1 /*
2 * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Analytics.hpp"
27 #include "gc/g1/g1Arguments.hpp"
28 #include "gc/g1/g1CollectedHeap.inline.hpp"
29 #include "gc/g1/g1CollectionSet.hpp"
30 #include "gc/g1/g1CollectionSetCandidates.hpp"
31 #include "gc/g1/g1ConcurrentMark.hpp"
32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
33 #include "gc/g1/g1ConcurrentRefine.hpp"
34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
35 #include "gc/g1/g1CollectionSetChooser.hpp"
36 #include "gc/g1/g1HotCardCache.hpp"
37 #include "gc/g1/g1IHOPControl.hpp"
38 #include "gc/g1/g1GCPhaseTimes.hpp"
39 #include "gc/g1/g1Policy.hpp"
40 #include "gc/g1/g1SurvivorRegions.hpp"
41 #include "gc/g1/g1YoungGenSizer.hpp"
42 #include "gc/g1/heapRegion.inline.hpp"
43 #include "gc/g1/heapRegionRemSet.hpp"
44 #include "gc/shared/concurrentGCBreakpoints.hpp"
45 #include "gc/shared/gcPolicyCounters.hpp"
46 #include "logging/log.hpp"
47 #include "runtime/arguments.hpp"
48 #include "runtime/java.hpp"
49 #include "runtime/mutexLocker.hpp"
50 #include "utilities/debug.hpp"
51 #include "utilities/growableArray.hpp"
52 #include "utilities/pair.hpp"
53
G1Policy(STWGCTimer * gc_timer)54 G1Policy::G1Policy(STWGCTimer* gc_timer) :
55 _predictor(G1ConfidencePercent / 100.0),
56 _analytics(new G1Analytics(&_predictor)),
57 _remset_tracker(),
58 _mmu_tracker(new G1MMUTracker(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
59 _old_gen_alloc_tracker(),
60 _ihop_control(create_ihop_control(&_old_gen_alloc_tracker, &_predictor)),
61 _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
62 _full_collection_start_sec(0.0),
63 _young_list_target_length(0),
64 _young_list_fixed_length(0),
65 _young_list_max_length(0),
66 _eden_surv_rate_group(new G1SurvRateGroup()),
67 _survivor_surv_rate_group(new G1SurvRateGroup()),
68 _reserve_factor((double) G1ReservePercent / 100.0),
69 _reserve_regions(0),
70 _young_gen_sizer(),
71 _free_regions_at_end_of_collection(0),
72 _rs_length(0),
73 _rs_length_prediction(0),
74 _pending_cards_at_gc_start(0),
75 _concurrent_start_to_mixed(),
76 _collection_set(NULL),
77 _g1h(NULL),
78 _phase_times_timer(gc_timer),
79 _phase_times(NULL),
80 _mark_remark_start_sec(0),
81 _mark_cleanup_start_sec(0),
82 _tenuring_threshold(MaxTenuringThreshold),
83 _max_survivor_regions(0),
84 _survivors_age_table(true)
85 {
86 }
87
~G1Policy()88 G1Policy::~G1Policy() {
89 delete _ihop_control;
90 }
91
collector_state() const92 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
93
init(G1CollectedHeap * g1h,G1CollectionSet * collection_set)94 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
95 _g1h = g1h;
96 _collection_set = collection_set;
97
98 assert(Heap_lock->owned_by_self(), "Locking discipline.");
99
100 if (!use_adaptive_young_list_length()) {
101 _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
102 }
103 _young_gen_sizer.adjust_max_new_size(_g1h->max_regions());
104
105 _free_regions_at_end_of_collection = _g1h->num_free_regions();
106
107 update_young_list_max_and_target_length();
108 // We may immediately start allocating regions and placing them on the
109 // collection set list. Initialize the per-collection set info
110 _collection_set->start_incremental_building();
111 }
112
note_gc_start()113 void G1Policy::note_gc_start() {
114 phase_times()->note_gc_start();
115 }
116
117 class G1YoungLengthPredictor {
118 const double _base_time_ms;
119 const double _base_free_regions;
120 const double _target_pause_time_ms;
121 const G1Policy* const _policy;
122
123 public:
G1YoungLengthPredictor(double base_time_ms,double base_free_regions,double target_pause_time_ms,const G1Policy * policy)124 G1YoungLengthPredictor(double base_time_ms,
125 double base_free_regions,
126 double target_pause_time_ms,
127 const G1Policy* policy) :
128 _base_time_ms(base_time_ms),
129 _base_free_regions(base_free_regions),
130 _target_pause_time_ms(target_pause_time_ms),
131 _policy(policy) {}
132
will_fit(uint young_length) const133 bool will_fit(uint young_length) const {
134 if (young_length >= _base_free_regions) {
135 // end condition 1: not enough space for the young regions
136 return false;
137 }
138
139 size_t bytes_to_copy = 0;
140 const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
141 const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
142 const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
143 if (pause_time_ms > _target_pause_time_ms) {
144 // end condition 2: prediction is over the target pause time
145 return false;
146 }
147
148 const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
149
150 // When copying, we will likely need more bytes free than is live in the region.
151 // Add some safety margin to factor in the confidence of our guess, and the
152 // natural expected waste.
153 // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
154 // of the calculation: the lower the confidence, the more headroom.
155 // (100 + TargetPLABWastePct) represents the increase in expected bytes during
156 // copying due to anticipated waste in the PLABs.
157 const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
158 const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
159
160 if (expected_bytes_to_copy > free_bytes) {
161 // end condition 3: out-of-space
162 return false;
163 }
164
165 // success!
166 return true;
167 }
168 };
169
record_new_heap_size(uint new_number_of_regions)170 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
171 // re-calculate the necessary reserve
172 double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
173 // We use ceiling so that if reserve_regions_d is > 0.0 (but
174 // smaller than 1.0) we'll get 1.
175 _reserve_regions = (uint) ceil(reserve_regions_d);
176
177 _young_gen_sizer.heap_size_changed(new_number_of_regions);
178
179 _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
180 }
181
calculate_young_list_desired_min_length(uint base_min_length) const182 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
183 uint desired_min_length = 0;
184 if (use_adaptive_young_list_length()) {
185 if (_analytics->num_alloc_rate_ms() > 3) {
186 double now_sec = os::elapsedTime();
187 double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
188 double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
189 desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
190 } else {
191 // otherwise we don't have enough info to make the prediction
192 }
193 }
194 desired_min_length += base_min_length;
195 // make sure we don't go below any user-defined minimum bound
196 return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
197 }
198
calculate_young_list_desired_max_length() const199 uint G1Policy::calculate_young_list_desired_max_length() const {
200 // Here, we might want to also take into account any additional
201 // constraints (i.e., user-defined minimum bound). Currently, we
202 // effectively don't set this bound.
