1 /*
2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "opto/arraycopynode.hpp"
28 #include "oops/objArrayKlass.hpp"
29 #include "opto/convertnode.hpp"
30 #include "opto/vectornode.hpp"
31 #include "opto/graphKit.hpp"
32 #include "opto/macro.hpp"
33 #include "opto/runtime.hpp"
34 #include "utilities/align.hpp"
35 #include "utilities/powerOfTwo.hpp"
36 
insert_mem_bar(Node ** ctrl,Node ** mem,int opcode,Node * precedent)37 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
38   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
39   mb->init_req(TypeFunc::Control, *ctrl);
40   mb->init_req(TypeFunc::Memory, *mem);
41   transform_later(mb);
42   *ctrl = new ProjNode(mb,TypeFunc::Control);
43   transform_later(*ctrl);
44   Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
45   transform_later(mem_proj);
46   *mem = mem_proj;
47 }
48 
array_element_address(Node * ary,Node * idx,BasicType elembt)49 Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
50   uint shift  = exact_log2(type2aelembytes(elembt));
51   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
52   Node* base =  basic_plus_adr(ary, header);
53 #ifdef _LP64
54   // see comment in GraphKit::array_element_address
55   int index_max = max_jint - 1;  // array size is max_jint, index is one less
56   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
57   idx = transform_later( new ConvI2LNode(idx, lidxtype) );
58 #endif
59   Node* scale = new LShiftXNode(idx, intcon(shift));
60   transform_later(scale);
61   return basic_plus_adr(ary, base, scale);
62 }
63 
ConvI2L(Node * offset)64 Node* PhaseMacroExpand::ConvI2L(Node* offset) {
65   return transform_later(new ConvI2LNode(offset));
66 }
67 
make_leaf_call(Node * ctrl,Node * mem,const TypeFunc * call_type,address call_addr,const char * call_name,const TypePtr * adr_type,Node * parm0,Node * parm1,Node * parm2,Node * parm3,Node * parm4,Node * parm5,Node * parm6,Node * parm7)68 Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
69                                        const TypeFunc* call_type, address call_addr,
70                                        const char* call_name,
71                                        const TypePtr* adr_type,
72                                        Node* parm0, Node* parm1,
73                                        Node* parm2, Node* parm3,
74                                        Node* parm4, Node* parm5,
75                                        Node* parm6, Node* parm7) {
76   Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
77   call->init_req(TypeFunc::Control, ctrl);
78   call->init_req(TypeFunc::I_O    , top());
79   call->init_req(TypeFunc::Memory , mem);
80   call->init_req(TypeFunc::ReturnAdr, top());
81   call->init_req(TypeFunc::FramePtr, top());
82 
83   // Hook each parm in order.  Stop looking at the first NULL.
84   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
85   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
86   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
87   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
88   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
89   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
90   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
91   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
92     /* close each nested if ===> */  } } } } } } } }
93   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
94 
95   return call;
96 }
97 
98 
99 //------------------------------generate_guard---------------------------
100 // Helper function for generating guarded fast-slow graph structures.
101 // The given 'test', if true, guards a slow path.  If the test fails
102 // then a fast path can be taken.  (We generally hope it fails.)
103 // In all cases, GraphKit::control() is updated to the fast path.
104 // The returned value represents the control for the slow path.
105 // The return value is never 'top'; it is either a valid control
106 // or NULL if it is obvious that the slow path can never be taken.
107 // Also, if region and the slow control are not NULL, the slow edge
108 // is appended to the region.
generate_guard(Node ** ctrl,Node * test,RegionNode * region,float true_prob)109 Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
110   if ((*ctrl)->is_top()) {
111     // Already short circuited.
112     return NULL;
113   }
114   // Build an if node and its projections.
115   // If test is true we take the slow path, which we assume is uncommon.
116   if (_igvn.type(test) == TypeInt::ZERO) {
117     // The slow branch is never taken.  No need to build this guard.
118     return NULL;
119   }
120 
121   IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
122   transform_later(iff);
123 
124   Node* if_slow = new IfTrueNode(iff);
125   transform_later(if_slow);
126 
127   if (region != NULL) {
128     region->add_req(if_slow);
129   }
130 
131   Node* if_fast = new IfFalseNode(iff);
132   transform_later(if_fast);
133 
134   *ctrl = if_fast;
135 
136   return if_slow;
137 }
138 
generate_slow_guard(Node ** ctrl,Node * test,RegionNode * region)139 inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
140   return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
141 }
142 
generate_negative_guard(Node ** ctrl,Node * index,RegionNode * region)143 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
144   if ((*ctrl)->is_top())
145     return;                // already stopped
146   if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
147     return;                // index is already adequately typed
148   Node* cmp_lt = new CmpINode(index, intcon(0));
149   transform_later(cmp_lt);
150   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
151   transform_later(bol_lt);
152   generate_guard(ctrl, bol_lt, region, PROB_MIN);
153 }
154 
generate_limit_guard(Node ** ctrl,Node * offset,Node * subseq_length,Node * array_length,RegionNode * region)155 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
156   if ((*ctrl)->is_top())
157     return;                // already stopped
158   bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
159   if (zero_offset && subseq_length->eqv_uncast(array_length))
160     return;                // common case of whole-array copy
161   Node* last = subseq_length;
162   if (!zero_offset) {            // last += offset
163     last = new AddINode(last, offset);
164     transform_later(last);
165   }
166   Node* cmp_lt = new CmpUNode(array_length, last);
167   transform_later(cmp_lt);
168   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
169   transform_later(bol_lt);
170   generate_guard(ctrl, bol_lt, region, PROB_MIN);
171 }
172 
173 //
174 // Partial in-lining handling for smaller conjoint/disjoint array copies having
175 // length(in bytes) less than ArrayCopyPartialInlineSize.
176 //  if (length <= ArrayCopyPartialInlineSize) {
177 //    partial_inlining_block:
178 //      mask = Mask_Gen
179 //      vload = LoadVectorMasked src , mask
180 //      StoreVectorMasked dst, mask, vload
181 //  } else {
182 //    stub_block:
183 //      callstub array_copy
184 //  }
185 //  exit_block:
186 //    Phi = label partial_inlining_block:mem , label stub_block:mem (filled by caller)
187 //    mem = MergeMem (Phi)
188 //    control = stub_block
189 //
190 //  Exit_block and associated phi(memory) are partially initialized for partial_in-lining_block
191 //  edges. Remaining edges for exit_block coming from stub_block are connected by the caller
192 //  post stub nodes creation.
