1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "oops/compressedOops.hpp"
31 #include "opto/ad.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/callnode.hpp"
34 #include "opto/idealGraphPrinter.hpp"
35 #include "opto/matcher.hpp"
36 #include "opto/memnode.hpp"
37 #include "opto/movenode.hpp"
38 #include "opto/opcodes.hpp"
39 #include "opto/regmask.hpp"
40 #include "opto/rootnode.hpp"
41 #include "opto/runtime.hpp"
42 #include "opto/type.hpp"
43 #include "opto/vectornode.hpp"
44 #include "runtime/os.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/align.hpp"
47 
48 OptoReg::Name OptoReg::c_frame_pointer;
49 
50 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
51 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
52 RegMask Matcher::caller_save_regmask;
53 RegMask Matcher::caller_save_regmask_exclude_soe;
54 RegMask Matcher::mh_caller_save_regmask;
55 RegMask Matcher::mh_caller_save_regmask_exclude_soe;
56 RegMask Matcher::STACK_ONLY_mask;
57 RegMask Matcher::c_frame_ptr_mask;
58 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
59 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
60 
61 //---------------------------Matcher-------------------------------------------
Matcher()62 Matcher::Matcher()
63 : PhaseTransform( Phase::Ins_Select ),
64   _states_arena(Chunk::medium_size, mtCompiler),
65   _visited(&_states_arena),
66   _shared(&_states_arena),
67   _dontcare(&_states_arena),
68   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
69   _swallowed(swallowed),
70   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
71   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
72   _must_clone(must_clone),
73   _shared_nodes(C->comp_arena()),
74 #ifdef ASSERT
75   _old2new_map(C->comp_arena()),
76   _new2old_map(C->comp_arena()),
77 #endif
78   _allocation_started(false),
79   _ruleName(ruleName),
80   _register_save_policy(register_save_policy),
81   _c_reg_save_policy(c_reg_save_policy),
82   _register_save_type(register_save_type) {
83   C->set_matcher(this);
84 
85   idealreg2spillmask  [Op_RegI] = NULL;
86   idealreg2spillmask  [Op_RegN] = NULL;
87   idealreg2spillmask  [Op_RegL] = NULL;
88   idealreg2spillmask  [Op_RegF] = NULL;
89   idealreg2spillmask  [Op_RegD] = NULL;
90   idealreg2spillmask  [Op_RegP] = NULL;
91   idealreg2spillmask  [Op_VecA] = NULL;
92   idealreg2spillmask  [Op_VecS] = NULL;
93   idealreg2spillmask  [Op_VecD] = NULL;
94   idealreg2spillmask  [Op_VecX] = NULL;
95   idealreg2spillmask  [Op_VecY] = NULL;
96   idealreg2spillmask  [Op_VecZ] = NULL;
97   idealreg2spillmask  [Op_RegFlags] = NULL;
98 
99   idealreg2debugmask  [Op_RegI] = NULL;
100   idealreg2debugmask  [Op_RegN] = NULL;
101   idealreg2debugmask  [Op_RegL] = NULL;
102   idealreg2debugmask  [Op_RegF] = NULL;
103   idealreg2debugmask  [Op_RegD] = NULL;
104   idealreg2debugmask  [Op_RegP] = NULL;
105   idealreg2debugmask  [Op_VecA] = NULL;
106   idealreg2debugmask  [Op_VecS] = NULL;
107   idealreg2debugmask  [Op_VecD] = NULL;
108   idealreg2debugmask  [Op_VecX] = NULL;
109   idealreg2debugmask  [Op_VecY] = NULL;
110   idealreg2debugmask  [Op_VecZ] = NULL;
111   idealreg2debugmask  [Op_RegFlags] = NULL;
112 
113   idealreg2mhdebugmask[Op_RegI] = NULL;
114   idealreg2mhdebugmask[Op_RegN] = NULL;
115   idealreg2mhdebugmask[Op_RegL] = NULL;
116   idealreg2mhdebugmask[Op_RegF] = NULL;
117   idealreg2mhdebugmask[Op_RegD] = NULL;
118   idealreg2mhdebugmask[Op_RegP] = NULL;
119   idealreg2mhdebugmask[Op_VecA] = NULL;
120   idealreg2mhdebugmask[Op_VecS] = NULL;
121   idealreg2mhdebugmask[Op_VecD] = NULL;
122   idealreg2mhdebugmask[Op_VecX] = NULL;
123   idealreg2mhdebugmask[Op_VecY] = NULL;
124   idealreg2mhdebugmask[Op_VecZ] = NULL;
125   idealreg2mhdebugmask[Op_RegFlags] = NULL;
126 
127   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
128 }
129 
130 //------------------------------warp_incoming_stk_arg------------------------
131 // This warps a VMReg into an OptoReg::Name
warp_incoming_stk_arg(VMReg reg)132 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
133   OptoReg::Name warped;
134   if( reg->is_stack() ) {  // Stack slot argument?