203 return _young_gen_sizer.max_desired_young_length();
204 }
205
update_young_list_max_and_target_length()206 uint G1Policy::update_young_list_max_and_target_length() {
207 return update_young_list_max_and_target_length(_analytics->predict_rs_length());
208 }
209
update_young_list_max_and_target_length(size_t rs_length)210 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
211 uint unbounded_target_length = update_young_list_target_length(rs_length);
212 update_max_gc_locker_expansion();
213 return unbounded_target_length;
214 }
215
update_young_list_target_length(size_t rs_length)216 uint G1Policy::update_young_list_target_length(size_t rs_length) {
217 YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
218 _young_list_target_length = young_lengths.first;
219
220 return young_lengths.second;
221 }
222
young_list_target_lengths(size_t rs_length) const223 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
224 YoungTargetLengths result;
225
226 // Calculate the absolute and desired min bounds first.
227
228 // This is how many young regions we already have (currently: the survivors).
229 const uint base_min_length = _g1h->survivor_regions_count();
230 uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
231 // This is the absolute minimum young length. Ensure that we
232 // will at least have one eden region available for allocation.
233 uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
234 // If we shrank the young list target it should not shrink below the current size.
235 desired_min_length = MAX2(desired_min_length, absolute_min_length);
236 // Calculate the absolute and desired max bounds.
237
238 uint desired_max_length = calculate_young_list_desired_max_length();
239
240 uint young_list_target_length = 0;
241 if (use_adaptive_young_list_length()) {
242 if (collector_state()->in_young_only_phase()) {
243 young_list_target_length =
244 calculate_young_list_target_length(rs_length,
245 base_min_length,
246 desired_min_length,
247 desired_max_length);
248 } else {
249 // Don't calculate anything and let the code below bound it to
250 // the desired_min_length, i.e., do the next GC as soon as
251 // possible to maximize how many old regions we can add to it.
252 }
253 } else {
254 // The user asked for a fixed young gen so we'll fix the young gen
255 // whether the next GC is young or mixed.
256 young_list_target_length = _young_list_fixed_length;
257 }
258
259 result.second = young_list_target_length;
260
261 // We will try our best not to "eat" into the reserve.
262 uint absolute_max_length = 0;
263 if (_free_regions_at_end_of_collection > _reserve_regions) {
264 absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
265 }
266 if (desired_max_length > absolute_max_length) {
267 desired_max_length = absolute_max_length;
268 }
269
270 // Make sure we don't go over the desired max length, nor under the
271 // desired min length. In case they clash, desired_min_length wins
272 // which is why that test is second.
273 if (young_list_target_length > desired_max_length) {
274 young_list_target_length = desired_max_length;
275 }
276 if (young_list_target_length < desired_min_length) {
277 young_list_target_length = desired_min_length;
278 }
279
280 assert(young_list_target_length > base_min_length,
281 "we should be able to allocate at least one eden region");
282 assert(young_list_target_length >= absolute_min_length, "post-condition");
283
284 result.first = young_list_target_length;
285 return result;
286 }
287
calculate_young_list_target_length(size_t rs_length,uint base_min_length,uint desired_min_length,uint desired_max_length) const288 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
289 uint base_min_length,
290 uint desired_min_length,
291 uint desired_max_length) const {
292 assert(use_adaptive_young_list_length(), "pre-condition");
293 assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
294
295 // In case some edge-condition makes the desired max length too small...
296 if (desired_max_length <= desired_min_length) {
297 return desired_min_length;
298 }
299
300 // We'll adjust min_young_length and max_young_length not to include
301 // the already allocated young regions (i.e., so they reflect the
302 // min and max eden regions we'll allocate). The base_min_length
303 // will be reflected in the predictions by the
304 // survivor_regions_evac_time prediction.
305 assert(desired_min_length > base_min_length, "invariant");
306 uint min_young_length = desired_min_length - base_min_length;
307 assert(desired_max_length > base_min_length, "invariant");
308 uint max_young_length = desired_max_length - base_min_length;
309
310 const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
311 const size_t pending_cards = _analytics->predict_pending_cards();
312 const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
313 const uint available_free_regions = _free_regions_at_end_of_collection;
314 const uint base_free_regions =
315 available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
316
317 // Here, we will make sure that the shortest young length that
318 // makes sense fits within the target pause time.
319
320 G1YoungLengthPredictor p(base_time_ms,
321 base_free_regions,
322 target_pause_time_ms,
323 this);
324 if (p.will_fit(min_young_length)) {
325 // The shortest young length will fit into the target pause time;
326 // we'll now check whether the absolute maximum number of young
327 // regions will fit in the target pause time. If not, we'll do
328 // a binary search between min_young_length and max_young_length.
329 if (p.will_fit(max_young_length)) {
330 // The maximum young length will fit into the target pause time.
331 // We are done so set min young length to the maximum length (as
332 // the result is assumed to be returned in min_young_length).
333 min_young_length = max_young_length;
334 } else {
335 // The maximum possible number of young regions will not fit within
336 // the target pause time so we'll search for the optimal
337 // length. The loop invariants are:
338 //
339 // min_young_length < max_young_length
340 // min_young_length is known to fit into the target pause time
341 // max_young_length is known not to fit into the target pause time
342 //
343 // Going into the loop we know the above hold as we've just
344 // checked them. Every time around the loop we check whether
345 // the middle value between min_young_length and
346 // max_young_length fits into the target pause time. If it
347 // does, it becomes the new min. If it doesn't, it becomes
348 // the new max. This way we maintain the loop invariants.
349
350 assert(min_young_length < max_young_length, "invariant");
351 uint diff = (max_young_length - min_young_length) / 2;
352 while (diff > 0) {
353 uint young_length = min_young_length + diff;
354 if (p.will_fit(young_length)) {
355 min_young_length = young_length;
356 } else {
357 max_young_length = young_length;
358 }
359 assert(min_young_length < max_young_length, "invariant");
360 diff = (max_young_length - min_young_length) / 2;
361 }
362 // The results is min_young_length which, according to the
363 // loop invariants, should fit within the target pause time.
364
365 // These are the post-conditions of the binary search above:
366 assert(min_young_length < max_young_length,
367 "otherwise we should have discovered that max_young_length "
368 "fits into the pause target and not done the binary search");
369 assert(p.will_fit(min_young_length),
370 "min_young_length, the result of the binary search, should "
371 "fit into the pause target");
372 assert(!p.will_fit(min_young_length + 1),
373 "min_young_length, the result of the binary search, should be "
374 "optimal, so no larger length should fit into the pause target");
375 }
376 } else {
377 // Even the minimum length doesn't fit into the pause time
378 // target, return it as the result nevertheless.
