr:        // input and result always valid, info always invalid
454     case lir_null_check:     // input and info always valid, result always invalid
455     case lir_move:           // input and result always valid, may have info
456     {
457       assert(op->as_Op1() != NULL, "must be");
458       LIR_Op1* op1 = (LIR_Op1*)op;
459 
460       if (op1->_info)                  do_info(op1->_info);
461       if (op1->_opr->is_valid())       do_input(op1->_opr);
462       if (op1->_result->is_valid())    do_output(op1->_result);
463 
464       break;
465     }
466 
467     case lir_return:
468     {
469       assert(op->as_OpReturn() != NULL, "must be");
470       LIR_OpReturn* op_ret = (LIR_OpReturn*)op;
471 
472       if (op_ret->_info)               do_info(op_ret->_info);
473       if (op_ret->_opr->is_valid())    do_input(op_ret->_opr);
474       if (op_ret->_result->is_valid()) do_output(op_ret->_result);
475       if (op_ret->stub() != NULL)      do_stub(op_ret->stub());
476 
477       break;
478     }
479 
480     case lir_safepoint:
481     {
482       assert(op->as_Op1() != NULL, "must be");
483       LIR_Op1* op1 = (LIR_Op1*)op;
484 
485       assert(op1->_info != NULL, "");  do_info(op1->_info);
486       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
487       assert(op1->_result->is_illegal(), "safepoint does not produce value");
488 
489       break;
490     }
491 
492 // LIR_OpConvert;
493     case lir_convert:        // input and result always valid, info always invalid
494     {
495       assert(op->as_OpConvert() != NULL, "must be");
496       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
497 
498       assert(opConvert->_info == NULL, "must be");
499       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
500       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
501 #ifdef PPC32
502       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
503       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
504 #endif
505       do_stub(opConvert->_stub);
506 
507       break;
508     }
509 
510 // LIR_OpBranch;
511     case lir_branch:                   // may have info, input and result register always invalid
512     case lir_cond_float_branch:        // may have info, input and result register always invalid
513     {
514       assert(op->as_OpBranch() != NULL, "must be");
515       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
516 
517       if (opBranch->_info != NULL)     do_info(opBranch->_info);
518       assert(opBranch->_result->is_illegal(), "not used");
519       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
520 
521       break;
522     }
523 
524 
525 // LIR_OpAllocObj
526     case lir_alloc_object:
527     {
528       assert(op->as_OpAllocObj() != NULL, "must be");
529       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
530 
531       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
532       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
533                                                  do_temp(opAllocObj->_opr);
534                                         }
535       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
536       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
537       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
538       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
539       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
540                                                  do_stub(opAllocObj->_stub);
541       break;
542     }
543 
544 
545 // LIR_OpRoundFP;
546     case lir_roundfp: {
547       assert(op->as_OpRoundFP() != NULL, "must be");
548       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
549 
550       assert(op->_info == NULL, "info not used by this instruction");
551       assert(opRoundFP->_tmp->is_illegal(), "not used");
552       do_input(opRoundFP->_opr);
553       do_output(opRoundFP->_result);
554 
555       break;
556     }
557 
558 
559 // LIR_Op2
560     case lir_cmp:
561     case lir_cmp_l2i:
562     case lir_ucmp_fd2i:
563     case lir_cmp_fd2i:
564     case lir_add:
565     case lir_sub:
566     case lir_mul:
567     case lir_div:
568     case lir_rem:
569     case lir_sqrt:
570     case lir_abs:
571     case lir_neg:
572     case lir_logic_and:
573     case lir_logic_or:
574     case lir_logic_xor:
575     case lir_shl:
576     case lir_shr:
577     case lir_ushr:
578     case lir_xadd:
579     case lir_xchg:
580     case lir_assert:
581     {
582       assert(op->as_Op2() != NULL, "must be");
583       LIR_Op2* op2 = (LIR_Op2*)op;
584       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
585              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
586 
587       if (op2->_info)                     do_info(op2->_info);
588       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
589       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
590       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
591       if (op2->_result->is_valid())       do_output(op2->_result);
592       if (op->code() == lir_xchg || op->code() == lir_xadd) {
593         // on ARM and PPC, return value is loaded first so could
594         // destroy inputs. On other platforms that implement those
595         // (x86, sparc), the extra constrainsts are harmless.
596         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
597         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
598       }
599 
600       break;
601     }
602 
603     // special handling for cmove: right input operand must not be equal
604     // to the result operand, otherwise the backend fails
605     case lir_cmove:
606     {
607       assert(op->as_Op2() != NULL, "must be");
608       LIR_Op2* op2 = (LIR_Op2*)op;
609 
610       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
611              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
612       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
613 
614       do_input(op2->_opr1);
615       do_input(op2->_opr2);
616       do_temp(op2->_opr2);
617       do_output(op2->_result);
618 
619       break;
620     }
621 
622     // vspecial handling for strict operations: register input operands
623     // as temp to guarantee that they do not overlap with other
624     // registers
625     case lir_mul_strictfp:
626     case lir_div_strictfp:
627     {
628       assert(op->as_Op2() != NULL, "must be");
629       LIR_Op2* op2 = (LIR_Op2*)op;
630 
631       assert(op2->_info == NULL, "not used");
632       assert(op2->_opr1->is_valid(), "used");
633       assert(op2->_opr2->is_valid(), "used");
634       assert(op2->_result->is_valid(), "used");
635       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
636              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
637 
638       do_input(op2->_opr1); do_temp(op2->_opr1);
639       do_input(op2->_opr2); do_temp(op2->_opr2);
640       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
641       do_output(op2->_result);
642 
643       break;
644     }
645 
646     case lir_throw: {
647       assert(op->as_Op2() != NULL, "must be");
648       LIR_Op2* op2 = (LIR_Op2*)op;
649 
650       if (op2->_info)                     do_info(op2->_info);
651       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
652       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
653       assert(op2->_result->is_illegal(), "no result");
654       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
655              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
656 
657       break;
658     }
659 
660     case lir_unwind: {
661       assert(op->as_Op1() != NULL, "must be");
662       LIR_Op1* op1 = (LIR_Op1*)op;
663 
664       assert(op1->_info == NULL, "no info");