135     warped = OptoReg::add(_old_SP, reg->reg2stack() );
136     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
137     if( warped >= _in_arg_limit )
138       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
139     if (!RegMask::can_represent_arg(warped)) {
140       // the compiler cannot represent this method's calling sequence
141       C->record_method_not_compilable("unsupported incoming calling sequence");
142       return OptoReg::Bad;
143     }
144     return warped;
145   }
146   return OptoReg::as_OptoReg(reg);
147 }
148 
149 //---------------------------compute_old_SP------------------------------------
compute_old_SP()150 OptoReg::Name Compile::compute_old_SP() {
151   int fixed    = fixed_slots();
152   int preserve = in_preserve_stack_slots();
153   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
154 }
155 
156 
157 
158 #ifdef ASSERT
verify_new_nodes_only(Node * xroot)159 void Matcher::verify_new_nodes_only(Node* xroot) {
160   // Make sure that the new graph only references new nodes
161   ResourceMark rm;
162   Unique_Node_List worklist;
163   VectorSet visited;
164   worklist.push(xroot);
165   while (worklist.size() > 0) {
166     Node* n = worklist.pop();
167     visited.set(n->_idx);
168     assert(C->node_arena()->contains(n), "dead node");
169     for (uint j = 0; j < n->req(); j++) {
170       Node* in = n->in(j);
171       if (in != NULL) {
172         assert(C->node_arena()->contains(in), "dead node");
173         if (!visited.test(in->_idx)) {
174           worklist.push(in);
175         }
176       }
177     }
178   }
179 }
180 #endif
181 
182 
183 //---------------------------match---------------------------------------------
match()184 void Matcher::match( ) {
185   if( MaxLabelRootDepth < 100 ) { // Too small?
186     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
187     MaxLabelRootDepth = 100;
188   }
189   // One-time initialization of some register masks.
190   init_spill_mask( C->root()->in(1) );
191   _return_addr_mask = return_addr();
192 #ifdef _LP64
193   // Pointers take 2 slots in 64-bit land
194   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
195 #endif
196 
197   // Map a Java-signature return type into return register-value
198   // machine registers for 0, 1 and 2 returned values.
199   const TypeTuple *range = C->tf()->range();
200   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
201     // Get ideal-register return type
202     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
203     // Get machine return register
204     uint sop = C->start()->Opcode();
205     OptoRegPair regs = return_value(ireg);
206 
207     // And mask for same
208     _return_value_mask = RegMask(regs.first());
209     if( OptoReg::is_valid(regs.second()) )
210       _return_value_mask.Insert(regs.second());
211   }
212 
213   // ---------------
214   // Frame Layout
215 
216   // Need the method signature to determine the incoming argument types,
217   // because the types determine which registers the incoming arguments are
218   // in, and this affects the matched code.
219   const TypeTuple *domain = C->tf()->domain();
220   uint             argcnt = domain->cnt() - TypeFunc::Parms;
221   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
222   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
223   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
224   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
225   uint i;
226   for( i = 0; i<argcnt; i++ ) {
227     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
228   }
229 
230   // Pass array of ideal registers and length to USER code (from the AD file)
231   // that will convert this to an array of register numbers.
232   const StartNode *start = C->start();
233   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
234 #ifdef ASSERT
235   // Sanity check users' calling convention.  Real handy while trying to
236   // get the initial port correct.
237   { for (uint i = 0; i<argcnt; i++) {
238       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
239         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
240         _parm_regs[i].set_bad();
241         continue;
242       }
243       VMReg parm_reg = vm_parm_regs[i].first();
244       assert(parm_reg->is_valid(), "invalid arg?");
245       if (parm_reg->is_reg()) {
246         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
247         assert(can_be_java_arg(opto_parm_reg) ||
248                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
249                opto_parm_reg == inline_cache_reg(),
250                "parameters in register must be preserved by runtime stubs");
251       }
252       for (uint j = 0; j < i; j++) {
253         assert(parm_reg != vm_parm_regs[j].first(),
254                "calling conv. must produce distinct regs");
255       }
256     }
257   }
258 #endif
259 
260   // Do some initial frame layout.
261 
262   // Compute the old incoming SP (may be called FP) as
263   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
264   _old_SP = C->compute_old_SP();
265   assert( is_even(_old_SP), "must be even" );
266 
267   // Compute highest incoming stack argument as
268   //   _old_SP + out_preserve_stack_slots + incoming argument size.