379 }
380 return base_min_length + min_young_length;
381 }
382
predict_survivor_regions_evac_time() const383 double G1Policy::predict_survivor_regions_evac_time() const {
384 double survivor_regions_evac_time = 0.0;
385 const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
386 for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
387 it != survivor_regions->end();
388 ++it) {
389 survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
390 }
391 return survivor_regions_evac_time;
392 }
393
phase_times() const394 G1GCPhaseTimes* G1Policy::phase_times() const {
395 // Lazy allocation because it must follow initialization of all the
396 // OopStorage objects by various other subsystems.
397 if (_phase_times == NULL) {
398 _phase_times = new G1GCPhaseTimes(_phase_times_timer, ParallelGCThreads);
399 }
400 return _phase_times;
401 }
402
revise_young_list_target_length_if_necessary(size_t rs_length)403 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
404 guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
405
406 if (rs_length > _rs_length_prediction) {
407 // add 10% to avoid having to recalculate often
408 size_t rs_length_prediction = rs_length * 1100 / 1000;
409 update_rs_length_prediction(rs_length_prediction);
410
411 update_young_list_max_and_target_length(rs_length_prediction);
412 }
413 }
414
update_rs_length_prediction()415 void G1Policy::update_rs_length_prediction() {
416 update_rs_length_prediction(_analytics->predict_rs_length());
417 }
418
update_rs_length_prediction(size_t prediction)419 void G1Policy::update_rs_length_prediction(size_t prediction) {
420 if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
421 _rs_length_prediction = prediction;
422 }
423 }
424
record_full_collection_start()425 void G1Policy::record_full_collection_start() {
426 _full_collection_start_sec = os::elapsedTime();
427 // Release the future to-space so that it is available for compaction into.
428 collector_state()->set_in_young_only_phase(false);
429 collector_state()->set_in_full_gc(true);
430 _collection_set->clear_candidates();
431 _pending_cards_at_gc_start = 0;
432 }
433
record_full_collection_end()434 void G1Policy::record_full_collection_end() {
435 // Consider this like a collection pause for the purposes of allocation
436 // since last pause.
437 double end_sec = os::elapsedTime();
438
439 collector_state()->set_in_full_gc(false);
440
441 // "Nuke" the heuristics that control the young/mixed GC
442 // transitions and make sure we start with young GCs after the Full GC.
443 collector_state()->set_in_young_only_phase(true);
444 collector_state()->set_in_young_gc_before_mixed(false);
445 collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC"));
446 collector_state()->set_in_concurrent_start_gc(false);
447 collector_state()->set_mark_or_rebuild_in_progress(false);
448 collector_state()->set_clearing_next_bitmap(false);
449
450 _eden_surv_rate_group->start_adding_regions();
451 // also call this on any additional surv rate groups
452
453 _free_regions_at_end_of_collection = _g1h->num_free_regions();
454 _survivor_surv_rate_group->reset();
455 update_young_list_max_and_target_length();
456 update_rs_length_prediction();
457
458 _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
459
460 record_pause(FullGC, _full_collection_start_sec, end_sec);
461 }
462
log_refinement_stats(const char * kind,const G1ConcurrentRefineStats & stats)463 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
464 log_debug(gc, refine, stats)
465 ("%s refinement: %.2fms, refined: " SIZE_FORMAT
466 ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
467 kind,
468 stats.refinement_time().seconds() * MILLIUNITS,
469 stats.refined_cards(),
470 stats.precleaned_cards(),
471 stats.dirtied_cards());
472 }
473
record_concurrent_refinement_stats()474 void G1Policy::record_concurrent_refinement_stats() {
475 G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
476 _pending_cards_at_gc_start = dcqs.num_cards();
477
478 // Collect per-thread stats, mostly from mutator activity.
479 G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
480
481 // Collect specialized concurrent refinement thread stats.
482 G1ConcurrentRefine* cr = _g1h->concurrent_refine();
483 G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
484
485 G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
486
487 log_refinement_stats("Mutator", mut_stats);
488 log_refinement_stats("Concurrent", cr_stats);
489 log_refinement_stats("Total", total_stats);
490
491 // Record the rate at which cards were refined.
492 // Don't update the rate if the current sample is empty or time is zero.
493 Tickspan refinement_time = total_stats.refinement_time();
494 size_t refined_cards = total_stats.refined_cards();
495 if ((refined_cards > 0) && (refinement_time > Tickspan())) {
496 double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
497 _analytics->report_concurrent_refine_rate_ms(rate);
498 log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
499 }
500
501 // Record mutator's card logging rate.
502 double mut_start_time = _analytics->prev_collection_pause_end_ms();
503 double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
504 double mut_time = mut_end_time - mut_start_time;
505 // Unlike above for conc-refine rate, here we should not require a
506 // non-empty sample, since an application could go some time with only
507 // young-gen or filtered out writes. But we'll ignore unusually short
508 // sample periods, as they may just pollute the predictions.
509 if (mut_time > 1.0) { // Require > 1ms sample time.
510 double dirtied_rate = total_stats.dirtied_cards() / mut_time;
511 _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
512 log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
513 }
514 }
515
record_collection_pause_start(double start_time_sec)516 void G1Policy::record_collection_pause_start(double start_time_sec) {
517 // We only need to do this here as the policy will only be applied
518 // to the GC we're about to start. so, no point is calculating this
519 // every time we calculate / recalculate the target young length.