193 //
194 
generate_partial_inlining_block(Node ** ctrl,MergeMemNode ** mem,const TypePtr * adr_type,RegionNode ** exit_block,Node ** result_memory,Node * length,Node * src_start,Node * dst_start,BasicType type)195 void PhaseMacroExpand::generate_partial_inlining_block(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type,
196                                                        RegionNode** exit_block, Node** result_memory, Node* length,
197                                                        Node* src_start, Node* dst_start, BasicType type) {
198   const TypePtr *src_adr_type = _igvn.type(src_start)->isa_ptr();
199   Node* inline_block = NULL;
200   Node* stub_block = NULL;
201 
202   int const_len = -1;
203   const TypeInt* lty = NULL;
204   uint shift  = exact_log2(type2aelembytes(type));
205   if (length->Opcode() == Op_ConvI2L) {
206     lty = _igvn.type(length->in(1))->isa_int();
207   } else  {
208     lty = _igvn.type(length)->isa_int();
209   }
210   if (lty && lty->is_con()) {
211     const_len = lty->get_con() << shift;
212   }
213 
214   // Return if copy length is greater than partial inline size limit or
215   // target does not supports masked load/stores.
216   int lane_count = ArrayCopyNode::get_partial_inline_vector_lane_count(type, const_len);
217   if ( const_len > ArrayCopyPartialInlineSize ||
218       !Matcher::match_rule_supported_vector(Op_LoadVectorMasked, lane_count, type)  ||
219       !Matcher::match_rule_supported_vector(Op_StoreVectorMasked, lane_count, type) ||
220       !Matcher::match_rule_supported_vector(Op_VectorMaskGen, lane_count, type)) {
221     return;
222   }
223 
224   Node* copy_bytes = new LShiftXNode(length, intcon(shift));
225   transform_later(copy_bytes);
226 
227   Node* cmp_le = new CmpULNode(copy_bytes, longcon(ArrayCopyPartialInlineSize));
228   transform_later(cmp_le);
229   Node* bol_le = new BoolNode(cmp_le, BoolTest::le);
230   transform_later(bol_le);
231   inline_block  = generate_guard(ctrl, bol_le, NULL, PROB_FAIR);
232   stub_block = *ctrl;
233 
234   Node* mask_gen =  new VectorMaskGenNode(length, TypeLong::LONG, Type::get_const_basic_type(type));
235   transform_later(mask_gen);
236 
237   unsigned vec_size = lane_count *  type2aelembytes(type);
238   if (C->max_vector_size() < vec_size) {
239     C->set_max_vector_size(vec_size);
240   }
241 
242   const TypeVect * vt = TypeVect::make(type, lane_count);
243   Node* mm = (*mem)->memory_at(C->get_alias_index(src_adr_type));
244   Node* masked_load = new LoadVectorMaskedNode(inline_block, mm, src_start,
245                                                src_adr_type, vt, mask_gen);
246   transform_later(masked_load);
247 
248   mm = (*mem)->memory_at(C->get_alias_index(adr_type));
249   Node* masked_store = new StoreVectorMaskedNode(inline_block, mm, dst_start,
250                                                  masked_load, adr_type, mask_gen);
251   transform_later(masked_store);
252 
253   // Convergence region for inline_block and stub_block.
254   *exit_block = new RegionNode(3);
255   transform_later(*exit_block);
256   (*exit_block)->init_req(1, inline_block);
257   *result_memory = new PhiNode(*exit_block, Type::MEMORY, adr_type);
258   transform_later(*result_memory);
259   (*result_memory)->init_req(1, masked_store);
260 
261   *ctrl = stub_block;
262 }
263 
264 
generate_nonpositive_guard(Node ** ctrl,Node * index,bool never_negative)265 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
266   if ((*ctrl)->is_top())  return NULL;
267 
268   if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
269     return NULL;                // index is already adequately typed
270   Node* cmp_le = new CmpINode(index, intcon(0));
271   transform_later(cmp_le);
272   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
273   Node* bol_le = new BoolNode(cmp_le, le_or_eq);
274   transform_later(bol_le);
275   Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN);
276 
277   return is_notp;
278 }
279 
finish_arraycopy_call(Node * call,Node ** ctrl,MergeMemNode ** mem,const TypePtr * adr_type)280 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
281   transform_later(call);
282 
283   *ctrl = new ProjNode(call,TypeFunc::Control);
284   transform_later(*ctrl);
285   Node* newmem = new ProjNode(call, TypeFunc::Memory);
286   transform_later(newmem);
287 
288   uint alias_idx = C->get_alias_index(adr_type);
289   if (alias_idx != Compile::AliasIdxBot) {
290     *mem = MergeMemNode::make(*mem);
291     (*mem)->set_memory_at(alias_idx, newmem);
292   } else {
293     *mem = MergeMemNode::make(newmem);
294   }
295   transform_later(*mem);
296 }
297 
basictype2arraycopy(BasicType t,Node * src_offset,Node * dest_offset,bool disjoint_bases,const char * & name,bool dest_uninitialized)298 address PhaseMacroExpand::basictype2arraycopy(BasicType t,
299                                               Node* src_offset,
300                                               Node* dest_offset,
301                                               bool disjoint_bases,
302                                               const char* &name,
303                                               bool dest_uninitialized) {
304   const TypeInt* src_offset_inttype  = _igvn.find_int_type(src_offset);;
305   const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);;
306 
307   bool aligned = false;
308   bool disjoint = disjoint_bases;
309 
310   // if the offsets are the same, we can treat the memory regions as
311   // disjoint, because either the memory regions are in different arrays,
312   // or they are identical (which we can treat as disjoint.)  We can also
313   // treat a copy with a destination index  less that the source index
314   // as disjoint since a low->high copy will work correctly in this case.
315   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
316       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
317     // both indices are constants
318     int s_offs = src_offset_inttype->get_con();
319     int d_offs = dest_offset_inttype->get_con();
320     int element_size = type2aelembytes(t);
321     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
322               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
323     if (s_offs >= d_offs)  disjoint = true;
324   } else if (src_offset == dest_offset && src_offset != NULL) {
325     // This can occur if the offsets are identical non-constants.
326     disjoint = true;
327   }
328 
329   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
330 }
331 
332 #define XTOP LP64_ONLY(COMMA top())
333 
334 // Generate an optimized call to arraycopy.
335 // Caller must guard against non-arrays.
336 // Caller must determine a common array basic-type for both arrays.
337 // Caller must validate offsets against array bounds.
338 // The slow_region has already collected guard failure paths
339 // (such as out of bounds length or non-conformable array types).
340 // The generated code has this shape, in general:
341 //
342 //     if (length == 0)  return   // via zero_path
343 //     slowval = -1
344 //     if (types unknown) {
345 //       slowval = call generic copy loop
346 //       if (slowval == 0)  return  // via checked_path
347 //     } else if (indexes in bounds) {
348 //       if ((is object array) && !(array type check)) {
349 //         slowval = call checked copy loop
350 //         if (slowval == 0)  return  // via checked_path
351 //       } else {
352 //         call bulk copy loop
353 //         return  // via fast_path
354 //       }
355 //     }
356 //     // adjust params for remaining work:
357 //     if (slowval != -1) {
358 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
359 //     }
360 //   slow_region:
361 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
362 //     return  // via slow_call_path
363 //
364 // This routine is used from several intrinsics:  System.arraycopy,
365 // Object.clone (the array subcase), and Arrays.copyOf[Range].