269   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
270   assert( is_even(_in_arg_limit), "out_preserve must be even" );
271   for( i = 0; i < argcnt; i++ ) {
272     // Permit args to have no register
273     _calling_convention_mask[i].Clear();
274     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
275       continue;
276     }
277     // calling_convention returns stack arguments as a count of
278     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
279     // the allocators point of view, taking into account all the
280     // preserve area, locks & pad2.
281 
282     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
283     if( OptoReg::is_valid(reg1))
284       _calling_convention_mask[i].Insert(reg1);
285 
286     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
287     if( OptoReg::is_valid(reg2))
288       _calling_convention_mask[i].Insert(reg2);
289 
290     // Saved biased stack-slot register number
291     _parm_regs[i].set_pair(reg2, reg1);
292   }
293 
294   // Finally, make sure the incoming arguments take up an even number of
295   // words, in case the arguments or locals need to contain doubleword stack
296   // slots.  The rest of the system assumes that stack slot pairs (in
297   // particular, in the spill area) which look aligned will in fact be
298   // aligned relative to the stack pointer in the target machine.  Double
299   // stack slots will always be allocated aligned.
300   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
301 
302   // Compute highest outgoing stack argument as
303   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
304   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
305   assert( is_even(_out_arg_limit), "out_preserve must be even" );
306 
307   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
308     // the compiler cannot represent this method's calling sequence
309     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
310   }
311 
312   if (C->failing())  return;  // bailed out on incoming arg failure
313 
314   // ---------------
315   // Collect roots of matcher trees.  Every node for which
316   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
317   // can be a valid interior of some tree.
318   find_shared( C->root() );
319   find_shared( C->top() );
320 
321   C->print_method(PHASE_BEFORE_MATCHING);
322 
323   // Create new ideal node ConP #NULL even if it does exist in old space
324   // to avoid false sharing if the corresponding mach node is not used.
325   // The corresponding mach node is only used in rare cases for derived
326   // pointers.
327   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
328 
329   // Swap out to old-space; emptying new-space
330   Arena *old = C->node_arena()->move_contents(C->old_arena());
331 
332   // Save debug and profile information for nodes in old space:
333   _old_node_note_array = C->node_note_array();
334   if (_old_node_note_array != NULL) {
335     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
336                            (C->comp_arena(), _old_node_note_array->length(),
337                             0, NULL));
338   }
339 
340   // Pre-size the new_node table to avoid the need for range checks.
341   grow_new_node_array(C->unique());
342 
343   // Reset node counter so MachNodes start with _idx at 0
344   int live_nodes = C->live_nodes();
345   C->set_unique(0);
346   C->reset_dead_node_list();
347 
348   // Recursively match trees from old space into new space.
349   // Correct leaves of new-space Nodes; they point to old-space.
350   _visited.clear();
351   C->set_cached_top_node(xform( C->top(), live_nodes ));
352   if (!C->failing()) {
353     Node* xroot =        xform( C->root(), 1 );
354     if (xroot == NULL) {
355       Matcher::soft_match_failure();  // recursive matching process failed
356       C->record_method_not_compilable("instruction match failed");
357     } else {
358       // During matching shared constants were attached to C->root()
359       // because xroot wasn't available yet, so transfer the uses to
360       // the xroot.
361       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
362         Node* n = C->root()->fast_out(j);
363         if (C->node_arena()->contains(n)) {
364           assert(n->in(0) == C->root(), "should be control user");
365           n->set_req(0, xroot);
366           --j;
367           --jmax;
368         }
369       }
370 
371       // Generate new mach node for ConP #NULL
372       assert(new_ideal_null != NULL, "sanity");
373       _mach_null = match_tree(new_ideal_null);
374       // Don't set control, it will confuse GCM since there are no uses.
375       // The control will be set when this node is used first time
376       // in find_base_for_derived().
377       assert(_mach_null != NULL, "");
378 
379       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
380 
381 #ifdef ASSERT
382       verify_new_nodes_only(xroot);
383 #endif
384     }
385   }
386   if (C->top() == NULL || C->root() == NULL) {
387     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
388   }
389   if (C->failing()) {
390     // delete old;
391     old->destruct_contents();
392     return;
393   }
394   assert( C->top(), "" );
395   assert( C->root(), "" );
396   validate_null_checks();
397 
398   // Now smoke old-space
399   NOT_DEBUG( old->destruct_contents() );
400 
401   // ------------------------
402   // Set up save-on-entry registers.
403   Fixup_Save_On_Entry( );
404 
405   { // Cleanup mach IR after selection phase is over.
406     Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]);
407     do_postselect_cleanup();
408     if (C->failing())  return;
409     assert(verify_after_postselect_cleanup(), "");
410   }
411 }
412 
413 //------------------------------Fixup_Save_On_Entry----------------------------
414 // The stated purpose of this routine is to take care of save-on-entry
415 // registers.  However, the overall goal of the Match phase is to convert into
416 // machine-specific instructions which have RegMasks to guide allocation.