520 update_survivors_policy();
521
522 assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
523 "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
524 max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
525 assert_used_and_recalculate_used_equal(_g1h);
526
527 phase_times()->record_cur_collection_start_sec(start_time_sec);
528
529 record_concurrent_refinement_stats();
530
531 _collection_set->reset_bytes_used_before();
532
533 // do that for any other surv rate groups
534 _eden_surv_rate_group->stop_adding_regions();
535 _survivors_age_table.clear();
536
537 assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
538 }
539
record_concurrent_mark_init_end()540 void G1Policy::record_concurrent_mark_init_end() {
541 assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
542 collector_state()->set_in_concurrent_start_gc(false);
543 }
544
record_concurrent_mark_remark_start()545 void G1Policy::record_concurrent_mark_remark_start() {
546 _mark_remark_start_sec = os::elapsedTime();
547 }
548
record_concurrent_mark_remark_end()549 void G1Policy::record_concurrent_mark_remark_end() {
550 double end_time_sec = os::elapsedTime();
551 double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
552 _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
553
554 record_pause(Remark, _mark_remark_start_sec, end_time_sec);
555 }
556
record_concurrent_mark_cleanup_start()557 void G1Policy::record_concurrent_mark_cleanup_start() {
558 _mark_cleanup_start_sec = os::elapsedTime();
559 }
560
average_time_ms(G1GCPhaseTimes::GCParPhases phase) const561 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
562 return phase_times()->average_time_ms(phase);
563 }
564
young_other_time_ms() const565 double G1Policy::young_other_time_ms() const {
566 return phase_times()->young_cset_choice_time_ms() +
567 phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
568 }
569
non_young_other_time_ms() const570 double G1Policy::non_young_other_time_ms() const {
571 return phase_times()->non_young_cset_choice_time_ms() +
572 phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
573 }
574
other_time_ms(double pause_time_ms) const575 double G1Policy::other_time_ms(double pause_time_ms) const {
576 return pause_time_ms - phase_times()->cur_collection_par_time_ms();
577 }
578
constant_other_time_ms(double pause_time_ms) const579 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
580 return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
581 }
582
about_to_start_mixed_phase() const583 bool G1Policy::about_to_start_mixed_phase() const {
584 return _g1h->concurrent_mark()->cm_thread()->in_progress() || collector_state()->in_young_gc_before_mixed();
585 }
586
need_to_start_conc_mark(const char * source,size_t alloc_word_size)587 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
588 if (about_to_start_mixed_phase()) {
589 return false;
590 }
591
592 size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
593
594 size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
595 size_t alloc_byte_size = alloc_word_size * HeapWordSize;
596 size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
597
598 bool result = false;
599 if (marking_request_bytes > marking_initiating_used_threshold) {
600 result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
601 log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
602 result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
603 cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
604 }
605 return result;
606 }
607
concurrent_operation_is_full_mark(const char * msg)608 bool G1Policy::concurrent_operation_is_full_mark(const char* msg) {
609 return collector_state()->in_concurrent_start_gc() &&
610 ((_g1h->gc_cause() != GCCause::_g1_humongous_allocation) || need_to_start_conc_mark(msg));
611 }
612
logged_cards_processing_time() const613 double G1Policy::logged_cards_processing_time() const {
614 double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
615 size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
616 size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
617 phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
618 // This may happen if there are duplicate cards in different log buffers.
619 if (logged_dirty_cards > scan_heap_roots_cards) {
620 return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
621 }
622 return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
623 }
624
625 // Anything below that is considered to be zero
626 #define MIN_TIMER_GRANULARITY 0.0000001
627
record_collection_pause_end(double pause_time_ms,bool concurrent_operation_is_full_mark)628 void G1Policy::record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark) {
629 G1GCPhaseTimes* p = phase_times();
630
631 double end_time_sec = os::elapsedTime();
632 double start_time_sec = phase_times()->cur_collection_start_sec();
633
634 PauseKind this_pause = young_gc_pause_kind(concurrent_operation_is_full_mark);
635
636 bool update_stats = should_update_gc_stats();
637
638 if (is_concurrent_start_pause(this_pause)) {
639 record_concurrent_mark_init_end();
640 } else {
641 maybe_start_marking();
642 }
643
644 double app_time_ms = (start_time_sec * 1000.0 - _analytics->prev_collection_pause_end_ms());
645 if (app_time_ms < MIN_TIMER_GRANULARITY) {
646 // This usually happens due to the timer not having the required
647 // granularity. Some Linuxes are the usual culprits.
648 // We'll just set it to something (arbitrarily) small.
649 app_time_ms = 1.0;
650 }
651
652 if (update_stats) {
653 // We maintain the invariant that all objects allocated by mutator
654 // threads will be allocated out of eden regions. So, we can use
655 // the eden region number allocated since the previous GC to
656 // calculate the application's allocate rate. The only exception
657 // to that is humongous objects that are allocated separately. But
658 // given that humongous object allocations do not really affect
659 // either the pause's duration nor when the next pause will take
660 // place we can safely ignore them here.
661 uint regions_allocated = _collection_set->eden_region_length();
662 double alloc_rate_ms = (double) regions_allocated / app_time_ms;
663 _analytics->report_alloc_rate_ms(alloc_rate_ms);
664 }
665
666 record_pause(this_pause, start_time_sec, end_time_sec);
667
668 if (is_last_young_pause(this_pause)) {
669 assert(!is_concurrent_start_pause(this_pause),
670 "The young GC before mixed is not allowed to be concurrent start GC");
671 // This has been the young GC before we start doing mixed GCs. We already
672 // decided to start mixed GCs much earlier, so there is nothing to do except
673 // advancing the state.
674 collector_state()->set_in_young_only_phase(false);
675 collector_state()->set_in_young_gc_before_mixed(false);
676 } else if (is_mixed_pause(this_pause)) {
677 // This is a mixed GC. Here we decide whether to continue doing more
678 // mixed GCs or not.
679 if (!next_gc_should_be_mixed("continue mixed GCs",
680 "do not continue mixed GCs")) {
681 collector_state()->set_in_young_only_phase(true);
682
683 clear_collection_set_candidates();
684 maybe_start_marking();
685 }
686 } else {
687 assert(is_young_only_pause(this_pause), "must be");
688 }
689
690 _eden_surv_rate_group->start_adding_regions();
691
692 double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
693 if (update_stats) {
694 size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
695 p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
696 // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
697 size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
698 p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
699 total_log_buffer_cards;
700
701 // The threshold for the number of cards in a given sampling which we consider
702 // large enough so that the impact from setup and other costs is negligible.
703 size_t const CardsNumSamplingThreshold = 10;
704
705 if (total_cards_merged > CardsNumSamplingThreshold) {
706 double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
707 average_time_ms(G1GCPhaseTimes::MergeRS) +
708 average_time_ms(G1GCPhaseTimes::MergeHCC) +
709 average_time_ms(G1GCPhaseTimes::MergeLB) +
710 average_time_ms(G1GCPhaseTimes::OptMergeRS);
711 _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged,
712 is_young_only_pause(this_pause));
713 }
714
715 // Update prediction for card scan
716 size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
717 p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
718
719 if (total_cards_scanned > CardsNumSamplingThreshold) {
720 double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
721 average_time_ms(G1GCPhaseTimes::OptScanHR);
722
723 _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned,
724 is_young_only_pause(this_pause));
725 }
726
727 // Update prediction for the ratio between cards from the remembered
728 // sets and actually scanned cards from the remembered sets.
729 // Cards from the remembered sets are all cards not duplicated by cards from
730 // the logs.
731 // Due to duplicates in the log buffers, the number of actually scanned cards
732 // can be smaller than the cards in the log buffers.
