1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "libadt/vectset.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "compiler/compilerDirectives.hpp"
30 #include "opto/block.hpp"
31 #include "opto/cfgnode.hpp"
32 #include "opto/chaitin.hpp"
33 #include "opto/loopnode.hpp"
34 #include "opto/machnode.hpp"
35 #include "opto/matcher.hpp"
36 #include "opto/opcodes.hpp"
37 #include "opto/rootnode.hpp"
38 #include "utilities/copy.hpp"
39 #include "utilities/powerOfTwo.hpp"
40 
grow(uint i)41 void Block_Array::grow( uint i ) {
42   assert(i >= Max(), "must be an overflow");
43   debug_only(_limit = i+1);
44   if( i < _size )  return;
45   if( !_size ) {
46     _size = 1;
47     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
48     _blocks[0] = NULL;
49   }
50   uint old = _size;
51   _size = next_power_of_2(i);
52   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
53   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
54 }
55 
remove(uint i)56 void Block_List::remove(uint i) {
57   assert(i < _cnt, "index out of bounds");
58   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
59   pop(); // shrink list by one block
60 }
61 
insert(uint i,Block * b)62 void Block_List::insert(uint i, Block *b) {
63   push(b); // grow list by one block
64   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
65   _blocks[i] = b;
66 }
67 
68 #ifndef PRODUCT
print()69 void Block_List::print() {
70   for (uint i=0; i < size(); i++) {
71     tty->print("B%d ", _blocks[i]->_pre_order);
72   }
73   tty->print("size = %d\n", size());
74 }
75 #endif
76 
code_alignment() const77 uint Block::code_alignment() const {
78   // Check for Root block
79   if (_pre_order == 0) return CodeEntryAlignment;
80   // Check for Start block
81   if (_pre_order == 1) return InteriorEntryAlignment;
82   // Check for loop alignment
83   if (has_loop_alignment()) return loop_alignment();
84 
85   return relocInfo::addr_unit(); // no particular alignment
86 }
87 
compute_loop_alignment()88 uint Block::compute_loop_alignment() {
89   Node *h = head();
90   int unit_sz = relocInfo::addr_unit();
91   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
92     // Pre- and post-loops have low trip count so do not bother with
93     // NOPs for align loop head.  The constants are hidden from tuning
94     // but only because my "divide by 4" heuristic surely gets nearly
95     // all possible gain (a "do not align at all" heuristic has a
96     // chance of getting a really tiny gain).
97     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
98                                 h->as_CountedLoop()->is_post_loop())) {
99       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
100     }
101     // Loops with low backedge frequency should not be aligned.
102     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
103     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
104       return unit_sz; // Loop does not loop, more often than not!
105     }
106     return OptoLoopAlignment; // Otherwise align loop head
107   }
108 
109   return unit_sz; // no particular alignment
110 }
111 
112 // Compute the size of first 'inst_cnt' instructions in this block.
113 // Return the number of instructions left to compute if the block has
114 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
115 // exceeds OptoLoopAlignment.
compute_first_inst_size(uint & sum_size,uint inst_cnt,PhaseRegAlloc * ra)116 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
117                                     PhaseRegAlloc* ra) {
118   uint last_inst = number_of_nodes();
119   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
120     uint inst_size = get_node(j)->size(ra);
121     if( inst_size > 0 ) {
122       inst_cnt--;
123       uint sz = sum_size + inst_size;
124       if( sz <= (uint)OptoLoopAlignment ) {
125         // Compute size of instructions which fit into fetch buffer only
126         // since all inst_cnt instructions will not fit even if we align them.
127         sum_size = sz;
128       } else {
129         return 0;
130       }
131     }
132   }
133   return inst_cnt;
134 }
135 
find_node(const Node * n) const136 uint Block::find_node( const Node *n ) const {
137   for( uint i = 0; i < number_of_nodes(); i++ ) {
138     if( get_node(i) == n )
139       return i;
140   }
141   ShouldNotReachHere();
142   return 0;
143 }
144 
145 // Find and remove n from block list
find_remove(const Node * n)146 void Block::find_remove( const Node *n ) {
147   remove_node(find_node(n));
148 }
149 
contains(const Node * n) const150 bool Block::contains(const Node *n) const {
151   return _nodes.contains(n);
152 }
153 
154 // Return empty status of a block.  Empty blocks contain only the head, other
155 // ideal nodes, and an optional trailing goto.
is_Empty() const156 int Block::is_Empty() const {
157 
158   // Root or start block is not considered empty
159   if (head()->is_Root() || head()->is_Start()) {
160     return not_empty;
161   }
162 
163   int success_result = completely_empty;
164   int end_idx = number_of_nodes() - 1;
165 
166   // Check for ending goto
167   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
168     success_result = empty_with_goto;
169     end_idx--;
170   }
171 
172   // Unreachable blocks are considered empty
173   if (num_preds() <= 1) {
174     return success_result;
175   }
176 
177   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
178   // turn directly into code, because only MachNodes have non-trivial
179   // emit() functions.
180   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
181     end_idx--;
182   }
183 
184   // No room for any interesting instructions?
185   if (end_idx == 0) {
186     return success_result;
187   }
188 
189   return not_empty;
190 }
191 
192 // Return true if the block's code implies that it is likely to be
193 // executed infrequently.  Check to see if the block ends in a Halt or
194 // a low probability call.
has_uncommon_code() const195 bool Block::has_uncommon_code() const {
196   Node* en = end();
197 
198   if (en->is_MachGoto())
199     en = en->in(0);
200   if (en->is_Catch())
201     en = en->in(0);
202   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
203     MachCallNode* call = en->in(0)->as_MachCall();
204     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
205       // This is true for slow-path stubs like new_{instance,array},
206       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
207       // The magic number corresponds to the probability of an uncommon_trap,
208       // even though it is a count not a probability.
209       return true;
210     }
211   }
212 
213   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
214   return op == Op_Halt;
215 }
216 
217 // True if block is low enough frequency or guarded by a test which
218 // mostly does not go here.
is_uncommon(const Block * block)219 bool PhaseCFG::is_uncommon(const Block* block) {
220   // Initial blocks must never be moved, so are never uncommon.
221   if (block->head()->is_Root() || block->head()->is_Start())  return false;
222 
223   // Check for way-low freq
224   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
225 
226   // Look for code shape indicating uncommon_trap or slow path
227   if (block->has_uncommon_code()) return true;
228 
229   const float epsilon = 0.05f;
230   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
231   uint uncommon_preds = 0;
232   uint freq_preds = 0;
233   uint uncommon_for_freq_preds = 0;
234 
235   for( uint i=1; i< block->num_preds(); i++ ) {
236     Block* guard = get_block_for_node(block->pred(i));
237     // Check to see if this block follows its guard 1 time out of 10000
238     // or less.
239     //
240     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
241     // we intend to be "uncommon", such as slow-path TLE allocation,
242     // predicted call failure, and uncommon trap triggers.
243     //
244     // Use an epsilon value of 5% to allow for variability in frequency
245     // predictions and floating point calculations. The net effect is
246     // that guard_factor is set to 9500.
247     //
248     // Ignore low-frequency blocks.
249     // The next check is (guard->_freq < 1.e-5 * 9500.).
250     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
251       uncommon_preds++;
252     } else {
253       freq_preds++;
254       if(block->_freq < guard->_freq * guard_factor ) {
255         uncommon_for_freq_preds++;
256       }
257     }
258   }
259   if( block->num_preds() > 1 &&
260       // The block is uncommon if all preds are uncommon or
261       (uncommon_preds == (block->num_preds()-1) ||
262       // it is uncommon for all frequent preds.
