1 /*
2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Analytics.hpp"
27 #include "gc/g1/g1Arguments.hpp"
28 #include "gc/g1/g1CollectedHeap.inline.hpp"
29 #include "gc/g1/g1CollectionSet.hpp"
30 #include "gc/g1/g1CollectionSetCandidates.hpp"
31 #include "gc/g1/g1ConcurrentMark.hpp"
32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
33 #include "gc/g1/g1ConcurrentRefine.hpp"
34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
35 #include "gc/g1/g1CollectionSetChooser.hpp"
36 #include "gc/g1/g1HotCardCache.hpp"
37 #include "gc/g1/g1IHOPControl.hpp"
38 #include "gc/g1/g1GCPhaseTimes.hpp"
39 #include "gc/g1/g1Policy.hpp"
40 #include "gc/g1/g1SurvivorRegions.hpp"
41 #include "gc/g1/g1YoungGenSizer.hpp"
42 #include "gc/g1/heapRegion.inline.hpp"
43 #include "gc/g1/heapRegionRemSet.hpp"
44 #include "gc/shared/concurrentGCBreakpoints.hpp"
45 #include "gc/shared/gcPolicyCounters.hpp"
46 #include "logging/log.hpp"
47 #include "runtime/arguments.hpp"
48 #include "runtime/java.hpp"
49 #include "runtime/mutexLocker.hpp"
50 #include "utilities/debug.hpp"
51 #include "utilities/growableArray.hpp"
52 #include "utilities/pair.hpp"
53 
G1Policy(STWGCTimer * gc_timer)54 G1Policy::G1Policy(STWGCTimer* gc_timer) :
55   _predictor(G1ConfidencePercent / 100.0),
56   _analytics(new G1Analytics(&_predictor)),
57   _remset_tracker(),
58   _mmu_tracker(new G1MMUTracker(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
59   _old_gen_alloc_tracker(),
60   _ihop_control(create_ihop_control(&_old_gen_alloc_tracker, &_predictor)),
61   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
62   _full_collection_start_sec(0.0),
63   _young_list_target_length(0),
64   _young_list_fixed_length(0),
65   _young_list_max_length(0),
66   _eden_surv_rate_group(new G1SurvRateGroup()),
67   _survivor_surv_rate_group(new G1SurvRateGroup()),
68   _reserve_factor((double) G1ReservePercent / 100.0),
69   _reserve_regions(0),
70   _young_gen_sizer(),
71   _free_regions_at_end_of_collection(0),
72   _rs_length(0),
73   _rs_length_prediction(0),
74   _pending_cards_at_gc_start(0),
75   _concurrent_start_to_mixed(),
76   _collection_set(NULL),
77   _g1h(NULL),
78   _phase_times_timer(gc_timer),
79   _phase_times(NULL),
80   _mark_remark_start_sec(0),
81   _mark_cleanup_start_sec(0),
82   _tenuring_threshold(MaxTenuringThreshold),
83   _max_survivor_regions(0),
84   _survivors_age_table(true)
85 {
86 }
87 
~G1Policy()88 G1Policy::~G1Policy() {
89   delete _ihop_control;
90 }
91 
collector_state() const92 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
93 
init(G1CollectedHeap * g1h,G1CollectionSet * collection_set)94 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
95   _g1h = g1h;
96   _collection_set = collection_set;
97 
98   assert(Heap_lock->owned_by_self(), "Locking discipline.");
99 
100   if (!use_adaptive_young_list_length()) {
101     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
102   }
103   _young_gen_sizer.adjust_max_new_size(_g1h->max_regions());
104 
105   _free_regions_at_end_of_collection = _g1h->num_free_regions();
106 
107   update_young_list_max_and_target_length();
108   // We may immediately start allocating regions and placing them on the
109   // collection set list. Initialize the per-collection set info
110   _collection_set->start_incremental_building();
111 }
112 
note_gc_start()113 void G1Policy::note_gc_start() {
114   phase_times()->note_gc_start();
115 }
116 
117 class G1YoungLengthPredictor {
118   const double _base_time_ms;
119   const double _base_free_regions;
120   const double _target_pause_time_ms;
121   const G1Policy* const _policy;
122 
123  public:
G1YoungLengthPredictor(double base_time_ms,double base_free_regions,double target_pause_time_ms,const G1Policy * policy)124   G1YoungLengthPredictor(double base_time_ms,
125                          double base_free_regions,
126                          double target_pause_time_ms,
127                          const G1Policy* policy) :
128     _base_time_ms(base_time_ms),
129     _base_free_regions(base_free_regions),
130     _target_pause_time_ms(target_pause_time_ms),
131     _policy(policy) {}
132 
will_fit(uint young_length) const133   bool will_fit(uint young_length) const {
134     if (young_length >= _base_free_regions) {
135       // end condition 1: not enough space for the young regions
136       return false;
137     }
138 
139     size_t bytes_to_copy = 0;
140     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
141     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
142     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
143     if (pause_time_ms > _target_pause_time_ms) {
144       // end condition 2: prediction is over the target pause time
145       return false;
146     }
147 
148     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
149 
150     // When copying, we will likely need more bytes free than is live in the region.
151     // Add some safety margin to factor in the confidence of our guess, and the
152     // natural expected waste.
153     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
154     // of the calculation: the lower the confidence, the more headroom.
155     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
156     // copying due to anticipated waste in the PLABs.
157     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
158     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
159 
160     if (expected_bytes_to_copy > free_bytes) {
161       // end condition 3: out-of-space
162       return false;
163     }
164 
165     // success!
166     return true;
167   }
168 };
169 
record_new_heap_size(uint new_number_of_regions)170 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
171   // re-calculate the necessary reserve
172   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
173   // We use ceiling so that if reserve_regions_d is > 0.0 (but
174   // smaller than 1.0) we'll get 1.
175   _reserve_regions = (uint) ceil(reserve_regions_d);
176 
177   _young_gen_sizer.heap_size_changed(new_number_of_regions);
178 
179   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
180 }
181 
calculate_young_list_desired_min_length(uint base_min_length) const182 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
183   uint desired_min_length = 0;
184   if (use_adaptive_young_list_length()) {
185     if (_analytics->num_alloc_rate_ms() > 3) {
186       double now_sec = os::elapsedTime();
187       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
188       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
189       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
190     } else {
191       // otherwise we don't have enough info to make the prediction
192     }
193   }
194   desired_min_length += base_min_length;
195   // make sure we don't go below any user-defined minimum bound
196   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
197 }
198 
calculate_young_list_desired_max_length() const199 uint G1Policy::calculate_young_list_desired_max_length() const {
200   // Here, we might want to also take into account any additional
201   // constraints (i.e., user-defined minimum bound). Currently, we
202   // effectively don't set this bound.