665       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
666       assert(op1->_result->is_illegal(), "no result");
667 
668       break;
669     }
670 
671 // LIR_Op3
672     case lir_idiv:
673     case lir_irem: {
674       assert(op->as_Op3() != NULL, "must be");
675       LIR_Op3* op3= (LIR_Op3*)op;
676 
677       if (op3->_info)                     do_info(op3->_info);
678       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
679 
680       // second operand is input and temp, so ensure that second operand
681       // and third operand get not the same register
682       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
683       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
684       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
685 
686       if (op3->_result->is_valid())       do_output(op3->_result);
687 
688       break;
689     }
690 
691     case lir_fmad:
692     case lir_fmaf: {
693       assert(op->as_Op3() != NULL, "must be");
694       LIR_Op3* op3= (LIR_Op3*)op;
695       assert(op3->_info == NULL, "no info");
696       do_input(op3->_opr1);
697       do_input(op3->_opr2);
698       do_input(op3->_opr3);
699       do_output(op3->_result);
700       break;
701     }
702 
703 // LIR_OpJavaCall
704     case lir_static_call:
705     case lir_optvirtual_call:
706     case lir_icvirtual_call:
707     case lir_virtual_call:
708     case lir_dynamic_call: {
709       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
710       assert(opJavaCall != NULL, "must be");
711 
712       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
713 
714       // only visit register parameters
715       int n = opJavaCall->_arguments->length();
716       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
717         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
718           do_input(*opJavaCall->_arguments->adr_at(i));
719         }
720       }
721 
722       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
723       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
724           opJavaCall->is_method_handle_invoke()) {
725         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
726         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
727       }
728       do_call();
729       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
730 
731       break;
732     }
733 
734 
735 // LIR_OpRTCall
736     case lir_rtcall: {
737       assert(op->as_OpRTCall() != NULL, "must be");
738       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
739 
740       // only visit register parameters
741       int n = opRTCall->_arguments->length();
742       for (int i = 0; i < n; i++) {
743         if (!opRTCall->_arguments->at(i)->is_pointer()) {
744           do_input(*opRTCall->_arguments->adr_at(i));
745         }
746       }
747       if (opRTCall->_info)                     do_info(opRTCall->_info);
748       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
749       do_call();
750       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
751 
752       break;
753     }
754 
755 
756 // LIR_OpArrayCopy
757     case lir_arraycopy: {
758       assert(op->as_OpArrayCopy() != NULL, "must be");
759       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
760 
761       assert(opArrayCopy->_result->is_illegal(), "unused");
762       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
763       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
764       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
765       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
766       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
767       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
768       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
769 
770       // the implementation of arraycopy always has a call into the runtime
771       do_call();
772 
773       break;
774     }
775 
776 
777 // LIR_OpUpdateCRC32
778     case lir_updatecrc32: {
779       assert(op->as_OpUpdateCRC32() != NULL, "must be");
780       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
781 
782       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
783       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
784       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
785       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
786 
787       break;
788     }
789 
790 
791 // LIR_OpLock
792     case lir_lock:
793     case lir_unlock: {
794       assert(op->as_OpLock() != NULL, "must be");
795       LIR_OpLock* opLock = (LIR_OpLock*)op;
796 
797       if (opLock->_info)                          do_info(opLock->_info);
798 
799       // TODO: check if these operands really have to be temp
800       // (or if input is sufficient). This may have influence on the oop map!
801       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
802       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
803       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
804 
805       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
806       assert(opLock->_result->is_illegal(), "unused");
807 
808       do_stub(opLock->_stub);
809 
810       break;
811     }
812 
813 
814 // LIR_OpDelay
815     case lir_delay_slot: {
816       assert(op->as_OpDelay() != NULL, "must be");
817       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
818 
819       visit(opDelay->delay_op());
820       break;
821     }
822 
823 // LIR_OpTypeCheck
824     case lir_instanceof:
825     case lir_checkcast:
826     case lir_store_check: {
827       assert(op->as_OpTypeCheck() != NULL, "must be");
828       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
829 
830       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
831       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
832       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
833       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
834         do_temp(opTypeCheck->_object);
835       }
836       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
837       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
838       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
839       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
840       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
841                                                   do_stub(opTypeCheck->_stub);
842       break;
843     }
844 
845 // LIR_OpCompareAndSwap
846     case lir_cas_long:
847     case lir_cas_obj:
848     case lir_cas_int: {
849       assert(op->as_OpCompareAndSwap() != NULL, "must be");
850       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
851 
852       assert(opCompareAndSwap->_addr->is_valid(),      "used");
853       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
854       assert(opCompareAndSwap->_new_value->is_valid(), "used");
855       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
856                                                       do_input(opCompareAndSwap->_addr);
857                                                       do_temp(opCompareAndSwap->_addr);
858                                                       do_input(opCompareAndSwap->_cmp_value);
859                                                       do_temp(opCompareAndSwap->_cmp_value);
860                                                       do_input(opCompareAndSwap->_new_value);
861                                                       do_temp(opCompareAndSwap->_new_value);
862       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
863       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
864       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
865 
866       break;
867     }
868 
869 
870 // LIR_OpAllocArray;
871     case lir_alloc_array: {