366 //
generate_arraycopy(ArrayCopyNode * ac,AllocateArrayNode * alloc,Node ** ctrl,MergeMemNode * mem,Node ** io,const TypePtr * adr_type,BasicType basic_elem_type,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * copy_length,bool disjoint_bases,bool length_never_negative,RegionNode * slow_region)367 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
368                                            Node** ctrl, MergeMemNode* mem, Node** io,
369                                            const TypePtr* adr_type,
370                                            BasicType basic_elem_type,
371                                            Node* src,  Node* src_offset,
372                                            Node* dest, Node* dest_offset,
373                                            Node* copy_length,
374                                            bool disjoint_bases,
375                                            bool length_never_negative,
376                                            RegionNode* slow_region) {
377   if (slow_region == NULL) {
378     slow_region = new RegionNode(1);
379     transform_later(slow_region);
380   }
381 
382   Node* original_dest      = dest;
383   bool  dest_uninitialized = false;
384 
385   // See if this is the initialization of a newly-allocated array.
386   // If so, we will take responsibility here for initializing it to zero.
387   // (Note:  Because tightly_coupled_allocation performs checks on the
388   // out-edges of the dest, we need to avoid making derived pointers
389   // from it until we have checked its uses.)
390   if (ReduceBulkZeroing
391       && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
392       && basic_elem_type != T_CONFLICT // avoid corner case
393       && !src->eqv_uncast(dest)
394       && alloc != NULL
395       && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
396       && alloc->maybe_set_complete(&_igvn)) {
397     // "You break it, you buy it."
398     InitializeNode* init = alloc->initialization();
399     assert(init->is_complete(), "we just did this");
400     init->set_complete_with_arraycopy();
401     assert(dest->is_CheckCastPP(), "sanity");
402     assert(dest->in(0)->in(0) == init, "dest pinned");
403     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
404     // From this point on, every exit path is responsible for
405     // initializing any non-copied parts of the object to zero.
406     // Also, if this flag is set we make sure that arraycopy interacts properly
407     // with G1, eliding pre-barriers. See CR 6627983.
408     dest_uninitialized = true;
409   } else {
410     // No zeroing elimination here.
411     alloc             = NULL;
412     //original_dest   = dest;
413     //dest_uninitialized = false;
414   }
415 
416   uint alias_idx = C->get_alias_index(adr_type);
417 
418   // Results are placed here:
419   enum { fast_path        = 1,  // normal void-returning assembly stub
420          checked_path     = 2,  // special assembly stub with cleanup
421          slow_call_path   = 3,  // something went wrong; call the VM
422          zero_path        = 4,  // bypass when length of copy is zero
423          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
424          PATH_LIMIT       = 6
425   };
426   RegionNode* result_region = new RegionNode(PATH_LIMIT);
427   PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
428   PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
429   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
430   transform_later(result_region);
431   transform_later(result_i_o);
432   transform_later(result_memory);
433 
434   // The slow_control path:
435   Node* slow_control;
436   Node* slow_i_o = *io;
437   Node* slow_mem = mem->memory_at(alias_idx);
438   DEBUG_ONLY(slow_control = (Node*) badAddress);
439 
440   // Checked control path:
441   Node* checked_control = top();
442   Node* checked_mem     = NULL;
443   Node* checked_i_o     = NULL;
444   Node* checked_value   = NULL;
445 
446   if (basic_elem_type == T_CONFLICT) {
447     assert(!dest_uninitialized, "");
448     Node* cv = generate_generic_arraycopy(ctrl, &mem,
449                                           adr_type,
450                                           src, src_offset, dest, dest_offset,
451                                           copy_length, dest_uninitialized);
452     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
453     checked_control = *ctrl;
454     checked_i_o     = *io;
455     checked_mem     = mem->memory_at(alias_idx);
456     checked_value   = cv;
457     *ctrl = top();
458   }
459 
460   Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
461   if (not_pos != NULL) {
462     Node* local_ctrl = not_pos, *local_io = *io;
463     MergeMemNode* local_mem = MergeMemNode::make(mem);
464     transform_later(local_mem);
465 
466     // (6) length must not be negative.
467     if (!length_never_negative) {
468       generate_negative_guard(&local_ctrl, copy_length, slow_region);
469     }
470 
471     // copy_length is 0.
472     if (dest_uninitialized) {
473       assert(!local_ctrl->is_top(), "no ctrl?");
474       Node* dest_length = alloc->in(AllocateNode::ALength);
475       if (copy_length->eqv_uncast(dest_length)
476           || _igvn.find_int_con(dest_length, 1) <= 0) {
477         // There is no zeroing to do. No need for a secondary raw memory barrier.
478       } else {
479         // Clear the whole thing since there are no source elements to copy.
480         generate_clear_array(local_ctrl, local_mem,
481                              adr_type, dest, basic_elem_type,
482                              intcon(0), NULL,
483                              alloc->in(AllocateNode::AllocSize));
484         // Use a secondary InitializeNode as raw memory barrier.
485         // Currently it is needed only on this path since other
486         // paths have stub or runtime calls as raw memory barriers.
487         MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
488                                           Compile::AliasIdxRaw,
489                                           top());
490         transform_later(mb);
491         mb->set_req(TypeFunc::Control,local_ctrl);
492         mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
493         local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
494         local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
495 
496         InitializeNode* init = mb->as_Initialize();
497         init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
498       }
499     }
500 
501     // Present the results of the fast call.
502     result_region->init_req(zero_path, local_ctrl);
503     result_i_o   ->init_req(zero_path, local_io);
504     result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
505   }
506 
507   if (!(*ctrl)->is_top() && dest_uninitialized) {
508     // We have to initialize the *uncopied* part of the array to zero.
509     // The copy destination is the slice dest[off..off+len].  The other slices
510     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
511     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
512     Node* dest_length = alloc->in(AllocateNode::ALength);
513     Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
514 
515     // If there is a head section that needs zeroing, do it now.
516     if (_igvn.find_int_con(dest_offset, -1) != 0) {
517       generate_clear_array(*ctrl, mem,
518                            adr_type, dest, basic_elem_type,
519                            intcon(0), dest_offset,
520                            NULL);
521     }
522 
523     // Next, perform a dynamic check on the tail length.
524     // It is often zero, and we can win big if we prove this.
525     // There are two wins:  Avoid generating the ClearArray
526     // with its attendant messy index arithmetic, and upgrade
527     // the copy to a more hardware-friendly word size of 64 bits.
528     Node* tail_ctl = NULL;
529     if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
530       Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
531       Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
532       tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL);
533       assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome");
534     }
535 
536     // At this point, let's assume there is no tail.