203   return _young_gen_sizer.max_desired_young_length();
204 }
205 
update_young_list_max_and_target_length()206 uint G1Policy::update_young_list_max_and_target_length() {
207   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
208 }
209 
update_young_list_max_and_target_length(size_t rs_length)210 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
211   uint unbounded_target_length = update_young_list_target_length(rs_length);
212   update_max_gc_locker_expansion();
213   return unbounded_target_length;
214 }
215 
update_young_list_target_length(size_t rs_length)216 uint G1Policy::update_young_list_target_length(size_t rs_length) {
217   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
218   _young_list_target_length = young_lengths.first;
219 
220   return young_lengths.second;
221 }
222 
young_list_target_lengths(size_t rs_length) const223 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
224   YoungTargetLengths result;
225 
226   // Calculate the absolute and desired min bounds first.
227 
228   // This is how many young regions we already have (currently: the survivors).
229   const uint base_min_length = _g1h->survivor_regions_count();
230   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
231   // This is the absolute minimum young length. Ensure that we
232   // will at least have one eden region available for allocation.
233   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
234   // If we shrank the young list target it should not shrink below the current size.
235   desired_min_length = MAX2(desired_min_length, absolute_min_length);
236   // Calculate the absolute and desired max bounds.
237 
238   uint desired_max_length = calculate_young_list_desired_max_length();
239 
240   uint young_list_target_length = 0;
241   if (use_adaptive_young_list_length()) {
242     if (collector_state()->in_young_only_phase()) {
243       young_list_target_length =
244                         calculate_young_list_target_length(rs_length,
245                                                            base_min_length,
246                                                            desired_min_length,
247                                                            desired_max_length);
248     } else {
249       // Don't calculate anything and let the code below bound it to
250       // the desired_min_length, i.e., do the next GC as soon as
251       // possible to maximize how many old regions we can add to it.
252     }
253   } else {
254     // The user asked for a fixed young gen so we'll fix the young gen
255     // whether the next GC is young or mixed.
256     young_list_target_length = _young_list_fixed_length;
257   }
258 
259   result.second = young_list_target_length;
260 
261   // We will try our best not to "eat" into the reserve.
262   uint absolute_max_length = 0;
263   if (_free_regions_at_end_of_collection > _reserve_regions) {
264     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
265   }
266   if (desired_max_length > absolute_max_length) {
267     desired_max_length = absolute_max_length;
268   }
269 
270   // Make sure we don't go over the desired max length, nor under the
271   // desired min length. In case they clash, desired_min_length wins
272   // which is why that test is second.
273   if (young_list_target_length > desired_max_length) {
274     young_list_target_length = desired_max_length;
275   }
276   if (young_list_target_length < desired_min_length) {
277     young_list_target_length = desired_min_length;
278   }
279 
280   assert(young_list_target_length > base_min_length,
281          "we should be able to allocate at least one eden region");
282   assert(young_list_target_length >= absolute_min_length, "post-condition");
283 
284   result.first = young_list_target_length;
285   return result;
286 }
287 
calculate_young_list_target_length(size_t rs_length,uint base_min_length,uint desired_min_length,uint desired_max_length) const288 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
289                                                   uint base_min_length,
290                                                   uint desired_min_length,
291                                                   uint desired_max_length) const {
292   assert(use_adaptive_young_list_length(), "pre-condition");
293   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
294 
295   // In case some edge-condition makes the desired max length too small...
296   if (desired_max_length <= desired_min_length) {
297     return desired_min_length;
298   }
299 
300   // We'll adjust min_young_length and max_young_length not to include
301   // the already allocated young regions (i.e., so they reflect the
302   // min and max eden regions we'll allocate). The base_min_length
303   // will be reflected in the predictions by the
304   // survivor_regions_evac_time prediction.
305   assert(desired_min_length > base_min_length, "invariant");
306   uint min_young_length = desired_min_length - base_min_length;
307   assert(desired_max_length > base_min_length, "invariant");
308   uint max_young_length = desired_max_length - base_min_length;
309 
310   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
311   const size_t pending_cards = _analytics->predict_pending_cards();
312   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
313   const uint available_free_regions = _free_regions_at_end_of_collection;
314   const uint base_free_regions =
315     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
316 
317   // Here, we will make sure that the shortest young length that
318   // makes sense fits within the target pause time.
319 
320   G1YoungLengthPredictor p(base_time_ms,
321                            base_free_regions,
322                            target_pause_time_ms,
323                            this);
324   if (p.will_fit(min_young_length)) {
325     // The shortest young length will fit into the target pause time;
326     // we'll now check whether the absolute maximum number of young
327     // regions will fit in the target pause time. If not, we'll do
328     // a binary search between min_young_length and max_young_length.
329     if (p.will_fit(max_young_length)) {
330       // The maximum young length will fit into the target pause time.
331       // We are done so set min young length to the maximum length (as
332       // the result is assumed to be returned in min_young_length).
333       min_young_length = max_young_length;
334     } else {
335       // The maximum possible number of young regions will not fit within
336       // the target pause time so we'll search for the optimal
337       // length. The loop invariants are:
338       //
339       // min_young_length < max_young_length
340       // min_young_length is known to fit into the target pause time
341       // max_young_length is known not to fit into the target pause time
342       //
343       // Going into the loop we know the above hold as we've just
344       // checked them. Every time around the loop we check whether
345       // the middle value between min_young_length and
346       // max_young_length fits into the target pause time. If it
347       // does, it becomes the new min. If it doesn't, it becomes
348       // the new max. This way we maintain the loop invariants.
349 
350       assert(min_young_length < max_young_length, "invariant");
351       uint diff = (max_young_length - min_young_length) / 2;
352       while (diff > 0) {
353         uint young_length = min_young_length + diff;
354         if (p.will_fit(young_length)) {
355           min_young_length = young_length;
356         } else {
357           max_young_length = young_length;
358         }
359         assert(min_young_length <  max_young_length, "invariant");
360         diff = (max_young_length - min_young_length) / 2;
361       }
362       // The results is min_young_length which, according to the
363       // loop invariants, should fit within the target pause time.
364 
365       // These are the post-conditions of the binary search above:
366       assert(min_young_length < max_young_length,
367              "otherwise we should have discovered that max_young_length "
368              "fits into the pause target and not done the binary search");
369       assert(p.will_fit(min_young_length),
370              "min_young_length, the result of the binary search, should "
371              "fit into the pause target");
372       assert(!p.will_fit(min_young_length + 1),
373              "min_young_length, the result of the binary search, should be "
374              "optimal, so no larger length should fit into the pause target");
375     }
376   } else {
377     // Even the minimum length doesn't fit into the pause time
378     // target, return it as the result nevertheless.