872       assert(op->as_OpAllocArray() != NULL, "must be");
873       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
874 
875       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
876       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
877       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
878       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
879       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
880       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
881       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
882       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
883                                                       do_stub(opAllocArray->_stub);
884       break;
885     }
886 
887 // LIR_OpProfileCall:
888     case lir_profile_call: {
889       assert(op->as_OpProfileCall() != NULL, "must be");
890       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
891 
892       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
893       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
894       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
895       break;
896     }
897 
898 // LIR_OpProfileType:
899     case lir_profile_type: {
900       assert(op->as_OpProfileType() != NULL, "must be");
901       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
902 
903       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
904       do_input(opProfileType->_obj);
905       do_temp(opProfileType->_tmp);
906       break;
907     }
908   default:
909     op->visit(this);
910   }
911 }
912 
visit(LIR_OpVisitState * state)913 void LIR_Op::visit(LIR_OpVisitState* state) {
914   ShouldNotReachHere();
915 }
916 
do_stub(CodeStub * stub)917 void LIR_OpVisitState::do_stub(CodeStub* stub) {
918   if (stub != NULL) {
919     stub->visit(this);
920   }
921 }
922 
all_xhandler()923 XHandlers* LIR_OpVisitState::all_xhandler() {
924   XHandlers* result = NULL;
925 
926   int i;
927   for (i = 0; i < info_count(); i++) {
928     if (info_at(i)->exception_handlers() != NULL) {
929       result = info_at(i)->exception_handlers();
930       break;
931     }
932   }
933 
934 #ifdef ASSERT
935   for (i = 0; i < info_count(); i++) {
936     assert(info_at(i)->exception_handlers() == NULL ||
937            info_at(i)->exception_handlers() == result,
938            "only one xhandler list allowed per LIR-operation");
939   }
940 #endif
941 
942   if (result != NULL) {
943     return result;
944   } else {
945     return new XHandlers();
946   }
947 
948   return result;
949 }
950 
951 
952 #ifdef ASSERT
no_operands(LIR_Op * op)953 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
954   visit(op);
955 
956   return opr_count(inputMode) == 0 &&
957          opr_count(outputMode) == 0 &&
958          opr_count(tempMode) == 0 &&
959          info_count() == 0 &&
960          !has_call() &&
961          !has_slow_case();
962 }
963 #endif
964 
965 // LIR_OpReturn
LIR_OpReturn(LIR_Opr opr)966 LIR_OpReturn::LIR_OpReturn(LIR_Opr opr) :
967     LIR_Op1(lir_return, opr, (CodeEmitInfo*)NULL /* info */),
968     _stub(NULL) {
969   if (VM_Version::supports_stack_watermark_barrier()) {
970     _stub = new C1SafepointPollStub();
971   }
972 }
973 
974 //---------------------------------------------------
975 
976 
emit_code(LIR_Assembler * masm)977 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
978   masm->emit_call(this);
979 }
980 
emit_code(LIR_Assembler * masm)981 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
982   masm->emit_rtcall(this);
983 }
984 
emit_code(LIR_Assembler * masm)985 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
986   masm->emit_opLabel(this);
987 }
988 
emit_code(LIR_Assembler * masm)989 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
990   masm->emit_arraycopy(this);
991   masm->append_code_stub(stub());
992 }
993 
emit_code(LIR_Assembler * masm)994 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
995   masm->emit_updatecrc32(this);
996 }
997 
emit_code(LIR_Assembler * masm)998 void LIR_Op0::emit_code(LIR_Assembler* masm) {
999   masm->emit_op0(this);
1000 }
1001 
emit_code(LIR_Assembler * masm)1002 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1003   masm->emit_op1(this);
1004 }
1005 
emit_code(LIR_Assembler * masm)1006 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1007   masm->emit_alloc_obj(this);
1008   masm->append_code_stub(stub());
1009 }
1010 
emit_code(LIR_Assembler * masm)1011 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1012   masm->emit_opBranch(this);
1013   if (stub()) {
1014     masm->append_code_stub(stub());
1015   }
1016 }
1017 
emit_code(LIR_Assembler * masm)1018 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1019   masm->emit_opConvert(this);
1020   if (stub() != NULL) {
1021     masm->append_code_stub(stub());
1022   }
1023 }
1024 
emit_code(LIR_Assembler * masm)1025 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1026   masm->emit_op2(this);
1027 }
1028 
emit_code(LIR_Assembler * masm)1029 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1030   masm->emit_alloc_array(this);
1031   masm->append_code_stub(stub());
1032 }
1033 
emit_code(LIR_Assembler * masm)1034 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1035   masm->emit_opTypeCheck(this);
1036   if (stub()) {
1037     masm->append_code_stub(stub());
1038   }
1039 }
1040 
emit_code(LIR_Assembler * masm)1041 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1042   masm->emit_compare_and_swap(this);
1043 }
1044 
emit_code(LIR_Assembler * masm)1045 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1046   masm->emit_op3(this);
1047 }
1048 
emit_code(LIR_Assembler * masm)1049 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1050   masm->emit_lock(this);
1051   if (stub()) {
1052     masm->append_code_stub(stub());
1053   }
1054 }
1055 
1056 #ifdef ASSERT
emit_code(LIR_Assembler * masm)1057 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1058   masm->emit_assert(this);
1059 }
1060 #endif
1061 
emit_code(LIR_Assembler * masm)1062 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1063   masm->emit_delay(this);
1064 }
1065 
emit_code(LIR_Assembler * masm)1066 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1067   masm->emit_profile_call(this);
1068 }
1069 
emit_code(LIR_Assembler * masm)1070 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1071   masm->emit_profile_type(this);
1072 }
1073 
1074 // LIR_List
LIR_List(Compilation * compilation,BlockBegin * block)1075 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1076   : _operations(8)
1077   , _compilation(compilation)
1078 #ifndef PRODUCT
1079   , _block(block)
1080 #endif
1081 #ifdef ASSERT
1082   , _file(NULL)
1083   , _line(0)
1084 #endif
1085 { }
1086 
1087 
1088 #ifdef ASSERT
set_file_and_line(const char * file,int line)1089 void LIR_List::set_file_and_line(const char * file, int line) {
1090   const char * f = strrchr(file, '/');
1091   if (f == NULL) f = strrchr(file, '\\');
1092   if (f == NULL) {
1093     f = file;
1094   } else {
1095     f++;
1096   }
1097   _file = f;
1098   _line = line;
1099 }
1100 #endif
1101 
1102 
append(LIR_InsertionBuffer * buffer)1103 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1104   assert(this == buffer->lir_list(), "wrong lir list");
1105   const int n = _operations.length();
1106 
1107   if (buffer->number_of_ops() > 0) {
1108     // increase size of instructions list
1109     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1110     // insert ops from buffer into instructions list
1111     int op_index = buffer->number_of_ops() - 1;
1112     int ip_index = buffer->number_of_insertion_points() - 1;
1113     int from_index = n - 1;
1114     int to_index = _operations.length() - 1;
1115     for (; ip_index >= 0; ip_index --) {