417 // So what this procedure really does is put a valid RegMask on each input
418 // to the machine-specific variations of all Return, TailCall and Halt
419 // instructions.  It also adds edgs to define the save-on-entry values (and of
420 // course gives them a mask).
421 
init_input_masks(uint size,RegMask & ret_adr,RegMask & fp)422 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
423   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
424   // Do all the pre-defined register masks
425   rms[TypeFunc::Control  ] = RegMask::Empty;
426   rms[TypeFunc::I_O      ] = RegMask::Empty;
427   rms[TypeFunc::Memory   ] = RegMask::Empty;
428   rms[TypeFunc::ReturnAdr] = ret_adr;
429   rms[TypeFunc::FramePtr ] = fp;
430   return rms;
431 }
432 
433 #define NOF_STACK_MASKS (3*12)
434 
435 // Create the initial stack mask used by values spilling to the stack.
436 // Disallow any debug info in outgoing argument areas by setting the
437 // initial mask accordingly.
init_first_stack_mask()438 void Matcher::init_first_stack_mask() {
439 
440   // Allocate storage for spill masks as masks for the appropriate load type.
441   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * NOF_STACK_MASKS);
442 
443   // Initialize empty placeholder masks into the newly allocated arena
444   for (int i = 0; i < NOF_STACK_MASKS; i++) {
445     new (rms + i) RegMask();
446   }
447 
448   idealreg2spillmask  [Op_RegN] = &rms[0];
449   idealreg2spillmask  [Op_RegI] = &rms[1];
450   idealreg2spillmask  [Op_RegL] = &rms[2];
451   idealreg2spillmask  [Op_RegF] = &rms[3];
452   idealreg2spillmask  [Op_RegD] = &rms[4];
453   idealreg2spillmask  [Op_RegP] = &rms[5];
454 
455   idealreg2debugmask  [Op_RegN] = &rms[6];
456   idealreg2debugmask  [Op_RegI] = &rms[7];
457   idealreg2debugmask  [Op_RegL] = &rms[8];
458   idealreg2debugmask  [Op_RegF] = &rms[9];
459   idealreg2debugmask  [Op_RegD] = &rms[10];
460   idealreg2debugmask  [Op_RegP] = &rms[11];
461 
462   idealreg2mhdebugmask[Op_RegN] = &rms[12];
463   idealreg2mhdebugmask[Op_RegI] = &rms[13];
464   idealreg2mhdebugmask[Op_RegL] = &rms[14];
465   idealreg2mhdebugmask[Op_RegF] = &rms[15];
466   idealreg2mhdebugmask[Op_RegD] = &rms[16];
467   idealreg2mhdebugmask[Op_RegP] = &rms[17];
468 
469   idealreg2spillmask  [Op_VecA] = &rms[18];
470   idealreg2spillmask  [Op_VecS] = &rms[19];
471   idealreg2spillmask  [Op_VecD] = &rms[20];
472   idealreg2spillmask  [Op_VecX] = &rms[21];
473   idealreg2spillmask  [Op_VecY] = &rms[22];
474   idealreg2spillmask  [Op_VecZ] = &rms[23];
475 
476   idealreg2debugmask  [Op_VecA] = &rms[24];
477   idealreg2debugmask  [Op_VecS] = &rms[25];
478   idealreg2debugmask  [Op_VecD] = &rms[26];
479   idealreg2debugmask  [Op_VecX] = &rms[27];
480   idealreg2debugmask  [Op_VecY] = &rms[28];
481   idealreg2debugmask  [Op_VecZ] = &rms[29];
482 
483   idealreg2mhdebugmask[Op_VecA] = &rms[30];
484   idealreg2mhdebugmask[Op_VecS] = &rms[31];
485   idealreg2mhdebugmask[Op_VecD] = &rms[32];
486   idealreg2mhdebugmask[Op_VecX] = &rms[33];
487   idealreg2mhdebugmask[Op_VecY] = &rms[34];
488   idealreg2mhdebugmask[Op_VecZ] = &rms[35];
489 
490   OptoReg::Name i;
491 
492   // At first, start with the empty mask
493   C->FIRST_STACK_mask().Clear();
494 
495   // Add in the incoming argument area
496   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
497   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
498     C->FIRST_STACK_mask().Insert(i);
499   }
500   // Add in all bits past the outgoing argument area
501   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
502             "must be able to represent all call arguments in reg mask");
503   OptoReg::Name init = _out_arg_limit;
504   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
505     C->FIRST_STACK_mask().Insert(i);
506   }
507   // Finally, set the "infinite stack" bit.
508   C->FIRST_STACK_mask().set_AllStack();
509 
510   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
511   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
512   // Keep spill masks aligned.