263        uncommon_for_freq_preds == freq_preds) ) {
264     return true;
265   }
266   return false;
267 }
268 
269 #ifndef PRODUCT
dump_bidx(const Block * orig,outputStream * st) const270 void Block::dump_bidx(const Block* orig, outputStream* st) const {
271   if (_pre_order) st->print("B%d", _pre_order);
272   else st->print("N%d", head()->_idx);
273 
274   if (Verbose && orig != this) {
275     // Dump the original block's idx
276     st->print(" (");
277     orig->dump_bidx(orig, st);
278     st->print(")");
279   }
280 }
281 
dump_pred(const PhaseCFG * cfg,Block * orig,outputStream * st) const282 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
283   if (is_connector()) {
284     for (uint i=1; i<num_preds(); i++) {
285       Block *p = cfg->get_block_for_node(pred(i));
286       p->dump_pred(cfg, orig, st);
287     }
288   } else {
289     dump_bidx(orig, st);
290     st->print(" ");
291   }
292 }
293 
dump_head(const PhaseCFG * cfg,outputStream * st) const294 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
295   // Print the basic block.
296   dump_bidx(this, st);
297   st->print(": ");
298 
299   // Print the outgoing CFG edges.
300   st->print("#\tout( ");
301   for( uint i=0; i<_num_succs; i++ ) {
302     non_connector_successor(i)->dump_bidx(_succs[i], st);
303     st->print(" ");
304   }
305 
306   // Print the incoming CFG edges.
307   st->print(") <- ");
308   if( head()->is_block_start() ) {
309     st->print("in( ");
310     for (uint i=1; i<num_preds(); i++) {
311       Node *s = pred(i);
312       if (cfg != NULL) {
313         Block *p = cfg->get_block_for_node(s);
314         p->dump_pred(cfg, p, st);
315       } else {
316         while (!s->is_block_start()) {
317           s = s->in(0);
318         }
319         st->print("N%d ", s->_idx );
320       }
321     }
322     st->print(") ");
323   } else {
324     st->print("BLOCK HEAD IS JUNK ");
325   }
326 
327   // Print loop, if any
328   const Block *bhead = this;    // Head of self-loop
329   Node *bh = bhead->head();
330 
331   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
332     LoopNode *loop = bh->as_Loop();
333     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
334     while (bx->is_connector()) {
335       bx = cfg->get_block_for_node(bx->pred(1));
336     }
337     st->print("Loop( B%d-B%d ", bhead->_pre_order, bx->_pre_order);
338     // Dump any loop-specific bits, especially for CountedLoops.
339     loop->dump_spec(st);
340     st->print(")");
341   } else if (has_loop_alignment()) {
342     st->print("top-of-loop");
343   }
344 
345   // Print frequency and other optimization-relevant information
346   st->print(" Freq: %g",_freq);
347   if( Verbose || WizardMode ) {
348     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
349     st->print(" RegPressure: %d",_reg_pressure);
350     st->print(" IHRP Index: %d",_ihrp_index);
351     st->print(" FRegPressure: %d",_freg_pressure);
352     st->print(" FHRP Index: %d",_fhrp_index);
353   }
354   st->cr();
355 }
356 
dump() const357 void Block::dump() const {
358   dump(NULL);
359 }
360 
dump(const PhaseCFG * cfg) const361 void Block::dump(const PhaseCFG* cfg) const {
362   dump_head(cfg);
363   for (uint i=0; i< number_of_nodes(); i++) {
364     get_node(i)->dump();
365   }
366   tty->print("\n");
367 }
368 #endif
369 
PhaseCFG(Arena * arena,RootNode * root,Matcher & matcher)370 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
371 : Phase(CFG)
372 , _root(root)
373 , _block_arena(arena)
374 , _regalloc(NULL)
375 , _scheduling_for_pressure(false)
376 , _matcher(matcher)
377 , _node_to_block_mapping(arena)
378 , _node_latency(NULL)
379 #ifndef PRODUCT
380 , _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
381 #endif
382 #ifdef ASSERT
383 , _raw_oops(arena)
384 #endif
385 {
386   ResourceMark rm;
387   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
388   // then Match it into a machine-specific Node.  Then clone the machine
389   // Node on demand.
390   Node *x = new GotoNode(NULL);
391   x->init_req(0, x);
392   _goto = matcher.match_tree(x);
393   assert(_goto != NULL, "");
394   _goto->set_req(0,_goto);
395 
396   // Build the CFG in Reverse Post Order
397   _number_of_blocks = build_cfg();
398   _root_block = get_block_for_node(_root);
399 }
400 
401 // Build a proper looking CFG.  Make every block begin with either a StartNode
402 // or a RegionNode.  Make every block end with either a Goto, If or Return.
403 // The RootNode both starts and ends it's own block.  Do this with a recursive
404 // backwards walk over the control edges.
build_cfg()405 uint PhaseCFG::build_cfg() {
406   VectorSet visited;
407 
408   // Allocate stack with enough space to avoid frequent realloc
409   Node_Stack nstack(C->live_nodes() >> 1);
410   nstack.push(_root, 0);
411   uint sum = 0;                 // Counter for blocks
412 
413   while (nstack.is_nonempty()) {
414     // node and in's index from stack's top
415     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
416     // only nodes which point to the start of basic block (see below).
417     Node *np = nstack.node();
418     // idx > 0, except for the first node (_root) pushed on stack
419     // at the beginning when idx == 0.
420     // We will use the condition (idx == 0) later to end the build.
421     uint idx = nstack.index();
422     Node *proj = np->in(idx);
423     const Node *x = proj->is_block_proj();
424     // Does the block end with a proper block-ending Node?  One of Return,
425     // If or Goto? (This check should be done for visited nodes also).
426     if (x == NULL) {                    // Does not end right...
427       Node *g = _goto->clone(); // Force it to end in a Goto
428       g->set_req(0, proj);
429       np->set_req(idx, g);
430       x = proj = g;
431     }
432     if (!visited.test_set(x->_idx)) { // Visit this block once
433       // Skip any control-pinned middle'in stuff
434       Node *p = proj;
435       do {
436         proj = p;                   // Update pointer to last Control
437         p = p->in(0);               // Move control forward
438       } while( !p->is_block_proj() &&
439                !p->is_block_start() );
440       // Make the block begin with one of Region or StartNode.
441       if( !p->is_block_start() ) {
442         RegionNode *r = new RegionNode( 2 );
443         r->init_req(1, p);         // Insert RegionNode in the way
444         proj->set_req(0, r);        // Insert RegionNode in the way
445         p = r;
446       }
447       // 'p' now points to the start of this basic block
448 
449       // Put self in array of basic blocks
450       Block *bb = new (_block_arena) Block(_block_arena, p);
451       map_node_to_block(p, bb);
452       map_node_to_block(x, bb);
453       if( x != p ) {                // Only for root is x == p
454         bb->push_node((Node*)x);
455       }
456       // Now handle predecessors
457       ++sum;                        // Count 1 for self block
458       uint cnt = bb->num_preds();
459       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
460         Node *prevproj = p->in(i);  // Get prior input
461         assert( !prevproj->is_Con(), "dead input not removed" );
462         // Check to see if p->in(i) is a "control-dependent" CFG edge -
463         // i.e., it splits at the source (via an IF or SWITCH) and merges
464         // at the destination (via a many-input Region).
465         // This breaks critical edges.  The RegionNode to start the block
466         // will be added when <p,i> is pulled off the node stack
467         if ( cnt > 2 ) {             // Merging many things?