1116       int index = buffer->index_at(ip_index);
1117       // make room after insertion point
1118       while (index < from_index) {
1119         _operations.at_put(to_index --, _operations.at(from_index --));
1120       }
1121       // insert ops from buffer
1122       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1123         _operations.at_put(to_index --, buffer->op_at(op_index --));
1124       }
1125     }
1126   }
1127 
1128   buffer->finish();
1129 }
1130 
1131 
oop2reg_patch(jobject o,LIR_Opr reg,CodeEmitInfo * info)1132 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1133   assert(reg->type() == T_OBJECT, "bad reg");
1134   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1135 }
1136 
klass2reg_patch(Metadata * o,LIR_Opr reg,CodeEmitInfo * info)1137 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1138   assert(reg->type() == T_METADATA, "bad reg");
1139   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1140 }
1141 
load(LIR_Address * addr,LIR_Opr src,CodeEmitInfo * info,LIR_PatchCode patch_code)1142 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1143   append(new LIR_Op1(
1144             lir_move,
1145             LIR_OprFact::address(addr),
1146             src,
1147             addr->type(),
1148             patch_code,
1149             info));
1150 }
1151 
1152 
volatile_load_mem_reg(LIR_Address * address,LIR_Opr dst,CodeEmitInfo * info,LIR_PatchCode patch_code)1153 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1154   append(new LIR_Op1(
1155             lir_move,
1156             LIR_OprFact::address(address),
1157             dst,
1158             address->type(),
1159             patch_code,
1160             info, lir_move_volatile));
1161 }
1162 
volatile_load_unsafe_reg(LIR_Opr base,LIR_Opr offset,LIR_Opr dst,BasicType type,CodeEmitInfo * info,LIR_PatchCode patch_code)1163 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1164   append(new LIR_Op1(
1165             lir_move,
1166             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1167             dst,
1168             type,
1169             patch_code,
1170             info, lir_move_volatile));
1171 }
1172 
1173 
store_mem_int(jint v,LIR_Opr base,int offset_in_bytes,BasicType type,CodeEmitInfo * info,LIR_PatchCode patch_code)1174 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1175   append(new LIR_Op1(
1176             lir_move,
1177             LIR_OprFact::intConst(v),
1178             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1179             type,
1180             patch_code,
1181             info));
1182 }
1183 
1184 
store_mem_oop(jobject o,LIR_Opr base,int offset_in_bytes,BasicType type,CodeEmitInfo * info,LIR_PatchCode patch_code)1185 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1186   append(new LIR_Op1(
1187             lir_move,
1188             LIR_OprFact::oopConst(o),
1189             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1190             type,
1191             patch_code,
1192             info));
1193 }
1194 
1195 
store(LIR_Opr src,LIR_Address * addr,CodeEmitInfo * info,LIR_PatchCode patch_code)1196 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1197   append(new LIR_Op1(
1198             lir_move,
1199             src,
1200             LIR_OprFact::address(addr),
1201             addr->type(),
1202             patch_code,
1203             info));
1204 }
1205 
1206 
volatile_store_mem_reg(LIR_Opr src,LIR_Address * addr,CodeEmitInfo * info,LIR_PatchCode patch_code)1207 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1208   append(new LIR_Op1(
1209             lir_move,
1210             src,
1211             LIR_OprFact::address(addr),
1212             addr->type(),
1213             patch_code,
1214             info,
1215             lir_move_volatile));
1216 }
1217 
volatile_store_unsafe_reg(LIR_Opr src,LIR_Opr base,LIR_Opr offset,BasicType type,CodeEmitInfo * info,LIR_PatchCode patch_code)1218 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1219   append(new LIR_Op1(
1220             lir_move,
1221             src,
1222             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1223             type,
1224             patch_code,
1225             info, lir_move_volatile));
1226 }
1227 
1228 
idiv(LIR_Opr left,LIR_Opr right,LIR_Opr res,LIR_Opr tmp,CodeEmitInfo * info)1229 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1230   append(new LIR_Op3(
1231                     lir_idiv,
1232                     left,
1233                     right,
1234                     tmp,
1235                     res,
1236                     info));
1237 }
1238 
1239 
idiv(LIR_Opr left,int right,LIR_Opr res,LIR_Opr tmp,CodeEmitInfo * info)1240 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1241   append(new LIR_Op3(
1242                     lir_idiv,
1243                     left,
1244                     LIR_OprFact::intConst(right),
1245                     tmp,
1246                     res,
1247                     info));
1248 }
1249 
1250 
irem(LIR_Opr left,LIR_Opr right,LIR_Opr res,LIR_Opr tmp,CodeEmitInfo * info)1251 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1252   append(new LIR_Op3(
1253                     lir_irem,
1254                     left,
1255                     right,
1256                     tmp,
1257                     res,
1258                     info));
1259 }
1260 
1261 
irem(LIR_Opr left,int right,LIR_Opr res,LIR_Opr tmp,CodeEmitInfo * info)1262 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1263   append(new LIR_Op3(
1264                     lir_irem,
1265                     left,
1266                     LIR_OprFact::intConst(right),
1267                     tmp,
1268                     res,
1269                     info));
1270 }
1271 
1272 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)1273 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1274   append(new LIR_Op2(
1275                     lir_cmp,
1276                     condition,
1277                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1278                     LIR_OprFact::intConst(c),
1279                     info));
1280 }
1281 
1282 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Address * addr,CodeEmitInfo * info)1283 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1284   append(new LIR_Op2(
1285                     lir_cmp,
1286                     condition,
1287                     reg,
1288                     LIR_OprFact::address(addr),
1289                     info));
1290 }
1291 
allocate_object(LIR_Opr dst,LIR_Opr t1,LIR_Opr t2,LIR_Opr t3,LIR_Opr t4,int header_size,int object_size,LIR_Opr klass,bool init_check,CodeStub * stub)1292 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1293                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1294   append(new LIR_OpAllocObj(
1295                            klass,
1296                            dst,
1297                            t1,
1298                            t2,
1299                            t3,
1300                            t4,
1301                            header_size,
1302                            object_size,
1303                            init_check,
1304                            stub));
1305 }
1306 
allocate_array(LIR_Opr dst,LIR_Opr len,LIR_Opr t1,LIR_Opr t2,LIR_Opr t3,LIR_Opr t4,BasicType type,LIR_Opr klass,CodeStub * stub)1307 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1308   append(new LIR_OpAllocArray(
1309                            klass,
1310                            len,
1311                            dst,
1312                            t1,
1313                            t2,
1314                            t3,
1315                            t4,
1316                            type,
1317                            stub));