513   aligned_stack_mask.clear_to_pairs();
514   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
515   RegMask scalable_stack_mask = aligned_stack_mask;
516 
517   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
518 #ifdef _LP64
519   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
520    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
521    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
522 #else
523    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
524 #endif
525   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
526    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
527   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
528    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
529   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
530    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
531   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
532    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
533 
534   if (Matcher::vector_size_supported(T_BYTE,4)) {
535     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
536      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
537   } else {
538     *idealreg2spillmask[Op_VecS] = RegMask::Empty;
539   }
540 
541   if (Matcher::vector_size_supported(T_FLOAT,2)) {
542     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
543     // RA guarantees such alignment since it is needed for Double and Long values.
544     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
545      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
546   } else {
547     *idealreg2spillmask[Op_VecD] = RegMask::Empty;
548   }
549 
550   if (Matcher::vector_size_supported(T_FLOAT,4)) {
551     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
552     //
553     // RA can use input arguments stack slots for spills but until RA
554     // we don't know frame size and offset of input arg stack slots.
555     //
556     // Exclude last input arg stack slots to avoid spilling vectors there
557     // otherwise vector spills could stomp over stack slots in caller frame.
558     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
559     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
560       aligned_stack_mask.Remove(in);
561       in = OptoReg::add(in, -1);
562     }
563      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
564      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
565     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
566      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
567   } else {
568     *idealreg2spillmask[Op_VecX] = RegMask::Empty;
569   }
570 
571   if (Matcher::vector_size_supported(T_FLOAT,8)) {
572     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
573     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
574     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
575       aligned_stack_mask.Remove(in);
576       in = OptoReg::add(in, -1);
577     }
578      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
579      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
580     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
581      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
582   } else {
583     *idealreg2spillmask[Op_VecY] = RegMask::Empty;
584   }
585 
586   if (Matcher::vector_size_supported(T_FLOAT,16)) {
587     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
588     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
589     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
590       aligned_stack_mask.Remove(in);
591       in = OptoReg::add(in, -1);
592     }
593      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
594      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
595     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
596      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
597   } else {
598     *idealreg2spillmask[Op_VecZ] = RegMask::Empty;
599   }
600 
601   if (Matcher::supports_scalable_vector()) {
602     int k = 1;
603     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
604     // Exclude last input arg stack slots to avoid spilling vector register there,
605     // otherwise vector spills could stomp over stack slots in caller frame.
606     for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
607       scalable_stack_mask.Remove(in);
608       in = OptoReg::add(in, -1);
609     }
610 
611     // For VecA
612      scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
613      assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
614     *idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
615      idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
616   } else {
617     *idealreg2spillmask[Op_VecA] = RegMask::Empty;
618   }
619 
620   if (UseFPUForSpilling) {
621     // This mask logic assumes that the spill operations are
622     // symmetric and that the registers involved are the same size.
623     // On sparc for instance we may have to use 64 bit moves will
624     // kill 2 registers when used with F0-F31.
625     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
626     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
627 #ifdef _LP64
628     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
629     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
630     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
631     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
632 #else
633     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
634 #ifdef ARM
635     // ARM has support for moving 64bit values between a pair of
636     // integer registers and a double register
637     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
638     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
639 #endif
640 #endif
641   }
642 
643   // Make up debug masks.  Any spill slot plus callee-save (SOE) registers.
644   // Caller-save (SOC, AS) registers are assumed to be trashable by the various
645   // inline-cache fixup routines.
646   *idealreg2debugmask  [Op_RegN] = *idealreg2spillmask[Op_RegN];
647   *idealreg2debugmask  [Op_RegI] = *idealreg2spillmask[Op_RegI];
648   *idealreg2debugmask  [Op_RegL] = *idealreg2spillmask[Op_RegL];
649   *idealreg2debugmask  [Op_RegF] = *idealreg2spillmask[Op_RegF];
650   *idealreg2debugmask  [Op_RegD] = *idealreg2spillmask[Op_RegD];
651   *idealreg2debugmask  [Op_RegP] = *idealreg2spillmask[Op_RegP];
652 
653   *idealreg2debugmask  [Op_VecA] = *idealreg2spillmask[Op_VecA];
654   *idealreg2debugmask  [Op_VecS] = *idealreg2spillmask[Op_VecS];
655   *idealreg2debugmask  [Op_VecD] = *idealreg2spillmask[Op_VecD];
656   *idealreg2debugmask  [Op_VecX] = *idealreg2spillmask[Op_VecX];
657   *idealreg2debugmask  [Op_VecY] = *idealreg2spillmask[Op_VecY];
658   *idealreg2debugmask  [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
659 
660   *idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN];
661   *idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI];
662   *idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL];
663   *idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF];
664   *idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD];
665   *idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP];
666 
667   *idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA];
668   *idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS];
669   *idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD];
670   *idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX];
671   *idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY];
672   *idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ];
673 
674   // Prevent stub compilations from attempting to reference
675   // callee-saved (SOE) registers from debug info
676   bool exclude_soe = !Compile::current()->is_method_compilation();
677   RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
678   RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask;
679 
680   idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
681   idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
682   idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
683   idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
684   idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
685   idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
686 
687   idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
688   idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
689   idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
690   idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
691   idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
692   idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
693 
694   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask);
695   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask);
696   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask);
697   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask);
698   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask);
699   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask);
700 
701   idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask);
702   idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask);
703   idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask);
704   idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask);
705   idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask);
706   idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask);
707 }
708 
709 //---------------------------is_save_on_entry----------------------------------
is_save_on_entry(int reg)710 bool Matcher::is_save_on_entry( int reg ) {
711   return
712     _register_save_policy[reg] == 'E' ||
713     _register_save_policy[reg] == 'A' || // Save-on-entry register?