468           assert( prevproj== bb->pred(i),"");
469           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
470             // Force a block on the control-dependent edge
471             Node *g = _goto->clone();       // Force it to end in a Goto
472             g->set_req(0,prevproj);
473             p->set_req(i,g);
474           }
475         }
476         nstack.push(p, i);  // 'p' is RegionNode or StartNode
477       }
478     } else { // Post-processing visited nodes
479       nstack.pop();                 // remove node from stack
480       // Check if it the fist node pushed on stack at the beginning.
481       if (idx == 0) break;          // end of the build
482       // Find predecessor basic block
483       Block *pb = get_block_for_node(x);
484       // Insert into nodes array, if not already there
485       if (!has_block(proj)) {
486         assert( x != proj, "" );
487         // Map basic block of projection
488         map_node_to_block(proj, pb);
489         pb->push_node(proj);
490       }
491       // Insert self as a child of my predecessor block
492       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
493       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
494               "too many control users, not a CFG?" );
495     }
496   }
497   // Return number of basic blocks for all children and self
498   return sum;
499 }
500 
501 // Inserts a goto & corresponding basic block between
502 // block[block_no] and its succ_no'th successor block
insert_goto_at(uint block_no,uint succ_no)503 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
504   // get block with block_no
505   assert(block_no < number_of_blocks(), "illegal block number");
506   Block* in  = get_block(block_no);
507   // get successor block succ_no
508   assert(succ_no < in->_num_succs, "illegal successor number");
509   Block* out = in->_succs[succ_no];
510   // Compute frequency of the new block. Do this before inserting
511   // new block in case succ_prob() needs to infer the probability from
512   // surrounding blocks.
513   float freq = in->_freq * in->succ_prob(succ_no);
514   // get ProjNode corresponding to the succ_no'th successor of the in block
515   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
516   // create region for basic block
517   RegionNode* region = new RegionNode(2);
518   region->init_req(1, proj);
519   // setup corresponding basic block
520   Block* block = new (_block_arena) Block(_block_arena, region);
521   map_node_to_block(region, block);
522   C->regalloc()->set_bad(region->_idx);
523   // add a goto node
524   Node* gto = _goto->clone(); // get a new goto node
525   gto->set_req(0, region);
526   // add it to the basic block
527   block->push_node(gto);
528   map_node_to_block(gto, block);
529   C->regalloc()->set_bad(gto->_idx);
530   // hook up successor block
531   block->_succs.map(block->_num_succs++, out);
532   // remap successor's predecessors if necessary
533   for (uint i = 1; i < out->num_preds(); i++) {
534     if (out->pred(i) == proj) out->head()->set_req(i, gto);
535   }
536   // remap predecessor's successor to new block
537   in->_succs.map(succ_no, block);
538   // Set the frequency of the new block
539   block->_freq = freq;
540   // add new basic block to basic block list
541   add_block_at(block_no + 1, block);
542 }
543 
544 // Does this block end in a multiway branch that cannot have the default case
545 // flipped for another case?
no_flip_branch(Block * b)546 static bool no_flip_branch(Block *b) {
547   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
548   if (branch_idx < 1) {
549     return false;
550   }
551   Node *branch = b->get_node(branch_idx);
552   if (branch->is_Catch()) {
553     return true;
554   }
555   if (branch->is_Mach()) {
556     if (branch->is_MachNullCheck()) {
557       return true;
558     }
559     int iop = branch->as_Mach()->ideal_Opcode();
560     if (iop == Op_FastLock || iop == Op_FastUnlock) {
561       return true;
562     }
563     // Don't flip if branch has an implicit check.
564     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
565       return true;
566     }
567   }
568   return false;
569 }
570 
571 // Check for NeverBranch at block end.  This needs to become a GOTO to the
572 // true target.  NeverBranch are treated as a conditional branch that always
573 // goes the same direction for most of the optimizer and are used to give a
574 // fake exit path to infinite loops.  At this late stage they need to turn
575 // into Goto's so that when you enter the infinite loop you indeed hang.
convert_NeverBranch_to_Goto(Block * b)576 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
577   // Find true target
578   int end_idx = b->end_idx();
579   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
580   Block *succ = b->_succs[idx];
581   Node* gto = _goto->clone(); // get a new goto node
582   gto->set_req(0, b->head());
583   Node *bp = b->get_node(end_idx);
584   b->map_node(gto, end_idx); // Slam over NeverBranch
585   map_node_to_block(gto, b);
586   C->regalloc()->set_bad(gto->_idx);
587   b->pop_node();              // Yank projections
588   b->pop_node();              // Yank projections
589   b->_succs.map(0,succ);        // Map only successor
590   b->_num_succs = 1;
591   // remap successor's predecessors if necessary
592   uint j;
593   for( j = 1; j < succ->num_preds(); j++)
594     if( succ->pred(j)->in(0) == bp )
595       succ->head()->set_req(j, gto);
596   // Kill alternate exit path
597   Block *dead = b->_succs[1-idx];
598   for( j = 1; j < dead->num_preds(); j++)
599     if( dead->pred(j)->in(0) == bp )
600       break;
601   // Scan through block, yanking dead path from
602   // all regions and phis.
603   dead->head()->del_req(j);
604   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
605     dead->get_node(k)->del_req(j);
606 }
607 
608 // Helper function to move block bx to the slot following b_index. Return
609 // true if the move is successful, otherwise false
move_to_next(Block * bx,uint b_index)610 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
611   if (bx == NULL) return false;
612 
613   // Return false if bx is already scheduled.
614   uint bx_index = bx->_pre_order;
615   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
616     return false;
617   }
618 
619   // Find the current index of block bx on the block list
620   bx_index = b_index + 1;
621   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
622     bx_index++;
623   }
624   assert(get_block(bx_index) == bx, "block not found");
625 
626   // If the previous block conditionally falls into bx, return false,
627   // because moving bx will create an extra jump.
628   for(uint k = 1; k < bx->num_preds(); k++ ) {
629     Block* pred = get_block_for_node(bx->pred(k));
630     if (pred == get_block(bx_index - 1)) {
631       if (pred->_num_succs != 1) {
632         return false;
633       }
634     }
635   }
636 
637   // Reinsert bx just past block 'b'
638   _blocks.remove(bx_index);
639   _blocks.insert(b_index + 1, bx);
640   return true;
641 }
642 
643 // Move empty and uncommon blocks to the end.
move_to_end(Block * b,uint i)644 void PhaseCFG::move_to_end(Block *b, uint i) {
645   int e = b->is_Empty();
646   if (e != Block::not_empty) {
647     if (e == Block::empty_with_goto) {
648       // Remove the goto, but leave the block.
649       b->pop_node();
650     }
651     // Mark this block as a connector block, which will cause it to be
652     // ignored in certain functions such as non_connector_successor().
653     b->set_connector();
654   }
655   // Move the empty block to the end, and don't recheck.
656   _blocks.remove(i);
657   _blocks.push(b);
658 }
659 
660 // Set loop alignment for every block
set_loop_alignment()661 void PhaseCFG::set_loop_alignment() {
662   uint last = number_of_blocks();
663   assert(get_block(0) == get_root_block(), "");
664 
665   for (uint i = 1; i < last; i++) {
666     Block* block = get_block(i);
667     if (block->head()->is_Loop()) {
668       block->set_loop_alignment(block);
669     }
670   }
671 }
672 
673 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
674 // to the end.
remove_empty_blocks()675 void PhaseCFG::remove_empty_blocks() {
676   // Move uncommon blocks to the end
677   uint last = number_of_blocks();
678   assert(get_block(0) == get_root_block(), "");
679 
680   for (uint i = 1; i < last; i++) {
681     Block* block = get_block(i);
682     if (block->is_connector()) {
683       break;
684     }
685 
686     // Check for NeverBranch at block end.  This needs to become a GOTO to the
687     // true target.  NeverBranch are treated as a conditional branch that
688     // always goes the same direction for most of the optimizer and are used
689     // to give a fake exit path to infinite loops.  At this late stage they
690     // need to turn into Goto's so that when you enter the infinite loop you
691     // indeed hang.