733 const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
734 double merge_to_scan_ratio = 0.0;
735 if (total_cards_scanned > 0) {
736 merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
737 }
738 _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio,
739 is_young_only_pause(this_pause));
740
741 const size_t recorded_rs_length = _collection_set->recorded_rs_length();
742 const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
743 _analytics->report_rs_length_diff(rs_length_diff);
744
745 // Update prediction for copy cost per byte
746 size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
747
748 if (copied_bytes > 0) {
749 double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
750 _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
751 }
752
753 if (_collection_set->young_region_length() > 0) {
754 _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
755 _collection_set->young_region_length());
756 }
757
758 if (_collection_set->old_region_length() > 0) {
759 _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
760 _collection_set->old_region_length());
761 }
762
763 _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
764
765 // Do not update RS lengths and the number of pending cards with information from mixed gc:
766 // these are is wildly different to during young only gc and mess up young gen sizing right
767 // after the mixed gc phase.
768 // During mixed gc we do not use them for young gen sizing.
769 if (is_young_only_pause(this_pause)) {
770 _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
771 _analytics->report_rs_length((double) _rs_length);
772 }
773 }
774
775 assert(!(is_concurrent_start_pause(this_pause) && collector_state()->mark_or_rebuild_in_progress()),
776 "If the last pause has been concurrent start, we should not have been in the marking window");
777 if (is_concurrent_start_pause(this_pause)) {
778 collector_state()->set_mark_or_rebuild_in_progress(concurrent_operation_is_full_mark);
779 }
780
781 _free_regions_at_end_of_collection = _g1h->num_free_regions();
782
783 update_rs_length_prediction();
784
785 // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
786 // that in this case we are not running in a "normal" operating mode.
787 if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
788 // IHOP control wants to know the expected young gen length if it were not
789 // restrained by the heap reserve. Using the actual length would make the
790 // prediction too small and the limit the young gen every time we get to the
791 // predicted target occupancy.
792 size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
793
794 _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
795 update_ihop_prediction(app_time_ms / 1000.0,
796 last_unrestrained_young_length * HeapRegion::GrainBytes,
797 is_young_only_pause(this_pause));
798
799 _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
800 } else {
801 // Any garbage collection triggered as periodic collection resets the time-to-mixed
802 // measurement. Periodic collection typically means that the application is "inactive", i.e.
803 // the marking threads may have received an uncharacterisic amount of cpu time
804 // for completing the marking, i.e. are faster than expected.
805 // This skews the predicted marking length towards smaller values which might cause
806 // the mark start being too late.
807 abort_time_to_mixed_tracking();
808 }
809
810 // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
811 double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
812
813 if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
814 log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
815 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
816 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
817
818 scan_logged_cards_time_goal_ms = 0;
819 } else {
820 scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
821 }
822
823 double const logged_cards_time = logged_cards_processing_time();
824
825 log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
826 scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
827
828 _g1h->concurrent_refine()->adjust(logged_cards_time,
829 phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
830 scan_logged_cards_time_goal_ms);
831 }
832
create_ihop_control(const G1OldGenAllocationTracker * old_gen_alloc_tracker,const G1Predictions * predictor)833 G1IHOPControl* G1Policy::create_ihop_control(const G1OldGenAllocationTracker* old_gen_alloc_tracker,
834 const G1Predictions* predictor) {
835 if (G1UseAdaptiveIHOP) {
836 return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
837 old_gen_alloc_tracker,
838 predictor,
839 G1ReservePercent,
840 G1HeapWastePercent);
841 } else {
842 return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent, old_gen_alloc_tracker);
843 }
844 }
845
update_ihop_prediction(double mutator_time_s,size_t young_gen_size,bool this_gc_was_young_only)846 void G1Policy::update_ihop_prediction(double mutator_time_s,
847 size_t young_gen_size,
848 bool this_gc_was_young_only) {
849 // Always try to update IHOP prediction. Even evacuation failures give information
850 // about e.g. whether to start IHOP earlier next time.
851
852 // Avoid using really small application times that might create samples with
853 // very high or very low values. They may be caused by e.g. back-to-back gcs.
854 double const min_valid_time = 1e-6;
855
856 bool report = false;
857
858 double marking_to_mixed_time = -1.0;
859 if (!this_gc_was_young_only && _concurrent_start_to_mixed.has_result()) {
860 marking_to_mixed_time = _concurrent_start_to_mixed.last_marking_time();
861 assert(marking_to_mixed_time > 0.0,
862 "Concurrent start to mixed time must be larger than zero but is %.3f",
863 marking_to_mixed_time);
864 if (marking_to_mixed_time > min_valid_time) {
865 _ihop_control->update_marking_length(marking_to_mixed_time);
866 report = true;
867 }
868 }
869
870 // As an approximation for the young gc promotion rates during marking we use
871 // all of them. In many applications there are only a few if any young gcs during
872 // marking, which makes any prediction useless. This increases the accuracy of the
873 // prediction.
874 if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
875 _ihop_control->update_allocation_info(mutator_time_s, young_gen_size);
876 report = true;
877 }
878
879 if (report) {
880 report_ihop_statistics();
881 }
882 }
883
report_ihop_statistics()884 void G1Policy::report_ihop_statistics() {
885 _ihop_control->print();
886 }
887
print_phases()888 void G1Policy::print_phases() {
889 phase_times()->print();
890 }
891
predict_base_elapsed_time_ms(size_t pending_cards,size_t rs_length) const892 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
893 size_t rs_length) const {
894 size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
895 return
896 _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
897 _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
898 _analytics->predict_constant_other_time_ms() +
899 predict_survivor_regions_evac_time();
900 }
901
predict_base_elapsed_time_ms(size_t pending_cards) const902 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
903 size_t rs_length = _analytics->predict_rs_length();
904 return predict_base_elapsed_time_ms(pending_cards, rs_length);
905 }
906
predict_bytes_to_copy(HeapRegion * hr) const907 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
908 size_t bytes_to_copy;
909 if (!hr->is_young()) {
910 bytes_to_copy = hr->max_live_bytes();
911 } else {
912 bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
913 }
914 return bytes_to_copy;
915 }
916
predict_eden_copy_time_ms(uint count,size_t * bytes_to_copy) const917 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
918 if (count == 0) {
919 return 0.0;
920 }
921 size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
922 if (bytes_to_copy != NULL) {
923 *bytes_to_copy = expected_bytes;
924 }
925 return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
926 }
927
predict_region_copy_time_ms(HeapRegion * hr) const928 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
929 size_t const bytes_to_copy = predict_bytes_to_copy(hr);
930 return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
931 }
932
predict_region_non_copy_time_ms(HeapRegion * hr,bool for_young_gc) const933 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
934 bool for_young_gc) const {
935 size_t rs_length = hr->rem_set()->occupied();
936 size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
937
938 double region_elapsed_time_ms =
939 _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
940 _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
941
942 // The prediction of the "other" time for this region is based
943 // upon the region type and NOT the GC type.
