1 /*
2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "gc/shared/collectedHeap.inline.hpp"
28 #include "libadt/vectset.hpp"
29 #include "memory/universe.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/arraycopynode.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/cfgnode.hpp"
35 #include "opto/compile.hpp"
36 #include "opto/convertnode.hpp"
37 #include "opto/graphKit.hpp"
38 #include "opto/intrinsicnode.hpp"
39 #include "opto/locknode.hpp"
40 #include "opto/loopnode.hpp"
41 #include "opto/macro.hpp"
42 #include "opto/memnode.hpp"
43 #include "opto/narrowptrnode.hpp"
44 #include "opto/node.hpp"
45 #include "opto/opaquenode.hpp"
46 #include "opto/phaseX.hpp"
47 #include "opto/rootnode.hpp"
48 #include "opto/runtime.hpp"
49 #include "opto/subnode.hpp"
50 #include "opto/subtypenode.hpp"
51 #include "opto/type.hpp"
52 #include "prims/jvmtiExport.hpp"
53 #include "runtime/sharedRuntime.hpp"
54 #include "utilities/macros.hpp"
55 #include "utilities/powerOfTwo.hpp"
56 #if INCLUDE_G1GC
57 #include "gc/g1/g1ThreadLocalData.hpp"
58 #endif // INCLUDE_G1GC
59 #if INCLUDE_SHENANDOAHGC
60 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
61 #endif
62 
63 
64 //
65 // Replace any references to "oldref" in inputs to "use" with "newref".
66 // Returns the number of replacements made.
67 //
replace_input(Node * use,Node * oldref,Node * newref)68 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
69   int nreplacements = 0;
70   uint req = use->req();
71   for (uint j = 0; j < use->len(); j++) {
72     Node *uin = use->in(j);
73     if (uin == oldref) {
74       if (j < req)
75         use->set_req(j, newref);
76       else
77         use->set_prec(j, newref);
78       nreplacements++;
79     } else if (j >= req && uin == NULL) {
80       break;
81     }
82   }
83   return nreplacements;
84 }
85 
migrate_outs(Node * old,Node * target)86 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
87   assert(old != NULL, "sanity");
88   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
89     Node* use = old->fast_out(i);
90     _igvn.rehash_node_delayed(use);
91     imax -= replace_input(use, old, target);
92     // back up iterator
93     --i;
94   }
95   assert(old->outcnt() == 0, "all uses must be deleted");
96 }
97 
opt_bits_test(Node * ctrl,Node * region,int edge,Node * word,int mask,int bits,bool return_fast_path)98 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
99   Node* cmp;
100   if (mask != 0) {
101     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
102     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
103   } else {
104     cmp = word;
105   }
106   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
107   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
108   transform_later(iff);
109 
110   // Fast path taken.
111   Node *fast_taken = transform_later(new IfFalseNode(iff));
112 
113   // Fast path not-taken, i.e. slow path
114   Node *slow_taken = transform_later(new IfTrueNode(iff));
115 
116   if (return_fast_path) {
117     region->init_req(edge, slow_taken); // Capture slow-control
118     return fast_taken;
119   } else {
120     region->init_req(edge, fast_taken); // Capture fast-control
121     return slow_taken;
122   }
123 }
124 
125 //--------------------copy_predefined_input_for_runtime_call--------------------
copy_predefined_input_for_runtime_call(Node * ctrl,CallNode * oldcall,CallNode * call)126 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
127   // Set fixed predefined input arguments
128   call->init_req( TypeFunc::Control, ctrl );
129   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
130   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
131   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
132   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
133 }
134 
135 //------------------------------make_slow_call---------------------------------
make_slow_call(CallNode * oldcall,const TypeFunc * slow_call_type,address slow_call,const char * leaf_name,Node * slow_path,Node * parm0,Node * parm1,Node * parm2)136 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
137                                            address slow_call, const char* leaf_name, Node* slow_path,
138                                            Node* parm0, Node* parm1, Node* parm2) {
139 
140   // Slow-path call
141  CallNode *call = leaf_name
142    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
143    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
144 
145   // Slow path call has no side-effects, uses few values
146   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
147   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
148   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
149   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
150   call->copy_call_debug_info(&_igvn, oldcall);
151   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
152   _igvn.replace_node(oldcall, call);
153   transform_later(call);
154 
155   return call;
156 }
157 
extract_call_projections(CallNode * call)158 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
159   _fallthroughproj = NULL;
160   _fallthroughcatchproj = NULL;
161   _ioproj_fallthrough = NULL;
162   _ioproj_catchall = NULL;
163   _catchallcatchproj = NULL;
164   _memproj_fallthrough = NULL;
165   _memproj_catchall = NULL;
166   _resproj = NULL;
167   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
168     ProjNode *pn = call->fast_out(i)->as_Proj();
169     switch (pn->_con) {
170       case TypeFunc::Control:
171       {
172         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
173         _fallthroughproj = pn;
174         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
175         const Node *cn = pn->fast_out(j);
176         if (cn->is_Catch()) {
177           ProjNode *cpn = NULL;
178           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
179             cpn = cn->fast_out(k)->as_Proj();
180             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
181             if (cpn->_con == CatchProjNode::fall_through_index)
182               _fallthroughcatchproj = cpn;
183             else {
184               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
185               _catchallcatchproj = cpn;
186             }
187           }
188         }
189         break;
190       }
191       case TypeFunc::I_O:
192         if (pn->_is_io_use)
193           _ioproj_catchall = pn;
194         else
195           _ioproj_fallthrough = pn;
196         break;
197       case TypeFunc::Memory:
198         if (pn->_is_io_use)
199           _memproj_catchall = pn;
200         else
201           _memproj_fallthrough = pn;
202         break;
203       case TypeFunc::Parms:
204         _resproj = pn;
205         break;
206       default:
207         assert(false, "unexpected projection from allocation node.");
208     }
209   }
210 
211 }
212 
eliminate_gc_barrier(Node * p2x)213 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
214   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
215   bs->eliminate_gc_barrier(this, p2x);
216 }
217 
218 // Search for a memory operation for the specified memory slice.
scan_mem_chain(Node * mem,int alias_idx,int offset,Node * start_mem,Node * alloc,PhaseGVN * phase)219 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
220   Node *orig_mem = mem;
221   Node *alloc_mem = alloc->in(TypeFunc::Memory);
222   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
223   while (true) {
224     if (mem == alloc_mem || mem == start_mem ) {
225       return mem;  // hit one of our sentinels
226     } else if (mem->is_MergeMem()) {
227       mem = mem->as_MergeMem()->memory_at(alias_idx);
228     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
229       Node *in = mem->in(0);
230       // we can safely skip over safepoints, calls, locks and membars because we
231       // already know that the object is safe to eliminate.
232       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
233         return in;
234       } else if (in->is_Call()) {
235         CallNode *call = in->as_Call();
236         if (call->may_modify(tinst, phase)) {
237           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
238           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
239             return in;
240           }
241         }
242         mem = in->in(TypeFunc::Memory);
243       } else if (in->is_MemBar()) {
244         ArrayCopyNode* ac = NULL;
245         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
246           if (ac != NULL) {
247             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
248             return ac;
249           }
250         }
251         mem = in->in(TypeFunc::Memory);
252       } else {
253         assert(false, "unexpected projection");
254       }
255     } else if (mem->is_Store()) {
256       const TypePtr* atype = mem->as_Store()->adr_type();
257       int adr_idx = phase->C->get_alias_index(atype);
258       if (adr_idx == alias_idx) {
259         assert(atype->isa_oopptr(), "address type must be oopptr");
260         int adr_offset = atype->offset();
261         uint adr_iid = atype->is_oopptr()->instance_id();
262         // Array elements references have the same alias_idx
263         // but different offset and different instance_id.
264         if (adr_offset == offset && adr_iid == alloc->_idx)
265           return mem;
266       } else {
267         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
268       }
269       mem = mem->in(MemNode::Memory);
270     } else if (mem->is_ClearArray()) {
271       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
272         // Can not bypass initialization of the instance
273         // we are looking.
274         debug_only(intptr_t offset;)
275         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
276         InitializeNode* init = alloc->as_Allocate()->initialization();
277         // We are looking for stored value, return Initialize node
278         // or memory edge from Allocate node.
279         if (init != NULL)
280           return init;
281         else
282           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
283       }
284       // Otherwise skip it (the call updated 'mem' value).
285     } else if (mem->Opcode() == Op_SCMemProj) {
286       mem = mem->in(0);
287       Node* adr = NULL;
288       if (mem->is_LoadStore()) {
289         adr = mem->in(MemNode::Address);
290       } else {
291         assert(mem->Opcode() == Op_EncodeISOArray ||
292                mem->Opcode() == Op_StrCompressedCopy, "sanity");
293         adr = mem->in(3); // Destination array
294       }
295       const TypePtr* atype = adr->bottom_type()->is_ptr();
296       int adr_idx = phase->C->get_alias_index(atype);
297       if (adr_idx == alias_idx) {
298         DEBUG_ONLY(mem->dump();)
299         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
300         return NULL;
301       }
302       mem = mem->in(MemNode::Memory);
303    } else if (mem->Opcode() == Op_StrInflatedCopy) {
304       Node* adr = mem->in(3); // Destination array
305       const TypePtr* atype = adr->bottom_type()->is_ptr();
306       int adr_idx = phase->C->get_alias_index(atype);
307       if (adr_idx == alias_idx) {
308         DEBUG_ONLY(mem->dump();)
309         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
310         return NULL;
311       }
312       mem = mem->in(MemNode::Memory);
313     } else {
314       return mem;
315     }
316     assert(mem != orig_mem, "dead memory loop");
317   }
318 }
319 
320 // Generate loads from source of the arraycopy for fields of
321 // destination needed at a deoptimization point
make_arraycopy_load(ArrayCopyNode * ac,intptr_t offset,Node * ctl,Node * mem,BasicType ft,const Type * ftype,AllocateNode * alloc)322 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
323   BasicType bt = ft;
324   const Type *type = ftype;
325   if (ft == T_NARROWOOP) {
326     bt = T_OBJECT;
327     type = ftype->make_oopptr();
328   }
329   Node* res = NULL;
330   if (ac->is_clonebasic()) {
331     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
332     Node* base = ac->in(ArrayCopyNode::Src);
333     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
334     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
335     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
336     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
337     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
338   } else {
339     if (ac->modifies(offset, offset, &_igvn, true)) {
340       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
341       uint shift = exact_log2(type2aelembytes(bt));
342       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
343       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
344       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
345       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
346 
347       Node* adr = NULL;
348       const TypePtr* adr_type = NULL;
349       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
350         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
351         Node* base = ac->in(ArrayCopyNode::Src);
352         adr = _igvn.transform(new AddPNode(base, base, MakeConX(off)));
353         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
354         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
355           // Don't emit a new load from src if src == dst but try to get the value from memory instead
356           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
357         }
358       } else {
359         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
360 #ifdef _LP64
361         diff = _igvn.transform(new ConvI2LNode(diff));
362 #endif
363         diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
364 
365         Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
366         Node* base = ac->in(ArrayCopyNode::Src);
367         adr = _igvn.transform(new AddPNode(base, base, off));
368         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
369         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
370           // Non constant offset in the array: we can't statically
371           // determine the value
372           return NULL;
373         }
374       }
375       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
376       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
377       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
378     }
379   }
380   if (res != NULL) {
381     if (ftype->isa_narrowoop()) {
382       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
383       res = _igvn.transform(new EncodePNode(res, ftype));
384     }
385     return res;
386   }
387   return NULL;
388 }
389 
390 //
391 // Given a Memory Phi, compute a value Phi containing the values from stores
392 // on the input paths.
