1 /*
2  * Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1CollectedHeap.hpp"
27 #include "gc/g1/g1HeapSizingPolicy.hpp"
28 #include "gc/g1/g1Analytics.hpp"
29 #include "logging/log.hpp"
30 #include "runtime/globals.hpp"
31 #include "utilities/debug.hpp"
32 #include "utilities/globalDefinitions.hpp"
33 
create(const G1CollectedHeap * g1h,const G1Analytics * analytics)34 G1HeapSizingPolicy* G1HeapSizingPolicy::create(const G1CollectedHeap* g1h, const G1Analytics* analytics) {
35   return new G1HeapSizingPolicy(g1h, analytics);
36 }
37 
G1HeapSizingPolicy(const G1CollectedHeap * g1h,const G1Analytics * analytics)38 G1HeapSizingPolicy::G1HeapSizingPolicy(const G1CollectedHeap* g1h, const G1Analytics* analytics) :
39   _g1h(g1h),
40   _analytics(analytics),
41   _num_prev_pauses_for_heuristics(analytics->number_of_recorded_pause_times()) {
42 
43   assert(MinOverThresholdForGrowth < _num_prev_pauses_for_heuristics, "Threshold must be less than %u", _num_prev_pauses_for_heuristics);
44   clear_ratio_check_data();
45 }
46 
clear_ratio_check_data()47 void G1HeapSizingPolicy::clear_ratio_check_data() {
48   _ratio_over_threshold_count = 0;
49   _ratio_over_threshold_sum = 0.0;
50   _pauses_since_start = 0;
51 }
52 
scale_with_heap(double pause_time_threshold)53 double G1HeapSizingPolicy::scale_with_heap(double pause_time_threshold) {
54   double threshold = pause_time_threshold;
55   // If the heap is at less than half its maximum size, scale the threshold down,
56   // to a limit of 1%. Thus the smaller the heap is, the more likely it is to expand,
57   // though the scaling code will likely keep the increase small.
58   if (_g1h->capacity() <= _g1h->max_capacity() / 2) {
59     threshold *= (double)_g1h->capacity() / (double)(_g1h->max_capacity() / 2);
60     threshold = MAX2(threshold, 0.01);
61   }
62 
63   return threshold;
64 }
65 
log_expansion(double short_term_pause_time_ratio,double long_term_pause_time_ratio,double threshold,double pause_time_ratio,bool fully_expanded,size_t resize_bytes)66 static void log_expansion(double short_term_pause_time_ratio,
67                           double long_term_pause_time_ratio,
68                           double threshold,
69                           double pause_time_ratio,
70                           bool fully_expanded,
71                           size_t resize_bytes) {
72 
73   log_debug(gc, ergo, heap)("Heap expansion: "
74                             "short term pause time ratio %1.2f%% long term pause time ratio %1.2f%% "
75                             "threshold %1.2f%% pause time ratio %1.2f%% fully expanded %s "
76                             "resize by " SIZE_FORMAT "B",
77                             short_term_pause_time_ratio * 100.0,
78                             long_term_pause_time_ratio * 100.0,
79                             threshold * 100.0,
80                             pause_time_ratio * 100.0,
81                             BOOL_TO_STR(fully_expanded),
82                             resize_bytes);
83 }
84 
young_collection_expansion_amount()85 size_t G1HeapSizingPolicy::young_collection_expansion_amount() {
86   assert(GCTimeRatio > 0, "must be");
87 
88   double long_term_pause_time_ratio = _analytics->long_term_pause_time_ratio();
89   double short_term_pause_time_ratio = _analytics->short_term_pause_time_ratio();
90   const double pause_time_threshold = 1.0 / (1.0 + GCTimeRatio);
91   double threshold = scale_with_heap(pause_time_threshold);
92 
93   size_t expand_bytes = 0;
94 
95   if (_g1h->capacity() == _g1h->max_capacity()) {
96     log_expansion(short_term_pause_time_ratio, long_term_pause_time_ratio,
97                   threshold, pause_time_threshold, true, 0);
98     clear_ratio_check_data();
99     return expand_bytes;
100   }
101 
102   // If the last GC time ratio is over the threshold, increment the count of
103   // times it has been exceeded, and add this ratio to the sum of exceeded
104   // ratios.
105   if (short_term_pause_time_ratio > threshold) {
106     _ratio_over_threshold_count++;
107     _ratio_over_threshold_sum += short_term_pause_time_ratio;
108   }
109 
110   log_trace(gc, ergo, heap)("Heap expansion triggers: pauses since start: %u "
111                             "num prev pauses for heuristics: %u "
112                             "ratio over threshold count: %u",
113                             _pauses_since_start,
114                             _num_prev_pauses_for_heuristics,
115                             _ratio_over_threshold_count);
116 
117   // Check if we've had enough GC time ratio checks that were over the
118   // threshold to trigger an expansion. We'll also expand if we've
119   // reached the end of the history buffer and the average of all entries
120   // is still over the threshold. This indicates a smaller number of GCs were
121   // long enough to make the average exceed the threshold.
122   bool filled_history_buffer = _pauses_since_start == _num_prev_pauses_for_heuristics;
123   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
124       (filled_history_buffer && (long_term_pause_time_ratio > threshold))) {
125     size_t min_expand_bytes = HeapRegion::GrainBytes;
126     size_t reserved_bytes = _g1h->max_capacity();
127     size_t committed_bytes = _g1h->capacity();
128     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
129     size_t expand_bytes_via_pct =
130       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
131     double scale_factor = 1.0;
132 
133     // If the current size is less than 1/4 of the Initial heap size, expand
134     // by half of the delta between the current and Initial sizes. IE, grow
135     // back quickly.