944 if (hr->is_young()) {
945 region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
946 } else {
947 region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
948 }
949 return region_elapsed_time_ms;
950 }
951
predict_region_total_time_ms(HeapRegion * hr,bool for_young_gc) const952 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
953 return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
954 }
955
should_allocate_mutator_region() const956 bool G1Policy::should_allocate_mutator_region() const {
957 uint young_list_length = _g1h->young_regions_count();
958 uint young_list_target_length = _young_list_target_length;
959 return young_list_length < young_list_target_length;
960 }
961
can_expand_young_list() const962 bool G1Policy::can_expand_young_list() const {
963 uint young_list_length = _g1h->young_regions_count();
964 uint young_list_max_length = _young_list_max_length;
965 return young_list_length < young_list_max_length;
966 }
967
use_adaptive_young_list_length() const968 bool G1Policy::use_adaptive_young_list_length() const {
969 return _young_gen_sizer.use_adaptive_young_list_length();
970 }
971
desired_survivor_size(uint max_regions) const972 size_t G1Policy::desired_survivor_size(uint max_regions) const {
973 size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
974 return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
975 }
976
print_age_table()977 void G1Policy::print_age_table() {
978 _survivors_age_table.print_age_table(_tenuring_threshold);
979 }
980
update_max_gc_locker_expansion()981 void G1Policy::update_max_gc_locker_expansion() {
982 uint expansion_region_num = 0;
983 if (GCLockerEdenExpansionPercent > 0) {
984 double perc = (double) GCLockerEdenExpansionPercent / 100.0;
985 double expansion_region_num_d = perc * (double) _young_list_target_length;
986 // We use ceiling so that if expansion_region_num_d is > 0.0 (but
987 // less than 1.0) we'll get 1.
988 expansion_region_num = (uint) ceil(expansion_region_num_d);
989 } else {
990 assert(expansion_region_num == 0, "sanity");
991 }
992 _young_list_max_length = _young_list_target_length + expansion_region_num;
993 assert(_young_list_target_length <= _young_list_max_length, "post-condition");
994 }
995
996 // Calculates survivor space parameters.
update_survivors_policy()997 void G1Policy::update_survivors_policy() {
998 double max_survivor_regions_d =
999 (double) _young_list_target_length / (double) SurvivorRatio;
1000
1001 // Calculate desired survivor size based on desired max survivor regions (unconstrained
1002 // by remaining heap). Otherwise we may cause undesired promotions as we are
1003 // already getting close to end of the heap, impacting performance even more.
1004 uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1005 size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1006
1007 _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1008 if (UsePerfData) {
1009 _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1010 _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1011 }
1012 // The real maximum survivor size is bounded by the number of regions that can
1013 // be allocated into.
1014 _max_survivor_regions = MIN2(desired_max_survivor_regions,
1015 _g1h->num_free_or_available_regions());
1016 }
1017
force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause)1018 bool G1Policy::force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause) {
1019 // We actually check whether we are marking here and not if we are in a
1020 // reclamation phase. This means that we will schedule a concurrent mark
1021 // even while we are still in the process of reclaiming memory.
1022 bool during_cycle = _g1h->concurrent_mark()->cm_thread()->in_progress();
1023 if (!during_cycle) {
1024 log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). "
1025 "GC cause: %s",
1026 GCCause::to_string(gc_cause));
1027 collector_state()->set_initiate_conc_mark_if_possible(true);
1028 return true;
1029 } else {
1030 log_debug(gc, ergo)("Do not request concurrent cycle initiation "
1031 "(concurrent cycle already in progress). GC cause: %s",
1032 GCCause::to_string(gc_cause));
1033 return false;
1034 }
1035 }
1036
initiate_conc_mark()1037 void G1Policy::initiate_conc_mark() {
1038 collector_state()->set_in_concurrent_start_gc(true);
1039 collector_state()->set_initiate_conc_mark_if_possible(false);
1040 }
1041
decide_on_conc_mark_initiation()1042 void G1Policy::decide_on_conc_mark_initiation() {
1043 // We are about to decide on whether this pause will be a
1044 // concurrent start pause.
1045
1046 // First, collector_state()->in_concurrent_start_gc() should not be already set. We
1047 // will set it here if we have to. However, it should be cleared by
1048 // the end of the pause (it's only set for the duration of a
1049 // concurrent start pause).
1050 assert(!collector_state()->in_concurrent_start_gc(), "pre-condition");
1051
1052 if (collector_state()->initiate_conc_mark_if_possible()) {
1053 // We had noticed on a previous pause that the heap occupancy has
1054 // gone over the initiating threshold and we should start a
1055 // concurrent marking cycle. Or we've been explicitly requested
1056 // to start a concurrent marking cycle. Either way, we initiate
1057 // one if not inhibited for some reason.
1058
1059 GCCause::Cause cause = _g1h->gc_cause();
1060 if ((cause != GCCause::_wb_breakpoint) &&
1061 ConcurrentGCBreakpoints::is_controlled()) {
1062 log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1063 } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1064 // Initiate a new concurrent start if there is no marking or reclamation going on.
1065 initiate_conc_mark();
1066 log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1067 } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1068 (cause == GCCause::_wb_breakpoint)) {
1069 // Initiate a user requested concurrent start or run to a breakpoint.
1070 // A concurrent start must be young only GC, so the collector state
1071 // must be updated to reflect this.
1072 collector_state()->set_in_young_only_phase(true);
1073 collector_state()->set_in_young_gc_before_mixed(false);
1074
1075 // We might have ended up coming here about to start a mixed phase with a collection set
1076 // active. The following remark might change the change the "evacuation efficiency" of
1077 // the regions in this set, leading to failing asserts later.
1078 // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1079 clear_collection_set_candidates();
1080 abort_time_to_mixed_tracking();
1081 initiate_conc_mark();
1082 log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1083 (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1084 } else {
1085 // The concurrent marking thread is still finishing up the
1086 // previous cycle. If we start one right now the two cycles
1087 // overlap. In particular, the concurrent marking thread might
1088 // be in the process of clearing the next marking bitmap (which
1089 // we will use for the next cycle if we start one). Starting a
1090 // cycle now will be bad given that parts of the marking
1091 // information might get cleared by the marking thread. And we
1092 // cannot wait for the marking thread to finish the cycle as it
1093 // periodically yields while clearing the next marking bitmap
1094 // and, if it's in a yield point, it's waiting for us to
1095 // finish. So, at this point we will not start a cycle and we'll
1096 // let the concurrent marking thread complete the last one.