393 // Note: this function is recursive, its depth is limited by the "level" argument
394 // Returns the computed Phi, or NULL if it cannot compute it.
value_from_mem_phi(Node * mem,BasicType ft,const Type * phi_type,const TypeOopPtr * adr_t,AllocateNode * alloc,Node_Stack * value_phis,int level)395 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
396   assert(mem->is_Phi(), "sanity");
397   int alias_idx = C->get_alias_index(adr_t);
398   int offset = adr_t->offset();
399   int instance_id = adr_t->instance_id();
400 
401   // Check if an appropriate value phi already exists.
402   Node* region = mem->in(0);
403   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
404     Node* phi = region->fast_out(k);
405     if (phi->is_Phi() && phi != mem &&
406         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
407       return phi;
408     }
409   }
410   // Check if an appropriate new value phi already exists.
411   Node* new_phi = value_phis->find(mem->_idx);
412   if (new_phi != NULL)
413     return new_phi;
414 
415   if (level <= 0) {
416     return NULL; // Give up: phi tree too deep
417   }
418   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
419   Node *alloc_mem = alloc->in(TypeFunc::Memory);
420 
421   uint length = mem->req();
422   GrowableArray <Node *> values(length, length, NULL);
423 
424   // create a new Phi for the value
425   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
426   transform_later(phi);
427   value_phis->push(phi, mem->_idx);
428 
429   for (uint j = 1; j < length; j++) {
430     Node *in = mem->in(j);
431     if (in == NULL || in->is_top()) {
432       values.at_put(j, in);
433     } else  {
434       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
435       if (val == start_mem || val == alloc_mem) {
436         // hit a sentinel, return appropriate 0 value
437         values.at_put(j, _igvn.zerocon(ft));
438         continue;
439       }
440       if (val->is_Initialize()) {
441         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
442       }
443       if (val == NULL) {
444         return NULL;  // can't find a value on this path
445       }
446       if (val == mem) {
447         values.at_put(j, mem);
448       } else if (val->is_Store()) {
449         Node* n = val->in(MemNode::ValueIn);
450         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
451         n = bs->step_over_gc_barrier(n);
452         values.at_put(j, n);
453       } else if(val->is_Proj() && val->in(0) == alloc) {
454         values.at_put(j, _igvn.zerocon(ft));
455       } else if (val->is_Phi()) {
456         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
457         if (val == NULL) {
458           return NULL;
459         }
460         values.at_put(j, val);
461       } else if (val->Opcode() == Op_SCMemProj) {
462         assert(val->in(0)->is_LoadStore() ||
463                val->in(0)->Opcode() == Op_EncodeISOArray ||
464                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
465         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
466         return NULL;
467       } else if (val->is_ArrayCopy()) {
468         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
469         if (res == NULL) {
470           return NULL;
471         }
472         values.at_put(j, res);
473       } else {
474 #ifdef ASSERT
475         val->dump();
476         assert(false, "unknown node on this path");
477 #endif
478         return NULL;  // unknown node on this path
479       }
480     }
481   }
482   // Set Phi's inputs
483   for (uint j = 1; j < length; j++) {
484     if (values.at(j) == mem) {
485       phi->init_req(j, phi);
486     } else {
487       phi->init_req(j, values.at(j));
488     }
489   }
490   return phi;
491 }
492 
493 // Search the last value stored into the object's field.
value_from_mem(Node * sfpt_mem,Node * sfpt_ctl,BasicType ft,const Type * ftype,const TypeOopPtr * adr_t,AllocateNode * alloc)494 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
495   assert(adr_t->is_known_instance_field(), "instance required");
496   int instance_id = adr_t->instance_id();
497   assert((uint)instance_id == alloc->_idx, "wrong allocation");
498 
499   int alias_idx = C->get_alias_index(adr_t);
500   int offset = adr_t->offset();
501   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
502   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
503   Node *alloc_mem = alloc->in(TypeFunc::Memory);
504   VectorSet visited;
505 
506   bool done = sfpt_mem == alloc_mem;
507   Node *mem = sfpt_mem;
508   while (!done) {
509     if (visited.test_set(mem->_idx)) {
510       return NULL;  // found a loop, give up
511     }
512     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
513     if (mem == start_mem || mem == alloc_mem) {
514       done = true;  // hit a sentinel, return appropriate 0 value
515     } else if (mem->is_Initialize()) {
516       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
517       if (mem == NULL) {
518         done = true; // Something go wrong.
519       } else if (mem->is_Store()) {
520         const TypePtr* atype = mem->as_Store()->adr_type();
521         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
522         done = true;
523       }
524     } else if (mem->is_Store()) {
525       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
526       assert(atype != NULL, "address type must be oopptr");
527       assert(C->get_alias_index(atype) == alias_idx &&
528              atype->is_known_instance_field() && atype->offset() == offset &&
529              atype->instance_id() == instance_id, "store is correct memory slice");
530       done = true;
531     } else if (mem->is_Phi()) {
532       // try to find a phi's unique input
533       Node *unique_input = NULL;
534       Node *top = C->top();
535       for (uint i = 1; i < mem->req(); i++) {
536         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
537         if (n == NULL || n == top || n == mem) {
538           continue;
539         } else if (unique_input == NULL) {
540           unique_input = n;
541         } else if (unique_input != n) {
542           unique_input = top;
543           break;
544         }
545       }
546       if (unique_input != NULL && unique_input != top) {
547         mem = unique_input;
548       } else {
549         done = true;
550       }
551     } else if (mem->is_ArrayCopy()) {
552       done = true;
553     } else {
554       assert(false, "unexpected node");
555     }
556   }
557   if (mem != NULL) {
558     if (mem == start_mem || mem == alloc_mem) {
559       // hit a sentinel, return appropriate 0 value
560       return _igvn.zerocon(ft);
561     } else if (mem->is_Store()) {
562       Node* n = mem->in(MemNode::ValueIn);
563       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
564       n = bs->step_over_gc_barrier(n);
565       return n;
566     } else if (mem->is_Phi()) {
567       // attempt to produce a Phi reflecting the values on the input paths of the Phi
568       Node_Stack value_phis(8);
569       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
570       if (phi != NULL) {
571         return phi;
572       } else {
573         // Kill all new Phis
574         while(value_phis.is_nonempty()) {
575           Node* n = value_phis.node();
576           _igvn.replace_node(n, C->top());
577           value_phis.pop();
578         }
579       }
580     } else if (mem->is_ArrayCopy()) {
581       Node* ctl = mem->in(0);
582       Node* m = mem->in(TypeFunc::Memory);
583       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
584         // pin the loads in the uncommon trap path
585         ctl = sfpt_ctl;
586         m = sfpt_mem;
587       }
588       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
589     }
590   }
591   // Something go wrong.
592   return NULL;
593 }
594 
595 // Check the possibility of scalar replacement.
can_eliminate_allocation(AllocateNode * alloc,GrowableArray<SafePointNode * > & safepoints)596 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
597   //  Scan the uses of the allocation to check for anything that would
598   //  prevent us from eliminating it.
599   NOT_PRODUCT( const char* fail_eliminate = NULL; )
600   DEBUG_ONLY( Node* disq_node = NULL; )
601   bool  can_eliminate = true;
602 
603   Node* res = alloc->result_cast();
604   const TypeOopPtr* res_type = NULL;
605   if (res == NULL) {
606     // All users were eliminated.
607   } else if (!res->is_CheckCastPP()) {
608     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
609     can_eliminate = false;
610   } else {
611     res_type = _igvn.type(res)->isa_oopptr();
612     if (res_type == NULL) {
613       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
614       can_eliminate = false;
615     } else if (res_type->isa_aryptr()) {
616       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
617       if (length < 0) {
618         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
619         can_eliminate = false;
620       }
621     }
622   }
623 
624   if (can_eliminate && res != NULL) {
625     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
626                                j < jmax && can_eliminate; j++) {
627       Node* use = res->fast_out(j);
628 
629       if (use->is_AddP()) {
630         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
631         int offset = addp_type->offset();
632 
633         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
634           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
635           can_eliminate = false;
636           break;
637         }
638         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
639                                    k < kmax && can_eliminate; k++) {
640           Node* n = use->fast_out(k);
641           if (!n->is_Store() && n->Opcode() != Op_CastP2X
642               SHENANDOAHGC_ONLY(&& (!UseShenandoahGC || !ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(n))) ) {
643             DEBUG_ONLY(disq_node = n;)
644             if (n->is_Load() || n->is_LoadStore()) {
645               NOT_PRODUCT(fail_eliminate = "Field load";)
646             } else {
647               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
648             }
649             can_eliminate = false;
650           }
651         }
652       } else if (use->is_ArrayCopy() &&
653                  (use->as_ArrayCopy()->is_clonebasic() ||
654                   use->as_ArrayCopy()->is_arraycopy_validated() ||
655                   use->as_ArrayCopy()->is_copyof_validated() ||
656                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
657                  use->in(ArrayCopyNode::Dest) == res) {
658         // ok to eliminate
659       } else if (use->is_SafePoint()) {
660         SafePointNode* sfpt = use->as_SafePoint();
661         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
662           // Object is passed as argument.
663           DEBUG_ONLY(disq_node = use;)
664           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
665           can_eliminate = false;
666         }
667         Node* sfptMem = sfpt->memory();
668         if (sfptMem == NULL || sfptMem->is_top()) {
669           DEBUG_ONLY(disq_node = use;)
670           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
671           can_eliminate = false;
672         } else {
673           safepoints.append_if_missing(sfpt);
674         }
675       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
676         if (use->is_Phi()) {
677           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
678             NOT_PRODUCT(fail_eliminate = "Object is return value";)
679           } else {
680             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
681           }
682           DEBUG_ONLY(disq_node = use;)
683         } else {
684           if (use->Opcode() == Op_Return) {
685             NOT_PRODUCT(fail_eliminate = "Object is return value";)
686           }else {
687             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
688           }
689           DEBUG_ONLY(disq_node = use;)
690         }
691         can_eliminate = false;
692       }
693     }
694   }
695 
696 #ifndef PRODUCT
697   if (PrintEliminateAllocations) {
698     if (can_eliminate) {
699       tty->print("Scalar ");
700       if (res == NULL)
701         alloc->dump();
702       else
703         res->dump();
704     } else if (alloc->_is_scalar_replaceable) {
705       tty->print("NotScalar (%s)", fail_eliminate);
706       if (res == NULL)
707         alloc->dump();
708       else
709         res->dump();
710 #ifdef ASSERT
711       if (disq_node != NULL) {
712           tty->print("  >>>> ");
713           disq_node->dump();
714       }
715 #endif /*ASSERT*/
716     }
717   }
718 #endif
719   return can_eliminate;
720 }
721 
722 // Do scalar replacement.
scalar_replacement(AllocateNode * alloc,GrowableArray<SafePointNode * > & safepoints)723 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
724   GrowableArray <SafePointNode *> safepoints_done;
725 
726   ciKlass* klass = NULL;
727   ciInstanceKlass* iklass = NULL;
728   int nfields = 0;
729   int array_base = 0;
730   int element_size = 0;
731   BasicType basic_elem_type = T_ILLEGAL;
732   ciType* elem_type = NULL;
733 
734   Node* res = alloc->result_cast();
735   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
736   const TypeOopPtr* res_type = NULL;
737   if (res != NULL) { // Could be NULL when there are no users
738     res_type = _igvn.type(res)->isa_oopptr();
739   }
740 
741   if (res != NULL) {
742     klass = res_type->klass();
743     if (res_type->isa_instptr()) {
744       // find the fields of the class which will be needed for safepoint debug information
745       assert(klass->is_instance_klass(), "must be an instance klass.");
746       iklass = klass->as_instance_klass();
747       nfields = iklass->nof_nonstatic_fields();
748     } else {
749       // find the array's elements which will be needed for safepoint debug information
750       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
751       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
752       elem_type = klass->as_array_klass()->element_type();
753       basic_elem_type = elem_type->basic_type();
754       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
755       element_size = type2aelembytes(basic_elem_type);
756     }
757   }
758   //
759   // Process the safepoint uses
760   //
761   while (safepoints.length() > 0) {
762     SafePointNode* sfpt = safepoints.pop();
763     Node* mem = sfpt->memory();
764     Node* ctl = sfpt->control();
765     assert(sfpt->jvms() != NULL, "missed JVMS");
766     // Fields of scalar objs are referenced only at the end
767     // of regular debuginfo at the last (youngest) JVMS.