379   }
380   return base_min_length + min_young_length;
381 }
382 
predict_survivor_regions_evac_time() const383 double G1Policy::predict_survivor_regions_evac_time() const {
384   double survivor_regions_evac_time = 0.0;
385   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
386   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
387        it != survivor_regions->end();
388        ++it) {
389     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
390   }
391   return survivor_regions_evac_time;
392 }
393 
phase_times() const394 G1GCPhaseTimes* G1Policy::phase_times() const {
395   // Lazy allocation because it must follow initialization of all the
396   // OopStorage objects by various other subsystems.
397   if (_phase_times == NULL) {
398     _phase_times = new G1GCPhaseTimes(_phase_times_timer, ParallelGCThreads);
399   }
400   return _phase_times;
401 }
402 
revise_young_list_target_length_if_necessary(size_t rs_length)403 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
404   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
405 
406   if (rs_length > _rs_length_prediction) {
407     // add 10% to avoid having to recalculate often
408     size_t rs_length_prediction = rs_length * 1100 / 1000;
409     update_rs_length_prediction(rs_length_prediction);
410 
411     update_young_list_max_and_target_length(rs_length_prediction);
412   }
413 }
414 
update_rs_length_prediction()415 void G1Policy::update_rs_length_prediction() {
416   update_rs_length_prediction(_analytics->predict_rs_length());
417 }
418 
update_rs_length_prediction(size_t prediction)419 void G1Policy::update_rs_length_prediction(size_t prediction) {
420   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
421     _rs_length_prediction = prediction;
422   }
423 }
424 
record_full_collection_start()425 void G1Policy::record_full_collection_start() {
426   _full_collection_start_sec = os::elapsedTime();
427   // Release the future to-space so that it is available for compaction into.
428   collector_state()->set_in_young_only_phase(false);
429   collector_state()->set_in_full_gc(true);
430   _collection_set->clear_candidates();
431   _pending_cards_at_gc_start = 0;
432 }
433 
record_full_collection_end()434 void G1Policy::record_full_collection_end() {
435   // Consider this like a collection pause for the purposes of allocation
436   // since last pause.
437   double end_sec = os::elapsedTime();
438 
439   collector_state()->set_in_full_gc(false);
440 
441   // "Nuke" the heuristics that control the young/mixed GC
442   // transitions and make sure we start with young GCs after the Full GC.
443   collector_state()->set_in_young_only_phase(true);
444   collector_state()->set_in_young_gc_before_mixed(false);
445   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC"));
446   collector_state()->set_in_concurrent_start_gc(false);
447   collector_state()->set_mark_or_rebuild_in_progress(false);
448   collector_state()->set_clearing_next_bitmap(false);
449 
450   _eden_surv_rate_group->start_adding_regions();
451   // also call this on any additional surv rate groups
452 
453   _free_regions_at_end_of_collection = _g1h->num_free_regions();
454   _survivor_surv_rate_group->reset();
455   update_young_list_max_and_target_length();
456   update_rs_length_prediction();
457 
458   _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
459 
460   record_pause(FullGC, _full_collection_start_sec, end_sec);
461 }
462 
log_refinement_stats(const char * kind,const G1ConcurrentRefineStats & stats)463 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
464   log_debug(gc, refine, stats)
465            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
466             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
467             kind,
468             stats.refinement_time().seconds() * MILLIUNITS,
469             stats.refined_cards(),
470             stats.precleaned_cards(),
471             stats.dirtied_cards());
472 }
473 
record_concurrent_refinement_stats()474 void G1Policy::record_concurrent_refinement_stats() {
475   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
476   _pending_cards_at_gc_start = dcqs.num_cards();
477 
478   // Collect per-thread stats, mostly from mutator activity.
479   G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
480 
481   // Collect specialized concurrent refinement thread stats.
482   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
483   G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
484 
485   G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
486 
487   log_refinement_stats("Mutator", mut_stats);
488   log_refinement_stats("Concurrent", cr_stats);
489   log_refinement_stats("Total", total_stats);
490 
491   // Record the rate at which cards were refined.
492   // Don't update the rate if the current sample is empty or time is zero.
493   Tickspan refinement_time = total_stats.refinement_time();
494   size_t refined_cards = total_stats.refined_cards();
495   if ((refined_cards > 0) && (refinement_time > Tickspan())) {
496     double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
497     _analytics->report_concurrent_refine_rate_ms(rate);
498     log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
499   }
500 
501   // Record mutator's card logging rate.
502   double mut_start_time = _analytics->prev_collection_pause_end_ms();
503   double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
504   double mut_time = mut_end_time - mut_start_time;
505   // Unlike above for conc-refine rate, here we should not require a
506   // non-empty sample, since an application could go some time with only
507   // young-gen or filtered out writes.  But we'll ignore unusually short
508   // sample periods, as they may just pollute the predictions.
509   if (mut_time > 1.0) {   // Require > 1ms sample time.
510     double dirtied_rate = total_stats.dirtied_cards() / mut_time;
511     _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
512     log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
513   }
514 }
515 
record_collection_pause_start(double start_time_sec)516 void G1Policy::record_collection_pause_start(double start_time_sec) {
517   // We only need to do this here as the policy will only be applied
518   // to the GC we're about to start. so, no point is calculating this
519   // every time we calculate / recalculate the target young length.