714     // Also save argument registers in the trampolining stubs
715     (C->save_argument_registers() && is_spillable_arg(reg));
716 }
717 
718 //---------------------------Fixup_Save_On_Entry-------------------------------
Fixup_Save_On_Entry()719 void Matcher::Fixup_Save_On_Entry( ) {
720   init_first_stack_mask();
721 
722   Node *root = C->root();       // Short name for root
723   // Count number of save-on-entry registers.
724   uint soe_cnt = number_of_saved_registers();
725   uint i;
726 
727   // Find the procedure Start Node
728   StartNode *start = C->start();
729   assert( start, "Expect a start node" );
730 
731   // Save argument registers in the trampolining stubs
732   if( C->save_argument_registers() )
733     for( i = 0; i < _last_Mach_Reg; i++ )
734       if( is_spillable_arg(i) )
735         soe_cnt++;
736 
737   // Input RegMask array shared by all Returns.
738   // The type for doubles and longs has a count of 2, but
739   // there is only 1 returned value
740   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
741   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
742   // Returns have 0 or 1 returned values depending on call signature.
743   // Return register is specified by return_value in the AD file.
744   if (ret_edge_cnt > TypeFunc::Parms)
745     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
746 
747   // Input RegMask array shared by all Rethrows.
748   uint reth_edge_cnt = TypeFunc::Parms+1;
749   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
750   // Rethrow takes exception oop only, but in the argument 0 slot.
751   OptoReg::Name reg = find_receiver();
752   if (reg >= 0) {
753     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
754 #ifdef _LP64
755     // Need two slots for ptrs in 64-bit land
756     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
757 #endif
758   }
759 
760   // Input RegMask array shared by all TailCalls
761   uint tail_call_edge_cnt = TypeFunc::Parms+2;
762   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
763 
764   // Input RegMask array shared by all TailJumps
765   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
766   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
767 
768   // TailCalls have 2 returned values (target & moop), whose masks come
769   // from the usual MachNode/MachOper mechanism.  Find a sample
770   // TailCall to extract these masks and put the correct masks into
771   // the tail_call_rms array.
772   for( i=1; i < root->req(); i++ ) {
773     MachReturnNode *m = root->in(i)->as_MachReturn();
774     if( m->ideal_Opcode() == Op_TailCall ) {
775       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
776       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
777       break;
778     }
779   }
780 
781   // TailJumps have 2 returned values (target & ex_oop), whose masks come
782   // from the usual MachNode/MachOper mechanism.  Find a sample
783   // TailJump to extract these masks and put the correct masks into
784   // the tail_jump_rms array.
785   for( i=1; i < root->req(); i++ ) {
786     MachReturnNode *m = root->in(i)->as_MachReturn();
787     if( m->ideal_Opcode() == Op_TailJump ) {
788       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
789       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
790       break;
791     }
792   }
793 
794   // Input RegMask array shared by all Halts
795   uint halt_edge_cnt = TypeFunc::Parms;
796   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
797 
798   // Capture the return input masks into each exit flavor
799   for( i=1; i < root->req(); i++ ) {
800     MachReturnNode *exit = root->in(i)->as_MachReturn();
801     switch( exit->ideal_Opcode() ) {
802       case Op_Return   : exit->_in_rms = ret_rms;  break;
803       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
804       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
805       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
806       case Op_Halt     : exit->_in_rms = halt_rms; break;
807       default          : ShouldNotReachHere();
808     }
809   }
810 
811   // Next unused projection number from Start.
812   int proj_cnt = C->tf()->domain()->cnt();
813 
814   // Do all the save-on-entry registers.  Make projections from Start for
815   // them, and give them a use at the exit points.  To the allocator, they
816   // look like incoming register arguments.