1318 }
1319 
shift_left(LIR_Opr value,LIR_Opr count,LIR_Opr dst,LIR_Opr tmp)1320 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1321  append(new LIR_Op2(
1322                     lir_shl,
1323                     value,
1324                     count,
1325                     dst,
1326                     tmp));
1327 }
1328 
shift_right(LIR_Opr value,LIR_Opr count,LIR_Opr dst,LIR_Opr tmp)1329 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1330  append(new LIR_Op2(
1331                     lir_shr,
1332                     value,
1333                     count,
1334                     dst,
1335                     tmp));
1336 }
1337 
1338 
unsigned_shift_right(LIR_Opr value,LIR_Opr count,LIR_Opr dst,LIR_Opr tmp)1339 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1340  append(new LIR_Op2(
1341                     lir_ushr,
1342                     value,
1343                     count,
1344                     dst,
1345                     tmp));
1346 }
1347 
fcmp2int(LIR_Opr left,LIR_Opr right,LIR_Opr dst,bool is_unordered_less)1348 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1349   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1350                      left,
1351                      right,
1352                      dst));
1353 }
1354 
lock_object(LIR_Opr hdr,LIR_Opr obj,LIR_Opr lock,LIR_Opr scratch,CodeStub * stub,CodeEmitInfo * info)1355 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1356   append(new LIR_OpLock(
1357                     lir_lock,
1358                     hdr,
1359                     obj,
1360                     lock,
1361                     scratch,
1362                     stub,
1363                     info));
1364 }
1365 
unlock_object(LIR_Opr hdr,LIR_Opr obj,LIR_Opr lock,LIR_Opr scratch,CodeStub * stub)1366 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1367   append(new LIR_OpLock(
1368                     lir_unlock,
1369                     hdr,
1370                     obj,
1371                     lock,
1372                     scratch,
1373                     stub,
1374                     NULL));
1375 }
1376 
1377 
check_LIR()1378 void check_LIR() {
1379   // cannot do the proper checking as PRODUCT and other modes return different results
1380   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1381 }
1382 
1383 
1384 
checkcast(LIR_Opr result,LIR_Opr object,ciKlass * klass,LIR_Opr tmp1,LIR_Opr tmp2,LIR_Opr tmp3,bool fast_check,CodeEmitInfo * info_for_exception,CodeEmitInfo * info_for_patch,CodeStub * stub,ciMethod * profiled_method,int profiled_bci)1385 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1386                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1387                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1388                           ciMethod* profiled_method, int profiled_bci) {
1389   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1390                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1391   if (profiled_method != NULL) {
1392     c->set_profiled_method(profiled_method);
1393     c->set_profiled_bci(profiled_bci);
1394     c->set_should_profile(true);
1395   }
1396   append(c);
1397 }
1398 
instanceof(LIR_Opr result,LIR_Opr object,ciKlass * klass,LIR_Opr tmp1,LIR_Opr tmp2,LIR_Opr tmp3,bool fast_check,CodeEmitInfo * info_for_patch,ciMethod * profiled_method,int profiled_bci)1399 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1400   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1401   if (profiled_method != NULL) {
1402     c->set_profiled_method(profiled_method);
1403     c->set_profiled_bci(profiled_bci);
1404     c->set_should_profile(true);
1405   }
1406   append(c);
1407 }
1408 
1409 
store_check(LIR_Opr object,LIR_Opr array,LIR_Opr tmp1,LIR_Opr tmp2,LIR_Opr tmp3,CodeEmitInfo * info_for_exception,ciMethod * profiled_method,int profiled_bci)1410 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1411                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1412   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1413   if (profiled_method != NULL) {
1414     c->set_profiled_method(profiled_method);
1415     c->set_profiled_bci(profiled_bci);
1416     c->set_should_profile(true);
1417   }
1418   append(c);
1419 }
1420 
null_check(LIR_Opr opr,CodeEmitInfo * info,bool deoptimize_on_null)1421 void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) {
1422   if (deoptimize_on_null) {
1423     // Emit an explicit null check and deoptimize if opr is null
1424     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_null_check, Deoptimization::Action_none);
1425     cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(NULL));
1426     branch(lir_cond_equal, deopt);
1427   } else {
1428     // Emit an implicit null check
1429     append(new LIR_Op1(lir_null_check, opr, info));
1430   }
1431 }
1432 
cas_long(LIR_Opr addr,LIR_Opr cmp_value,LIR_Opr new_value,LIR_Opr t1,LIR_Opr t2,LIR_Opr result)1433 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1434                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1435   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1436 }
1437 
cas_obj(LIR_Opr addr,LIR_Opr cmp_value,LIR_Opr new_value,LIR_Opr t1,LIR_Opr t2,LIR_Opr result)1438 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1439                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1440   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1441 }
1442 
cas_int(LIR_Opr addr,LIR_Opr cmp_value,LIR_Opr new_value,LIR_Opr t1,LIR_Opr t2,LIR_Opr result)1443 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1444                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1445   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1446 }
1447 
1448 
1449 #ifdef PRODUCT
1450 
print_LIR(BlockList * blocks)1451 void print_LIR(BlockList* blocks) {
1452 }
1453 
1454 #else
1455 // LIR_OprDesc
print() const1456 void LIR_OprDesc::print() const {
1457   print(tty);
1458 }
1459 
print(outputStream * out) const1460 void LIR_OprDesc::print(outputStream* out) const {
1461   if (is_illegal()) {
1462     return;
1463   }
1464 
1465   out->print("[");
1466   if (is_pointer()) {
1467     pointer()->print_value_on(out);
1468   } else if (is_single_stack()) {
1469     out->print("stack:%d", single_stack_ix());
1470   } else if (is_double_stack()) {
1471     out->print("dbl_stack:%d",double_stack_ix());
1472   } else if (is_virtual()) {
1473     out->print("R%d", vreg_number());
1474   } else if (is_single_cpu()) {
1475     out->print("%s", as_register()->name());
1476   } else if (is_double_cpu()) {
1477     out->print("%s", as_register_hi()->name());
1478     out->print("%s", as_register_lo()->name());
1479 #if defined(X86)
1480   } else if (is_single_xmm()) {
1481     out->print("%s", as_xmm_float_reg()->name());
1482   } else if (is_double_xmm()) {
1483     out->print("%s", as_xmm_double_reg()->name());
1484   } else if (is_single_fpu()) {
1485     out->print("fpu%d", fpu_regnr());
1486   } else if (is_double_fpu()) {
1487     out->print("fpu%d", fpu_regnrLo());
1488 #elif defined(AARCH64)
1489   } else if (is_single_fpu()) {
1490     out->print("fpu%d", fpu_regnr());
1491   } else if (is_double_fpu()) {
1492     out->print("fpu%d", fpu_regnrLo());
1493 #elif defined(ARM)
1494   } else if (is_single_fpu()) {
1495     out->print("s%d", fpu_regnr());
1496   } else if (is_double_fpu()) {
1497     out->print("d%d", fpu_regnrLo() >> 1);
1498 #else
1499   } else if (is_single_fpu()) {
1500     out->print("%s", as_float_reg()->name());
1501   } else if (is_double_fpu()) {
1502     out->print("%s", as_double_reg()->name());
1503 #endif
1504 
1505   } else if (is_illegal()) {
1506     out->print("-");
1507   } else {
1508     out->print("Unknown Operand");
1509   }
1510   if (!is_illegal()) {