692     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
693       convert_NeverBranch_to_Goto(block);
694     }
695 
696     // Look for uncommon blocks and move to end.
697     if (!C->do_freq_based_layout()) {
698       if (is_uncommon(block)) {
699         move_to_end(block, i);
700         last--;                   // No longer check for being uncommon!
701         if (no_flip_branch(block)) { // Fall-thru case must follow?
702           // Find the fall-thru block
703           block = get_block(i);
704           move_to_end(block, i);
705           last--;
706         }
707         // backup block counter post-increment
708         i--;
709       }
710     }
711   }
712 
713   // Move empty blocks to the end
714   last = number_of_blocks();
715   for (uint i = 1; i < last; i++) {
716     Block* block = get_block(i);
717     if (block->is_Empty() != Block::not_empty) {
718       move_to_end(block, i);
719       last--;
720       i--;
721     }
722   } // End of for all blocks
723 }
724 
fixup_trap_based_check(Node * branch,Block * block,int block_pos,Block * bnext)725 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
726   // Trap based checks must fall through to the successor with
727   // PROB_ALWAYS.
728   // They should be an If with 2 successors.
729   assert(branch->is_MachIf(),   "must be If");
730   assert(block->_num_succs == 2, "must have 2 successors");
731 
732   // Get the If node and the projection for the first successor.
733   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
734   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
735   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
736   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
737   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
738 
739   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
740   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
741   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
742 
743   ProjNode *proj_always;
744   ProjNode *proj_never;
745   // We must negate the branch if the implicit check doesn't follow
746   // the branch's TRUE path. Then, the new TRUE branch target will
747   // be the old FALSE branch target.
748   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
749     proj_never  = projt;
750     proj_always = projf;
751   } else {
752     // We must negate the branch if the trap doesn't follow the
753     // branch's TRUE path. Then, the new TRUE branch target will
754     // be the old FALSE branch target.
755     proj_never  = projf;
756     proj_always = projt;
757     iff->negate();
758   }
759   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
760   // Map the successors properly
761   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
762   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
763 
764   if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
765     block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
766     block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
767   }
768 
769   // Place the fall through block after this block.
770   Block *bs1 = block->non_connector_successor(1);
771   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
772     bnext = bs1;
773   }
774   // If the fall through block still is not the next block, insert a goto.
775   if (bs1 != bnext) {
776     insert_goto_at(block_pos, 1);
777   }
778   return bnext;
779 }
780 
781 // Fix up the final control flow for basic blocks.
fixup_flow()782 void PhaseCFG::fixup_flow() {
783   // Fixup final control flow for the blocks.  Remove jump-to-next
784   // block. If neither arm of an IF follows the conditional branch, we
785   // have to add a second jump after the conditional.  We place the
786   // TRUE branch target in succs[0] for both GOTOs and IFs.
787   for (uint i = 0; i < number_of_blocks(); i++) {
788     Block* block = get_block(i);
789     block->_pre_order = i;          // turn pre-order into block-index
790 
791     // Connector blocks need no further processing.
792     if (block->is_connector()) {
793       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
794       continue;
795     }
796     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
797 
798     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
799     Block* bs0 = block->non_connector_successor(0);
800 
801     // Check for multi-way branches where I cannot negate the test to
802     // exchange the true and false targets.
803     if (no_flip_branch(block)) {
804       // Find fall through case - if must fall into its target.
805       // Get the index of the branch's first successor.
806       int branch_idx = block->number_of_nodes() - block->_num_succs;
807 
808       // The branch is 1 before the branch's first successor.
809       Node *branch = block->get_node(branch_idx-1);
810 
811       // Handle no-flip branches which have implicit checks and which require
812       // special block ordering and individual semantics of the 'fall through
813       // case'.
814       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
815           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
816         bnext = fixup_trap_based_check(branch, block, i, bnext);
817       } else {
818         // Else, default handling for no-flip branches
819         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
820           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
821           if (p->_con == 0) {
822             // successor j2 is fall through case
823             if (block->non_connector_successor(j2) != bnext) {
824               // but it is not the next block => insert a goto
825               insert_goto_at(i, j2);
826             }
827             // Put taken branch in slot 0
828             if (j2 == 0 && block->_num_succs == 2) {
829               // Flip targets in succs map
830               Block *tbs0 = block->_succs[0];
831               Block *tbs1 = block->_succs[1];
832               block->_succs.map(0, tbs1);
833               block->_succs.map(1, tbs0);
834             }
835             break;
836           }
837         }
838       }
839 
840       // Remove all CatchProjs
841       for (uint j = 0; j < block->_num_succs; j++) {
842         block->pop_node();
843       }
844 
845     } else if (block->_num_succs == 1) {
846       // Block ends in a Goto?
847       if (bnext == bs0) {
848         // We fall into next block; remove the Goto
849         block->pop_node();
850       }
851 
852     } else if(block->_num_succs == 2) { // Block ends in a If?
853       // Get opcode of 1st projection (matches _succs[0])
854       // Note: Since this basic block has 2 exits, the last 2 nodes must
855       //       be projections (in any order), the 3rd last node must be
856       //       the IfNode (we have excluded other 2-way exits such as
857       //       CatchNodes already).
858       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
859       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
860       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
861 
862       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
863       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
864       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
865 
866       Block* bs1 = block->non_connector_successor(1);
867 
868       // Check for neither successor block following the current
869       // block ending in a conditional. If so, move one of the
870       // successors after the current one, provided that the
871       // successor was previously unscheduled, but moveable
872       // (i.e., all paths to it involve a branch).
873       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
874         // Choose the more common successor based on the probability
875         // of the conditional branch.
876         Block* bx = bs0;
877         Block* by = bs1;
878 
879         // _prob is the probability of taking the true path. Make
880         // p the probability of taking successor #1.
881         float p = iff->as_MachIf()->_prob;
882         if (proj0->Opcode() == Op_IfTrue) {
883           p = 1.0 - p;
884         }
885 
886         // Prefer successor #1 if p > 0.5
887         if (p > PROB_FAIR) {
888           bx = bs1;
889           by = bs0;
890         }
891 
892         // Attempt the more common successor first
893         if (move_to_next(bx, i)) {
894           bnext = bx;
895         } else if (move_to_next(by, i)) {
896           bnext = by;
897         }
898       }
899 
900       // Check for conditional branching the wrong way.  Negate
901       // conditional, if needed, so it falls into the following block
902       // and branches to the not-following block.
903 
904       // Check for the next block being in succs[0].  We are going to branch
905       // to succs[0], so we want the fall-thru case as the next block in
906       // succs[1].
907       if (bnext == bs0) {
908         // Fall-thru case in succs[0], so flip targets in succs map
909         Block* tbs0 = block->_succs[0];
910         Block* tbs1 = block->_succs[1];
911         block->_succs.map(0, tbs1);
912         block->_succs.map(1, tbs0);
913         // Flip projection for each target
914         ProjNode* tmp = proj0;
915         proj0 = proj1;
916         proj1 = tmp;
917 
918       } else if(bnext != bs1) {
919         // Need a double-branch
920         // The existing conditional branch need not change.
921         // Add a unconditional branch to the false target.
922         // Alas, it must appear in its own block and adding a
923         // block this late in the game is complicated.  Sigh.