768     // Record relative start index.
769     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
770     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
771 #ifdef ASSERT
772                                                  alloc,
773 #endif
774                                                  first_ind, nfields);
775     sobj->init_req(0, C->root());
776     transform_later(sobj);
777 
778     // Scan object's fields adding an input to the safepoint for each field.
779     for (int j = 0; j < nfields; j++) {
780       intptr_t offset;
781       ciField* field = NULL;
782       if (iklass != NULL) {
783         field = iklass->nonstatic_field_at(j);
784         offset = field->offset();
785         elem_type = field->type();
786         basic_elem_type = field->layout_type();
787       } else {
788         offset = array_base + j * (intptr_t)element_size;
789       }
790 
791       const Type *field_type;
792       // The next code is taken from Parse::do_get_xxx().
793       if (is_reference_type(basic_elem_type)) {
794         if (!elem_type->is_loaded()) {
795           field_type = TypeInstPtr::BOTTOM;
796         } else if (field != NULL && field->is_static_constant()) {
797           // This can happen if the constant oop is non-perm.
798           ciObject* con = field->constant_value().as_object();
799           // Do not "join" in the previous type; it doesn't add value,
800           // and may yield a vacuous result if the field is of interface type.
801           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
802           assert(field_type != NULL, "field singleton type must be consistent");
803         } else {
804           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
805         }
806         if (UseCompressedOops) {
807           field_type = field_type->make_narrowoop();
808           basic_elem_type = T_NARROWOOP;
809         }
810       } else {
811         field_type = Type::get_const_basic_type(basic_elem_type);
812       }
813 
814       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
815 
816       Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
817       if (field_val == NULL) {
818         // We weren't able to find a value for this field,
819         // give up on eliminating this allocation.
820 
821         // Remove any extra entries we added to the safepoint.
822         uint last = sfpt->req() - 1;
823         for (int k = 0;  k < j; k++) {
824           sfpt->del_req(last--);
825         }
826         _igvn._worklist.push(sfpt);
827         // rollback processed safepoints
828         while (safepoints_done.length() > 0) {
829           SafePointNode* sfpt_done = safepoints_done.pop();
830           // remove any extra entries we added to the safepoint
831           last = sfpt_done->req() - 1;
832           for (int k = 0;  k < nfields; k++) {
833             sfpt_done->del_req(last--);
834           }
835           JVMState *jvms = sfpt_done->jvms();
836           jvms->set_endoff(sfpt_done->req());
837           // Now make a pass over the debug information replacing any references
838           // to SafePointScalarObjectNode with the allocated object.
839           int start = jvms->debug_start();
840           int end   = jvms->debug_end();
841           for (int i = start; i < end; i++) {
842             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
843               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
844               if (scobj->first_index(jvms) == sfpt_done->req() &&
845                   scobj->n_fields() == (uint)nfields) {
846                 assert(scobj->alloc() == alloc, "sanity");
847                 sfpt_done->set_req(i, res);
848               }
849             }
850           }
851           _igvn._worklist.push(sfpt_done);
852         }
853 #ifndef PRODUCT
854         if (PrintEliminateAllocations) {
855           if (field != NULL) {
856             tty->print("=== At SafePoint node %d can't find value of Field: ",
857                        sfpt->_idx);
858             field->print();
859             int field_idx = C->get_alias_index(field_addr_type);
860             tty->print(" (alias_idx=%d)", field_idx);
861           } else { // Array's element
862             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
863                        sfpt->_idx, j);
864           }
865           tty->print(", which prevents elimination of: ");
866           if (res == NULL)
867             alloc->dump();
868           else
869             res->dump();
870         }
871 #endif
872         return false;
873       }
874       if (UseCompressedOops && field_type->isa_narrowoop()) {
875         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
876         // to be able scalar replace the allocation.
877         if (field_val->is_EncodeP()) {
878           field_val = field_val->in(1);
879         } else {
880           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
881         }
882       }
883       sfpt->add_req(field_val);
884     }
885     JVMState *jvms = sfpt->jvms();
886     jvms->set_endoff(sfpt->req());
887     // Now make a pass over the debug information replacing any references
888     // to the allocated object with "sobj"
889     int start = jvms->debug_start();
890     int end   = jvms->debug_end();
891     sfpt->replace_edges_in_range(res, sobj, start, end);
892     _igvn._worklist.push(sfpt);
893     safepoints_done.append_if_missing(sfpt); // keep it for rollback
894   }
895   return true;
896 }
897 
disconnect_projections(MultiNode * n,PhaseIterGVN & igvn)898 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
899   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
900   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
901   if (ctl_proj != NULL) {
902     igvn.replace_node(ctl_proj, n->in(0));
903   }
904   if (mem_proj != NULL) {
905     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
906   }
907 }
908 
909 // Process users of eliminated allocation.
process_users_of_allocation(CallNode * alloc)910 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
911   Node* res = alloc->result_cast();
912   if (res != NULL) {
913     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
914       Node *use = res->last_out(j);
915       uint oc1 = res->outcnt();
916 
917       if (use->is_AddP()) {
918         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
919           Node *n = use->last_out(k);
920           uint oc2 = use->outcnt();
921           if (n->is_Store()) {
922 #ifdef ASSERT
923             // Verify that there is no dependent MemBarVolatile nodes,
924             // they should be removed during IGVN, see MemBarNode::Ideal().
925             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
926                                        p < pmax; p++) {
927               Node* mb = n->fast_out(p);
928               assert(mb->is_Initialize() || !mb->is_MemBar() ||
929                      mb->req() <= MemBarNode::Precedent ||
930                      mb->in(MemBarNode::Precedent) != n,
931                      "MemBarVolatile should be eliminated for non-escaping object");
932             }
933 #endif
934             _igvn.replace_node(n, n->in(MemNode::Memory));
935           } else {
936             eliminate_gc_barrier(n);
937           }
938           k -= (oc2 - use->outcnt());
939         }
940         _igvn.remove_dead_node(use);
941       } else if (use->is_ArrayCopy()) {
942         // Disconnect ArrayCopy node
943         ArrayCopyNode* ac = use->as_ArrayCopy();
944         if (ac->is_clonebasic()) {
945           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
946           disconnect_projections(ac, _igvn);
947           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
948           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
949           disconnect_projections(membar_before->as_MemBar(), _igvn);
950           if (membar_after->is_MemBar()) {
951             disconnect_projections(membar_after->as_MemBar(), _igvn);
952           }
953         } else {
954           assert(ac->is_arraycopy_validated() ||
955                  ac->is_copyof_validated() ||
956                  ac->is_copyofrange_validated(), "unsupported");
957           CallProjections callprojs;
958           ac->extract_projections(&callprojs, true);
959 
960           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
961           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
962           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
963 
964           // Set control to top. IGVN will remove the remaining projections
965           ac->set_req(0, top());
966           ac->replace_edge(res, top());
967 
968           // Disconnect src right away: it can help find new
969           // opportunities for allocation elimination
970           Node* src = ac->in(ArrayCopyNode::Src);
971           ac->replace_edge(src, top());
972           // src can be top at this point if src and dest of the
973           // arraycopy were the same
974           if (src->outcnt() == 0 && !src->is_top()) {
975             _igvn.remove_dead_node(src);
976           }
977         }
978         _igvn._worklist.push(ac);
979       } else {
980         eliminate_gc_barrier(use);
981       }
982       j -= (oc1 - res->outcnt());
983     }
984     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
985     _igvn.remove_dead_node(res);
986   }
987 
988   //
989   // Process other users of allocation's projections
990   //
991   if (_resproj != NULL && _resproj->outcnt() != 0) {
992     // First disconnect stores captured by Initialize node.
993     // If Initialize node is eliminated first in the following code,
994     // it will kill such stores and DUIterator_Last will assert.
995     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
996       Node *use = _resproj->fast_out(j);
997       if (use->is_AddP()) {
998         // raw memory addresses used only by the initialization
999         _igvn.replace_node(use, C->top());
1000         --j; --jmax;
1001       }
1002     }
1003     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1004       Node *use = _resproj->last_out(j);
1005       uint oc1 = _resproj->outcnt();
1006       if (use->is_Initialize()) {
1007         // Eliminate Initialize node.
1008         InitializeNode *init = use->as_Initialize();
1009         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1010         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1011         if (ctrl_proj != NULL) {
1012           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1013 #ifdef ASSERT
1014           Node* tmp = init->in(TypeFunc::Control);
1015           assert(tmp == _fallthroughcatchproj, "allocation control projection");
1016 #endif
1017         }
1018         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1019         if (mem_proj != NULL) {
1020           Node *mem = init->in(TypeFunc::Memory);
1021 #ifdef ASSERT
1022           if (mem->is_MergeMem()) {
1023             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1024           } else {
1025             assert(mem == _memproj_fallthrough, "allocation memory projection");
1026           }
1027 #endif
1028           _igvn.replace_node(mem_proj, mem);
1029         }
1030       } else  {
1031         assert(false, "only Initialize or AddP expected");
1032       }
1033       j -= (oc1 - _resproj->outcnt());
1034     }
1035   }
1036   if (_fallthroughcatchproj != NULL) {
1037     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1038   }
1039   if (_memproj_fallthrough != NULL) {
1040     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1041   }
1042   if (_memproj_catchall != NULL) {
1043     _igvn.replace_node(_memproj_catchall, C->top());
1044   }
1045   if (_ioproj_fallthrough != NULL) {
1046     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1047   }
1048   if (_ioproj_catchall != NULL) {
1049     _igvn.replace_node(_ioproj_catchall, C->top());
1050   }
1051   if (_catchallcatchproj != NULL) {
1052     _igvn.replace_node(_catchallcatchproj, C->top());
1053   }
1054 }
1055 
eliminate_allocate_node(AllocateNode * alloc)1056 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1057   // If reallocation fails during deoptimization we'll pop all
1058   // interpreter frames for this compiled frame and that won't play
1059   // nice with JVMTI popframe.
1060   // We avoid this issue by eager reallocation when the popframe request
1061   // is received.
1062   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1063     return false;
1064   }
1065   Node* klass = alloc->in(AllocateNode::KlassNode);
1066   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1067   Node* res = alloc->result_cast();
1068   // Eliminate boxing allocations which are not used
1069   // regardless scalar replacable status.
1070   bool boxing_alloc = C->eliminate_boxing() &&
1071                       tklass->klass()->is_instance_klass()  &&
1072                       tklass->klass()->as_instance_klass()->is_box_klass();
1073   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1074     return false;
1075   }
1076 
1077   extract_call_projections(alloc);
1078 
1079   GrowableArray <SafePointNode *> safepoints;
1080   if (!can_eliminate_allocation(alloc, safepoints)) {
1081     return false;
1082   }
1083 
1084   if (!alloc->_is_scalar_replaceable) {
1085     assert(res == NULL, "sanity");
1086     // We can only eliminate allocation if all debug info references
1087     // are already replaced with SafePointScalarObject because
1088     // we can't search for a fields value without instance_id.
1089     if (safepoints.length() > 0) {
1090       return false;
1091     }
1092   }
1093 
1094   if (!scalar_replacement(alloc, safepoints)) {
1095     return false;
1096   }
1097 
1098   CompileLog* log = C->log();
1099   if (log != NULL) {
1100     log->head("eliminate_allocation type='%d'",
1101               log->identify(tklass->klass()));
1102     JVMState* p = alloc->jvms();
1103     while (p != NULL) {
1104       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1105       p = p->caller();
1106     }
1107     log->tail("eliminate_allocation");
1108   }
1109 
1110   process_users_of_allocation(alloc);
1111 
1112 #ifndef PRODUCT
1113   if (PrintEliminateAllocations) {
1114     if (alloc->is_AllocateArray())
1115       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1116     else
1117       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1118   }
1119 #endif
1120 
1121   return true;
1122 }
1123 
eliminate_boxing_node(CallStaticJavaNode * boxing)1124 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1125   // EA should remove all uses of non-escaping boxing node.