817   for( i = 0; i < _last_Mach_Reg; i++ ) {
818     if( is_save_on_entry(i) ) {
819 
820       // Add the save-on-entry to the mask array
821       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
822       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
823       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
824       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
825       // Halts need the SOE registers, but only in the stack as debug info.
826       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
827       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
828 
829       Node *mproj;
830 
831       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
832       // into a single RegD.
833       if( (i&1) == 0 &&
834           _register_save_type[i  ] == Op_RegF &&
835           _register_save_type[i+1] == Op_RegF &&
836           is_save_on_entry(i+1) ) {
837         // Add other bit for double
838         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
839         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
840         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
841         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
842         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
843         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
844         proj_cnt += 2;          // Skip 2 for doubles
845       }
846       else if( (i&1) == 1 &&    // Else check for high half of double
847                _register_save_type[i-1] == Op_RegF &&
848                _register_save_type[i  ] == Op_RegF &&
849                is_save_on_entry(i-1) ) {
850         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
851         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
852         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
853         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
854         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
855         mproj = C->top();
856       }
857       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
858       // into a single RegL.
859       else if( (i&1) == 0 &&
860           _register_save_type[i  ] == Op_RegI &&
861           _register_save_type[i+1] == Op_RegI &&
862         is_save_on_entry(i+1) ) {
863         // Add other bit for long
864         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
865         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
866         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
867         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
868         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
869         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
870         proj_cnt += 2;          // Skip 2 for longs
871       }
872       else if( (i&1) == 1 &&    // Else check for high half of long
873                _register_save_type[i-1] == Op_RegI &&
874                _register_save_type[i  ] == Op_RegI &&
875                is_save_on_entry(i-1) ) {
876         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
877         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
878         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
879         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
880         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
881         mproj = C->top();
882       } else {
883         // Make a projection for it off the Start
884         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
885       }
886 
887       ret_edge_cnt ++;
888       reth_edge_cnt ++;
889       tail_call_edge_cnt ++;
890       tail_jump_edge_cnt ++;
891       halt_edge_cnt ++;
892 
893       // Add a use of the SOE register to all exit paths
894       for( uint j=1; j < root->req(); j++ )
895         root->in(j)->add_req(mproj);
896     } // End of if a save-on-entry register
897   } // End of for all machine registers
898 }
899 
900 //------------------------------init_spill_mask--------------------------------
init_spill_mask(Node * ret)901 void Matcher::init_spill_mask( Node *ret ) {
902   if( idealreg2regmask[Op_RegI] ) return; // One time only init
903 
904   OptoReg::c_frame_pointer = c_frame_pointer();
905   c_frame_ptr_mask = c_frame_pointer();
906 #ifdef _LP64
907   // pointers are twice as big
908   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
909 #endif
910 
911   // Start at OptoReg::stack0()
912   STACK_ONLY_mask.Clear();
913   OptoReg::Name init = OptoReg::stack2reg(0);
914   // STACK_ONLY_mask is all stack bits
915   OptoReg::Name i;
916   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
917     STACK_ONLY_mask.Insert(i);
918   // Also set the "infinite stack" bit.
919   STACK_ONLY_mask.set_AllStack();
920 
921   for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) {
922     // Copy the register names over into the shared world.
923     // SharedInfo::regName[i] = regName[i];
924     // Handy RegMasks per machine register
925     mreg2regmask[i].Insert(i);
926 
927     // Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
928     if (_register_save_policy[i] == 'C' ||
929         _register_save_policy[i] == 'A') {
930       caller_save_regmask.Insert(i);
931       mh_caller_save_regmask.Insert(i);
932     }
933     // Exclude save-on-entry registers from debug masks for stub compilations.
934     if (_register_save_policy[i] == 'C' ||
935         _register_save_policy[i] == 'A' ||
936         _register_save_policy[i] == 'E') {
937       caller_save_regmask_exclude_soe.Insert(i);
938       mh_caller_save_regmask_exclude_soe.Insert(i);
939     }
940   }
941 
942   // Also exclude the register we use to save the SP for MethodHandle
943   // invokes to from the corresponding MH debug masks
944   const RegMask sp_save_mask = method_handle_invoke_SP_save_mask();
945   mh_caller_save_regmask.OR(sp_save_mask);
946   mh_caller_save_regmask_exclude_soe.OR(sp_save_mask);
947 
948   // Grab the Frame Pointer
949   Node *fp  = ret->in(TypeFunc::FramePtr);
950   // Share frame pointer while making spill ops
951   set_shared(fp);
952 
953 // Get the ADLC notion of the right regmask, for each basic type.