537     if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) {
538       // There is no tail.  Try an upgrade to a 64-bit copy.
539       bool didit = false;
540       {
541         Node* local_ctrl = *ctrl, *local_io = *io;
542         MergeMemNode* local_mem = MergeMemNode::make(mem);
543         transform_later(local_mem);
544 
545         didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
546                                          adr_type, basic_elem_type, alloc,
547                                          src, src_offset, dest, dest_offset,
548                                          dest_size, dest_uninitialized);
549         if (didit) {
550           // Present the results of the block-copying fast call.
551           result_region->init_req(bcopy_path, local_ctrl);
552           result_i_o   ->init_req(bcopy_path, local_io);
553           result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
554         }
555       }
556       if (didit) {
557         *ctrl = top();     // no regular fast path
558       }
559     }
560 
561     // Clear the tail, if any.
562     if (tail_ctl != NULL) {
563       Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl;
564       *ctrl = tail_ctl;
565       if (notail_ctl == NULL) {
566         generate_clear_array(*ctrl, mem,
567                              adr_type, dest, basic_elem_type,
568                              dest_tail, NULL,
569                              dest_size);
570       } else {
571         // Make a local merge.
572         Node* done_ctl = transform_later(new RegionNode(3));
573         Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
574         done_ctl->init_req(1, notail_ctl);
575         done_mem->init_req(1, mem->memory_at(alias_idx));
576         generate_clear_array(*ctrl, mem,
577                              adr_type, dest, basic_elem_type,
578                              dest_tail, NULL,
579                              dest_size);
580         done_ctl->init_req(2, *ctrl);
581         done_mem->init_req(2, mem->memory_at(alias_idx));
582         *ctrl = done_ctl;
583         mem->set_memory_at(alias_idx, done_mem);
584       }
585     }
586   }
587 
588   BasicType copy_type = basic_elem_type;
589   assert(basic_elem_type != T_ARRAY, "caller must fix this");
590   if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
591     // If src and dest have compatible element types, we can copy bits.
592     // Types S[] and D[] are compatible if D is a supertype of S.
593     //
594     // If they are not, we will use checked_oop_disjoint_arraycopy,
595     // which performs a fast optimistic per-oop check, and backs off
596     // further to JVM_ArrayCopy on the first per-oop check that fails.
597     // (Actually, we don't move raw bits only; the GC requires card marks.)
598 
599     // We don't need a subtype check for validated copies and Object[].clone()
600     bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() ||
601                               ac->is_copyofrange_validated() || ac->is_clone_oop_array();
602     if (!skip_subtype_check) {
603       // Get the klass* for both src and dest
604       Node* src_klass  = ac->in(ArrayCopyNode::SrcKlass);
605       Node* dest_klass = ac->in(ArrayCopyNode::DestKlass);
606 
607       assert(src_klass != NULL && dest_klass != NULL, "should have klasses");
608 
609       // Generate the subtype check.
610       // This might fold up statically, or then again it might not.
611       //
612       // Non-static example:  Copying List<String>.elements to a new String[].
613       // The backing store for a List<String> is always an Object[],
614       // but its elements are always type String, if the generic types
615       // are correct at the source level.
616       //
617       // Test S[] against D[], not S against D, because (probably)
618       // the secondary supertype cache is less busy for S[] than S.
619       // This usually only matters when D is an interface.
620       Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, _igvn);
621       // Plug failing path into checked_oop_disjoint_arraycopy
622       if (not_subtype_ctrl != top()) {
623         Node* local_ctrl = not_subtype_ctrl;
624         MergeMemNode* local_mem = MergeMemNode::make(mem);
625         transform_later(local_mem);
626 
627         // (At this point we can assume disjoint_bases, since types differ.)
628         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
629         Node* p1 = basic_plus_adr(dest_klass, ek_offset);
630         Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
631         Node* dest_elem_klass = transform_later(n1);
632         Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
633                                                 adr_type,
634                                                 dest_elem_klass,
635                                                 src, src_offset, dest, dest_offset,
636                                                 ConvI2X(copy_length), dest_uninitialized);
637         if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
638         checked_control = local_ctrl;
639         checked_i_o     = *io;
640         checked_mem     = local_mem->memory_at(alias_idx);
641         checked_value   = cv;
642       }
643     }
644     // At this point we know we do not need type checks on oop stores.
645 
646     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
647     if (!bs->array_copy_requires_gc_barriers(alloc != NULL, copy_type, false, BarrierSetC2::Expansion)) {
648       // If we do not need gc barriers, copy using the jint or jlong stub.
649       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
650       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
651              "sizes agree");
652     }
653   }
654 
655   bool is_partial_array_copy = false;
656   if (!(*ctrl)->is_top()) {
657     // Generate the fast path, if possible.
658     Node* local_ctrl = *ctrl;
659     MergeMemNode* local_mem = MergeMemNode::make(mem);
660     transform_later(local_mem);
661 
662     is_partial_array_copy = generate_unchecked_arraycopy(&local_ctrl, &local_mem,
663                                                          adr_type, copy_type, disjoint_bases,
664                                                          src, src_offset, dest, dest_offset,
665                                                          ConvI2X(copy_length), dest_uninitialized);
666 
667     // Present the results of the fast call.
668     result_region->init_req(fast_path, local_ctrl);
669     result_i_o   ->init_req(fast_path, *io);
670     result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
671   }
672 
673   // Here are all the slow paths up to this point, in one bundle:
674   assert(slow_region != NULL, "allocated on entry");
675   slow_control = slow_region;
676   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
677 
678   *ctrl = checked_control;
679   if (!(*ctrl)->is_top()) {
680     // Clean up after the checked call.
681     // The returned value is either 0 or -1^K,
682     // where K = number of partially transferred array elements.
683     Node* cmp = new CmpINode(checked_value, intcon(0));
684     transform_later(cmp);
685     Node* bol = new BoolNode(cmp, BoolTest::eq);
686     transform_later(bol);
687     IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
688     transform_later(iff);
689 
690     // If it is 0, we are done, so transfer to the end.
691     Node* checks_done = new IfTrueNode(iff);
692     transform_later(checks_done);
693     result_region->init_req(checked_path, checks_done);
694     result_i_o   ->init_req(checked_path, checked_i_o);
695     result_memory->init_req(checked_path, checked_mem);
696 
697     // If it is not zero, merge into the slow call.
698     *ctrl = new IfFalseNode(iff);
699     transform_later(*ctrl);
700     RegionNode* slow_reg2 = new RegionNode(3);
701     PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
702     PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
703     transform_later(slow_reg2);
704     transform_later(slow_i_o2);
705     transform_later(slow_mem2);
706     slow_reg2  ->init_req(1, slow_control);
707     slow_i_o2  ->init_req(1, slow_i_o);
708     slow_mem2  ->init_req(1, slow_mem);
709     slow_reg2  ->init_req(2, *ctrl);
710     slow_i_o2  ->init_req(2, checked_i_o);
711     slow_mem2  ->init_req(2, checked_mem);
712 
713     slow_control = slow_reg2;
714     slow_i_o     = slow_i_o2;
715     slow_mem     = slow_mem2;
716 
717     if (alloc != NULL) {
718       // We'll restart from the very beginning, after zeroing the whole thing.