136     //
137     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
138     // the available expansion space, whichever is smaller, as the base
139     // expansion size. Then possibly scale this size according to how much the
140     // threshold has (on average) been exceeded by. If the delta is small
141     // (less than the StartScaleDownAt value), scale the size down linearly, but
142     // not by less than MinScaleDownFactor. If the delta is large (greater than
143     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
144     // times the base size. The scaling will be linear in the range from
145     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
146     // ScaleUpRange sets the rate of scaling up.
147     if (committed_bytes < InitialHeapSize / 4) {
148       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
149     } else {
150       double const MinScaleDownFactor = 0.2;
151       double const MaxScaleUpFactor = 2;
152       double const StartScaleDownAt = pause_time_threshold;
153       double const StartScaleUpAt = pause_time_threshold * 1.5;
154       double const ScaleUpRange = pause_time_threshold * 2.0;
155 
156       double ratio_delta;
157       if (filled_history_buffer) {
158         ratio_delta = long_term_pause_time_ratio - threshold;
159       } else {
160         ratio_delta = (_ratio_over_threshold_sum / _ratio_over_threshold_count) - threshold;
161       }
162 
163       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
164       if (ratio_delta < StartScaleDownAt) {
165         scale_factor = ratio_delta / StartScaleDownAt;
166         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
167       } else if (ratio_delta > StartScaleUpAt) {
168         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
169         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
170       }
171     }
172 
173     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
174 
175     // Ensure the expansion size is at least the minimum growth amount
176     // and at most the remaining uncommitted byte size.
177     expand_bytes = clamp(expand_bytes, min_expand_bytes, uncommitted_bytes);
178 
179     clear_ratio_check_data();
180   } else {
181     // An expansion was not triggered. If we've started counting, increment
182     // the number of checks we've made in the current window.  If we've
183     // reached the end of the window without resizing, clear the counters to
184     // start again the next time we see a ratio above the threshold.
185     if (_ratio_over_threshold_count > 0) {
186       _pauses_since_start++;
187       if (_pauses_since_start > _num_prev_pauses_for_heuristics) {
188         clear_ratio_check_data();
189       }
190     }
191   }
192 
193   log_expansion(short_term_pause_time_ratio, long_term_pause_time_ratio,
194                 threshold, pause_time_threshold, false, expand_bytes);
195 
196   return expand_bytes;
197 }
198 
target_heap_capacity(size_t used_bytes,uintx free_ratio)199 static size_t target_heap_capacity(size_t used_bytes, uintx free_ratio) {
200   const double desired_free_percentage = (double) free_ratio / 100.0;
201   const double desired_used_percentage = 1.0 - desired_free_percentage;
202 
203   // We have to be careful here as these two calculations can overflow
204   // 32-bit size_t's.
205   double used_bytes_d = (double) used_bytes;
206   double desired_capacity_d = used_bytes_d / desired_used_percentage;
207   // Let's make sure that they are both under the max heap size, which
208   // by default will make it fit into a size_t.
209   double desired_capacity_upper_bound = (double) MaxHeapSize;
210   desired_capacity_d = MIN2(desired_capacity_d, desired_capacity_upper_bound);
211   // We can now safely turn it into size_t's.
212   return (size_t) desired_capacity_d;
213 }
214 
full_collection_resize_amount(bool & expand)215 size_t G1HeapSizingPolicy::full_collection_resize_amount(bool& expand) {
216   // Capacity, free and used after the GC counted as full regions to
217   // include the waste in the following calculations.
218   const size_t capacity_after_gc = _g1h->capacity();
219   const size_t used_after_gc = capacity_after_gc - _g1h->unused_committed_regions_in_bytes();
220 
221   size_t minimum_desired_capacity = target_heap_capacity(used_after_gc, MinHeapFreeRatio);
222   size_t maximum_desired_capacity = target_heap_capacity(used_after_gc, MaxHeapFreeRatio);
223 
224   // This assert only makes sense here, before we adjust them
225   // with respect to the min and max heap size.
226   assert(minimum_desired_capacity <= maximum_desired_capacity,
227          "minimum_desired_capacity = " SIZE_FORMAT ", "
228          "maximum_desired_capacity = " SIZE_FORMAT,
229          minimum_desired_capacity, maximum_desired_capacity);
230 
231   // Should not be greater than the heap max size. No need to adjust
232   // it with respect to the heap min size as it's a lower bound (i.e.,
233   // we'll try to make the capacity larger than it, not smaller).
234   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
235   // Should not be less than the heap min size. No need to adjust it
236   // with respect to the heap max size as it's an upper bound (i.e.,
237   // we'll try to make the capacity smaller than it, not greater).
238   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
239 
240   // Don't expand unless it's significant; prefer expansion to shrinking.
241   if (capacity_after_gc < minimum_desired_capacity) {
242     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
243 
244     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
245                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
246                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
247                               capacity_after_gc, used_after_gc, _g1h->used(), minimum_desired_capacity, MinHeapFreeRatio);
248 
249     expand = true;
250     return expand_bytes;
251     // No expansion, now see if we want to shrink
252   } else if (capacity_after_gc > maximum_desired_capacity) {
253     // Capacity too large, compute shrinking size
254     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
255 
256     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
257                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
258                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
259                               capacity_after_gc, used_after_gc, _g1h->used(), maximum_desired_capacity, MaxHeapFreeRatio);
260 
261     expand = false;
262     return shrink_bytes;
263   }
264 
265   expand = true; // Does not matter.
266   return 0;
267 }
268 
269