1511     out->print("|%c", type_char());
1512   }
1513   if (is_register() && is_last_use()) {
1514     out->print("(last_use)");
1515   }
1516   out->print("]");
1517 }
1518 
1519 
1520 // LIR_Address
print_value_on(outputStream * out) const1521 void LIR_Const::print_value_on(outputStream* out) const {
1522   switch (type()) {
1523     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1524     case T_INT:    out->print("int:%d",   as_jint());           break;
1525     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1526     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1527     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1528     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1529     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1530     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1531   }
1532 }
1533 
1534 // LIR_Address
print_value_on(outputStream * out) const1535 void LIR_Address::print_value_on(outputStream* out) const {
1536   out->print("Base:"); _base->print(out);
1537   if (!_index->is_illegal()) {
1538     out->print(" Index:"); _index->print(out);
1539     switch (scale()) {
1540     case times_1: break;
1541     case times_2: out->print(" * 2"); break;
1542     case times_4: out->print(" * 4"); break;
1543     case times_8: out->print(" * 8"); break;
1544     }
1545   }
1546   out->print(" Disp: " INTX_FORMAT, _disp);
1547 }
1548 
1549 // debug output of block header without InstructionPrinter
1550 //       (because phi functions are not necessary for LIR)
print_block(BlockBegin * x)1551 static void print_block(BlockBegin* x) {
1552   // print block id
1553   BlockEnd* end = x->end();
1554   tty->print("B%d ", x->block_id());
1555 
1556   // print flags
1557   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1558   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1559   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1560   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1561   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1562   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1563   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1564 
1565   // print block bci range
1566   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1567 
1568   // print predecessors and successors
1569   if (x->number_of_preds() > 0) {
1570     tty->print("preds: ");
1571     for (int i = 0; i < x->number_of_preds(); i ++) {
1572       tty->print("B%d ", x->pred_at(i)->block_id());
1573     }
1574   }
1575 
1576   if (x->number_of_sux() > 0) {
1577     tty->print("sux: ");
1578     for (int i = 0; i < x->number_of_sux(); i ++) {
1579       tty->print("B%d ", x->sux_at(i)->block_id());
1580     }
1581   }
1582 
1583   // print exception handlers
1584   if (x->number_of_exception_handlers() > 0) {
1585     tty->print("xhandler: ");
1586     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1587       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1588     }
1589   }
1590 
1591   tty->cr();
1592 }
1593 
print_LIR(BlockList * blocks)1594 void print_LIR(BlockList* blocks) {
1595   tty->print_cr("LIR:");
1596   int i;
1597   for (i = 0; i < blocks->length(); i++) {
1598     BlockBegin* bb = blocks->at(i);
1599     print_block(bb);
1600     tty->print("__id_Instruction___________________________________________"); tty->cr();
1601     bb->lir()->print_instructions();
1602   }
1603 }
1604 
print_instructions()1605 void LIR_List::print_instructions() {
1606   for (int i = 0; i < _operations.length(); i++) {
1607     _operations.at(i)->print(); tty->cr();
1608   }
1609   tty->cr();
1610 }
1611 
1612 // LIR_Ops printing routines
1613 // LIR_Op
print_on(outputStream * out) const1614 void LIR_Op::print_on(outputStream* out) const {
1615   if (id() != -1 || PrintCFGToFile) {
1616     out->print("%4d ", id());
1617   } else {
1618     out->print("     ");
1619   }
1620   out->print("%s ", name());
1621   print_instr(out);
1622   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1623 #ifdef ASSERT
1624   if (Verbose && _file != NULL) {
1625     out->print(" (%s:%d)", _file, _line);
1626   }
1627 #endif
1628 }
1629 
name() const1630 const char * LIR_Op::name() const {
1631   const char* s = NULL;
1632   switch(code()) {
1633      // LIR_Op0
1634      case lir_membar:                s = "membar";        break;
1635      case lir_membar_acquire:        s = "membar_acquire"; break;
1636      case lir_membar_release:        s = "membar_release"; break;
1637      case lir_membar_loadload:       s = "membar_loadload";   break;
1638      case lir_membar_storestore:     s = "membar_storestore"; break;
1639      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1640      case lir_membar_storeload:      s = "membar_storeload";  break;
1641      case lir_label:                 s = "label";         break;
1642      case lir_nop:                   s = "nop";           break;
1643      case lir_on_spin_wait:          s = "on_spin_wait";  break;
1644      case lir_backwardbranch_target: s = "backbranch";    break;
1645      case lir_std_entry:             s = "std_entry";     break;
1646      case lir_osr_entry:             s = "osr_entry";     break;
1647      case lir_fpop_raw:              s = "fpop_raw";      break;
1648      case lir_breakpoint:            s = "breakpoint";    break;
1649      case lir_get_thread:            s = "get_thread";    break;
1650      // LIR_Op1
1651      case lir_fxch:                  s = "fxch";          break;
1652      case lir_fld:                   s = "fld";           break;
1653      case lir_push:                  s = "push";          break;
1654      case lir_pop:                   s = "pop";           break;
1655      case lir_null_check:            s = "null_check";    break;
1656      case lir_return:                s = "return";        break;
1657      case lir_safepoint:             s = "safepoint";     break;
1658      case lir_leal:                  s = "leal";          break;
1659      case lir_branch:                s = "branch";        break;
1660      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1661      case lir_move:                  s = "move";          break;
1662      case lir_roundfp:               s = "roundfp";       break;
1663      case lir_rtcall:                s = "rtcall";        break;
1664      case lir_throw:                 s = "throw";         break;
1665      case lir_unwind:                s = "unwind";        break;
1666      case lir_convert:               s = "convert";       break;
1667      case lir_alloc_object:          s = "alloc_obj";     break;
1668      case lir_monaddr:               s = "mon_addr";      break;
1669      // LIR_Op2
1670      case lir_cmp:                   s = "cmp";           break;
1671      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1672      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1673      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1674      case lir_cmove:                 s = "cmove";         break;
1675      case lir_add:                   s = "add";           break;
1676      case lir_sub:                   s = "sub";           break;
1677      case lir_mul:                   s = "mul";           break;
1678      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1679      case lir_div:                   s = "div";           break;
1680      case lir_div_strictfp:          s = "div_strictfp";  break;
1681      case lir_rem:                   s = "rem";           break;
1682      case lir_abs:                   s = "abs";           break;
1683      case lir_neg:                   s = "neg";           break;
1684      case lir_sqrt:                  s = "sqrt";          break;
1685      case lir_logic_and:             s = "logic_and";     break;