520   update_survivors_policy();
521 
522   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
523          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
524          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
525   assert_used_and_recalculate_used_equal(_g1h);
526 
527   phase_times()->record_cur_collection_start_sec(start_time_sec);
528 
529   record_concurrent_refinement_stats();
530 
531   _collection_set->reset_bytes_used_before();
532 
533   // do that for any other surv rate groups
534   _eden_surv_rate_group->stop_adding_regions();
535   _survivors_age_table.clear();
536 
537   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
538 }
539 
record_concurrent_mark_init_end()540 void G1Policy::record_concurrent_mark_init_end() {
541   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
542   collector_state()->set_in_concurrent_start_gc(false);
543 }
544 
record_concurrent_mark_remark_start()545 void G1Policy::record_concurrent_mark_remark_start() {
546   _mark_remark_start_sec = os::elapsedTime();
547 }
548 
record_concurrent_mark_remark_end()549 void G1Policy::record_concurrent_mark_remark_end() {
550   double end_time_sec = os::elapsedTime();
551   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
552   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
553 
554   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
555 }
556 
record_concurrent_mark_cleanup_start()557 void G1Policy::record_concurrent_mark_cleanup_start() {
558   _mark_cleanup_start_sec = os::elapsedTime();
559 }
560 
average_time_ms(G1GCPhaseTimes::GCParPhases phase) const561 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
562   return phase_times()->average_time_ms(phase);
563 }
564 
young_other_time_ms() const565 double G1Policy::young_other_time_ms() const {
566   return phase_times()->young_cset_choice_time_ms() +
567          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
568 }
569 
non_young_other_time_ms() const570 double G1Policy::non_young_other_time_ms() const {
571   return phase_times()->non_young_cset_choice_time_ms() +
572          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
573 }
574 
other_time_ms(double pause_time_ms) const575 double G1Policy::other_time_ms(double pause_time_ms) const {
576   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
577 }
578 
constant_other_time_ms(double pause_time_ms) const579 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
580   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
581 }
582 
about_to_start_mixed_phase() const583 bool G1Policy::about_to_start_mixed_phase() const {
584   return _g1h->concurrent_mark()->cm_thread()->in_progress() || collector_state()->in_young_gc_before_mixed();
585 }
586 
need_to_start_conc_mark(const char * source,size_t alloc_word_size)587 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
588   if (about_to_start_mixed_phase()) {
589     return false;
590   }
591 
592   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
593 
594   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
595   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
596   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
597 
598   bool result = false;
599   if (marking_request_bytes > marking_initiating_used_threshold) {
600     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
601     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
602                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
603                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
604   }
605   return result;
606 }
607 
concurrent_operation_is_full_mark(const char * msg)608 bool G1Policy::concurrent_operation_is_full_mark(const char* msg) {
609   return collector_state()->in_concurrent_start_gc() &&
610     ((_g1h->gc_cause() != GCCause::_g1_humongous_allocation) || need_to_start_conc_mark(msg));
611 }
612 
logged_cards_processing_time() const613 double G1Policy::logged_cards_processing_time() const {
614   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
615   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
616   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
617                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
618   // This may happen if there are duplicate cards in different log buffers.
619   if (logged_dirty_cards > scan_heap_roots_cards) {
620     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
621   }
622   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
623 }
624 
625 // Anything below that is considered to be zero
626 #define MIN_TIMER_GRANULARITY 0.0000001
627 
record_collection_pause_end(double pause_time_ms,bool concurrent_operation_is_full_mark)628 void G1Policy::record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark) {
629   G1GCPhaseTimes* p = phase_times();
630 
631   double end_time_sec = os::elapsedTime();
632   double start_time_sec = phase_times()->cur_collection_start_sec();
633 
634   PauseKind this_pause = young_gc_pause_kind(concurrent_operation_is_full_mark);
635 
636   bool update_stats = should_update_gc_stats();
637 
638   if (is_concurrent_start_pause(this_pause)) {
639     record_concurrent_mark_init_end();
640   } else {
641     maybe_start_marking();
642   }
643 
644   double app_time_ms = (start_time_sec * 1000.0 - _analytics->prev_collection_pause_end_ms());
645   if (app_time_ms < MIN_TIMER_GRANULARITY) {
646     // This usually happens due to the timer not having the required
647     // granularity. Some Linuxes are the usual culprits.
648     // We'll just set it to something (arbitrarily) small.
649     app_time_ms = 1.0;
650   }
651 
652   if (update_stats) {
653     // We maintain the invariant that all objects allocated by mutator
654     // threads will be allocated out of eden regions. So, we can use
655     // the eden region number allocated since the previous GC to
656     // calculate the application's allocate rate. The only exception
657     // to that is humongous objects that are allocated separately. But
658     // given that humongous object allocations do not really affect
659     // either the pause's duration nor when the next pause will take
660     // place we can safely ignore them here.
661     uint regions_allocated = _collection_set->eden_region_length();
662     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
663     _analytics->report_alloc_rate_ms(alloc_rate_ms);
664   }
665 
666   record_pause(this_pause, start_time_sec, end_time_sec);
667 
668   if (is_last_young_pause(this_pause)) {
669     assert(!is_concurrent_start_pause(this_pause),
670            "The young GC before mixed is not allowed to be concurrent start GC");
671     // This has been the young GC before we start doing mixed GCs. We already
672     // decided to start mixed GCs much earlier, so there is nothing to do except
673     // advancing the state.
674     collector_state()->set_in_young_only_phase(false);
675     collector_state()->set_in_young_gc_before_mixed(false);
676   } else if (is_mixed_pause(this_pause)) {
677     // This is a mixed GC. Here we decide whether to continue doing more
678     // mixed GCs or not.
679     if (!next_gc_should_be_mixed("continue mixed GCs",
680                                  "do not continue mixed GCs")) {
681       collector_state()->set_in_young_only_phase(true);
682 
683       clear_collection_set_candidates();
684       maybe_start_marking();
685     }
686   } else {
687     assert(is_young_only_pause(this_pause), "must be");
688   }
689 
690   _eden_surv_rate_group->start_adding_regions();
691 
692   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
693   if (update_stats) {
694     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
695                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
696     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
697     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
698                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
699                                       total_log_buffer_cards;
700 
701     // The threshold for the number of cards in a given sampling which we consider
702     // large enough so that the impact from setup and other costs is negligible.
703     size_t const CardsNumSamplingThreshold = 10;
704 
705     if (total_cards_merged > CardsNumSamplingThreshold) {
706       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
707                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
708                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
709                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
710                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
711       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged,
712                                                 is_young_only_pause(this_pause));
713     }
714 
715     // Update prediction for card scan
716     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
717                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
718 
719     if (total_cards_scanned > CardsNumSamplingThreshold) {
720       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
721                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
722 
723       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned,
724                                                is_young_only_pause(this_pause));
725     }
726 
727     // Update prediction for the ratio between cards from the remembered
728     // sets and actually scanned cards from the remembered sets.
729     // Cards from the remembered sets are all cards not duplicated by cards from
730     // the logs.
731     // Due to duplicates in the log buffers, the number of actually scanned cards
732     // can be smaller than the cards in the log buffers.