719       // This can cause double writes, but that's OK since dest is brand new.
720       // So we ignore the low 31 bits of the value returned from the stub.
721     } else {
722       // We must continue the copy exactly where it failed, or else
723       // another thread might see the wrong number of writes to dest.
724       Node* checked_offset = new XorINode(checked_value, intcon(-1));
725       Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
726       transform_later(checked_offset);
727       transform_later(slow_offset);
728       slow_offset->init_req(1, intcon(0));
729       slow_offset->init_req(2, checked_offset);
730 
731       // Adjust the arguments by the conditionally incoming offset.
732       Node* src_off_plus  = new AddINode(src_offset,  slow_offset);
733       transform_later(src_off_plus);
734       Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
735       transform_later(dest_off_plus);
736       Node* length_minus  = new SubINode(copy_length, slow_offset);
737       transform_later(length_minus);
738 
739       // Tweak the node variables to adjust the code produced below:
740       src_offset  = src_off_plus;
741       dest_offset = dest_off_plus;
742       copy_length = length_minus;
743     }
744   }
745   *ctrl = slow_control;
746   if (!(*ctrl)->is_top()) {
747     Node* local_ctrl = *ctrl, *local_io = slow_i_o;
748     MergeMemNode* local_mem = MergeMemNode::make(mem);
749     transform_later(local_mem);
750 
751     // Generate the slow path, if needed.
752     local_mem->set_memory_at(alias_idx, slow_mem);
753 
754     if (dest_uninitialized) {
755       generate_clear_array(local_ctrl, local_mem,
756                            adr_type, dest, basic_elem_type,
757                            intcon(0), NULL,
758                            alloc->in(AllocateNode::AllocSize));
759     }
760 
761     local_mem = generate_slow_arraycopy(ac,
762                                         &local_ctrl, local_mem, &local_io,
763                                         adr_type,
764                                         src, src_offset, dest, dest_offset,
765                                         copy_length, /*dest_uninitialized*/false);
766 
767     result_region->init_req(slow_call_path, local_ctrl);
768     result_i_o   ->init_req(slow_call_path, local_io);
769     result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
770   } else {
771     ShouldNotReachHere(); // no call to generate_slow_arraycopy:
772                           // projections were not extracted
773   }
774 
775   // Remove unused edges.
776   for (uint i = 1; i < result_region->req(); i++) {
777     if (result_region->in(i) == NULL) {
778       result_region->init_req(i, top());
779     }
780   }
781 
782   // Finished; return the combined state.
783   *ctrl = result_region;
784   *io = result_i_o;
785   mem->set_memory_at(alias_idx, result_memory);
786 
787   // mem no longer guaranteed to stay a MergeMemNode
788   Node* out_mem = mem;
789   DEBUG_ONLY(mem = NULL);
790 
791   // The memory edges above are precise in order to model effects around
792   // array copies accurately to allow value numbering of field loads around
793   // arraycopy.  Such field loads, both before and after, are common in Java
794   // collections and similar classes involving header/array data structures.
795   //
796   // But with low number of register or when some registers are used or killed
797   // by arraycopy calls it causes registers spilling on stack. See 6544710.
798   // The next memory barrier is added to avoid it. If the arraycopy can be
799   // optimized away (which it can, sometimes) then we can manually remove
800   // the membar also.
801   //
802   // Do not let reads from the cloned object float above the arraycopy.
803   if (alloc != NULL && !alloc->initialization()->does_not_escape()) {
804     // Do not let stores that initialize this object be reordered with
805     // a subsequent store that would make this object accessible by
806     // other threads.
807     insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
808   } else {
809     insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
810   }
811 
812   if (is_partial_array_copy) {
813     assert((*ctrl)->is_Proj(), "MemBar control projection");
814     assert((*ctrl)->in(0)->isa_MemBar(), "MemBar node");
815     (*ctrl)->in(0)->isa_MemBar()->set_trailing_partial_array_copy();
816   }
817 
818   _igvn.replace_node(_memproj_fallthrough, out_mem);
819   _igvn.replace_node(_ioproj_fallthrough, *io);
820   _igvn.replace_node(_fallthroughcatchproj, *ctrl);
821 
822 #ifdef ASSERT
823   const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
824   if (dest_t->is_known_instance() && !is_partial_array_copy) {
825     ArrayCopyNode* ac = NULL;
826     assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
827     assert(ac == NULL, "no arraycopy anymore");
828   }
829 #endif
830 
831   return out_mem;
832 }
833 
834 // Helper for initialization of arrays, creating a ClearArray.
835 // It writes zero bits in [start..end), within the body of an array object.
836 // The memory effects are all chained onto the 'adr_type' alias category.
837 //
838 // Since the object is otherwise uninitialized, we are free
839 // to put a little "slop" around the edges of the cleared area,
840 // as long as it does not go back into the array's header,
841 // or beyond the array end within the heap.
842 //
843 // The lower edge can be rounded down to the nearest jint and the
844 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
845 //
846 // Arguments:
847 //   adr_type           memory slice where writes are generated
848 //   dest               oop of the destination array
849 //   basic_elem_type    element type of the destination
850 //   slice_idx          array index of first element to store
851 //   slice_len          number of elements to store (or NULL)
852 //   dest_size          total size in bytes of the array object
853 //
854 // Exactly one of slice_len or dest_size must be non-NULL.
855 // If dest_size is non-NULL, zeroing extends to the end of the object.
856 // If slice_len is non-NULL, the slice_idx value must be a constant.
generate_clear_array(Node * ctrl,MergeMemNode * merge_mem,const TypePtr * adr_type,Node * dest,BasicType basic_elem_type,Node * slice_idx,Node * slice_len,Node * dest_size)857 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
858                                             const TypePtr* adr_type,
859                                             Node* dest,
860                                             BasicType basic_elem_type,
861                                             Node* slice_idx,
862                                             Node* slice_len,
863                                             Node* dest_size) {
864   // one or the other but not both of slice_len and dest_size:
865   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
866   if (slice_len == NULL)  slice_len = top();
867   if (dest_size == NULL)  dest_size = top();
868 
869   uint alias_idx = C->get_alias_index(adr_type);
870 
871   // operate on this memory slice:
872   Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
873 
874   // scaling and rounding of indexes:
875   int scale = exact_log2(type2aelembytes(basic_elem_type));
876   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
877   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
878   int bump_bit  = (-1 << scale) & BytesPerInt;
879 
880   // determine constant starts and ends
881   const intptr_t BIG_NEG = -128;
882   assert(BIG_NEG + 2*abase < 0, "neg enough");
883   intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
884   intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
885   if (slice_len_con == 0) {
886     return;                     // nothing to do here
887   }
888   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
889   intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
890   if (slice_idx_con >= 0 && slice_len_con >= 0) {
891     assert(end_con < 0, "not two cons");
892     end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
893                        BytesPerLong);
894   }
895 
896   if (start_con >= 0 && end_con >= 0) {
897     // Constant start and end.  Simple.