924         insert_goto_at(i, 1);
925       }
926 
927       // Make sure we TRUE branch to the target
928       if (proj0->Opcode() == Op_IfFalse) {
929         iff->as_MachIf()->negate();
930       }
931 
932       block->pop_node();          // Remove IfFalse & IfTrue projections
933       block->pop_node();
934 
935     } else {
936       // Multi-exit block, e.g. a switch statement
937       // But we don't need to do anything here
938     }
939   } // End of for all blocks
940 }
941 
942 
943 // postalloc_expand: Expand nodes after register allocation.
944 //
945 // postalloc_expand has to be called after register allocation, just
946 // before output (i.e. scheduling). It only gets called if
947 // Matcher::require_postalloc_expand is true.
948 //
949 // Background:
950 //
951 // Nodes that are expandend (one compound node requiring several
952 // assembler instructions to be implemented split into two or more
953 // non-compound nodes) after register allocation are not as nice as
954 // the ones expanded before register allocation - they don't
955 // participate in optimizations as global code motion. But after
956 // register allocation we can expand nodes that use registers which
957 // are not spillable or registers that are not allocated, because the
958 // old compound node is simply replaced (in its location in the basic
959 // block) by a new subgraph which does not contain compound nodes any
960 // more. The scheduler called during output can later on process these
961 // non-compound nodes.
962 //
963 // Implementation:
964 //
965 // Nodes requiring postalloc expand are specified in the ad file by using
966 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
967 // contains a single call to an encoding, as does an ins_encode
968 // statement. Instead of an emit() function a postalloc_expand() function
969 // is generated that doesn't emit assembler but creates a new
970 // subgraph. The code below calls this postalloc_expand function for each
971 // node with the appropriate attribute. This function returns the new
972 // nodes generated in an array passed in the call. The old node,
973 // potential MachTemps before and potential Projs after it then get
974 // disconnected and replaced by the new nodes. The instruction
975 // generating the result has to be the last one in the array. In
976 // general it is assumed that Projs after the node expanded are
977 // kills. These kills are not required any more after expanding as
978 // there are now explicitly visible def-use chains and the Projs are
979 // removed. This does not hold for calls: They do not only have
980 // kill-Projs but also Projs defining values. Therefore Projs after
981 // the node expanded are removed for all but for calls. If a node is
982 // to be reused, it must be added to the nodes list returned, and it
983 // will be added again.
984 //
985 // Implementing the postalloc_expand function for a node in an enc_class
986 // is rather tedious. It requires knowledge about many node details, as
987 // the nodes and the subgraph must be hand crafted. To simplify this,
988 // adlc generates some utility variables into the postalloc_expand function,
989 // e.g., holding the operands as specified by the postalloc_expand encoding
990 // specification, e.g.:
991 //  * unsigned idx_<par_name>  holding the index of the node in the ins
992 //  * Node *n_<par_name>       holding the node loaded from the ins
993 //  * MachOpnd *op_<par_name>  holding the corresponding operand
994 //
995 // The ordering of operands can not be determined by looking at a
996 // rule. Especially if a match rule matches several different trees,
997 // several nodes are generated from one instruct specification with
998 // different operand orderings. In this case the adlc generated
999 // variables are the only way to access the ins and operands
1000 // deterministically.
1001 //
1002 // If assigning a register to a node that contains an oop, don't
1003 // forget to call ra_->set_oop() for the node.
postalloc_expand(PhaseRegAlloc * _ra)1004 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
1005   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
1006   GrowableArray <Node *> remove(32);
1007   GrowableArray <Node *> succs(32);
1008   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
1009   DEBUG_ONLY(bool foundNode = false);
1010 
1011   // for all blocks
1012   for (uint i = 0; i < number_of_blocks(); i++) {
1013     Block *b = _blocks[i];
1014     // For all instructions in the current block.
1015     for (uint j = 0; j < b->number_of_nodes(); j++) {
1016       Node *n = b->get_node(j);
1017       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1018 #ifdef ASSERT
1019         if (TracePostallocExpand) {
1020           if (!foundNode) {
1021             foundNode = true;
1022             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1023                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1024           }
1025           tty->print("  postalloc expanding "); n->dump();
1026           if (Verbose) {
1027             tty->print("    with ins:\n");
1028             for (uint k = 0; k < n->len(); ++k) {
1029               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1030             }
1031           }
1032         }
1033 #endif
1034         new_nodes.clear();
1035         // Collect nodes that have to be removed from the block later on.
1036         uint req = n->req();
1037         remove.clear();
1038         for (uint k = 0; k < req; ++k) {
1039           if (n->in(k) && n->in(k)->is_MachTemp()) {
1040             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1041             n->in(k)->del_req(0);
1042             j--;
1043           }
1044         }
1045 
1046         // Check whether we can allocate enough nodes. We set a fix limit for
1047         // the size of postalloc expands with this.
1048         uint unique_limit = C->unique() + 40;
1049         if (unique_limit >= _ra->node_regs_max_index()) {
1050           Compile::current()->record_failure("out of nodes in postalloc expand");
1051           return;
1052         }
1053 
1054         // Emit (i.e. generate new nodes).
1055         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1056 
1057         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1058 
1059         // Disconnect the inputs of the old node.
1060         //
1061         // We reuse MachSpillCopy nodes. If we need to expand them, there
1062         // are many, so reusing pays off. If reused, the node already
1063         // has the new ins. n must be the last node on new_nodes list.
1064         if (!n->is_MachSpillCopy()) {
1065           for (int k = req - 1; k >= 0; --k) {
1066             n->del_req(k);
1067           }
1068         }
1069 
1070 #ifdef ASSERT
1071         // Check that all nodes have proper operands.
1072         for (int k = 0; k < new_nodes.length(); ++k) {
1073           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1074           MachNode *m = new_nodes.at(k)->as_Mach();
1075           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1076             if (MachOper::notAnOper(m->_opnds[l])) {
1077               outputStream *os = tty;
1078               os->print("Node %s ", m->Name());
1079               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1080               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1081             }
1082           }
1083         }
1084 #endif
1085 
1086         // Collect succs of old node in remove (for projections) and in succs (for
1087         // all other nodes) do _not_ collect projections in remove (but in succs)
1088         // in case the node is a call. We need the projections for calls as they are
1089         // associated with registes (i.e. they are defs).
1090         succs.clear();
1091         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1092           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1093             remove.push(n->out(k));
1094           } else {
1095             succs.push(n->out(k));
1096           }
1097         }
1098         // Replace old node n as input of its succs by last of the new nodes.
1099         for (int k = 0; k < succs.length(); ++k) {
1100           Node *succ = succs.at(k);
1101           for (uint l = 0; l < succ->req(); ++l) {
1102             if (succ->in(l) == n) {
1103               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1104             }
1105           }
1106           for (uint l = succ->req(); l < succ->len(); ++l) {
1107             if (succ->in(l) == n) {
1108               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1109             }
1110           }
1111         }
1112 
1113         // Index of old node in block.
1114         uint index = b->find_node(n);
1115         // Insert new nodes into block and map them in nodes->blocks array
1116         // and remember last node in n2.
1117         Node *n2 = NULL;
1118         for (int k = 0; k < new_nodes.length(); ++k) {
1119           n2 = new_nodes.at(k);
1120           b->insert_node(n2, ++index);
1121           map_node_to_block(n2, b);
1122         }
1123 
1124         // Add old node n to remove and remove them all from block.