733     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
734     double merge_to_scan_ratio = 0.0;
735     if (total_cards_scanned > 0) {
736       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
737     }
738     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio,
739                                                 is_young_only_pause(this_pause));
740 
741     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
742     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
743     _analytics->report_rs_length_diff(rs_length_diff);
744 
745     // Update prediction for copy cost per byte
746     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
747 
748     if (copied_bytes > 0) {
749       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
750       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
751     }
752 
753     if (_collection_set->young_region_length() > 0) {
754       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
755                                                         _collection_set->young_region_length());
756     }
757 
758     if (_collection_set->old_region_length() > 0) {
759       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
760                                                             _collection_set->old_region_length());
761     }
762 
763     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
764 
765     // Do not update RS lengths and the number of pending cards with information from mixed gc:
766     // these are is wildly different to during young only gc and mess up young gen sizing right
767     // after the mixed gc phase.
768     // During mixed gc we do not use them for young gen sizing.
769     if (is_young_only_pause(this_pause)) {
770       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
771       _analytics->report_rs_length((double) _rs_length);
772     }
773   }
774 
775   assert(!(is_concurrent_start_pause(this_pause) && collector_state()->mark_or_rebuild_in_progress()),
776          "If the last pause has been concurrent start, we should not have been in the marking window");
777   if (is_concurrent_start_pause(this_pause)) {
778     collector_state()->set_mark_or_rebuild_in_progress(concurrent_operation_is_full_mark);
779   }
780 
781   _free_regions_at_end_of_collection = _g1h->num_free_regions();
782 
783   update_rs_length_prediction();
784 
785   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
786   // that in this case we are not running in a "normal" operating mode.
787   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
788     // IHOP control wants to know the expected young gen length if it were not
789     // restrained by the heap reserve. Using the actual length would make the
790     // prediction too small and the limit the young gen every time we get to the
791     // predicted target occupancy.
792     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
793 
794     _old_gen_alloc_tracker.reset_after_gc(_g1h->humongous_regions_count() * HeapRegion::GrainBytes);
795     update_ihop_prediction(app_time_ms / 1000.0,
796                            last_unrestrained_young_length * HeapRegion::GrainBytes,
797                            is_young_only_pause(this_pause));
798 
799     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
800   } else {
801     // Any garbage collection triggered as periodic collection resets the time-to-mixed
802     // measurement. Periodic collection typically means that the application is "inactive", i.e.
803     // the marking threads may have received an uncharacterisic amount of cpu time
804     // for completing the marking, i.e. are faster than expected.
805     // This skews the predicted marking length towards smaller values which might cause
806     // the mark start being too late.
807     abort_time_to_mixed_tracking();
808   }
809 
810   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
811   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
812 
813   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
814     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
815                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
816                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
817 
818     scan_logged_cards_time_goal_ms = 0;
819   } else {
820     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
821   }
822 
823   double const logged_cards_time = logged_cards_processing_time();
824 
825   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
826                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
827 
828   _g1h->concurrent_refine()->adjust(logged_cards_time,
829                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
830                                     scan_logged_cards_time_goal_ms);
831 }
832 
create_ihop_control(const G1OldGenAllocationTracker * old_gen_alloc_tracker,const G1Predictions * predictor)833 G1IHOPControl* G1Policy::create_ihop_control(const G1OldGenAllocationTracker* old_gen_alloc_tracker,
834                                              const G1Predictions* predictor) {
835   if (G1UseAdaptiveIHOP) {
836     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
837                                      old_gen_alloc_tracker,
838                                      predictor,
839                                      G1ReservePercent,
840                                      G1HeapWastePercent);
841   } else {
842     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent, old_gen_alloc_tracker);
843   }
844 }
845 
update_ihop_prediction(double mutator_time_s,size_t young_gen_size,bool this_gc_was_young_only)846 void G1Policy::update_ihop_prediction(double mutator_time_s,
847                                       size_t young_gen_size,
848                                       bool this_gc_was_young_only) {
849   // Always try to update IHOP prediction. Even evacuation failures give information
850   // about e.g. whether to start IHOP earlier next time.
851 
852   // Avoid using really small application times that might create samples with
853   // very high or very low values. They may be caused by e.g. back-to-back gcs.
854   double const min_valid_time = 1e-6;
855 
856   bool report = false;
857 
858   double marking_to_mixed_time = -1.0;
859   if (!this_gc_was_young_only && _concurrent_start_to_mixed.has_result()) {
860     marking_to_mixed_time = _concurrent_start_to_mixed.last_marking_time();
861     assert(marking_to_mixed_time > 0.0,
862            "Concurrent start to mixed time must be larger than zero but is %.3f",
863            marking_to_mixed_time);
864     if (marking_to_mixed_time > min_valid_time) {
865       _ihop_control->update_marking_length(marking_to_mixed_time);
866       report = true;
867     }
868   }
869 
870   // As an approximation for the young gc promotion rates during marking we use
871   // all of them. In many applications there are only a few if any young gcs during
872   // marking, which makes any prediction useless. This increases the accuracy of the
873   // prediction.
874   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
875     _ihop_control->update_allocation_info(mutator_time_s, young_gen_size);
876     report = true;
877   }
878 
879   if (report) {
880     report_ihop_statistics();
881   }
882 }
883 
report_ihop_statistics()884 void G1Policy::report_ihop_statistics() {
885   _ihop_control->print();
886 }
887 
print_phases()888 void G1Policy::print_phases() {
889   phase_times()->print();
890 }
891 
predict_base_elapsed_time_ms(size_t pending_cards,size_t rs_length) const892 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
893                                               size_t rs_length) const {
894   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
895   return
896     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
897     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
898     _analytics->predict_constant_other_time_ms() +
899     predict_survivor_regions_evac_time();
900 }
901 
predict_base_elapsed_time_ms(size_t pending_cards) const902 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
903   size_t rs_length = _analytics->predict_rs_length();
904   return predict_base_elapsed_time_ms(pending_cards, rs_length);
905 }
906 
predict_bytes_to_copy(HeapRegion * hr) const907 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
908   size_t bytes_to_copy;
909   if (!hr->is_young()) {
910     bytes_to_copy = hr->max_live_bytes();
911   } else {
912     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
913   }
914   return bytes_to_copy;
915 }
916 
predict_eden_copy_time_ms(uint count,size_t * bytes_to_copy) const917 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
918   if (count == 0) {
919     return 0.0;
920   }
921   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
922   if (bytes_to_copy != NULL) {
923     *bytes_to_copy = expected_bytes;
924   }
925   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
926 }
927 
predict_region_copy_time_ms(HeapRegion * hr) const928 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
929   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
930   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
931 }
932 
predict_region_non_copy_time_ms(HeapRegion * hr,bool for_young_gc) const933 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
934                                                  bool for_young_gc) const {
935   size_t rs_length = hr->rem_set()->occupied();
936   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
937 
938   double region_elapsed_time_ms =
939     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
940     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
941 
942   // The prediction of the "other" time for this region is based
943   // upon the region type and NOT the GC type.