1126   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1127     return false;
1128   }
1129 
1130   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1131 
1132   extract_call_projections(boxing);
1133 
1134   const TypeTuple* r = boxing->tf()->range();
1135   assert(r->cnt() > TypeFunc::Parms, "sanity");
1136   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1137   assert(t != NULL, "sanity");
1138 
1139   CompileLog* log = C->log();
1140   if (log != NULL) {
1141     log->head("eliminate_boxing type='%d'",
1142               log->identify(t->klass()));
1143     JVMState* p = boxing->jvms();
1144     while (p != NULL) {
1145       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1146       p = p->caller();
1147     }
1148     log->tail("eliminate_boxing");
1149   }
1150 
1151   process_users_of_allocation(boxing);
1152 
1153 #ifndef PRODUCT
1154   if (PrintEliminateAllocations) {
1155     tty->print("++++ Eliminated: %d ", boxing->_idx);
1156     boxing->method()->print_short_name(tty);
1157     tty->cr();
1158   }
1159 #endif
1160 
1161   return true;
1162 }
1163 
1164 //---------------------------set_eden_pointers-------------------------
set_eden_pointers(Node * & eden_top_adr,Node * & eden_end_adr)1165 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1166   if (UseTLAB) {                // Private allocation: load from TLS
1167     Node* thread = transform_later(new ThreadLocalNode());
1168     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1169     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1170     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1171     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1172   } else {                      // Shared allocation: load from globals
1173     CollectedHeap* ch = Universe::heap();
1174     address top_adr = (address)ch->top_addr();
1175     address end_adr = (address)ch->end_addr();
1176     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1177     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1178   }
1179 }
1180 
1181 
make_load(Node * ctl,Node * mem,Node * base,int offset,const Type * value_type,BasicType bt)1182 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1183   Node* adr = basic_plus_adr(base, offset);
1184   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1185   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1186   transform_later(value);
1187   return value;
1188 }
1189 
1190 
make_store(Node * ctl,Node * mem,Node * base,int offset,Node * value,BasicType bt)1191 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1192   Node* adr = basic_plus_adr(base, offset);
1193   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1194   transform_later(mem);
1195   return mem;
1196 }
1197 
1198 //=============================================================================
1199 //
1200 //                              A L L O C A T I O N
1201 //
1202 // Allocation attempts to be fast in the case of frequent small objects.
1203 // It breaks down like this:
1204 //
1205 // 1) Size in doublewords is computed.  This is a constant for objects and
1206 // variable for most arrays.  Doubleword units are used to avoid size
1207 // overflow of huge doubleword arrays.  We need doublewords in the end for
1208 // rounding.
1209 //
1210 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1211 // the slow path into the VM.  The slow path can throw any required
1212 // exceptions, and does all the special checks for very large arrays.  The
1213 // size test can constant-fold away for objects.  For objects with
1214 // finalizers it constant-folds the otherway: you always go slow with
1215 // finalizers.
1216 //
1217 // 3) If NOT using TLABs, this is the contended loop-back point.
1218 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1219 //
1220 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1221 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1222 // "size*8" we always enter the VM, where "largish" is a constant picked small
1223 // enough that there's always space between the eden max and 4Gig (old space is
1224 // there so it's quite large) and large enough that the cost of entering the VM
1225 // is dwarfed by the cost to initialize the space.
1226 //
1227 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1228 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1229 // adjusted heap top back down; there is no contention.
1230 //
1231 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1232 // fields.
1233 //
1234 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1235 // oop flavor.
1236 //
1237 //=============================================================================
1238 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1239 // Allocations bigger than this always go the slow route.
1240 // This value must be small enough that allocation attempts that need to
1241 // trigger exceptions go the slow route.  Also, it must be small enough so
1242 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1243 //=============================================================================j//
1244 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1245 // The allocator will coalesce int->oop copies away.  See comment in
1246 // coalesce.cpp about how this works.  It depends critically on the exact
1247 // code shape produced here, so if you are changing this code shape
1248 // make sure the GC info for the heap-top is correct in and around the
1249 // slow-path call.
1250 //
1251 
expand_allocate_common(AllocateNode * alloc,Node * length,const TypeFunc * slow_call_type,address slow_call_address)1252 void PhaseMacroExpand::expand_allocate_common(
1253             AllocateNode* alloc, // allocation node to be expanded
1254             Node* length,  // array length for an array allocation
1255             const TypeFunc* slow_call_type, // Type of slow call
1256             address slow_call_address  // Address of slow call
1257     )
1258 {
1259   Node* ctrl = alloc->in(TypeFunc::Control);
1260   Node* mem  = alloc->in(TypeFunc::Memory);
1261   Node* i_o  = alloc->in(TypeFunc::I_O);
1262   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1263   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1264   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1265   assert(ctrl != NULL, "must have control");
1266 
1267   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1268   // they will not be used if "always_slow" is set
1269   enum { slow_result_path = 1, fast_result_path = 2 };
1270   Node *result_region = NULL;
1271   Node *result_phi_rawmem = NULL;
1272   Node *result_phi_rawoop = NULL;
1273   Node *result_phi_i_o = NULL;
1274 
1275   // The initial slow comparison is a size check, the comparison
1276   // we want to do is a BoolTest::gt
1277   bool expand_fast_path = true;
1278   int tv = _igvn.find_int_con(initial_slow_test, -1);
1279   if (tv >= 0) {
1280     // InitialTest has constant result
1281     //   0 - can fit in TLAB
1282     //   1 - always too big or negative
1283     assert(tv <= 1, "0 or 1 if a constant");
1284     expand_fast_path = (tv == 0);
1285     initial_slow_test = NULL;
1286   } else {
1287     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1288   }
1289 
1290   if (C->env()->dtrace_alloc_probes() ||
1291       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1292     // Force slow-path allocation
1293     expand_fast_path = false;
1294     initial_slow_test = NULL;
1295   }
1296 
1297   bool allocation_has_use = (alloc->result_cast() != NULL);
1298   if (!allocation_has_use) {
1299     InitializeNode* init = alloc->initialization();
1300     if (init != NULL) {
1301       init->remove(&_igvn);
1302     }
1303     if (expand_fast_path && (initial_slow_test == NULL)) {
1304       // Remove allocation node and return.
1305       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1306       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1307 #ifndef PRODUCT
1308       if (PrintEliminateAllocations) {
1309         tty->print("NotUsed ");
1310         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1311         if (res != NULL) {
1312           res->dump();
1313         } else {
1314           alloc->dump();
1315         }
1316       }
1317 #endif
1318       yank_alloc_node(alloc);
1319       return;
1320     }
1321   }
1322 
1323   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1324   Node *slow_region = NULL;
1325   Node *toobig_false = ctrl;
1326 
1327   // generate the initial test if necessary
1328   if (initial_slow_test != NULL ) {
1329     assert (expand_fast_path, "Only need test if there is a fast path");
1330     slow_region = new RegionNode(3);
1331 
1332     // Now make the initial failure test.  Usually a too-big test but
1333     // might be a TRUE for finalizers or a fancy class check for
1334     // newInstance0.
1335     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1336     transform_later(toobig_iff);
1337     // Plug the failing-too-big test into the slow-path region
1338     Node *toobig_true = new IfTrueNode( toobig_iff );
1339     transform_later(toobig_true);
1340     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1341     toobig_false = new IfFalseNode( toobig_iff );
1342     transform_later(toobig_false);
1343   } else {
1344     // No initial test, just fall into next case
1345     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1346     toobig_false = ctrl;
1347     debug_only(slow_region = NodeSentinel);
1348   }
1349 
1350   // If we are here there are several possibilities
1351   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1352   // no_initial_check means a constant allocation.
1353   // - If check always evaluates to false -> expand_fast_path is false (see above)
1354   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1355   // if !allocation_has_use the fast path is empty
1356   // if !allocation_has_use && no_initial_check
1357   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1358   //   removed by yank_alloc_node above.
1359 
1360   Node *slow_mem = mem;  // save the current memory state for slow path
1361   // generate the fast allocation code unless we know that the initial test will always go slow
1362   if (expand_fast_path) {
1363     // Fast path modifies only raw memory.
1364     if (mem->is_MergeMem()) {
1365       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1366     }
1367 
1368     // allocate the Region and Phi nodes for the result
1369     result_region = new RegionNode(3);
1370     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1371     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1372 
1373     // Grab regular I/O before optional prefetch may change it.
1374     // Slow-path does no I/O so just set it to the original I/O.
1375     result_phi_i_o->init_req(slow_result_path, i_o);
1376 
1377     // Name successful fast-path variables
1378     Node* fast_oop_ctrl;
1379     Node* fast_oop_rawmem;
1380     if (allocation_has_use) {
1381       Node* needgc_ctrl = NULL;
1382       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1383 
1384       intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1385       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1386       Node* fast_oop = bs->obj_allocate(this, ctrl, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1387                                         fast_oop_ctrl, fast_oop_rawmem,
1388                                         prefetch_lines);
1389 
1390       if (initial_slow_test != NULL) {
1391         // This completes all paths into the slow merge point
1392         slow_region->init_req(need_gc_path, needgc_ctrl);
1393         transform_later(slow_region);
1394       } else {
1395         // No initial slow path needed!
1396         // Just fall from the need-GC path straight into the VM call.
1397         slow_region = needgc_ctrl;
1398       }
1399 
1400       InitializeNode* init = alloc->initialization();
1401       fast_oop_rawmem = initialize_object(alloc,
1402                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1403                                           klass_node, length, size_in_bytes);
1404       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1405       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1406 
1407       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1408     } else {
1409       assert (initial_slow_test != NULL, "sanity");
1410       fast_oop_ctrl   = toobig_false;
1411       fast_oop_rawmem = mem;
1412       transform_later(slow_region);
1413     }
1414 
1415     // Plug in the successful fast-path into the result merge point
1416     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1417     result_phi_i_o   ->init_req(fast_result_path, i_o);
1418     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1419   } else {
1420     slow_region = ctrl;
1421     result_phi_i_o = i_o; // Rename it to use in the following code.
1422   }
1423 
1424   // Generate slow-path call
1425   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1426                                OptoRuntime::stub_name(slow_call_address),
1427                                alloc->jvms()->bci(),
1428                                TypePtr::BOTTOM);
1429   call->init_req(TypeFunc::Control,   slow_region);
1430   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1431   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1432   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1433   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1434 
1435   call->init_req(TypeFunc::Parms+0, klass_node);
1436   if (length != NULL) {
1437     call->init_req(TypeFunc::Parms+1, length);
1438   }
1439 
1440   // Copy debug information and adjust JVMState information, then replace
1441   // allocate node with the call
1442   call->copy_call_debug_info(&_igvn, alloc);
1443   if (expand_fast_path) {
1444     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1445   } else {
1446     // Hook i_o projection to avoid its elimination during allocation
1447     // replacement (when only a slow call is generated).
1448     call->set_req(TypeFunc::I_O, result_phi_i_o);
1449   }
1450   _igvn.replace_node(alloc, call);
1451   transform_later(call);
1452 
1453   // Identify the output projections from the allocate node and
1454   // adjust any references to them.
1455   // The control and io projections look like:
1456   //
1457   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1458   //  Allocate                   Catch
1459   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1460   //
1461   //  We are interested in the CatchProj nodes.