1125         remove.push(n);
1126         j--;
1127 #ifdef ASSERT
1128         if (TracePostallocExpand && Verbose) {
1129           tty->print("    removing:\n");
1130           for (int k = 0; k < remove.length(); ++k) {
1131             tty->print("        "); remove.at(k)->dump();
1132           }
1133           tty->print("    inserting:\n");
1134           for (int k = 0; k < new_nodes.length(); ++k) {
1135             tty->print("        "); new_nodes.at(k)->dump();
1136           }
1137         }
1138 #endif
1139         for (int k = 0; k < remove.length(); ++k) {
1140           if (b->contains(remove.at(k))) {
1141             b->find_remove(remove.at(k));
1142           } else {
1143             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1144           }
1145         }
1146         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1147         // This does not always work. Some postalloc expands don't insert any nodes, if they
1148         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1149         j = n2 ? b->find_node(n2) : j;
1150       }
1151     }
1152   }
1153 
1154 #ifdef ASSERT
1155   if (foundNode) {
1156     tty->print("FINISHED %d %s\n", C->compile_id(),
1157                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1158     tty->flush();
1159   }
1160 #endif
1161 }
1162 
1163 
1164 //------------------------------dump-------------------------------------------
1165 #ifndef PRODUCT
_dump_cfg(const Node * end,VectorSet & visited) const1166 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1167   const Node *x = end->is_block_proj();
1168   assert( x, "not a CFG" );
1169 
1170   // Do not visit this block again
1171   if( visited.test_set(x->_idx) ) return;
1172 
1173   // Skip through this block
1174   const Node *p = x;
1175   do {
1176     p = p->in(0);               // Move control forward
1177     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1178   } while( !p->is_block_start() );
1179 
1180   // Recursively visit
1181   for (uint i = 1; i < p->req(); i++) {
1182     _dump_cfg(p->in(i), visited);
1183   }
1184 
1185   // Dump the block
1186   get_block_for_node(p)->dump(this);
1187 }
1188 
dump() const1189 void PhaseCFG::dump( ) const {
1190   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1191   if (_blocks.size()) {        // Did we do basic-block layout?
1192     for (uint i = 0; i < number_of_blocks(); i++) {
1193       const Block* block = get_block(i);
1194       block->dump(this);
1195     }
1196   } else {                      // Else do it with a DFS
1197     VectorSet visited(_block_arena);
1198     _dump_cfg(_root,visited);
1199   }
1200 }
1201 
dump_headers()1202 void PhaseCFG::dump_headers() {
1203   for (uint i = 0; i < number_of_blocks(); i++) {
1204     Block* block = get_block(i);
1205     if (block != NULL) {
1206       block->dump_head(this);
1207     }
1208   }
1209 }
1210 
verify() const1211 void PhaseCFG::verify() const {
1212 #ifdef ASSERT
1213   // Verify sane CFG
1214   for (uint i = 0; i < number_of_blocks(); i++) {
1215     Block* block = get_block(i);
1216     uint cnt = block->number_of_nodes();
1217     uint j;
1218     for (j = 0; j < cnt; j++)  {
1219       Node *n = block->get_node(j);
1220       assert(get_block_for_node(n) == block, "");
1221       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1222         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1223       }
1224       if (n->needs_anti_dependence_check()) {
1225         verify_anti_dependences(block, n);
1226       }
1227       for (uint k = 0; k < n->req(); k++) {
1228         Node *def = n->in(k);
1229         if (def && def != n) {
1230           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1231           // Verify that instructions in the block is in correct order.
1232           // Uses must follow their definition if they are at the same block.
1233           // Mostly done to check that MachSpillCopy nodes are placed correctly
1234           // when CreateEx node is moved in build_ifg_physical().
1235           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1236               // See (+++) comment in reg_split.cpp
1237               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1238             bool is_loop = false;
1239             if (n->is_Phi()) {
1240               for (uint l = 1; l < def->req(); l++) {
1241                 if (n == def->in(l)) {
1242                   is_loop = true;
1243                   break; // Some kind of loop
1244                 }
1245               }
1246             }
1247             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1248           }
1249         }
1250       }
1251     }
1252 
1253     j = block->end_idx();
1254     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1255     assert(bp, "last instruction must be a block proj");
1256     assert(bp == block->get_node(j), "wrong number of successors for this block");
1257     if (bp->is_Catch()) {
1258       while (block->get_node(--j)->is_MachProj()) {
1259         ;
1260       }
1261       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1262     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1263       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1264     }
1265   }
1266 #endif
1267 }
1268 #endif
1269 
UnionFind(uint max)1270 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1271   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1272 }
1273 
extend(uint from_idx,uint to_idx)1274 void UnionFind::extend( uint from_idx, uint to_idx ) {
1275   _nesting.check();
1276   if( from_idx >= _max ) {
1277     uint size = 16;
1278     while( size <= from_idx ) size <<=1;
1279     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1280     _max = size;
1281   }
1282   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1283   _indices[from_idx] = to_idx;
1284 }
1285 
reset(uint max)1286 void UnionFind::reset( uint max ) {
1287   // Force the Union-Find mapping to be at least this large
1288   extend(max,0);
1289   // Initialize to be the ID mapping.
1290   for( uint i=0; i<max; i++ ) map(i,i);
1291 }
1292 
1293 // Straight out of Tarjan's union-find algorithm
Find_compress(uint idx)1294 uint UnionFind::Find_compress( uint idx ) {
1295   uint cur  = idx;
1296   uint next = lookup(cur);
1297   while( next != cur ) {        // Scan chain of equivalences
1298     assert( next < cur, "always union smaller" );
1299     cur = next;                 // until find a fixed-point
1300     next = lookup(cur);
1301   }
1302   // Core of union-find algorithm: update chain of
1303   // equivalences to be equal to the root.
1304   while( idx != next ) {
1305     uint tmp = lookup(idx);
1306     map(idx, next);
1307     idx = tmp;
1308   }
1309   return idx;
1310 }
1311 
1312 // Like Find above, but no path compress, so bad asymptotic behavior
Find_const(uint idx) const1313 uint UnionFind::Find_const( uint idx ) const {
1314   if( idx == 0 ) return idx;    // Ignore the zero idx
1315   // Off the end?  This can happen during debugging dumps
1316   // when data structures have not finished being updated.
1317   if( idx >= _max ) return idx;
1318   uint next = lookup(idx);
1319   while( next != idx ) {        // Scan chain of equivalences
1320     idx = next;                 // until find a fixed-point
1321     next = lookup(idx);
1322   }
1323   return next;
1324 }
1325 
1326 // union 2 sets together.