944   if (hr->is_young()) {
945     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
946   } else {
947     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
948   }
949   return region_elapsed_time_ms;
950 }
951 
predict_region_total_time_ms(HeapRegion * hr,bool for_young_gc) const952 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
953   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
954 }
955 
should_allocate_mutator_region() const956 bool G1Policy::should_allocate_mutator_region() const {
957   uint young_list_length = _g1h->young_regions_count();
958   uint young_list_target_length = _young_list_target_length;
959   return young_list_length < young_list_target_length;
960 }
961 
can_expand_young_list() const962 bool G1Policy::can_expand_young_list() const {
963   uint young_list_length = _g1h->young_regions_count();
964   uint young_list_max_length = _young_list_max_length;
965   return young_list_length < young_list_max_length;
966 }
967 
use_adaptive_young_list_length() const968 bool G1Policy::use_adaptive_young_list_length() const {
969   return _young_gen_sizer.use_adaptive_young_list_length();
970 }
971 
desired_survivor_size(uint max_regions) const972 size_t G1Policy::desired_survivor_size(uint max_regions) const {
973   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
974   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
975 }
976 
print_age_table()977 void G1Policy::print_age_table() {
978   _survivors_age_table.print_age_table(_tenuring_threshold);
979 }
980 
update_max_gc_locker_expansion()981 void G1Policy::update_max_gc_locker_expansion() {
982   uint expansion_region_num = 0;
983   if (GCLockerEdenExpansionPercent > 0) {
984     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
985     double expansion_region_num_d = perc * (double) _young_list_target_length;
986     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
987     // less than 1.0) we'll get 1.
988     expansion_region_num = (uint) ceil(expansion_region_num_d);
989   } else {
990     assert(expansion_region_num == 0, "sanity");
991   }
992   _young_list_max_length = _young_list_target_length + expansion_region_num;
993   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
994 }
995 
996 // Calculates survivor space parameters.
update_survivors_policy()997 void G1Policy::update_survivors_policy() {
998   double max_survivor_regions_d =
999                  (double) _young_list_target_length / (double) SurvivorRatio;
1000 
1001   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1002   // by remaining heap). Otherwise we may cause undesired promotions as we are
1003   // already getting close to end of the heap, impacting performance even more.
1004   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1005   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1006 
1007   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1008   if (UsePerfData) {
1009     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1010     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1011   }
1012   // The real maximum survivor size is bounded by the number of regions that can
1013   // be allocated into.
1014   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1015                                _g1h->num_free_or_available_regions());
1016 }
1017 
force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause)1018 bool G1Policy::force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause) {
1019   // We actually check whether we are marking here and not if we are in a
1020   // reclamation phase. This means that we will schedule a concurrent mark
1021   // even while we are still in the process of reclaiming memory.
1022   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->in_progress();
1023   if (!during_cycle) {
1024     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). "
1025                         "GC cause: %s",
1026                         GCCause::to_string(gc_cause));
1027     collector_state()->set_initiate_conc_mark_if_possible(true);
1028     return true;
1029   } else {
1030     log_debug(gc, ergo)("Do not request concurrent cycle initiation "
1031                         "(concurrent cycle already in progress). GC cause: %s",
1032                         GCCause::to_string(gc_cause));
1033     return false;
1034   }
1035 }
1036 
initiate_conc_mark()1037 void G1Policy::initiate_conc_mark() {
1038   collector_state()->set_in_concurrent_start_gc(true);
1039   collector_state()->set_initiate_conc_mark_if_possible(false);
1040 }
1041 
decide_on_conc_mark_initiation()1042 void G1Policy::decide_on_conc_mark_initiation() {
1043   // We are about to decide on whether this pause will be a
1044   // concurrent start pause.
1045 
1046   // First, collector_state()->in_concurrent_start_gc() should not be already set. We
1047   // will set it here if we have to. However, it should be cleared by
1048   // the end of the pause (it's only set for the duration of a
1049   // concurrent start pause).
1050   assert(!collector_state()->in_concurrent_start_gc(), "pre-condition");
1051 
1052   if (collector_state()->initiate_conc_mark_if_possible()) {
1053     // We had noticed on a previous pause that the heap occupancy has
1054     // gone over the initiating threshold and we should start a
1055     // concurrent marking cycle.  Or we've been explicitly requested
1056     // to start a concurrent marking cycle.  Either way, we initiate
1057     // one if not inhibited for some reason.
1058 
1059     GCCause::Cause cause = _g1h->gc_cause();
1060     if ((cause != GCCause::_wb_breakpoint) &&
1061         ConcurrentGCBreakpoints::is_controlled()) {
1062       log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1063     } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1064       // Initiate a new concurrent start if there is no marking or reclamation going on.
1065       initiate_conc_mark();
1066       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1067     } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1068                (cause == GCCause::_wb_breakpoint)) {
1069       // Initiate a user requested concurrent start or run to a breakpoint.
1070       // A concurrent start must be young only GC, so the collector state
1071       // must be updated to reflect this.
1072       collector_state()->set_in_young_only_phase(true);
1073       collector_state()->set_in_young_gc_before_mixed(false);
1074 
1075       // We might have ended up coming here about to start a mixed phase with a collection set
1076       // active. The following remark might change the change the "evacuation efficiency" of
1077       // the regions in this set, leading to failing asserts later.
1078       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1079       clear_collection_set_candidates();
1080       abort_time_to_mixed_tracking();
1081       initiate_conc_mark();
1082       log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1083                           (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1084     } else {
1085       // The concurrent marking thread is still finishing up the
1086       // previous cycle. If we start one right now the two cycles
1087       // overlap. In particular, the concurrent marking thread might
1088       // be in the process of clearing the next marking bitmap (which
1089       // we will use for the next cycle if we start one). Starting a
1090       // cycle now will be bad given that parts of the marking
1091       // information might get cleared by the marking thread. And we
1092       // cannot wait for the marking thread to finish the cycle as it
1093       // periodically yields while clearing the next marking bitmap
1094       // and, if it's in a yield point, it's waiting for us to
1095       // finish. So, at this point we will not start a cycle and we'll
1096       // let the concurrent marking thread complete the last one.