1462   //
1463   extract_call_projections(call);
1464 
1465   // An allocate node has separate memory projections for the uses on
1466   // the control and i_o paths. Replace the control memory projection with
1467   // result_phi_rawmem (unless we are only generating a slow call when
1468   // both memory projections are combined)
1469   if (expand_fast_path && _memproj_fallthrough != NULL) {
1470     migrate_outs(_memproj_fallthrough, result_phi_rawmem);
1471   }
1472   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1473   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1474   if (_memproj_catchall != NULL ) {
1475     if (_memproj_fallthrough == NULL) {
1476       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1477       transform_later(_memproj_fallthrough);
1478     }
1479     migrate_outs(_memproj_catchall, _memproj_fallthrough);
1480     _igvn.remove_dead_node(_memproj_catchall);
1481   }
1482 
1483   // An allocate node has separate i_o projections for the uses on the control
1484   // and i_o paths. Always replace the control i_o projection with result i_o
1485   // otherwise incoming i_o become dead when only a slow call is generated
1486   // (it is different from memory projections where both projections are
1487   // combined in such case).
1488   if (_ioproj_fallthrough != NULL) {
1489     migrate_outs(_ioproj_fallthrough, result_phi_i_o);
1490   }
1491   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1492   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1493   if (_ioproj_catchall != NULL ) {
1494     if (_ioproj_fallthrough == NULL) {
1495       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1496       transform_later(_ioproj_fallthrough);
1497     }
1498     migrate_outs(_ioproj_catchall, _ioproj_fallthrough);
1499     _igvn.remove_dead_node(_ioproj_catchall);
1500   }
1501 
1502   // if we generated only a slow call, we are done
1503   if (!expand_fast_path) {
1504     // Now we can unhook i_o.
1505     if (result_phi_i_o->outcnt() > 1) {
1506       call->set_req(TypeFunc::I_O, top());
1507     } else {
1508       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1509       // Case of new array with negative size known during compilation.
1510       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1511       // following code since call to runtime will throw exception.
1512       // As result there will be no users of i_o after the call.
1513       // Leave i_o attached to this call to avoid problems in preceding graph.
1514     }
1515     return;
1516   }
1517 
1518   if (_fallthroughcatchproj != NULL) {
1519     ctrl = _fallthroughcatchproj->clone();
1520     transform_later(ctrl);
1521     _igvn.replace_node(_fallthroughcatchproj, result_region);
1522   } else {
1523     ctrl = top();
1524   }
1525   Node *slow_result;
1526   if (_resproj == NULL) {
1527     // no uses of the allocation result
1528     slow_result = top();
1529   } else {
1530     slow_result = _resproj->clone();
1531     transform_later(slow_result);
1532     _igvn.replace_node(_resproj, result_phi_rawoop);
1533   }
1534 
1535   // Plug slow-path into result merge point
1536   result_region->init_req( slow_result_path, ctrl);
1537   transform_later(result_region);
1538   if (allocation_has_use) {
1539     result_phi_rawoop->init_req(slow_result_path, slow_result);
1540     transform_later(result_phi_rawoop);
1541   }
1542   result_phi_rawmem->init_req(slow_result_path, _memproj_fallthrough);
1543   transform_later(result_phi_rawmem);
1544   transform_later(result_phi_i_o);
1545   // This completes all paths into the result merge point
1546 }
1547 
1548 // Remove alloc node that has no uses.
yank_alloc_node(AllocateNode * alloc)1549 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1550   Node* ctrl = alloc->in(TypeFunc::Control);
1551   Node* mem  = alloc->in(TypeFunc::Memory);
1552   Node* i_o  = alloc->in(TypeFunc::I_O);
1553 
1554   extract_call_projections(alloc);
1555   if (_resproj != NULL) {
1556     for (DUIterator_Fast imax, i = _resproj->fast_outs(imax); i < imax; i++) {
1557       Node* use = _resproj->fast_out(i);
1558       use->isa_MemBar()->remove(&_igvn);
1559       --imax;
1560       --i; // back up iterator
1561     }
1562     assert(_resproj->outcnt() == 0, "all uses must be deleted");
1563     _igvn.remove_dead_node(_resproj);
1564   }
1565   if (_fallthroughcatchproj != NULL) {
1566     migrate_outs(_fallthroughcatchproj, ctrl);
1567     _igvn.remove_dead_node(_fallthroughcatchproj);
1568   }
1569   if (_catchallcatchproj != NULL) {
1570     _igvn.rehash_node_delayed(_catchallcatchproj);
1571     _catchallcatchproj->set_req(0, top());
1572   }
1573   if (_fallthroughproj != NULL) {
1574     Node* catchnode = _fallthroughproj->unique_ctrl_out();
1575     _igvn.remove_dead_node(catchnode);
1576     _igvn.remove_dead_node(_fallthroughproj);
1577   }
1578   if (_memproj_fallthrough != NULL) {
1579     migrate_outs(_memproj_fallthrough, mem);
1580     _igvn.remove_dead_node(_memproj_fallthrough);
1581   }
1582   if (_ioproj_fallthrough != NULL) {
1583     migrate_outs(_ioproj_fallthrough, i_o);
1584     _igvn.remove_dead_node(_ioproj_fallthrough);
1585   }
1586   if (_memproj_catchall != NULL) {
1587     _igvn.rehash_node_delayed(_memproj_catchall);
1588     _memproj_catchall->set_req(0, top());
1589   }
1590   if (_ioproj_catchall != NULL) {
1591     _igvn.rehash_node_delayed(_ioproj_catchall);
1592     _ioproj_catchall->set_req(0, top());
1593   }
1594 #ifndef PRODUCT
1595   if (PrintEliminateAllocations) {
1596     if (alloc->is_AllocateArray()) {
1597       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1598     } else {
1599       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1600     }
1601   }
1602 #endif
1603   _igvn.remove_dead_node(alloc);
1604 }
1605 
expand_initialize_membar(AllocateNode * alloc,InitializeNode * init,Node * & fast_oop_ctrl,Node * & fast_oop_rawmem)1606 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1607                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1608   // If initialization is performed by an array copy, any required
1609   // MemBarStoreStore was already added. If the object does not
1610   // escape no need for a MemBarStoreStore. If the object does not
1611   // escape in its initializer and memory barrier (MemBarStoreStore or
1612   // stronger) is already added at exit of initializer, also no need
1613   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1614   // so that stores that initialize this object can't be reordered
1615   // with a subsequent store that makes this object accessible by
1616   // other threads.
1617   // Other threads include java threads and JVM internal threads
1618   // (for example concurrent GC threads). Current concurrent GC
1619   // implementation: G1 will not scan newly created object,
1620   // so it's safe to skip storestore barrier when allocation does
1621   // not escape.
1622   if (!alloc->does_not_escape_thread() &&
1623     !alloc->is_allocation_MemBar_redundant() &&
1624     (init == NULL || !init->is_complete_with_arraycopy())) {
1625     if (init == NULL || init->req() < InitializeNode::RawStores) {
1626       // No InitializeNode or no stores captured by zeroing
1627       // elimination. Simply add the MemBarStoreStore after object
1628       // initialization.
1629       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1630       transform_later(mb);
1631 
1632       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1633       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1634       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1635       transform_later(fast_oop_ctrl);
1636       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1637       transform_later(fast_oop_rawmem);
1638     } else {
1639       // Add the MemBarStoreStore after the InitializeNode so that
1640       // all stores performing the initialization that were moved
1641       // before the InitializeNode happen before the storestore
1642       // barrier.
1643 
1644       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1645       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1646 
1647       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1648       transform_later(mb);
1649 
1650       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1651       transform_later(ctrl);
1652       Node* mem = new ProjNode(init, TypeFunc::Memory);
1653       transform_later(mem);
1654 
1655       // The MemBarStoreStore depends on control and memory coming
1656       // from the InitializeNode
1657       mb->init_req(TypeFunc::Memory, mem);
1658       mb->init_req(TypeFunc::Control, ctrl);
1659 
1660       ctrl = new ProjNode(mb, TypeFunc::Control);
1661       transform_later(ctrl);
1662       mem = new ProjNode(mb, TypeFunc::Memory);
1663       transform_later(mem);
1664 
1665       // All nodes that depended on the InitializeNode for control
1666       // and memory must now depend on the MemBarNode that itself
1667       // depends on the InitializeNode
1668       if (init_ctrl != NULL) {
1669         _igvn.replace_node(init_ctrl, ctrl);
1670       }
1671       if (init_mem != NULL) {
1672         _igvn.replace_node(init_mem, mem);
1673       }
1674     }
1675   }
1676 }
1677 
expand_dtrace_alloc_probe(AllocateNode * alloc,Node * oop,Node * & ctrl,Node * & rawmem)1678 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1679                                                 Node*& ctrl, Node*& rawmem) {
1680   if (C->env()->dtrace_extended_probes()) {
1681     // Slow-path call
1682     int size = TypeFunc::Parms + 2;
1683     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1684                                           CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1685                                           "dtrace_object_alloc",
1686                                           TypeRawPtr::BOTTOM);
1687 
1688     // Get base of thread-local storage area
1689     Node* thread = new ThreadLocalNode();
1690     transform_later(thread);
1691 
1692     call->init_req(TypeFunc::Parms + 0, thread);
1693     call->init_req(TypeFunc::Parms + 1, oop);
1694     call->init_req(TypeFunc::Control, ctrl);
1695     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1696     call->init_req(TypeFunc::Memory , ctrl);
1697     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1698     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1699     transform_later(call);
1700     ctrl = new ProjNode(call, TypeFunc::Control);
1701     transform_later(ctrl);
1702     rawmem = new ProjNode(call, TypeFunc::Memory);
1703     transform_later(rawmem);
1704   }
1705 }
1706 
1707 // Helper for PhaseMacroExpand::expand_allocate_common.
1708 // Initializes the newly-allocated storage.
1709 Node*
initialize_object(AllocateNode * alloc,Node * control,Node * rawmem,Node * object,Node * klass_node,Node * length,Node * size_in_bytes)1710 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1711                                     Node* control, Node* rawmem, Node* object,
1712                                     Node* klass_node, Node* length,
1713                                     Node* size_in_bytes) {
1714   InitializeNode* init = alloc->initialization();
1715   // Store the klass & mark bits
1716   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1717   if (!mark_node->is_Con()) {
1718     transform_later(mark_node);
1719   }
1720   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1721 
1722   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1723   int header_size = alloc->minimum_header_size();  // conservatively small
1724 
1725   // Array length
1726   if (length != NULL) {         // Arrays need length field
1727     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1728     // conservatively small header size:
1729     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1730     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1731     if (k->is_array_klass())    // we know the exact header size in most cases:
1732       header_size = Klass::layout_helper_header_size(k->layout_helper());
1733   }
1734 
1735   // Clear the object body, if necessary.
1736   if (init == NULL) {
1737     // The init has somehow disappeared; be cautious and clear everything.
1738     //
1739     // This can happen if a node is allocated but an uncommon trap occurs
1740     // immediately.  In this case, the Initialize gets associated with the
1741     // trap, and may be placed in a different (outer) loop, if the Allocate
1742     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1743     // there can be two Allocates to one Initialize.  The answer in all these
1744     // edge cases is safety first.  It is always safe to clear immediately
1745     // within an Allocate, and then (maybe or maybe not) clear some more later.
1746     if (!(UseTLAB && ZeroTLAB)) {
1747       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1748                                             header_size, size_in_bytes,
1749                                             &_igvn);
1750     }
1751   } else {
1752     if (!init->is_complete()) {
1753       // Try to win by zeroing only what the init does not store.
1754       // We can also try to do some peephole optimizations,
1755       // such as combining some adjacent subword stores.
1756       rawmem = init->complete_stores(control, rawmem, object,
1757                                      header_size, size_in_bytes, &_igvn);
1758     }
1759     // We have no more use for this link, since the AllocateNode goes away:
1760     init->set_req(InitializeNode::RawAddress, top());
1761     // (If we keep the link, it just confuses the register allocator,
1762     // who thinks he sees a real use of the address by the membar.)