Union(uint idx1,uint idx2)1327 void UnionFind::Union( uint idx1, uint idx2 ) {
1328   uint src = Find(idx1);
1329   uint dst = Find(idx2);
1330   assert( src, "" );
1331   assert( dst, "" );
1332   assert( src < _max, "oob" );
1333   assert( dst < _max, "oob" );
1334   assert( src < dst, "always union smaller" );
1335   map(dst,src);
1336 }
1337 
1338 #ifndef PRODUCT
dump() const1339 void Trace::dump( ) const {
1340   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1341   for (Block *b = first_block(); b != NULL; b = next(b)) {
1342     tty->print("  B%d", b->_pre_order);
1343     if (b->head()->is_Loop()) {
1344       tty->print(" (L%d)", b->compute_loop_alignment());
1345     }
1346     if (b->has_loop_alignment()) {
1347       tty->print(" (T%d)", b->code_alignment());
1348     }
1349   }
1350   tty->cr();
1351 }
1352 
dump() const1353 void CFGEdge::dump( ) const {
1354   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1355              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1356   switch(state()) {
1357   case connected:
1358     tty->print("connected");
1359     break;
1360   case open:
1361     tty->print("open");
1362     break;
1363   case interior:
1364     tty->print("interior");
1365     break;
1366   }
1367   if (infrequent()) {
1368     tty->print("  infrequent");
1369   }
1370   tty->cr();
1371 }
1372 #endif
1373 
1374 // Comparison function for edges
edge_order(CFGEdge ** e0,CFGEdge ** e1)1375 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1376   float freq0 = (*e0)->freq();
1377   float freq1 = (*e1)->freq();
1378   if (freq0 != freq1) {
1379     return freq0 > freq1 ? -1 : 1;
1380   }
1381 
1382   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1383   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1384 
1385   return dist1 - dist0;
1386 }
1387 
1388 // Comparison function for edges
trace_frequency_order(const void * p0,const void * p1)1389 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1390   Trace *tr0 = *(Trace **) p0;
1391   Trace *tr1 = *(Trace **) p1;
1392   Block *b0 = tr0->first_block();
1393   Block *b1 = tr1->first_block();
1394 
1395   // The trace of connector blocks goes at the end;
1396   // we only expect one such trace
1397   if (b0->is_connector() != b1->is_connector()) {
1398     return b1->is_connector() ? -1 : 1;
1399   }
1400 
1401   // Pull more frequently executed blocks to the beginning
1402   float freq0 = b0->_freq;
1403   float freq1 = b1->_freq;
1404   if (freq0 != freq1) {
1405     return freq0 > freq1 ? -1 : 1;
1406   }
1407 
1408   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1409 
1410   return diff;
1411 }
1412 
1413 // Find edges of interest, i.e, those which can fall through. Presumes that
1414 // edges which don't fall through are of low frequency and can be generally
1415 // ignored.  Initialize the list of traces.
find_edges()1416 void PhaseBlockLayout::find_edges() {
1417   // Walk the blocks, creating edges and Traces
1418   uint i;
1419   Trace *tr = NULL;
1420   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1421     Block* b = _cfg.get_block(i);
1422     tr = new Trace(b, next, prev);
1423     traces[tr->id()] = tr;
1424 
1425     // All connector blocks should be at the end of the list
1426     if (b->is_connector()) break;
1427 
1428     // If this block and the next one have a one-to-one successor
1429     // predecessor relationship, simply append the next block
1430     int nfallthru = b->num_fall_throughs();
1431     while (nfallthru == 1 &&
1432            b->succ_fall_through(0)) {
1433       Block *n = b->_succs[0];
1434 
1435       // Skip over single-entry connector blocks, we don't want to
1436       // add them to the trace.
1437       while (n->is_connector() && n->num_preds() == 1) {
1438         n = n->_succs[0];
1439       }
1440 
1441       // We see a merge point, so stop search for the next block
1442       if (n->num_preds() != 1) break;
1443 
1444       i++;
1445       assert(n == _cfg.get_block(i), "expecting next block");
1446       tr->append(n);
1447       uf->map(n->_pre_order, tr->id());
1448       traces[n->_pre_order] = NULL;
1449       nfallthru = b->num_fall_throughs();
1450       b = n;
1451     }
1452 
1453     if (nfallthru > 0) {
1454       // Create a CFGEdge for each outgoing
1455       // edge that could be a fall-through.
1456       for (uint j = 0; j < b->_num_succs; j++ ) {
1457         if (b->succ_fall_through(j)) {
1458           Block *target = b->non_connector_successor(j);
1459           float freq = b->_freq * b->succ_prob(j);
1460           int from_pct = (int) ((100 * freq) / b->_freq);
1461           int to_pct = (int) ((100 * freq) / target->_freq);
1462           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1463         }
1464       }
1465     }
1466   }
1467 
1468   // Group connector blocks into one trace
1469   for (i++; i < _cfg.number_of_blocks(); i++) {
1470     Block *b = _cfg.get_block(i);
1471     assert(b->is_connector(), "connector blocks at the end");
1472     tr->append(b);
1473     uf->map(b->_pre_order, tr->id());
1474     traces[b->_pre_order] = NULL;
1475   }
1476 }
1477 
1478 // Union two traces together in uf, and null out the trace in the list
union_traces(Trace * updated_trace,Trace * old_trace)1479 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1480   uint old_id = old_trace->id();
1481   uint updated_id = updated_trace->id();
1482 
1483   uint lo_id = updated_id;
1484   uint hi_id = old_id;
1485 
1486   // If from is greater than to, swap values to meet
1487   // UnionFind guarantee.
1488   if (updated_id > old_id) {
1489     lo_id = old_id;
1490     hi_id = updated_id;
1491 
1492     // Fix up the trace ids
1493     traces[lo_id] = traces[updated_id];
1494     updated_trace->set_id(lo_id);
1495   }
1496 
1497   // Union the lower with the higher and remove the pointer
1498   // to the higher.
1499   uf->Union(lo_id, hi_id);
1500   traces[hi_id] = NULL;
1501 }
1502 
1503 // Append traces together via the most frequently executed edges
grow_traces()1504 void PhaseBlockLayout::grow_traces() {
1505   // Order the edges, and drive the growth of Traces via the most
1506   // frequently executed edges.
1507   edges->sort(edge_order);
1508   for (int i = 0; i < edges->length(); i++) {
1509     CFGEdge *e = edges->at(i);
1510 
1511     if (e->state() != CFGEdge::open) continue;
1512 
1513     Block *src_block = e->from();
1514     Block *targ_block = e->to();
1515 
1516     // Don't grow traces along backedges?
1517     if (!BlockLayoutRotateLoops) {
1518       if (targ_block->_rpo <= src_block->_rpo) {
1519         targ_block->set_loop_alignment(targ_block);
1520         continue;
1521       }
1522     }
1523 
1524     Trace *src_trace = trace(src_block);
1525     Trace *targ_trace = trace(targ_block);
1526 
1527     // If the edge in question can join two traces at their ends,
1528     // append one trace to the other.
1529    if (src_trace->last_block() == src_block) {
1530       if (src_trace == targ_trace) {
1531         e->set_state(CFGEdge::interior);
1532         if (targ_trace->backedge(e)) {
1533           // Reset i to catch any newly eligible edge
1534           // (Or we could remember the first "open" edge, and reset there)
1535           i = 0;
1536         }
1537       } else if (targ_trace->first_block() == targ_block) {
1538         e->set_state(CFGEdge::connected);
1539         src_trace->append(targ_trace);
1540         union_traces(src_trace, targ_trace);
1541       }
1542     }
1543   }
1544 }
1545 
1546 // Embed one trace into another, if the fork or join points are sufficiently
1547 // balanced.
merge_traces(bool fall_thru_only)1548 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1549   // Walk the edge list a another time, looking at unprocessed edges.
1550   // Fold in diamonds
1551   for (int i = 0; i < edges->length(); i++) {
1552     CFGEdge *e = edges->at(i);
1553 
1554     if (e->state() != CFGEdge::open) continue;
1555     if (fall_thru_only) {
1556       if (e->infrequent()) continue;
1557     }
1558 
1559     Block *src_block = e->from();
1560     Trace *src_trace = trace(src_block);
1561     bool src_at_tail = src_trace->last_block() == src_block;
1562 
1563     Block *targ_block  = e->to();
1564     Trace *targ_trace  = trace(targ_block);
1565     bool targ_at_start = targ_trace->first_block() == targ_block;
1566 
1567     if (src_trace == targ_trace) {
1568       // This may be a loop, but we can't do much about it.
1569       e->set_state(CFGEdge::interior);
1570       continue;
1571     }
1572 
1573     if (fall_thru_only) {
1574       // If the edge links the middle of two traces, we can't do anything.