1097       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1098     }
1099   }
1100 }
1101 
record_concurrent_mark_cleanup_end()1102 void G1Policy::record_concurrent_mark_cleanup_end() {
1103   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1104   _collection_set->set_candidates(candidates);
1105 
1106   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1107   if (!mixed_gc_pending) {
1108     clear_collection_set_candidates();
1109     abort_time_to_mixed_tracking();
1110   }
1111   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1112   collector_state()->set_mark_or_rebuild_in_progress(false);
1113 
1114   double end_sec = os::elapsedTime();
1115   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1116   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1117 
1118   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1119 }
1120 
reclaimable_bytes_percent(size_t reclaimable_bytes) const1121 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1122   return percent_of(reclaimable_bytes, _g1h->capacity());
1123 }
1124 
1125 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
do_heap_region(HeapRegion * r)1126   virtual bool do_heap_region(HeapRegion* r) {
1127     r->rem_set()->clear_locked(true /* only_cardset */);
1128     return false;
1129   }
1130 };
1131 
clear_collection_set_candidates()1132 void G1Policy::clear_collection_set_candidates() {
1133   // Clear remembered sets of remaining candidate regions and the actual candidate
1134   // set.
1135   G1ClearCollectionSetCandidateRemSets cl;
1136   _collection_set->candidates()->iterate(&cl);
1137   _collection_set->clear_candidates();
1138 }
1139 
maybe_start_marking()1140 void G1Policy::maybe_start_marking() {
1141   if (need_to_start_conc_mark("end of GC")) {
1142     // Note: this might have already been set, if during the last
1143     // pause we decided to start a cycle but at the beginning of
1144     // this pause we decided to postpone it. That's OK.
1145     collector_state()->set_initiate_conc_mark_if_possible(true);
1146   }
1147 }
1148 
is_young_only_pause(PauseKind kind)1149 bool G1Policy::is_young_only_pause(PauseKind kind) {
1150   assert(kind != FullGC, "must be");
1151   assert(kind != Remark, "must be");
1152   assert(kind != Cleanup, "must be");
1153   return kind == ConcurrentStartUndoGC ||
1154          kind == ConcurrentStartMarkGC ||
1155          kind == LastYoungGC ||
1156          kind == YoungOnlyGC;
1157 }
1158 
is_mixed_pause(PauseKind kind)1159 bool G1Policy::is_mixed_pause(PauseKind kind) {
1160   assert(kind != FullGC, "must be");
1161   assert(kind != Remark, "must be");
1162   assert(kind != Cleanup, "must be");
1163   return kind == MixedGC;
1164 }
1165 
is_last_young_pause(PauseKind kind)1166 bool G1Policy::is_last_young_pause(PauseKind kind) {
1167   return kind == LastYoungGC;
1168 }
1169 
is_concurrent_start_pause(PauseKind kind)1170 bool G1Policy::is_concurrent_start_pause(PauseKind kind) {
1171   return kind == ConcurrentStartMarkGC || kind == ConcurrentStartUndoGC;
1172 }
1173 
young_gc_pause_kind(bool concurrent_operation_is_full_mark) const1174 G1Policy::PauseKind G1Policy::young_gc_pause_kind(bool concurrent_operation_is_full_mark) const {
1175   assert(!collector_state()->in_full_gc(), "must be");
1176   if (collector_state()->in_concurrent_start_gc()) {
1177     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1178     return concurrent_operation_is_full_mark ? ConcurrentStartMarkGC : ConcurrentStartUndoGC;
1179   } else if (collector_state()->in_young_gc_before_mixed()) {
1180     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1181     return LastYoungGC;
1182   } else if (collector_state()->in_mixed_phase()) {
1183     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1184     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1185     return MixedGC;
1186   } else {
1187     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1188     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1189     return YoungOnlyGC;
1190   }
1191 }
1192 
should_update_gc_stats()1193 bool G1Policy::should_update_gc_stats() {
1194   // Evacuation failures skew the timing too much to be considered for statistics updates.
1195   // We make the assumption that these are rare.
1196   return !_g1h->evacuation_failed();
1197 }
1198 
update_gc_pause_time_ratios(PauseKind kind,double start_time_sec,double end_time_sec)1199 void G1Policy::update_gc_pause_time_ratios(PauseKind kind, double start_time_sec, double end_time_sec) {
1200 
1201   double pause_time_sec = end_time_sec - start_time_sec;
1202   double pause_time_ms = pause_time_sec * 1000.0;
1203 
1204   _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
1205   _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
1206 
1207   if (kind == Cleanup || kind == Remark) {
1208     _analytics->append_prev_collection_pause_end_ms(pause_time_ms);
1209   } else {
1210     _analytics->set_prev_collection_pause_end_ms(end_time_sec * 1000.0);
1211   }
1212 }
1213 
record_pause(PauseKind kind,double start,double end)1214 void G1Policy::record_pause(PauseKind kind,
1215                             double start,
1216                             double end) {
1217   // Manage the MMU tracker. For some reason it ignores Full GCs.
1218   if (kind != FullGC) {
1219     _mmu_tracker->add_pause(start, end);
1220   }
1221 
1222   if (should_update_gc_stats()) {
1223     update_gc_pause_time_ratios(kind, start, end);
1224   }
1225 
1226   update_time_to_mixed_tracking(kind, start, end);
1227 }
1228 
update_time_to_mixed_tracking(PauseKind kind,double start,double end)1229 void G1Policy::update_time_to_mixed_tracking(PauseKind kind,
1230                                              double start,
1231                                              double end) {
1232   // Manage the mutator time tracking from concurrent start to first mixed gc.
1233   switch (kind) {
1234     case FullGC:
1235       abort_time_to_mixed_tracking();
1236       break;
1237     case Cleanup:
1238     case Remark:
1239     case YoungOnlyGC:
1240     case LastYoungGC:
1241       _concurrent_start_to_mixed.add_pause(end - start);
1242       break;
1243     case ConcurrentStartMarkGC:
1244       // Do not track time-to-mixed time for periodic collections as they are likely
1245       // to be not representative to regular operation as the mutators are idle at
1246       // that time. Also only track full concurrent mark cycles.
1247       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1248         _concurrent_start_to_mixed.record_concurrent_start_end(end);
1249       }
1250       break;
1251     case ConcurrentStartUndoGC:
1252       assert(_g1h->gc_cause() == GCCause::_g1_humongous_allocation,
1253              "GC cause must be humongous allocation but is %d",
1254              _g1h->gc_cause());
1255       break;
1256     case MixedGC:
1257       _concurrent_start_to_mixed.record_mixed_gc_start(start);
1258       break;
1259     default:
1260       ShouldNotReachHere();
1261   }
1262 }
1263 
abort_time_to_mixed_tracking()1264 void G1Policy::abort_time_to_mixed_tracking() {
1265   _concurrent_start_to_mixed.reset();
1266 }
1267 
next_gc_should_be_mixed(const char * true_action_str,const char * false_action_str) const1268 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1269                                        const char* false_action_str) const {
1270   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1271 
1272   if (candidates->is_empty()) {
1273     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1274     return false;
1275   }
1276 
1277   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1278   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1279   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1280   double threshold = (double) G1HeapWastePercent;
1281   if (reclaimable_percent <= threshold) {
1282     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1283                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1284     return false;
1285   }
1286   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1287                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1288   return true;
1289 }
1290 
calc_min_old_cset_length() const1291 uint G1Policy::calc_min_old_cset_length() const {
1292   // The min old CSet region bound is based on the maximum desired
1293   // number of mixed GCs after a cycle. I.e., even if some old regions
1294   // look expensive, we should add them to the CSet anyway to make
1295   // sure we go through the available old regions in no more than the
1296   // maximum desired number of mixed GCs.