1097 log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1098 }
1099 }
1100 }
1101
record_concurrent_mark_cleanup_end()1102 void G1Policy::record_concurrent_mark_cleanup_end() {
1103 G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1104 _collection_set->set_candidates(candidates);
1105
1106 bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1107 if (!mixed_gc_pending) {
1108 clear_collection_set_candidates();
1109 abort_time_to_mixed_tracking();
1110 }
1111 collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1112 collector_state()->set_mark_or_rebuild_in_progress(false);
1113
1114 double end_sec = os::elapsedTime();
1115 double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1116 _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1117
1118 record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1119 }
1120
reclaimable_bytes_percent(size_t reclaimable_bytes) const1121 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1122 return percent_of(reclaimable_bytes, _g1h->capacity());
1123 }
1124
1125 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
do_heap_region(HeapRegion * r)1126 virtual bool do_heap_region(HeapRegion* r) {
1127 r->rem_set()->clear_locked(true /* only_cardset */);
1128 return false;
1129 }
1130 };
1131
clear_collection_set_candidates()1132 void G1Policy::clear_collection_set_candidates() {
1133 // Clear remembered sets of remaining candidate regions and the actual candidate
1134 // set.
1135 G1ClearCollectionSetCandidateRemSets cl;
1136 _collection_set->candidates()->iterate(&cl);
1137 _collection_set->clear_candidates();
1138 }
1139
maybe_start_marking()1140 void G1Policy::maybe_start_marking() {
1141 if (need_to_start_conc_mark("end of GC")) {
1142 // Note: this might have already been set, if during the last
1143 // pause we decided to start a cycle but at the beginning of
1144 // this pause we decided to postpone it. That's OK.
1145 collector_state()->set_initiate_conc_mark_if_possible(true);
1146 }
1147 }
1148
is_young_only_pause(PauseKind kind)1149 bool G1Policy::is_young_only_pause(PauseKind kind) {
1150 assert(kind != FullGC, "must be");
1151 assert(kind != Remark, "must be");
1152 assert(kind != Cleanup, "must be");
1153 return kind == ConcurrentStartUndoGC ||
1154 kind == ConcurrentStartMarkGC ||
1155 kind == LastYoungGC ||
1156 kind == YoungOnlyGC;
1157 }
1158
is_mixed_pause(PauseKind kind)1159 bool G1Policy::is_mixed_pause(PauseKind kind) {
1160 assert(kind != FullGC, "must be");
1161 assert(kind != Remark, "must be");
1162 assert(kind != Cleanup, "must be");
1163 return kind == MixedGC;
1164 }
1165
is_last_young_pause(PauseKind kind)1166 bool G1Policy::is_last_young_pause(PauseKind kind) {
1167 return kind == LastYoungGC;
1168 }
1169
is_concurrent_start_pause(PauseKind kind)1170 bool G1Policy::is_concurrent_start_pause(PauseKind kind) {
1171 return kind == ConcurrentStartMarkGC || kind == ConcurrentStartUndoGC;
1172 }
1173
young_gc_pause_kind(bool concurrent_operation_is_full_mark) const1174 G1Policy::PauseKind G1Policy::young_gc_pause_kind(bool concurrent_operation_is_full_mark) const {
1175 assert(!collector_state()->in_full_gc(), "must be");
1176 if (collector_state()->in_concurrent_start_gc()) {
1177 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1178 return concurrent_operation_is_full_mark ? ConcurrentStartMarkGC : ConcurrentStartUndoGC;
1179 } else if (collector_state()->in_young_gc_before_mixed()) {
1180 assert(!collector_state()->in_concurrent_start_gc(), "must be");
1181 return LastYoungGC;
1182 } else if (collector_state()->in_mixed_phase()) {
1183 assert(!collector_state()->in_concurrent_start_gc(), "must be");
1184 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1185 return MixedGC;
1186 } else {
1187 assert(!collector_state()->in_concurrent_start_gc(), "must be");
1188 assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1189 return YoungOnlyGC;
1190 }
1191 }
1192
should_update_gc_stats()1193 bool G1Policy::should_update_gc_stats() {
1194 // Evacuation failures skew the timing too much to be considered for statistics updates.
1195 // We make the assumption that these are rare.
1196 return !_g1h->evacuation_failed();
1197 }
1198
update_gc_pause_time_ratios(PauseKind kind,double start_time_sec,double end_time_sec)1199 void G1Policy::update_gc_pause_time_ratios(PauseKind kind, double start_time_sec, double end_time_sec) {
1200
1201 double pause_time_sec = end_time_sec - start_time_sec;
1202 double pause_time_ms = pause_time_sec * 1000.0;
1203
1204 _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
1205 _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
1206
1207 if (kind == Cleanup || kind == Remark) {
1208 _analytics->append_prev_collection_pause_end_ms(pause_time_ms);
1209 } else {
1210 _analytics->set_prev_collection_pause_end_ms(end_time_sec * 1000.0);
1211 }
1212 }
1213
record_pause(PauseKind kind,double start,double end)1214 void G1Policy::record_pause(PauseKind kind,
1215 double start,
1216 double end) {
1217 // Manage the MMU tracker. For some reason it ignores Full GCs.
1218 if (kind != FullGC) {
1219 _mmu_tracker->add_pause(start, end);
1220 }
1221
1222 if (should_update_gc_stats()) {
1223 update_gc_pause_time_ratios(kind, start, end);
1224 }
1225
1226 update_time_to_mixed_tracking(kind, start, end);
1227 }
1228
update_time_to_mixed_tracking(PauseKind kind,double start,double end)1229 void G1Policy::update_time_to_mixed_tracking(PauseKind kind,
1230 double start,
1231 double end) {
1232 // Manage the mutator time tracking from concurrent start to first mixed gc.
1233 switch (kind) {
1234 case FullGC:
1235 abort_time_to_mixed_tracking();
1236 break;
1237 case Cleanup:
1238 case Remark:
1239 case YoungOnlyGC:
1240 case LastYoungGC:
1241 _concurrent_start_to_mixed.add_pause(end - start);
1242 break;
1243 case ConcurrentStartMarkGC:
1244 // Do not track time-to-mixed time for periodic collections as they are likely
1245 // to be not representative to regular operation as the mutators are idle at
1246 // that time. Also only track full concurrent mark cycles.