1575       // Mark the edge and continue.
1576       if (!src_at_tail & !targ_at_start) {
1577         continue;
1578       }
1579 
1580       // Don't grow traces along backedges?
1581       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1582           continue;
1583       }
1584 
1585       // If both ends of the edge are available, why didn't we handle it earlier?
1586       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1587 
1588       if (targ_at_start) {
1589         // Insert the "targ" trace in the "src" trace if the insertion point
1590         // is a two way branch.
1591         // Better profitability check possible, but may not be worth it.
1592         // Someday, see if the this "fork" has an associated "join";
1593         // then make a policy on merging this trace at the fork or join.
1594         // For example, other things being equal, it may be better to place this
1595         // trace at the join point if the "src" trace ends in a two-way, but
1596         // the insertion point is one-way.
1597         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1598         e->set_state(CFGEdge::connected);
1599         src_trace->insert_after(src_block, targ_trace);
1600         union_traces(src_trace, targ_trace);
1601       } else if (src_at_tail) {
1602         if (src_trace != trace(_cfg.get_root_block())) {
1603           e->set_state(CFGEdge::connected);
1604           targ_trace->insert_before(targ_block, src_trace);
1605           union_traces(targ_trace, src_trace);
1606         }
1607       }
1608     } else if (e->state() == CFGEdge::open) {
1609       // Append traces, even without a fall-thru connection.
1610       // But leave root entry at the beginning of the block list.
1611       if (targ_trace != trace(_cfg.get_root_block())) {
1612         e->set_state(CFGEdge::connected);
1613         src_trace->append(targ_trace);
1614         union_traces(src_trace, targ_trace);
1615       }
1616     }
1617   }
1618 }
1619 
1620 // Order the sequence of the traces in some desirable way, and fixup the
1621 // jumps at the end of each block.
reorder_traces(int count)1622 void PhaseBlockLayout::reorder_traces(int count) {
1623   ResourceArea *area = Thread::current()->resource_area();
1624   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1625   Block_List worklist;
1626   int new_count = 0;
1627 
1628   // Compact the traces.
1629   for (int i = 0; i < count; i++) {
1630     Trace *tr = traces[i];
1631     if (tr != NULL) {
1632       new_traces[new_count++] = tr;
1633     }
1634   }
1635 
1636   // The entry block should be first on the new trace list.
1637   Trace *tr = trace(_cfg.get_root_block());
1638   assert(tr == new_traces[0], "entry trace misplaced");
1639 
1640   // Sort the new trace list by frequency
1641   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1642 
1643   // Patch up the successor blocks
1644   _cfg.clear_blocks();
1645   for (int i = 0; i < new_count; i++) {
1646     Trace *tr = new_traces[i];
1647     if (tr != NULL) {
1648       tr->fixup_blocks(_cfg);
1649     }
1650   }
1651 }
1652 
1653 // Order basic blocks based on frequency
PhaseBlockLayout(PhaseCFG & cfg)1654 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1655 : Phase(BlockLayout)
1656 , _cfg(cfg) {
1657   ResourceMark rm;
1658   ResourceArea *area = Thread::current()->resource_area();
1659 
1660   // List of traces
1661   int size = _cfg.number_of_blocks() + 1;
1662   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1663   memset(traces, 0, size*sizeof(Trace*));
1664   next = NEW_ARENA_ARRAY(area, Block *, size);
1665   memset(next,   0, size*sizeof(Block *));
1666   prev = NEW_ARENA_ARRAY(area, Block *, size);
1667   memset(prev  , 0, size*sizeof(Block *));
1668 
1669   // List of edges
1670   edges = new GrowableArray<CFGEdge*>;
1671 
1672   // Mapping block index --> block_trace
1673   uf = new UnionFind(size);
1674   uf->reset(size);
1675 
1676   // Find edges and create traces.
1677   find_edges();
1678 
1679   // Grow traces at their ends via most frequent edges.
1680   grow_traces();
1681 
1682   // Merge one trace into another, but only at fall-through points.
1683   // This may make diamonds and other related shapes in a trace.
1684   merge_traces(true);
1685 
1686   // Run merge again, allowing two traces to be catenated, even if
1687   // one does not fall through into the other. This appends loosely
1688   // related traces to be near each other.
1689   merge_traces(false);
1690 
1691   // Re-order all the remaining traces by frequency
1692   reorder_traces(size);
1693 
1694   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1695 }
1696 
1697 
1698 // Edge e completes a loop in a trace. If the target block is head of the
1699 // loop, rotate the loop block so that the loop ends in a conditional branch.
backedge(CFGEdge * e)1700 bool Trace::backedge(CFGEdge *e) {
1701   bool loop_rotated = false;
1702   Block *src_block  = e->from();
1703   Block *targ_block    = e->to();
1704 
1705   assert(last_block() == src_block, "loop discovery at back branch");
1706   if (first_block() == targ_block) {
1707     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1708       // Find the last block in the trace that has a conditional
1709       // branch.
1710       Block *b;
1711       for (b = last_block(); b != NULL; b = prev(b)) {
1712         if (b->num_fall_throughs() == 2) {
1713           break;
1714         }
1715       }
1716 
1717       if (b != last_block() && b != NULL) {
1718         loop_rotated = true;
1719 
1720         // Rotate the loop by doing two-part linked-list surgery.
1721         append(first_block());
1722         break_loop_after(b);
1723       }
1724     }
1725 
1726     // Backbranch to the top of a trace
1727     // Scroll forward through the trace from the targ_block. If we find
1728     // a loop head before another loop top, use the the loop head alignment.
1729     for (Block *b = targ_block; b != NULL; b = next(b)) {
1730       if (b->has_loop_alignment()) {
1731         break;
1732       }
1733       if (b->head()->is_Loop()) {
1734         targ_block = b;
1735         break;
1736       }
1737     }
1738 
1739     first_block()->set_loop_alignment(targ_block);
1740 
1741   } else {
1742     // That loop may already have a loop top (we're reaching it again
1743     // through the backedge of an outer loop)
1744     Block* b = prev(targ_block);
1745     bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop();
1746     if (!has_top) {
1747       // Backbranch into the middle of a trace
1748       targ_block->set_loop_alignment(targ_block);
1749     }
1750   }
1751 
1752   return loop_rotated;
1753 }
1754 
1755 // push blocks onto the CFG list
1756 // ensure that blocks have the correct two-way branch sense
fixup_blocks(PhaseCFG & cfg)1757 void Trace::fixup_blocks(PhaseCFG &cfg) {
1758   Block *last = last_block();
1759   for (Block *b = first_block(); b != NULL; b = next(b)) {
1760     cfg.add_block(b);
1761     if (!b->is_connector()) {
1762       int nfallthru = b->num_fall_throughs();
1763       if (b != last) {
1764         if (nfallthru == 2) {
1765           // Ensure that the sense of the branch is correct
1766           Block *bnext = next(b);
1767           Block *bs0 = b->non_connector_successor(0);
1768 
1769           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1770           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1771           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1772 
1773           if (bnext == bs0) {
1774             // Fall-thru case in succs[0], should be in succs[1]
1775 
1776             // Flip targets in _succs map
1777             Block *tbs0 = b->_succs[0];
1778             Block *tbs1 = b->_succs[1];
1779             b->_succs.map( 0, tbs1 );
1780             b->_succs.map( 1, tbs0 );
1781 
1782             // Flip projections to match targets
1783             b->map_node(proj1, b->number_of_nodes() - 2);
1784             b->map_node(proj0, b->number_of_nodes() - 1);
1785           }
1786         }
1787       }
1788     }
1789   }
1790 }
1791