898     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
899                                        start_con, end_con, &_igvn);
900   } else if (start_con >= 0 && dest_size != top()) {
901     // Constant start, pre-rounded end after the tail of the array.
902     Node* end = dest_size;
903     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
904                                        start_con, end, &_igvn);
905   } else if (start_con >= 0 && slice_len != top()) {
906     // Constant start, non-constant end.  End needs rounding up.
907     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
908     intptr_t end_base  = abase + (slice_idx_con << scale);
909     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
910     Node*    end       = ConvI2X(slice_len);
911     if (scale != 0)
912       end = transform_later(new LShiftXNode(end, intcon(scale) ));
913     end_base += end_round;
914     end = transform_later(new AddXNode(end, MakeConX(end_base)) );
915     end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
916     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
917                                        start_con, end, &_igvn);
918   } else if (start_con < 0 && dest_size != top()) {
919     // Non-constant start, pre-rounded end after the tail of the array.
920     // This is almost certainly a "round-to-end" operation.
921     Node* start = slice_idx;
922     start = ConvI2X(start);
923     if (scale != 0)
924       start = transform_later(new LShiftXNode( start, intcon(scale) ));
925     start = transform_later(new AddXNode(start, MakeConX(abase)) );
926     if ((bump_bit | clear_low) != 0) {
927       int to_clear = (bump_bit | clear_low);
928       // Align up mod 8, then store a jint zero unconditionally
929       // just before the mod-8 boundary.
930       if (((abase + bump_bit) & ~to_clear) - bump_bit
931           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
932         bump_bit = 0;
933         assert((abase & to_clear) == 0, "array base must be long-aligned");
934       } else {
935         // Bump 'start' up to (or past) the next jint boundary:
936         start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
937         assert((abase & clear_low) == 0, "array base must be int-aligned");
938       }
939       // Round bumped 'start' down to jlong boundary in body of array.
940       start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
941       if (bump_bit != 0) {
942         // Store a zero to the immediately preceding jint:
943         Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
944         Node* p1 = basic_plus_adr(dest, x1);
945         mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
946         mem = transform_later(mem);
947       }
948     }
949     Node* end = dest_size; // pre-rounded
950     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
951                                        start, end, &_igvn);
952   } else {
953     // Non-constant start, unrounded non-constant end.
954     // (Nobody zeroes a random midsection of an array using this routine.)
955     ShouldNotReachHere();       // fix caller
956   }
957 
958   // Done.
959   merge_mem->set_memory_at(alias_idx, mem);
960 }
961 
generate_block_arraycopy(Node ** ctrl,MergeMemNode ** mem,Node * io,const TypePtr * adr_type,BasicType basic_elem_type,AllocateNode * alloc,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * dest_size,bool dest_uninitialized)962 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
963                                                 const TypePtr* adr_type,
964                                                 BasicType basic_elem_type,
965                                                 AllocateNode* alloc,
966                                                 Node* src,  Node* src_offset,
967                                                 Node* dest, Node* dest_offset,
968                                                 Node* dest_size, bool dest_uninitialized) {
969   // See if there is an advantage from block transfer.
970   int scale = exact_log2(type2aelembytes(basic_elem_type));
971   if (scale >= LogBytesPerLong)
972     return false;               // it is already a block transfer
973 
974   // Look at the alignment of the starting offsets.
975   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
976 
977   intptr_t src_off_con  = (intptr_t) _igvn.find_int_con(src_offset, -1);
978   intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
979   if (src_off_con < 0 || dest_off_con < 0) {
980     // At present, we can only understand constants.
981     return false;
982   }
983 
984   intptr_t src_off  = abase + (src_off_con  << scale);
985   intptr_t dest_off = abase + (dest_off_con << scale);
986 
987   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
988     // Non-aligned; too bad.
989     // One more chance:  Pick off an initial 32-bit word.
990     // This is a common case, since abase can be odd mod 8.
991     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
992         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
993       Node* sptr = basic_plus_adr(src,  src_off);
994       Node* dptr = basic_plus_adr(dest, dest_off);
995       const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr();
996       assert(s_adr_type->isa_aryptr(), "impossible slice");
997       uint s_alias_idx = C->get_alias_index(s_adr_type);
998       uint d_alias_idx = C->get_alias_index(adr_type);
999       bool is_mismatched = (basic_elem_type != T_INT);
1000       Node* sval = transform_later(
1001           LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type,
1002                          TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
1003                          false /*unaligned*/, is_mismatched));
1004       Node* st = transform_later(
1005           StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type,
1006                           sval, T_INT, MemNode::unordered));
1007       if (is_mismatched) {
1008         st->as_Store()->set_mismatched_access();
1009       }
1010       (*mem)->set_memory_at(d_alias_idx, st);
1011       src_off += BytesPerInt;
1012       dest_off += BytesPerInt;
1013     } else {
1014       return false;
1015     }
1016   }
1017   assert(src_off % BytesPerLong == 0, "");
1018   assert(dest_off % BytesPerLong == 0, "");
1019 
1020   // Do this copy by giant steps.
1021   Node* sptr  = basic_plus_adr(src,  src_off);
1022   Node* dptr  = basic_plus_adr(dest, dest_off);
1023   Node* countx = dest_size;
1024   countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
1025   countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
1026 
1027   bool disjoint_bases = true;   // since alloc != NULL
1028   generate_unchecked_arraycopy(ctrl, mem,
1029                                adr_type, T_LONG, disjoint_bases,
1030                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
1031 
1032   return true;
1033 }
1034 
1035 // Helper function; generates code for the slow case.