1247 if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1248 _concurrent_start_to_mixed.record_concurrent_start_end(end);
1249 }
1250 break;
1251 case ConcurrentStartUndoGC:
1252 assert(_g1h->gc_cause() == GCCause::_g1_humongous_allocation,
1253 "GC cause must be humongous allocation but is %d",
1254 _g1h->gc_cause());
1255 break;
1256 case MixedGC:
1257 _concurrent_start_to_mixed.record_mixed_gc_start(start);
1258 break;
1259 default:
1260 ShouldNotReachHere();
1261 }
1262 }
1263
abort_time_to_mixed_tracking()1264 void G1Policy::abort_time_to_mixed_tracking() {
1265 _concurrent_start_to_mixed.reset();
1266 }
1267
next_gc_should_be_mixed(const char * true_action_str,const char * false_action_str) const1268 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1269 const char* false_action_str) const {
1270 G1CollectionSetCandidates* candidates = _collection_set->candidates();
1271
1272 if (candidates->is_empty()) {
1273 log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1274 return false;
1275 }
1276
1277 // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1278 size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1279 double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1280 double threshold = (double) G1HeapWastePercent;
1281 if (reclaimable_percent <= threshold) {
1282 log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1283 false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1284 return false;
1285 }
1286 log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1287 true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1288 return true;
1289 }
1290
calc_min_old_cset_length() const1291 uint G1Policy::calc_min_old_cset_length() const {
1292 // The min old CSet region bound is based on the maximum desired
1293 // number of mixed GCs after a cycle. I.e., even if some old regions
1294 // look expensive, we should add them to the CSet anyway to make
1295 // sure we go through the available old regions in no more than the
1296 // maximum desired number of mixed GCs.
1297 //
1298 // The calculation is based on the number of marked regions we added
1299 // to the CSet candidates in the first place, not how many remain, so
1300 // that the result is the same during all mixed GCs that follow a cycle.
1301
1302 const size_t region_num = _collection_set->candidates()->num_regions();
1303 const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1304 size_t result = region_num / gc_num;
1305 // emulate ceiling
1306 if (result * gc_num < region_num) {
1307 result += 1;
1308 }
1309 return (uint) result;
1310 }
1311
calc_max_old_cset_length() const1312 uint G1Policy::calc_max_old_cset_length() const {
1313 // The max old CSet region bound is based on the threshold expressed
1314 // as a percentage of the heap size. I.e., it should bound the
1315 // number of old regions added to the CSet irrespective of how many
1316 // of them are available.
1317
1318 const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1319 const size_t region_num = g1h->num_regions();
1320 const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1321 size_t result = region_num * perc / 100;
1322 // emulate ceiling
1323 if (100 * result < region_num * perc) {
1324 result += 1;
1325 }
1326 return (uint) result;
1327 }
1328
calculate_old_collection_set_regions(G1CollectionSetCandidates * candidates,double time_remaining_ms,uint & num_initial_regions,uint & num_optional_regions)1329 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1330 double time_remaining_ms,
1331 uint& num_initial_regions,
1332 uint& num_optional_regions) {
1333 assert(candidates != NULL, "Must be");
1334
1335 num_initial_regions = 0;
1336 num_optional_regions = 0;
1337 uint num_expensive_regions = 0;
1338
1339 double predicted_old_time_ms = 0.0;
1340 double predicted_initial_time_ms = 0.0;
1341 double predicted_optional_time_ms = 0.0;
1342
1343 double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1344
1345 const uint min_old_cset_length = calc_min_old_cset_length();
1346 const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1347 const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1348 bool check_time_remaining = use_adaptive_young_list_length();
1349
1350 uint candidate_idx = candidates->cur_idx();
1351
1352 log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1353 "time remaining %1.2fms, optional threshold %1.2fms",
1354 min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1355
1356 HeapRegion* hr = candidates->at(candidate_idx);
1357 while (hr != NULL) {
1358 if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1359 // Added maximum number of old regions to the CSet.
1360 log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1361 "Initial %u regions, optional %u regions",
1362 num_initial_regions, num_optional_regions);
1363 break;
1364 }
1365
1366 double predicted_time_ms = predict_region_total_time_ms(hr, false);
1367 time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1368 // Add regions to old set until we reach the minimum amount
1369 if (num_initial_regions < min_old_cset_length) {
1370 predicted_old_time_ms += predicted_time_ms;
1371 num_initial_regions++;
1372 // Record the number of regions added with no time remaining
1373 if (time_remaining_ms == 0.0) {
1374 num_expensive_regions++;
1375 }
1376 } else if (!check_time_remaining) {
1377 // In the non-auto-tuning case, we'll finish adding regions
1378 // to the CSet if we reach the minimum.
1379 log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1380 break;
1381 } else {
1382 // Keep adding regions to old set until we reach the optional threshold
1383 if (time_remaining_ms > optional_threshold_ms) {
1384 predicted_old_time_ms += predicted_time_ms;
1385 num_initial_regions++;
1386 } else if (time_remaining_ms > 0) {
1387 // Keep adding optional regions until time is up.
1388 assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1389 predicted_optional_time_ms += predicted_time_ms;
1390 num_optional_regions++;
1391 } else {
1392 log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1393 break;
1394 }
1395 }
1396 hr = candidates->at(++candidate_idx);
1397 }
1398 if (hr == NULL) {
1399 log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1400 }
1401
1402 if (num_expensive_regions > 0) {
1403 log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1404 num_expensive_regions);
1405 }
1406
1407 log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1408 "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1409 num_initial_regions, num_optional_regions,
1410 predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1411 }
1412
calculate_optional_collection_set_regions(G1CollectionSetCandidates * candidates,uint const max_optional_regions,double time_remaining_ms,uint & num_optional_regions)1413 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1414 uint const max_optional_regions,
1415 double time_remaining_ms,
1416 uint& num_optional_regions) {
1417 assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1418
1419 num_optional_regions = 0;
1420 double prediction_ms = 0;
1421 uint candidate_idx = candidates->cur_idx();
1422
1423 HeapRegion* r = candidates->at(candidate_idx);
1424 while (num_optional_regions < max_optional_regions) {
1425 assert(r != NULL, "Region must exist");
1426 prediction_ms += predict_region_total_time_ms(r, false);
1427
1428 if (prediction_ms > time_remaining_ms) {
1429 log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1430 prediction_ms, r->hrm_index(), time_remaining_ms);
1431 break;
1432 }
1433 // This region will be included in the next optional evacuation.
1434
1435 time_remaining_ms -= prediction_ms;
1436 num_optional_regions++;
1437 r = candidates->at(++candidate_idx);
1438 }
1439
1440 log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1441 num_optional_regions, max_optional_regions, prediction_ms);
1442 }
1443
transfer_survivors_to_cset(const G1SurvivorRegions * survivors)1444 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1445 note_start_adding_survivor_regions();
1446
1447 HeapRegion* last = NULL;
1448 for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1449 it != survivors->regions()->end();
1450 ++it) {
1451 HeapRegion* curr = *it;
1452 set_region_survivor(curr);
1453
1454 // The region is a non-empty survivor so let's add it to
1455 // the incremental collection set for the next evacuation
1456 // pause.
1457 _collection_set->add_survivor_regions(curr);
1458
1459 last = curr;
1460 }
1461 note_stop_adding_survivor_regions();
1462
1463 // Don't clear the survivor list handles until the start of
1464 // the next evacuation pause - we need it in order to re-tag
1465 // the survivor regions from this evacuation pause as 'young'
1466 // at the start of the next.
1467 }
1468