1763   }
1764 
1765   return rawmem;
1766 }
1767 
1768 // Generate prefetch instructions for next allocations.
prefetch_allocation(Node * i_o,Node * & needgc_false,Node * & contended_phi_rawmem,Node * old_eden_top,Node * new_eden_top,intx lines)1769 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1770                                         Node*& contended_phi_rawmem,
1771                                         Node* old_eden_top, Node* new_eden_top,
1772                                         intx lines) {
1773    enum { fall_in_path = 1, pf_path = 2 };
1774    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1775       // Generate prefetch allocation with watermark check.
1776       // As an allocation hits the watermark, we will prefetch starting
1777       // at a "distance" away from watermark.
1778 
1779       Node *pf_region = new RegionNode(3);
1780       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1781                                                 TypeRawPtr::BOTTOM );
1782       // I/O is used for Prefetch
1783       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1784 
1785       Node *thread = new ThreadLocalNode();
1786       transform_later(thread);
1787 
1788       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1789                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1790       transform_later(eden_pf_adr);
1791 
1792       Node *old_pf_wm = new LoadPNode(needgc_false,
1793                                    contended_phi_rawmem, eden_pf_adr,
1794                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1795                                    MemNode::unordered);
1796       transform_later(old_pf_wm);
1797 
1798       // check against new_eden_top
1799       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1800       transform_later(need_pf_cmp);
1801       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1802       transform_later(need_pf_bol);
1803       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1804                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1805       transform_later(need_pf_iff);
1806 
1807       // true node, add prefetchdistance
1808       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1809       transform_later(need_pf_true);
1810 
1811       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1812       transform_later(need_pf_false);
1813 
1814       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1815                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1816       transform_later(new_pf_wmt );
1817       new_pf_wmt->set_req(0, need_pf_true);
1818 
1819       Node *store_new_wmt = new StorePNode(need_pf_true,
1820                                        contended_phi_rawmem, eden_pf_adr,
1821                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1822                                        MemNode::unordered);
1823       transform_later(store_new_wmt);
1824 
1825       // adding prefetches
1826       pf_phi_abio->init_req( fall_in_path, i_o );
1827 
1828       Node *prefetch_adr;
1829       Node *prefetch;
1830       uint step_size = AllocatePrefetchStepSize;
1831       uint distance = 0;
1832 
1833       for ( intx i = 0; i < lines; i++ ) {
1834         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1835                                             _igvn.MakeConX(distance) );
1836         transform_later(prefetch_adr);
1837         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1838         transform_later(prefetch);
1839         distance += step_size;
1840         i_o = prefetch;
1841       }
1842       pf_phi_abio->set_req( pf_path, i_o );
1843 
1844       pf_region->init_req( fall_in_path, need_pf_false );
1845       pf_region->init_req( pf_path, need_pf_true );
1846 
1847       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1848       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1849 
1850       transform_later(pf_region);
1851       transform_later(pf_phi_rawmem);
1852       transform_later(pf_phi_abio);
1853 
1854       needgc_false = pf_region;
1855       contended_phi_rawmem = pf_phi_rawmem;
1856       i_o = pf_phi_abio;
1857    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1858       // Insert a prefetch instruction for each allocation.
1859       // This code is used to generate 1 prefetch instruction per cache line.
1860 
1861       // Generate several prefetch instructions.
1862       uint step_size = AllocatePrefetchStepSize;
1863       uint distance = AllocatePrefetchDistance;
1864 
1865       // Next cache address.
1866       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1867                                      _igvn.MakeConX(step_size + distance));
1868       transform_later(cache_adr);
1869       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1870       transform_later(cache_adr);
1871       // Address is aligned to execute prefetch to the beginning of cache line size
1872       // (it is important when BIS instruction is used on SPARC as prefetch).
1873       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1874       cache_adr = new AndXNode(cache_adr, mask);
1875       transform_later(cache_adr);
1876       cache_adr = new CastX2PNode(cache_adr);
1877       transform_later(cache_adr);
1878 
1879       // Prefetch
1880       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1881       prefetch->set_req(0, needgc_false);
1882       transform_later(prefetch);
1883       contended_phi_rawmem = prefetch;
1884       Node *prefetch_adr;
1885       distance = step_size;
1886       for ( intx i = 1; i < lines; i++ ) {
1887         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1888                                             _igvn.MakeConX(distance) );
1889         transform_later(prefetch_adr);
1890         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1891         transform_later(prefetch);
1892         distance += step_size;
1893         contended_phi_rawmem = prefetch;
1894       }
1895    } else if( AllocatePrefetchStyle > 0 ) {
1896       // Insert a prefetch for each allocation only on the fast-path
1897       Node *prefetch_adr;
1898       Node *prefetch;
1899       // Generate several prefetch instructions.
1900       uint step_size = AllocatePrefetchStepSize;
1901       uint distance = AllocatePrefetchDistance;
1902       for ( intx i = 0; i < lines; i++ ) {
1903         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1904                                             _igvn.MakeConX(distance) );
1905         transform_later(prefetch_adr);
1906         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1907         // Do not let it float too high, since if eden_top == eden_end,
1908         // both might be null.
1909         if( i == 0 ) { // Set control for first prefetch, next follows it
1910           prefetch->init_req(0, needgc_false);
1911         }
1912         transform_later(prefetch);
1913         distance += step_size;
1914         i_o = prefetch;
1915       }
1916    }
1917    return i_o;
1918 }
1919 
1920 
expand_allocate(AllocateNode * alloc)1921 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1922   expand_allocate_common(alloc, NULL,
1923                          OptoRuntime::new_instance_Type(),
1924                          OptoRuntime::new_instance_Java());
1925 }
1926 
expand_allocate_array(AllocateArrayNode * alloc)1927 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1928   Node* length = alloc->in(AllocateNode::ALength);
1929   InitializeNode* init = alloc->initialization();
1930   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1931   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1932   address slow_call_address;  // Address of slow call
1933   if (init != NULL && init->is_complete_with_arraycopy() &&
1934       k->is_type_array_klass()) {
1935     // Don't zero type array during slow allocation in VM since
1936     // it will be initialized later by arraycopy in compiled code.
1937     slow_call_address = OptoRuntime::new_array_nozero_Java();
1938   } else {
1939     slow_call_address = OptoRuntime::new_array_Java();
1940   }
1941   expand_allocate_common(alloc, length,
1942                          OptoRuntime::new_array_Type(),
1943                          slow_call_address);
1944 }
1945 
1946 //-------------------mark_eliminated_box----------------------------------
1947 //
1948 // During EA obj may point to several objects but after few ideal graph
1949 // transformations (CCP) it may point to only one non escaping object
1950 // (but still using phi), corresponding locks and unlocks will be marked
1951 // for elimination. Later obj could be replaced with a new node (new phi)
1952 // and which does not have escape information. And later after some graph
1953 // reshape other locks and unlocks (which were not marked for elimination
1954 // before) are connected to this new obj (phi) but they still will not be
1955 // marked for elimination since new obj has no escape information.
1956 // Mark all associated (same box and obj) lock and unlock nodes for
1957 // elimination if some of them marked already.
mark_eliminated_box(Node * oldbox,Node * obj)1958 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1959   if (oldbox->as_BoxLock()->is_eliminated())
1960     return; // This BoxLock node was processed already.
1961 
1962   // New implementation (EliminateNestedLocks) has separate BoxLock
1963   // node for each locked region so mark all associated locks/unlocks as
1964   // eliminated even if different objects are referenced in one locked region
1965   // (for example, OSR compilation of nested loop inside locked scope).
1966   if (EliminateNestedLocks ||
1967       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1968     // Box is used only in one lock region. Mark this box as eliminated.
1969     _igvn.hash_delete(oldbox);
1970     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1971      _igvn.hash_insert(oldbox);
1972 
1973     for (uint i = 0; i < oldbox->outcnt(); i++) {
1974       Node* u = oldbox->raw_out(i);
1975       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1976         AbstractLockNode* alock = u->as_AbstractLock();
1977         // Check lock's box since box could be referenced by Lock's debug info.
1978         if (alock->box_node() == oldbox) {
1979           // Mark eliminated all related locks and unlocks.
1980 #ifdef ASSERT
1981           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1982 #endif
1983           alock->set_non_esc_obj();
1984         }
1985       }
1986     }
1987     return;
1988   }
1989 
1990   // Create new "eliminated" BoxLock node and use it in monitor debug info
1991   // instead of oldbox for the same object.
1992   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1993 
1994   // Note: BoxLock node is marked eliminated only here and it is used
1995   // to indicate that all associated lock and unlock nodes are marked
1996   // for elimination.
1997   newbox->set_eliminated();
1998   transform_later(newbox);
1999 
2000   // Replace old box node with new box for all users of the same object.
2001   for (uint i = 0; i < oldbox->outcnt();) {
2002     bool next_edge = true;
2003 
2004     Node* u = oldbox->raw_out(i);
2005     if (u->is_AbstractLock()) {
2006       AbstractLockNode* alock = u->as_AbstractLock();
2007       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2008         // Replace Box and mark eliminated all related locks and unlocks.
2009 #ifdef ASSERT
2010         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2011 #endif
2012         alock->set_non_esc_obj();
2013         _igvn.rehash_node_delayed(alock);
2014         alock->set_box_node(newbox);
2015         next_edge = false;
2016       }
2017     }
2018     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2019       FastLockNode* flock = u->as_FastLock();
2020       assert(flock->box_node() == oldbox, "sanity");
2021       _igvn.rehash_node_delayed(flock);
2022       flock->set_box_node(newbox);
2023       next_edge = false;
2024     }
2025 
2026     // Replace old box in monitor debug info.
2027     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2028       SafePointNode* sfn = u->as_SafePoint();
2029       JVMState* youngest_jvms = sfn->jvms();
2030       int max_depth = youngest_jvms->depth();
2031       for (int depth = 1; depth <= max_depth; depth++) {
2032         JVMState* jvms = youngest_jvms->of_depth(depth);
2033         int num_mon  = jvms->nof_monitors();
2034         // Loop over monitors
2035         for (int idx = 0; idx < num_mon; idx++) {
2036           Node* obj_node = sfn->monitor_obj(jvms, idx);
2037           Node* box_node = sfn->monitor_box(jvms, idx);
2038           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2039             int j = jvms->monitor_box_offset(idx);
2040             _igvn.replace_input_of(u, j, newbox);
2041             next_edge = false;
2042           }
2043         }
2044       }
2045     }
2046     if (next_edge) i++;
2047   }
2048 }
2049 
2050 //-----------------------mark_eliminated_locking_nodes-----------------------
mark_eliminated_locking_nodes(AbstractLockNode * alock)2051 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2052   if (EliminateNestedLocks) {
2053     if (alock->is_nested()) {
2054        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2055        return;
2056     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2057       // Only Lock node has JVMState needed here.
2058       // Not that preceding claim is documented anywhere else.
2059       if (alock->jvms() != NULL) {
2060         if (alock->as_Lock()->is_nested_lock_region()) {
2061           // Mark eliminated related nested locks and unlocks.
2062           Node* obj = alock->obj_node();
2063           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2064           assert(!box_node->is_eliminated(), "should not be marked yet");
2065           // Note: BoxLock node is marked eliminated only here
2066           // and it is used to indicate that all associated lock
2067           // and unlock nodes are marked for elimination.
2068           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2069           for (uint i = 0; i < box_node->outcnt(); i++) {
2070             Node* u = box_node->raw_out(i);
2071             if (u->is_AbstractLock()) {
2072               alock = u->as_AbstractLock();
2073               if (alock->box_node() == box_node) {
2074                 // Verify that this Box is referenced only by related locks.
2075                 assert(alock->obj_node()->eqv_uncast(obj), "");
2076                 // Mark all related locks and unlocks.