1297   //
1298   // The calculation is based on the number of marked regions we added
1299   // to the CSet candidates in the first place, not how many remain, so
1300   // that the result is the same during all mixed GCs that follow a cycle.
1301 
1302   const size_t region_num = _collection_set->candidates()->num_regions();
1303   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1304   size_t result = region_num / gc_num;
1305   // emulate ceiling
1306   if (result * gc_num < region_num) {
1307     result += 1;
1308   }
1309   return (uint) result;
1310 }
1311 
calc_max_old_cset_length() const1312 uint G1Policy::calc_max_old_cset_length() const {
1313   // The max old CSet region bound is based on the threshold expressed
1314   // as a percentage of the heap size. I.e., it should bound the
1315   // number of old regions added to the CSet irrespective of how many
1316   // of them are available.
1317 
1318   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1319   const size_t region_num = g1h->num_regions();
1320   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1321   size_t result = region_num * perc / 100;
1322   // emulate ceiling
1323   if (100 * result < region_num * perc) {
1324     result += 1;
1325   }
1326   return (uint) result;
1327 }
1328 
calculate_old_collection_set_regions(G1CollectionSetCandidates * candidates,double time_remaining_ms,uint & num_initial_regions,uint & num_optional_regions)1329 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1330                                                     double time_remaining_ms,
1331                                                     uint& num_initial_regions,
1332                                                     uint& num_optional_regions) {
1333   assert(candidates != NULL, "Must be");
1334 
1335   num_initial_regions = 0;
1336   num_optional_regions = 0;
1337   uint num_expensive_regions = 0;
1338 
1339   double predicted_old_time_ms = 0.0;
1340   double predicted_initial_time_ms = 0.0;
1341   double predicted_optional_time_ms = 0.0;
1342 
1343   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1344 
1345   const uint min_old_cset_length = calc_min_old_cset_length();
1346   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1347   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1348   bool check_time_remaining = use_adaptive_young_list_length();
1349 
1350   uint candidate_idx = candidates->cur_idx();
1351 
1352   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1353                             "time remaining %1.2fms, optional threshold %1.2fms",
1354                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1355 
1356   HeapRegion* hr = candidates->at(candidate_idx);
1357   while (hr != NULL) {
1358     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1359       // Added maximum number of old regions to the CSet.
1360       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1361                                 "Initial %u regions, optional %u regions",
1362                                 num_initial_regions, num_optional_regions);
1363       break;
1364     }
1365 
1366     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1367     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1368     // Add regions to old set until we reach the minimum amount
1369     if (num_initial_regions < min_old_cset_length) {
1370       predicted_old_time_ms += predicted_time_ms;
1371       num_initial_regions++;
1372       // Record the number of regions added with no time remaining
1373       if (time_remaining_ms == 0.0) {
1374         num_expensive_regions++;
1375       }
1376     } else if (!check_time_remaining) {
1377       // In the non-auto-tuning case, we'll finish adding regions
1378       // to the CSet if we reach the minimum.
1379       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1380       break;
1381     } else {
1382       // Keep adding regions to old set until we reach the optional threshold
1383       if (time_remaining_ms > optional_threshold_ms) {
1384         predicted_old_time_ms += predicted_time_ms;
1385         num_initial_regions++;
1386       } else if (time_remaining_ms > 0) {
1387         // Keep adding optional regions until time is up.
1388         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1389         predicted_optional_time_ms += predicted_time_ms;
1390         num_optional_regions++;
1391       } else {
1392         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1393         break;
1394       }
1395     }
1396     hr = candidates->at(++candidate_idx);
1397   }
1398   if (hr == NULL) {
1399     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1400   }
1401 
1402   if (num_expensive_regions > 0) {
1403     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1404                               num_expensive_regions);
1405   }
1406 
1407   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1408                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1409                             num_initial_regions, num_optional_regions,
1410                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1411 }
1412 
calculate_optional_collection_set_regions(G1CollectionSetCandidates * candidates,uint const max_optional_regions,double time_remaining_ms,uint & num_optional_regions)1413 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1414                                                          uint const max_optional_regions,
1415                                                          double time_remaining_ms,
1416                                                          uint& num_optional_regions) {
1417   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1418 
1419   num_optional_regions = 0;
1420   double prediction_ms = 0;
1421   uint candidate_idx = candidates->cur_idx();
1422 
1423   HeapRegion* r = candidates->at(candidate_idx);
1424   while (num_optional_regions < max_optional_regions) {
1425     assert(r != NULL, "Region must exist");
1426     prediction_ms += predict_region_total_time_ms(r, false);
1427 
1428     if (prediction_ms > time_remaining_ms) {
1429       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1430                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1431       break;
1432     }
1433     // This region will be included in the next optional evacuation.
1434 
1435     time_remaining_ms -= prediction_ms;
1436     num_optional_regions++;
1437     r = candidates->at(++candidate_idx);
1438   }
1439 
1440   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1441                             num_optional_regions, max_optional_regions, prediction_ms);
1442 }
1443 
transfer_survivors_to_cset(const G1SurvivorRegions * survivors)1444 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1445   note_start_adding_survivor_regions();
1446 
1447   HeapRegion* last = NULL;
1448   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1449        it != survivors->regions()->end();
1450        ++it) {
1451     HeapRegion* curr = *it;
1452     set_region_survivor(curr);
1453 
1454     // The region is a non-empty survivor so let's add it to
1455     // the incremental collection set for the next evacuation
1456     // pause.
1457     _collection_set->add_survivor_regions(curr);
1458 
1459     last = curr;
1460   }
1461   note_stop_adding_survivor_regions();
1462 
1463   // Don't clear the survivor list handles until the start of
1464   // the next evacuation pause - we need it in order to re-tag
1465   // the survivor regions from this evacuation pause as 'young'
1466   // at the start of the next.
1467 }
1468