1036 // We make a call to a runtime method which emulates the native method,
1037 // but without the native wrapper overhead.
generate_slow_arraycopy(ArrayCopyNode * ac,Node ** ctrl,Node * mem,Node ** io,const TypePtr * adr_type,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * copy_length,bool dest_uninitialized)1038 MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
1039                                                         Node** ctrl, Node* mem, Node** io,
1040                                                         const TypePtr* adr_type,
1041                                                         Node* src,  Node* src_offset,
1042                                                         Node* dest, Node* dest_offset,
1043                                                         Node* copy_length, bool dest_uninitialized) {
1044   assert(!dest_uninitialized, "Invariant");
1045 
1046   const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
1047   CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
1048                                           "slow_arraycopy",
1049                                           ac->jvms()->bci(), TypePtr::BOTTOM);
1050 
1051   call->init_req(TypeFunc::Control, *ctrl);
1052   call->init_req(TypeFunc::I_O    , *io);
1053   call->init_req(TypeFunc::Memory , mem);
1054   call->init_req(TypeFunc::ReturnAdr, top());
1055   call->init_req(TypeFunc::FramePtr, top());
1056   call->init_req(TypeFunc::Parms+0, src);
1057   call->init_req(TypeFunc::Parms+1, src_offset);
1058   call->init_req(TypeFunc::Parms+2, dest);
1059   call->init_req(TypeFunc::Parms+3, dest_offset);
1060   call->init_req(TypeFunc::Parms+4, copy_length);
1061   call->copy_call_debug_info(&_igvn, ac);
1062 
1063   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1064   _igvn.replace_node(ac, call);
1065   transform_later(call);
1066 
1067   extract_call_projections(call);
1068   *ctrl = _fallthroughcatchproj->clone();
1069   transform_later(*ctrl);
1070 
1071   Node* m = _memproj_fallthrough->clone();
1072   transform_later(m);
1073 
1074   uint alias_idx = C->get_alias_index(adr_type);
1075   MergeMemNode* out_mem;
1076   if (alias_idx != Compile::AliasIdxBot) {
1077     out_mem = MergeMemNode::make(mem);
1078     out_mem->set_memory_at(alias_idx, m);
1079   } else {
1080     out_mem = MergeMemNode::make(m);
1081   }
1082   transform_later(out_mem);
1083 
1084   *io = _ioproj_fallthrough->clone();
1085   transform_later(*io);
1086 
1087   return out_mem;
1088 }
1089 
1090 // Helper function; generates code for cases requiring runtime checks.
generate_checkcast_arraycopy(Node ** ctrl,MergeMemNode ** mem,const TypePtr * adr_type,Node * dest_elem_klass,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * copy_length,bool dest_uninitialized)1091 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
1092                                                      const TypePtr* adr_type,
1093                                                      Node* dest_elem_klass,
1094                                                      Node* src,  Node* src_offset,
1095                                                      Node* dest, Node* dest_offset,
1096                                                      Node* copy_length, bool dest_uninitialized) {
1097   if ((*ctrl)->is_top())  return NULL;
1098 
1099   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1100   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1101     return NULL;
1102   }
1103 
1104   // Pick out the parameters required to perform a store-check
1105   // for the target array.  This is an optimistic check.  It will
1106   // look in each non-null element's class, at the desired klass's
1107   // super_check_offset, for the desired klass.
1108   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1109   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
1110   Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
1111   Node* check_offset = ConvI2X(transform_later(n3));
1112   Node* check_value  = dest_elem_klass;
1113 
1114   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
1115   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
1116 
1117   const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
1118   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
1119                               src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
1120 
1121   finish_arraycopy_call(call, ctrl, mem, adr_type);
1122 
1123   Node* proj =  new ProjNode(call, TypeFunc::Parms);
1124   transform_later(proj);
1125 
1126   return proj;
1127 }
1128 
1129 // Helper function; generates code for cases requiring runtime checks.
generate_generic_arraycopy(Node ** ctrl,MergeMemNode ** mem,const TypePtr * adr_type,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * copy_length,bool dest_uninitialized)1130 Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
1131                                                    const TypePtr* adr_type,
1132                                                    Node* src,  Node* src_offset,
1133                                                    Node* dest, Node* dest_offset,
1134                                                    Node* copy_length, bool dest_uninitialized) {
1135   if ((*ctrl)->is_top()) return NULL;
1136   assert(!dest_uninitialized, "Invariant");
1137 
1138   address copyfunc_addr = StubRoutines::generic_arraycopy();
1139   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1140     return NULL;
1141   }
1142 
1143   const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
1144   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
1145                               src, src_offset, dest, dest_offset, copy_length);
1146 
1147   finish_arraycopy_call(call, ctrl, mem, adr_type);
1148 
1149   Node* proj =  new ProjNode(call, TypeFunc::Parms);
1150   transform_later(proj);
1151 
1152   return proj;
1153 }
1154 
1155 // Helper function; generates the fast out-of-line call to an arraycopy stub.
generate_unchecked_arraycopy(Node ** ctrl,MergeMemNode ** mem,const TypePtr * adr_type,BasicType basic_elem_type,bool disjoint_bases,Node * src,Node * src_offset,Node * dest,Node * dest_offset,Node * copy_length,bool dest_uninitialized)1156 bool PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
1157                                                     const TypePtr* adr_type,
1158                                                     BasicType basic_elem_type,
1159                                                     bool disjoint_bases,
1160                                                     Node* src,  Node* src_offset,
1161                                                     Node* dest, Node* dest_offset,
1162                                                     Node* copy_length, bool dest_uninitialized) {
1163   if ((*ctrl)->is_top()) return false;
1164 
1165   Node* src_start  = src;
1166   Node* dest_start = dest;
1167   if (src_offset != NULL || dest_offset != NULL) {
1168     src_start =  array_element_address(src, src_offset, basic_elem_type);
1169     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
1170   }
1171 
1172   // Figure out which arraycopy runtime method to call.
1173   const char* copyfunc_name = "arraycopy";
1174   address     copyfunc_addr =
1175       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
1176                           disjoint_bases, copyfunc_name, dest_uninitialized);
1177 
1178   Node* result_memory = NULL;
1179   RegionNode* exit_block = NULL;
1180   if (ArrayCopyPartialInlineSize > 0 && is_subword_type(basic_elem_type) &&
1181     Matcher::vector_width_in_bytes(basic_elem_type) >= 16) {
1182     generate_partial_inlining_block(ctrl, mem, adr_type, &exit_block, &result_memory,
1183                                     copy_length, src_start, dest_start, basic_elem_type);
1184   }
1185 
1186   const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1187   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
1188                               src_start, dest_start, copy_length XTOP);
1189 
1190   finish_arraycopy_call(call, ctrl, mem, adr_type);
1191 
1192   // Connecting remaining edges for exit_block coming from stub_block.
1193   if (exit_block) {
1194     exit_block->init_req(2, *ctrl);
1195 
1196     // Memory edge corresponding to stub_region.