2077 #ifdef ASSERT
2078                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2079 #endif
2080                 alock->set_nested();
2081               }
2082             }
2083           }
2084         } else {
2085 #ifdef ASSERT
2086           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2087           if (C->log() != NULL)
2088             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2089 #endif
2090         }
2091       }
2092       return;
2093     }
2094     // Process locks for non escaping object
2095     assert(alock->is_non_esc_obj(), "");
2096   } // EliminateNestedLocks
2097 
2098   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2099     // Look for all locks of this object and mark them and
2100     // corresponding BoxLock nodes as eliminated.
2101     Node* obj = alock->obj_node();
2102     for (uint j = 0; j < obj->outcnt(); j++) {
2103       Node* o = obj->raw_out(j);
2104       if (o->is_AbstractLock() &&
2105           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2106         alock = o->as_AbstractLock();
2107         Node* box = alock->box_node();
2108         // Replace old box node with new eliminated box for all users
2109         // of the same object and mark related locks as eliminated.
2110         mark_eliminated_box(box, obj);
2111       }
2112     }
2113   }
2114 }
2115 
2116 // we have determined that this lock/unlock can be eliminated, we simply
2117 // eliminate the node without expanding it.
2118 //
2119 // Note:  The membar's associated with the lock/unlock are currently not
2120 //        eliminated.  This should be investigated as a future enhancement.
2121 //
eliminate_locking_node(AbstractLockNode * alock)2122 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2123 
2124   if (!alock->is_eliminated()) {
2125     return false;
2126   }
2127 #ifdef ASSERT
2128   if (!alock->is_coarsened()) {
2129     // Check that new "eliminated" BoxLock node is created.
2130     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2131     assert(oldbox->is_eliminated(), "should be done already");
2132   }
2133 #endif
2134 
2135   alock->log_lock_optimization(C, "eliminate_lock");
2136 
2137 #ifndef PRODUCT
2138   if (PrintEliminateLocks) {
2139     if (alock->is_Lock()) {
2140       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2141     } else {
2142       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2143     }
2144   }
2145 #endif
2146 
2147   Node* mem  = alock->in(TypeFunc::Memory);
2148   Node* ctrl = alock->in(TypeFunc::Control);
2149   guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL");
2150 
2151   extract_call_projections(alock);
2152   // There are 2 projections from the lock.  The lock node will
2153   // be deleted when its last use is subsumed below.
2154   assert(alock->outcnt() == 2 &&
2155          _fallthroughproj != NULL &&
2156          _memproj_fallthrough != NULL,
2157          "Unexpected projections from Lock/Unlock");
2158 
2159   Node* fallthroughproj = _fallthroughproj;
2160   Node* memproj_fallthrough = _memproj_fallthrough;
2161 
2162   // The memory projection from a lock/unlock is RawMem
2163   // The input to a Lock is merged memory, so extract its RawMem input
2164   // (unless the MergeMem has been optimized away.)
2165   if (alock->is_Lock()) {
2166     // Seach for MemBarAcquireLock node and delete it also.
2167     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2168     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2169     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2170     Node* memproj = membar->proj_out(TypeFunc::Memory);
2171     _igvn.replace_node(ctrlproj, fallthroughproj);
2172     _igvn.replace_node(memproj, memproj_fallthrough);
2173 
2174     // Delete FastLock node also if this Lock node is unique user
2175     // (a loop peeling may clone a Lock node).
2176     Node* flock = alock->as_Lock()->fastlock_node();
2177     if (flock->outcnt() == 1) {
2178       assert(flock->unique_out() == alock, "sanity");
2179       _igvn.replace_node(flock, top());
2180     }
2181   }
2182 
2183   // Seach for MemBarReleaseLock node and delete it also.
2184   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2185     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2186     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2187            mem->is_Proj() && membar == mem->in(0), "");
2188     _igvn.replace_node(fallthroughproj, ctrl);
2189     _igvn.replace_node(memproj_fallthrough, mem);
2190     fallthroughproj = ctrl;
2191     memproj_fallthrough = mem;
2192     ctrl = membar->in(TypeFunc::Control);
2193     mem  = membar->in(TypeFunc::Memory);
2194   }
2195 
2196   _igvn.replace_node(fallthroughproj, ctrl);
2197   _igvn.replace_node(memproj_fallthrough, mem);
2198   return true;
2199 }
2200 
2201 
2202 //------------------------------expand_lock_node----------------------
expand_lock_node(LockNode * lock)2203 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2204 
2205   Node* ctrl = lock->in(TypeFunc::Control);
2206   Node* mem = lock->in(TypeFunc::Memory);
2207   Node* obj = lock->obj_node();
2208   Node* box = lock->box_node();
2209   Node* flock = lock->fastlock_node();
2210 
2211   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2212 
2213   // Make the merge point
2214   Node *region;
2215   Node *mem_phi;
2216   Node *slow_path;
2217 
2218   if (UseOptoBiasInlining) {
2219     /*
2220      *  See the full description in MacroAssembler::biased_locking_enter().
2221      *
2222      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2223      *    // The object is biased.
2224      *    proto_node = klass->prototype_header;
2225      *    o_node = thread | proto_node;
2226      *    x_node = o_node ^ mark_word;
2227      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2228      *      // Done.
2229      *    } else {
2230      *      if( (x_node & biased_lock_mask) != 0 ) {
2231      *        // The klass's prototype header is no longer biased.
2232      *        cas(&mark_word, mark_word, proto_node)
2233      *        goto cas_lock;
2234      *      } else {
2235      *        // The klass's prototype header is still biased.
2236      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2237      *          old = mark_word;
2238      *          new = o_node;
2239      *        } else {
2240      *          // Different thread or anonymous biased.
2241      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2242      *          new = thread | old;
2243      *        }
2244      *        // Try to rebias.
2245      *        if( cas(&mark_word, old, new) == 0 ) {
2246      *          // Done.
2247      *        } else {
2248      *          goto slow_path; // Failed.
2249      *        }
2250      *      }
2251      *    }
2252      *  } else {
2253      *    // The object is not biased.
2254      *    cas_lock:
2255      *    if( FastLock(obj) == 0 ) {
2256      *      // Done.
2257      *    } else {
2258      *      slow_path:
2259      *      OptoRuntime::complete_monitor_locking_Java(obj);
2260      *    }
2261      *  }
2262      */
2263 
2264     region  = new RegionNode(5);
2265     // create a Phi for the memory state
2266     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2267 
2268     Node* fast_lock_region  = new RegionNode(3);
2269     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2270 
2271     // First, check mark word for the biased lock pattern.
2272     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2273 
2274     // Get fast path - mark word has the biased lock pattern.
2275     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2276                          markWord::biased_lock_mask_in_place,
2277                          markWord::biased_lock_pattern, true);
2278     // fast_lock_region->in(1) is set to slow path.
2279     fast_lock_mem_phi->init_req(1, mem);
2280 
2281     // Now check that the lock is biased to the current thread and has
2282     // the same epoch and bias as Klass::_prototype_header.
2283 
2284     // Special-case a fresh allocation to avoid building nodes:
2285     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2286     if (klass_node == NULL) {
2287       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2288       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2289 #ifdef _LP64
2290       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2291         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2292         klass_node->in(1)->init_req(0, ctrl);
2293       } else
2294 #endif
2295       klass_node->init_req(0, ctrl);
2296     }
2297     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2298 
2299     Node* thread = transform_later(new ThreadLocalNode());
2300     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2301     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2302     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2303 
2304     // Get slow path - mark word does NOT match the value.
2305     STATIC_ASSERT(markWord::age_mask_in_place <= INT_MAX);
2306     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2307                                       (~(int)markWord::age_mask_in_place), 0);
2308     // region->in(3) is set to fast path - the object is biased to the current thread.
2309     mem_phi->init_req(3, mem);
2310 
2311 
2312     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2313 
2314 
2315     // First, check biased pattern.
2316     // Get fast path - _prototype_header has the same biased lock pattern.
2317     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2318                           markWord::biased_lock_mask_in_place, 0, true);
2319 
2320     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2321     // fast_lock_region->in(2) - the prototype header is no longer biased
2322     // and we have to revoke the bias on this object.
2323     // We are going to try to reset the mark of this object to the prototype
2324     // value and fall through to the CAS-based locking scheme.
2325     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2326     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2327                                           proto_node, mark_node);
2328     transform_later(cas);
2329     Node* proj = transform_later(new SCMemProjNode(cas));
2330     fast_lock_mem_phi->init_req(2, proj);
2331 
2332 
2333     // Second, check epoch bits.
2334     Node* rebiased_region  = new RegionNode(3);
2335     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2336     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2337 
2338     // Get slow path - mark word does NOT match epoch bits.
2339     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2340                                       markWord::epoch_mask_in_place, 0);
2341     // The epoch of the current bias is not valid, attempt to rebias the object
2342     // toward the current thread.
2343     rebiased_region->init_req(2, epoch_ctrl);
2344     old_phi->init_req(2, mark_node);
2345     new_phi->init_req(2, o_node);
2346 
2347     // rebiased_region->in(1) is set to fast path.
2348     // The epoch of the current bias is still valid but we know
2349     // nothing about the owner; it might be set or it might be clear.
2350     Node* cmask   = MakeConX(markWord::biased_lock_mask_in_place |
2351                              markWord::age_mask_in_place |
2352                              markWord::epoch_mask_in_place);
2353     Node* old = transform_later(new AndXNode(mark_node, cmask));
2354     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2355     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2356     old_phi->init_req(1, old);
2357     new_phi->init_req(1, new_mark);
2358 
2359     transform_later(rebiased_region);
2360     transform_later(old_phi);
2361     transform_later(new_phi);
2362 
2363     // Try to acquire the bias of the object using an atomic operation.
2364     // If this fails we will go in to the runtime to revoke the object's bias.
2365     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2366     transform_later(cas);
2367     proj = transform_later(new SCMemProjNode(cas));
2368 
2369     // Get slow path - Failed to CAS.
2370     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2371     mem_phi->init_req(4, proj);
2372     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2373 
2374     // Failed to CAS.
2375     slow_path  = new RegionNode(3);
2376     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2377 
2378     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2379     slow_mem->init_req(1, proj);
2380 
2381     // Call CAS-based locking scheme (FastLock node).
2382 
2383     transform_later(fast_lock_region);
2384     transform_later(fast_lock_mem_phi);
2385 
2386     // Get slow path - FastLock failed to lock the object.
2387     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2388     mem_phi->init_req(2, fast_lock_mem_phi);
2389     // region->in(2) is set to fast path - the object is locked to the current thread.
2390 
2391     slow_path->init_req(2, ctrl); // Capture slow-control
2392     slow_mem->init_req(2, fast_lock_mem_phi);
2393 
2394     transform_later(slow_path);
2395     transform_later(slow_mem);
2396     // Reset lock's memory edge.
2397     lock->set_req(TypeFunc::Memory, slow_mem);
2398 
2399   } else {
2400     region  = new RegionNode(3);
2401     // create a Phi for the memory state
2402     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2403 
2404     // Optimize test; set region slot 2
2405     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2406     mem_phi->init_req(2, mem);
2407   }
2408 
2409   // Make slow path call
2410   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2411                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2412                                   obj, box, NULL);
2413 
2414   extract_call_projections(call);
2415 
2416   // Slow path can only throw asynchronous exceptions, which are always
2417   // de-opted.  So the compiler thinks the slow-call can never throw an
2418   // exception.  If it DOES throw an exception we would need the debug
2419   // info removed first (since if it throws there is no monitor).