1686      case lir_logic_or:              s = "logic_or";      break;
1687      case lir_logic_xor:             s = "logic_xor";     break;
1688      case lir_shl:                   s = "shift_left";    break;
1689      case lir_shr:                   s = "shift_right";   break;
1690      case lir_ushr:                  s = "ushift_right";  break;
1691      case lir_alloc_array:           s = "alloc_array";   break;
1692      case lir_xadd:                  s = "xadd";          break;
1693      case lir_xchg:                  s = "xchg";          break;
1694      // LIR_Op3
1695      case lir_idiv:                  s = "idiv";          break;
1696      case lir_irem:                  s = "irem";          break;
1697      case lir_fmad:                  s = "fmad";          break;
1698      case lir_fmaf:                  s = "fmaf";          break;
1699      // LIR_OpJavaCall
1700      case lir_static_call:           s = "static";        break;
1701      case lir_optvirtual_call:       s = "optvirtual";    break;
1702      case lir_icvirtual_call:        s = "icvirtual";     break;
1703      case lir_virtual_call:          s = "virtual";       break;
1704      case lir_dynamic_call:          s = "dynamic";       break;
1705      // LIR_OpArrayCopy
1706      case lir_arraycopy:             s = "arraycopy";     break;
1707      // LIR_OpUpdateCRC32
1708      case lir_updatecrc32:           s = "updatecrc32";   break;
1709      // LIR_OpLock
1710      case lir_lock:                  s = "lock";          break;
1711      case lir_unlock:                s = "unlock";        break;
1712      // LIR_OpDelay
1713      case lir_delay_slot:            s = "delay";         break;
1714      // LIR_OpTypeCheck
1715      case lir_instanceof:            s = "instanceof";    break;
1716      case lir_checkcast:             s = "checkcast";     break;
1717      case lir_store_check:           s = "store_check";   break;
1718      // LIR_OpCompareAndSwap
1719      case lir_cas_long:              s = "cas_long";      break;
1720      case lir_cas_obj:               s = "cas_obj";      break;
1721      case lir_cas_int:               s = "cas_int";      break;
1722      // LIR_OpProfileCall
1723      case lir_profile_call:          s = "profile_call";  break;
1724      // LIR_OpProfileType
1725      case lir_profile_type:          s = "profile_type";  break;
1726      // LIR_OpAssert
1727 #ifdef ASSERT
1728      case lir_assert:                s = "assert";        break;
1729 #endif
1730      case lir_none:                  ShouldNotReachHere();break;
1731     default:                         s = "illegal_op";    break;
1732   }
1733   return s;
1734 }
1735 
1736 // LIR_OpJavaCall
print_instr(outputStream * out) const1737 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1738   out->print("call: ");
1739   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1740   if (receiver()->is_valid()) {
1741     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1742   }
1743   if (result_opr()->is_valid()) {
1744     out->print(" [result: "); result_opr()->print(out); out->print("]");
1745   }
1746 }
1747 
1748 // LIR_OpLabel
print_instr(outputStream * out) const1749 void LIR_OpLabel::print_instr(outputStream* out) const {
1750   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1751 }
1752 
1753 // LIR_OpArrayCopy
print_instr(outputStream * out) const1754 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1755   src()->print(out);     out->print(" ");
1756   src_pos()->print(out); out->print(" ");
1757   dst()->print(out);     out->print(" ");
1758   dst_pos()->print(out); out->print(" ");
1759   length()->print(out);  out->print(" ");
1760   tmp()->print(out);     out->print(" ");
1761 }
1762 
1763 // LIR_OpUpdateCRC32
print_instr(outputStream * out) const1764 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1765   crc()->print(out);     out->print(" ");
1766   val()->print(out);     out->print(" ");
1767   result_opr()->print(out); out->print(" ");
1768 }
1769 
1770 // LIR_OpCompareAndSwap
print_instr(outputStream * out) const1771 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1772   addr()->print(out);      out->print(" ");
1773   cmp_value()->print(out); out->print(" ");
1774   new_value()->print(out); out->print(" ");
1775   tmp1()->print(out);      out->print(" ");
1776   tmp2()->print(out);      out->print(" ");
1777 
1778 }
1779 
1780 // LIR_Op0
print_instr(outputStream * out) const1781 void LIR_Op0::print_instr(outputStream* out) const {
1782   result_opr()->print(out);
1783 }
1784 
1785 // LIR_Op1
name() const1786 const char * LIR_Op1::name() const {
1787   if (code() == lir_move) {
1788     switch (move_kind()) {
1789     case lir_move_normal:
1790       return "move";
1791     case lir_move_unaligned:
1792       return "unaligned move";
1793     case lir_move_volatile:
1794       return "volatile_move";
1795     case lir_move_wide:
1796       return "wide_move";
1797     default:
1798       ShouldNotReachHere();
1799     return "illegal_op";
1800     }
1801   } else {
1802     return LIR_Op::name();
1803   }
1804 }
1805 
1806 
print_instr(outputStream * out) const1807 void LIR_Op1::print_instr(outputStream* out) const {
1808   _opr->print(out);         out->print(" ");
1809   result_opr()->print(out); out->print(" ");
1810   print_patch_code(out, patch_code());
1811 }
1812 
1813 
1814 // LIR_Op1
print_instr(outputStream * out) const1815 void LIR_OpRTCall::print_instr(outputStream* out) const {
1816   intx a = (intx)addr();
1817   out->print("%s", Runtime1::name_for_address(addr()));
1818   out->print(" ");
1819   tmp()->print(out);
1820 }
1821 
print_patch_code(outputStream * out,LIR_PatchCode code)1822 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1823   switch(code) {
1824     case lir_patch_none:                                 break;
1825     case lir_patch_low:    out->print("[patch_low]");    break;
1826     case lir_patch_high:   out->print("[patch_high]");   break;
1827     case lir_patch_normal: out->print("[patch_normal]"); break;
1828     default: ShouldNotReachHere();
1829   }
1830 }
1831 
1832 // LIR_OpBranch
print_instr(outputStream * out) const1833 void LIR_OpBranch::print_instr(outputStream* out) const {
1834   print_condition(out, cond());             out->print(" ");
1835   if (block() != NULL) {
1836     out->print("[B%d] ", block()->block_id());
1837   } else if (stub() != NULL) {
1838     out->print("[");
1839     stub()->print_name(out);
1840     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1841     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1842   } else {
1843     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1844   }
1845   if (ublock() != NULL) {
1846     out->print("unordered: [B%d] ", ublock()->block_id());
1847   }
1848 }
1849 
print_condition(outputStream * out,LIR_Condition cond)1850 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1851   switch(cond) {
1852     case lir_cond_equal:           out->print("[EQ]");      break;
1853     case lir_cond_notEqual:        out->print("[NE]");      break;
1854     case lir_cond_less:            out->print("[LT]");      break;
1855     case lir_cond_lessEqual:       out->print("[LE]");      break;
1856     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1857     case lir_cond_greater:         out->print("[GT]");      break;
1858     case lir_cond_belowEqual:      out->print("[BE]");      break;
1859     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1860     case lir_cond_always:          out->print("[AL]");      break;
1861     default:                       out->print("[%d]",cond); break;
1862   }
1863 }
1864 
1865 // LIR_OpConvert
print_instr(outputStream * out) const1866 void LIR_OpConvert::print_instr(outputStream* out) const {
1867   print_bytecode(out, bytecode());