1197     result_memory->init_req(2, *mem);
1198 
1199     uint alias_idx = C->get_alias_index(adr_type);
1200     if (alias_idx != Compile::AliasIdxBot) {
1201       *mem = MergeMemNode::make(*mem);
1202       (*mem)->set_memory_at(alias_idx, result_memory);
1203     } else {
1204       *mem = MergeMemNode::make(result_memory);
1205     }
1206     transform_later(*mem);
1207     *ctrl = exit_block;
1208     return true;
1209   }
1210   return false;
1211 }
1212 
expand_arraycopy_node(ArrayCopyNode * ac)1213 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1214   Node* ctrl = ac->in(TypeFunc::Control);
1215   Node* io = ac->in(TypeFunc::I_O);
1216   Node* src = ac->in(ArrayCopyNode::Src);
1217   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1218   Node* dest = ac->in(ArrayCopyNode::Dest);
1219   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1220   Node* length = ac->in(ArrayCopyNode::Length);
1221   MergeMemNode* merge_mem = NULL;
1222 
1223   if (ac->is_clonebasic()) {
1224     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1225     bs->clone_at_expansion(this, ac);
1226     return;
1227   } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_clone_oop_array()) {
1228     Node* mem = ac->in(TypeFunc::Memory);
1229     merge_mem = MergeMemNode::make(mem);
1230     transform_later(merge_mem);
1231 
1232     AllocateArrayNode* alloc = NULL;
1233     if (ac->is_alloc_tightly_coupled()) {
1234       alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1235       assert(alloc != NULL, "expect alloc");
1236     }
1237 
1238     const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1239     if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1240       adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1241     }
1242     generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1243                        adr_type, T_OBJECT,
1244                        src, src_offset, dest, dest_offset, length,
1245                        true, !ac->is_copyofrange());
1246 
1247     return;
1248   }
1249 
1250   AllocateArrayNode* alloc = NULL;
1251   if (ac->is_alloc_tightly_coupled()) {
1252     alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1253     assert(alloc != NULL, "expect alloc");
1254   }
1255 
1256   assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1257 
1258   // Compile time checks.  If any of these checks cannot be verified at compile time,
1259   // we do not make a fast path for this call.  Instead, we let the call remain as it
1260   // is.  The checks we choose to mandate at compile time are:
1261   //
1262   // (1) src and dest are arrays.
1263   const Type* src_type = src->Value(&_igvn);
1264   const Type* dest_type = dest->Value(&_igvn);
1265   const TypeAryPtr* top_src = src_type->isa_aryptr();
1266   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1267 
1268   BasicType src_elem = T_CONFLICT;
1269   BasicType dest_elem = T_CONFLICT;
1270 
1271   if (top_dest != NULL && top_dest->klass() != NULL) {
1272     dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
1273   }
1274   if (top_src != NULL && top_src->klass() != NULL) {
1275     src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
1276   }
1277   if (is_reference_type(src_elem))  src_elem  = T_OBJECT;
1278   if (is_reference_type(dest_elem)) dest_elem = T_OBJECT;
1279 
1280   if (ac->is_arraycopy_validated() &&
1281       dest_elem != T_CONFLICT &&
1282       src_elem == T_CONFLICT) {
1283     src_elem = dest_elem;
1284   }
1285 
1286   if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1287     // Conservatively insert a memory barrier on all memory slices.
1288     // Do not let writes into the source float below the arraycopy.
1289     {
1290       Node* mem = ac->in(TypeFunc::Memory);
1291       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1292 
1293       merge_mem = MergeMemNode::make(mem);
1294       transform_later(merge_mem);
1295     }
1296 
1297     // Call StubRoutines::generic_arraycopy stub.
1298     Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io,
1299                                    TypeRawPtr::BOTTOM, T_CONFLICT,
1300                                    src, src_offset, dest, dest_offset, length,
1301                                    // If a  negative length guard was generated for the ArrayCopyNode,
1302                                    // the length of the array can never be negative.
1303                                    false, ac->has_negative_length_guard());
1304     return;
1305   }
1306 
1307   assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1308 
1309   // (2) src and dest arrays must have elements of the same BasicType
1310   // Figure out the size and type of the elements we will be copying.
1311   if (src_elem != dest_elem || dest_elem == T_VOID) {
1312     // The component types are not the same or are not recognized.  Punt.
1313     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1314     {
1315       Node* mem = ac->in(TypeFunc::Memory);
1316       merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1317     }
1318 
1319     _igvn.replace_node(_memproj_fallthrough, merge_mem);
1320     _igvn.replace_node(_ioproj_fallthrough, io);
1321     _igvn.replace_node(_fallthroughcatchproj, ctrl);
1322     return;
1323   }
1324 
1325   //---------------------------------------------------------------------------
1326   // We will make a fast path for this call to arraycopy.
1327 
1328   // We have the following tests left to perform:
1329   //
1330   // (3) src and dest must not be null.
1331   // (4) src_offset must not be negative.
1332   // (5) dest_offset must not be negative.
1333   // (6) length must not be negative.
1334   // (7) src_offset + length must not exceed length of src.
1335   // (8) dest_offset + length must not exceed length of dest.
1336   // (9) each element of an oop array must be assignable
1337 
1338   {
1339     Node* mem = ac->in(TypeFunc::Memory);
1340     merge_mem = MergeMemNode::make(mem);
1341     transform_later(merge_mem);
1342   }
1343 
1344   RegionNode* slow_region = new RegionNode(1);
1345   transform_later(slow_region);
1346 
1347   if (!ac->is_arraycopy_validated()) {
1348     // (3) operands must not be null
1349     // We currently perform our null checks with the null_check routine.
1350     // This means that the null exceptions will be reported in the caller
1351     // rather than (correctly) reported inside of the native arraycopy call.
1352     // This should be corrected, given time.  We do our null check with the
1353     // stack pointer restored.
1354     // null checks done library_call.cpp
1355 
1356     // (4) src_offset must not be negative.
1357     generate_negative_guard(&ctrl, src_offset, slow_region);
1358 
1359     // (5) dest_offset must not be negative.
1360     generate_negative_guard(&ctrl, dest_offset, slow_region);
1361 
1362     // (6) length must not be negative (moved to generate_arraycopy()).
1363     // generate_negative_guard(length, slow_region);
1364 
1365     // (7) src_offset + length must not exceed length of src.
1366     Node* alen = ac->in(ArrayCopyNode::SrcLen);
1367     assert(alen != NULL, "need src len");
1368     generate_limit_guard(&ctrl,
1369                          src_offset, length,
1370                          alen,
1371                          slow_region);
1372 
1373     // (8) dest_offset + length must not exceed length of dest.
1374     alen = ac->in(ArrayCopyNode::DestLen);
1375     assert(alen != NULL, "need dest len");
1376     generate_limit_guard(&ctrl,
1377                          dest_offset, length,
1378                          alen,
1379                          slow_region);
1380 
1381     // (9) each element of an oop array must be assignable
1382     // The generate_arraycopy subroutine checks this.
1383   }
1384   // This is where the memory effects are placed:
1385   const TypePtr* adr_type = NULL;
1386   if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1387     adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1388   } else {
1389     adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1390   }
1391 
1392   generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1393                      adr_type, dest_elem,
1394                      src, src_offset, dest, dest_offset, length,
1395                      // If a  negative length guard was generated for the ArrayCopyNode,
1396                      // the length of the array can never be negative.
1397                      false, ac->has_negative_length_guard(), slow_region);
1398 }
1399