2420   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2421            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2422 
2423   // Capture slow path
2424   // disconnect fall-through projection from call and create a new one
2425   // hook up users of fall-through projection to region
2426   Node *slow_ctrl = _fallthroughproj->clone();
2427   transform_later(slow_ctrl);
2428   _igvn.hash_delete(_fallthroughproj);
2429   _fallthroughproj->disconnect_inputs(C);
2430   region->init_req(1, slow_ctrl);
2431   // region inputs are now complete
2432   transform_later(region);
2433   _igvn.replace_node(_fallthroughproj, region);
2434 
2435   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2436   mem_phi->init_req(1, memproj );
2437   transform_later(mem_phi);
2438   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2439 }
2440 
2441 //------------------------------expand_unlock_node----------------------
expand_unlock_node(UnlockNode * unlock)2442 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2443 
2444   Node* ctrl = unlock->in(TypeFunc::Control);
2445   Node* mem = unlock->in(TypeFunc::Memory);
2446   Node* obj = unlock->obj_node();
2447   Node* box = unlock->box_node();
2448 
2449   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2450 
2451   // No need for a null check on unlock
2452 
2453   // Make the merge point
2454   Node *region;
2455   Node *mem_phi;
2456 
2457   if (UseOptoBiasInlining) {
2458     // Check for biased locking unlock case, which is a no-op.
2459     // See the full description in MacroAssembler::biased_locking_exit().
2460     region  = new RegionNode(4);
2461     // create a Phi for the memory state
2462     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2463     mem_phi->init_req(3, mem);
2464 
2465     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2466     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2467                          markWord::biased_lock_mask_in_place,
2468                          markWord::biased_lock_pattern);
2469   } else {
2470     region  = new RegionNode(3);
2471     // create a Phi for the memory state
2472     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2473   }
2474 
2475   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2476   funlock = transform_later( funlock )->as_FastUnlock();
2477   // Optimize test; set region slot 2
2478   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2479   Node *thread = transform_later(new ThreadLocalNode());
2480 
2481   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2482                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2483                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2484 
2485   extract_call_projections(call);
2486 
2487   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2488            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2489 
2490   // No exceptions for unlocking
2491   // Capture slow path
2492   // disconnect fall-through projection from call and create a new one
2493   // hook up users of fall-through projection to region
2494   Node *slow_ctrl = _fallthroughproj->clone();
2495   transform_later(slow_ctrl);
2496   _igvn.hash_delete(_fallthroughproj);
2497   _fallthroughproj->disconnect_inputs(C);
2498   region->init_req(1, slow_ctrl);
2499   // region inputs are now complete
2500   transform_later(region);
2501   _igvn.replace_node(_fallthroughproj, region);
2502 
2503   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2504   mem_phi->init_req(1, memproj );
2505   mem_phi->init_req(2, mem);
2506   transform_later(mem_phi);
2507   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2508 }
2509 
expand_subtypecheck_node(SubTypeCheckNode * check)2510 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2511   assert(check->in(SubTypeCheckNode::Control) == NULL, "should be pinned");
2512   Node* bol = check->unique_out();
2513   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2514   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2515   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2516 
2517   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2518     Node* iff = bol->last_out(i);
2519     assert(iff->is_If(), "where's the if?");
2520 
2521     if (iff->in(0)->is_top()) {
2522       _igvn.replace_input_of(iff, 1, C->top());
2523       continue;
2524     }
2525 
2526     Node* iftrue = iff->as_If()->proj_out(1);
2527     Node* iffalse = iff->as_If()->proj_out(0);
2528     Node* ctrl = iff->in(0);
2529 
2530     Node* subklass = NULL;
2531     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2532       subklass = obj_or_subklass;
2533     } else {
2534       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2535       subklass = _igvn.transform(LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2536     }
2537 
2538     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, NULL, _igvn);
2539 
2540     _igvn.replace_input_of(iff, 0, C->top());
2541     _igvn.replace_node(iftrue, not_subtype_ctrl);
2542     _igvn.replace_node(iffalse, ctrl);
2543   }
2544   _igvn.replace_node(check, C->top());
2545 }
2546 
2547 //---------------------------eliminate_macro_nodes----------------------
2548 // Eliminate scalar replaced allocations and associated locks.
eliminate_macro_nodes()2549 void PhaseMacroExpand::eliminate_macro_nodes() {
2550   if (C->macro_count() == 0)
2551     return;
2552 
2553   // First, attempt to eliminate locks
2554   int cnt = C->macro_count();
2555   for (int i=0; i < cnt; i++) {
2556     Node *n = C->macro_node(i);
2557     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2558       // Before elimination mark all associated (same box and obj)
2559       // lock and unlock nodes.
2560       mark_eliminated_locking_nodes(n->as_AbstractLock());
2561     }
2562   }
2563   bool progress = true;
2564   while (progress) {
2565     progress = false;
2566     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2567       Node* n = C->macro_node(i - 1);
2568       bool success = false;
2569       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2570       if (n->is_AbstractLock()) {
2571         success = eliminate_locking_node(n->as_AbstractLock());
2572       }
2573       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2574       progress = progress || success;
2575     }
2576   }
2577   // Next, attempt to eliminate allocations
2578   _has_locks = false;
2579   progress = true;
2580   while (progress) {
2581     progress = false;
2582     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2583       Node* n = C->macro_node(i - 1);
2584       bool success = false;
2585       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2586       switch (n->class_id()) {
2587       case Node::Class_Allocate:
2588       case Node::Class_AllocateArray:
2589         success = eliminate_allocate_node(n->as_Allocate());
2590         break;
2591       case Node::Class_CallStaticJava:
2592         success = eliminate_boxing_node(n->as_CallStaticJava());
2593         break;
2594       case Node::Class_Lock:
2595       case Node::Class_Unlock:
2596         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2597         _has_locks = true;
2598         break;
2599       case Node::Class_ArrayCopy:
2600         break;
2601       case Node::Class_OuterStripMinedLoop:
2602         break;
2603       case Node::Class_SubTypeCheck:
2604         break;
2605       case Node::Class_Opaque1:
2606         break;
2607       default:
2608         assert(n->Opcode() == Op_LoopLimit ||
2609                n->Opcode() == Op_Opaque2   ||
2610                n->Opcode() == Op_Opaque3   ||
2611                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2612                "unknown node type in macro list");
2613       }
2614       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2615       progress = progress || success;
2616     }
2617   }
2618 }
2619 
2620 //------------------------------expand_macro_nodes----------------------
2621 //  Returns true if a failure occurred.
expand_macro_nodes()2622 bool PhaseMacroExpand::expand_macro_nodes() {
2623   // Last attempt to eliminate macro nodes.
2624   eliminate_macro_nodes();
2625 
2626   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2627   bool progress = true;
2628   while (progress) {
2629     progress = false;
2630     for (int i = C->macro_count(); i > 0; i--) {
2631       Node* n = C->macro_node(i-1);
2632       bool success = false;
2633       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2634       if (n->Opcode() == Op_LoopLimit) {
2635         // Remove it from macro list and put on IGVN worklist to optimize.
2636         C->remove_macro_node(n);
2637         _igvn._worklist.push(n);
2638         success = true;
2639       } else if (n->Opcode() == Op_CallStaticJava) {
2640         // Remove it from macro list and put on IGVN worklist to optimize.
2641         C->remove_macro_node(n);
2642         _igvn._worklist.push(n);
2643         success = true;
2644       } else if (n->is_Opaque1() || n->Opcode() == Op_Opaque2) {
2645         _igvn.replace_node(n, n->in(1));
2646         success = true;
2647 #if INCLUDE_RTM_OPT
2648       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2649         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2650         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2651         Node* cmp = n->unique_out();
2652 #ifdef ASSERT
2653         // Validate graph.
2654         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2655         BoolNode* bol = cmp->unique_out()->as_Bool();
2656         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2657                (bol->_test._test == BoolTest::ne), "");
2658         IfNode* ifn = bol->unique_out()->as_If();
2659         assert((ifn->outcnt() == 2) &&
2660                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2661 #endif
2662         Node* repl = n->in(1);
2663         if (!_has_locks) {
2664           // Remove RTM state check if there are no locks in the code.
2665           // Replace input to compare the same value.
2666           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2667         }
2668         _igvn.replace_node(n, repl);
2669         success = true;
2670 #endif
2671       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2672         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2673         C->remove_macro_node(n);
2674         success = true;
2675       }
2676       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2677       progress = progress || success;
2678     }
2679   }
2680 
2681   // Clean up the graph so we're less likely to hit the maximum node
2682   // limit
2683   _igvn.set_delay_transform(false);
2684   _igvn.optimize();
2685   if (C->failing())  return true;
2686   _igvn.set_delay_transform(true);
2687 
2688 
2689   // Because we run IGVN after each expansion, some macro nodes may go
2690   // dead and be removed from the list as we iterate over it. Move
2691   // Allocate nodes (processed in a second pass) at the beginning of
2692   // the list and then iterate from the last element of the list until
2693   // an Allocate node is seen. This is robust to random deletion in
2694   // the list due to nodes going dead.
2695   C->sort_macro_nodes();
2696 
2697   // expand arraycopy "macro" nodes first
2698   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2699   // before the allocate nodes are expanded.
2700   while (C->macro_count() > 0) {
2701     int macro_count = C->macro_count();
2702     Node * n = C->macro_node(macro_count-1);
2703     assert(n->is_macro(), "only macro nodes expected here");
2704     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2705       // node is unreachable, so don't try to expand it
2706       C->remove_macro_node(n);
2707       continue;
2708     }
2709     if (n->is_Allocate()) {
2710       break;
2711     }
2712     // Make sure expansion will not cause node limit to be exceeded.
2713     // Worst case is a macro node gets expanded into about 200 nodes.
2714     // Allow 50% more for optimization.
2715     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2716       return true;
2717     }
2718 
2719     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2720     switch (n->class_id()) {
2721     case Node::Class_Lock:
2722       expand_lock_node(n->as_Lock());
2723       break;
2724     case Node::Class_Unlock:
2725       expand_unlock_node(n->as_Unlock());
2726       break;
2727     case Node::Class_ArrayCopy:
2728       expand_arraycopy_node(n->as_ArrayCopy());
2729       break;
2730     case Node::Class_SubTypeCheck:
2731       expand_subtypecheck_node(n->as_SubTypeCheck());
2732       break;
2733     default:
2734       assert(false, "unknown node type in macro list");
2735     }
2736     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2737     if (C->failing())  return true;
2738 
2739     // Clean up the graph so we're less likely to hit the maximum node
2740     // limit
2741     _igvn.set_delay_transform(false);
2742     _igvn.optimize();
2743     if (C->failing())  return true;
2744     _igvn.set_delay_transform(true);
2745   }
2746 
2747   // All nodes except Allocate nodes are expanded now. There could be
2748   // new optimization opportunities (such as folding newly created
2749   // load from a just allocated object). Run IGVN.
2750 
2751   // expand "macro" nodes
2752   // nodes are removed from the macro list as they are processed
2753   while (C->macro_count() > 0) {
2754     int macro_count = C->macro_count();
2755     Node * n = C->macro_node(macro_count-1);
2756     assert(n->is_macro(), "only macro nodes expected here");
2757     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2758       // node is unreachable, so don't try to expand it
2759       C->remove_macro_node(n);
2760       continue;
2761     }
2762     // Make sure expansion will not cause node limit to be exceeded.
2763     // Worst case is a macro node gets expanded into about 200 nodes.
2764     // Allow 50% more for optimization.
2765     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2766       return true;
2767     }
2768     switch (n->class_id()) {
2769     case Node::Class_Allocate:
2770       expand_allocate(n->as_Allocate());
2771       break;
2772     case Node::Class_AllocateArray:
2773       expand_allocate_array(n->as_AllocateArray());
2774       break;
2775     default:
2776       assert(false, "unknown node type in macro list");
2777     }
2778     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2779     if (C->failing())  return true;
2780 
2781     // Clean up the graph so we're less likely to hit the maximum node
2782     // limit
2783     _igvn.set_delay_transform(false);
2784     _igvn.optimize();
2785     if (C->failing())  return true;
2786     _igvn.set_delay_transform(true);
2787   }
2788 
2789   _igvn.set_delay_transform(false);
2790   return false;
2791 }
2792