1868   in_opr()->print(out);                  out->print(" ");
1869   result_opr()->print(out);              out->print(" ");
1870 #ifdef PPC32
1871   if(tmp1()->is_valid()) {
1872     tmp1()->print(out); out->print(" ");
1873     tmp2()->print(out); out->print(" ");
1874   }
1875 #endif
1876 }
1877 
print_bytecode(outputStream * out,Bytecodes::Code code)1878 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1879   switch(code) {
1880     case Bytecodes::_d2f: out->print("[d2f] "); break;
1881     case Bytecodes::_d2i: out->print("[d2i] "); break;
1882     case Bytecodes::_d2l: out->print("[d2l] "); break;
1883     case Bytecodes::_f2d: out->print("[f2d] "); break;
1884     case Bytecodes::_f2i: out->print("[f2i] "); break;
1885     case Bytecodes::_f2l: out->print("[f2l] "); break;
1886     case Bytecodes::_i2b: out->print("[i2b] "); break;
1887     case Bytecodes::_i2c: out->print("[i2c] "); break;
1888     case Bytecodes::_i2d: out->print("[i2d] "); break;
1889     case Bytecodes::_i2f: out->print("[i2f] "); break;
1890     case Bytecodes::_i2l: out->print("[i2l] "); break;
1891     case Bytecodes::_i2s: out->print("[i2s] "); break;
1892     case Bytecodes::_l2i: out->print("[l2i] "); break;
1893     case Bytecodes::_l2f: out->print("[l2f] "); break;
1894     case Bytecodes::_l2d: out->print("[l2d] "); break;
1895     default:
1896       out->print("[?%d]",code);
1897     break;
1898   }
1899 }
1900 
print_instr(outputStream * out) const1901 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1902   klass()->print(out);                      out->print(" ");
1903   obj()->print(out);                        out->print(" ");
1904   tmp1()->print(out);                       out->print(" ");
1905   tmp2()->print(out);                       out->print(" ");
1906   tmp3()->print(out);                       out->print(" ");
1907   tmp4()->print(out);                       out->print(" ");
1908   out->print("[hdr:%d]", header_size()); out->print(" ");
1909   out->print("[obj:%d]", object_size()); out->print(" ");
1910   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1911 }
1912 
print_instr(outputStream * out) const1913 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1914   _opr->print(out);         out->print(" ");
1915   tmp()->print(out);        out->print(" ");
1916   result_opr()->print(out); out->print(" ");
1917 }
1918 
1919 // LIR_Op2
print_instr(outputStream * out) const1920 void LIR_Op2::print_instr(outputStream* out) const {
1921   if (code() == lir_cmove || code() == lir_cmp) {
1922     print_condition(out, condition());         out->print(" ");
1923   }
1924   in_opr1()->print(out);    out->print(" ");
1925   in_opr2()->print(out);    out->print(" ");
1926   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1927   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1928   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1929   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1930   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1931   result_opr()->print(out);
1932 }
1933 
print_instr(outputStream * out) const1934 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1935   klass()->print(out);                   out->print(" ");
1936   len()->print(out);                     out->print(" ");
1937   obj()->print(out);                     out->print(" ");
1938   tmp1()->print(out);                    out->print(" ");
1939   tmp2()->print(out);                    out->print(" ");
1940   tmp3()->print(out);                    out->print(" ");
1941   tmp4()->print(out);                    out->print(" ");
1942   out->print("[type:0x%x]", type());     out->print(" ");
1943   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1944 }
1945 
1946 
print_instr(outputStream * out) const1947 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1948   object()->print(out);                  out->print(" ");
1949   if (code() == lir_store_check) {
1950     array()->print(out);                 out->print(" ");
1951   }
1952   if (code() != lir_store_check) {
1953     klass()->print_name_on(out);         out->print(" ");
1954     if (fast_check())                 out->print("fast_check ");
1955   }
1956   tmp1()->print(out);                    out->print(" ");
1957   tmp2()->print(out);                    out->print(" ");
1958   tmp3()->print(out);                    out->print(" ");
1959   result_opr()->print(out);              out->print(" ");
1960   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1961 }
1962 
1963 
1964 // LIR_Op3
print_instr(outputStream * out) const1965 void LIR_Op3::print_instr(outputStream* out) const {
1966   in_opr1()->print(out);    out->print(" ");
1967   in_opr2()->print(out);    out->print(" ");
1968   in_opr3()->print(out);    out->print(" ");
1969   result_opr()->print(out);
1970 }
1971 
1972 
print_instr(outputStream * out) const1973 void LIR_OpLock::print_instr(outputStream* out) const {
1974   hdr_opr()->print(out);   out->print(" ");
1975   obj_opr()->print(out);   out->print(" ");
1976   lock_opr()->print(out);  out->print(" ");
1977   if (_scratch->is_valid()) {
1978     _scratch->print(out);  out->print(" ");
1979   }
1980   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1981 }
1982 
1983 #ifdef ASSERT
print_instr(outputStream * out) const1984 void LIR_OpAssert::print_instr(outputStream* out) const {
1985   print_condition(out, condition()); out->print(" ");
1986   in_opr1()->print(out);             out->print(" ");
1987   in_opr2()->print(out);             out->print(", \"");
1988   out->print("%s", msg());          out->print("\"");
1989 }
1990 #endif
1991 
1992 
print_instr(outputStream * out) const1993 void LIR_OpDelay::print_instr(outputStream* out) const {
1994   _op->print_on(out);
1995 }
1996 
1997 
1998 // LIR_OpProfileCall
print_instr(outputStream * out) const1999 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2000   profiled_method()->name()->print_symbol_on(out);
2001   out->print(".");
2002   profiled_method()->holder()->name()->print_symbol_on(out);
2003   out->print(" @ %d ", profiled_bci());
2004   mdo()->print(out);           out->print(" ");
2005   recv()->print(out);          out->print(" ");
2006   tmp1()->print(out);          out->print(" ");
2007 }
2008 
2009 // LIR_OpProfileType
print_instr(outputStream * out) const2010 void LIR_OpProfileType::print_instr(outputStream* out) const {
2011   out->print("exact = ");
2012   if  (exact_klass() == NULL) {
2013     out->print("unknown");
2014   } else {
2015     exact_klass()->print_name_on(out);
2016   }
2017   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2018   out->print(" ");
2019   mdp()->print(out);          out->print(" ");
2020   obj()->print(out);          out->print(" ");
2021   tmp()->print(out);          out->print(" ");
2022 }
2023 
2024 #endif // PRODUCT
2025 
2026 // Implementation of LIR_InsertionBuffer
2027 
append(int index,LIR_Op * op)2028 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2029   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2030 
2031   int i = number_of_insertion_points() - 1;
2032   if (i < 0 || index_at(i) < index) {
2033     append_new(index, 1);
2034   } else {
2035     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2036     assert(count_at(i) > 0, "check");
2037     set_count_at(i, count_at(i) + 1);
2038   }
2039   _ops.push(op);
2040 
2041   DEBUG_ONLY(verify());
2042 }
2043 
2044 #ifdef ASSERT
verify()2045 void LIR_InsertionBuffer::verify() {
2046   int sum = 0;
2047   int prev_idx = -1;
2048 
2049   for (int i = 0; i < number_of_insertion_points(); i++) {
2050     assert(prev_idx < index_at(i), "index must be ordered ascending");
2051     sum += count_at(i);
2052   }
2053   assert(sum == number_of_ops(), "wrong total sum");
2054 }
2055 #endif
2056