954 #ifdef _LP64
955   idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
956 #endif
957   idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
958   idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
959   idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
960   idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
961   idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
962   idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
963   idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
964   idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
965   idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
966   idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
967   idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
968 }
969 
970 #ifdef ASSERT
match_alias_type(Compile * C,Node * n,Node * m)971 static void match_alias_type(Compile* C, Node* n, Node* m) {
972   if (!VerifyAliases)  return;  // do not go looking for trouble by default
973   const TypePtr* nat = n->adr_type();
974   const TypePtr* mat = m->adr_type();
975   int nidx = C->get_alias_index(nat);
976   int midx = C->get_alias_index(mat);
977   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
978   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
979     for (uint i = 1; i < n->req(); i++) {
980       Node* n1 = n->in(i);
981       const TypePtr* n1at = n1->adr_type();
982       if (n1at != NULL) {
983         nat = n1at;
984         nidx = C->get_alias_index(n1at);
985       }
986     }
987   }
988   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
989   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
990     switch (n->Opcode()) {
991     case Op_PrefetchAllocation:
992       nidx = Compile::AliasIdxRaw;
993       nat = TypeRawPtr::BOTTOM;
994       break;
995     }
996   }
997   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
998     switch (n->Opcode()) {
999     case Op_ClearArray:
1000       midx = Compile::AliasIdxRaw;
1001       mat = TypeRawPtr::BOTTOM;
1002       break;
1003     }
1004   }
1005   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
1006     switch (n->Opcode()) {
1007     case Op_Return:
1008     case Op_Rethrow:
1009     case Op_Halt:
1010     case Op_TailCall:
1011     case Op_TailJump:
1012       nidx = Compile::AliasIdxBot;
1013       nat = TypePtr::BOTTOM;
1014       break;
1015     }
1016   }
1017   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
1018     switch (n->Opcode()) {
1019     case Op_StrComp:
1020     case Op_StrEquals:
1021     case Op_StrIndexOf:
1022     case Op_StrIndexOfChar:
1023     case Op_AryEq:
1024     case Op_HasNegatives:
1025     case Op_MemBarVolatile:
1026     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
1027     case Op_StrInflatedCopy:
1028     case Op_StrCompressedCopy:
1029     case Op_OnSpinWait:
1030     case Op_EncodeISOArray:
1031       nidx = Compile::AliasIdxTop;
1032       nat = NULL;
1033       break;
1034     }
1035   }
1036   if (nidx != midx) {
1037     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
1038       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
1039       n->dump();
1040       m->dump();
1041     }
1042     assert(C->subsume_loads() && C->must_alias(nat, midx),
1043            "must not lose alias info when matching");
1044   }
1045 }
1046 #endif
1047 
1048 //------------------------------xform------------------------------------------
1049 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1050 // Node in new-space.  Given a new-space Node, recursively walk his children.
transform(Node * n)1051 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
xform(Node * n,int max_stack)1052 Node *Matcher::xform( Node *n, int max_stack ) {
1053   // Use one stack to keep both: child's node/state and parent's node/index
1054   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1055   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1056   while (mstack.is_nonempty()) {
1057     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1058     if (C->failing()) return NULL;
1059     n = mstack.node();          // Leave node on stack
1060     Node_State nstate = mstack.state();
1061     if (nstate == Visit) {
1062       mstack.set_state(Post_Visit);
1063       Node *oldn = n;
1064       // Old-space or new-space check
1065       if (!C->node_arena()->contains(n)) {
1066         // Old space!
1067         Node* m;
1068         if (has_new_node(n)) {  // Not yet Label/Reduced
1069           m = new_node(n);
1070         } else {
1071           if (!is_dontcare(n)) { // Matcher can match this guy
1072             // Calls match special.  They match alone with no children.
1073             // Their children, the incoming arguments, match normally.
1074             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1075             if (C->failing())  return NULL;
1076             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1077             if (n->is_MemBar()) {
1078               m->as_MachMemBar()->set_adr_type(n->adr_type());
1079             }
1080           } else {                  // Nothing the matcher cares about
1081             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1082               // Convert to machine-dependent projection
1083               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1084 #ifdef ASSERT
1085               _new2old_map.map(m->_idx, n);
1086 #endif
1087               if (m->in(0) != NULL) // m might be top
1088                 collect_null_checks(m, n);
1089             } else {                // Else just a regular 'ol guy
1090               m = n->clone();       // So just clone into new-space
1091 #ifdef ASSERT
1092               _new2old_map.map(m->_idx, n);
1093 #endif
1094               // Def-Use edges will be added incrementally as Uses
1095               // of this node are matched.
1096               assert(m->outcnt() == 0, "no Uses of this clone yet");
1097             }
1098           }
1099 
1100           set_new_node(n, m);       // Map old to new
1101           if (_old_node_note_array != NULL) {
1102             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1103                                                   n->_idx);
1104             C->set_node_notes_at(m->_idx, nn);
1105           }
1106           debug_only(match_alias_type(C, n, m));
1107         }
1108         n = m;    // n is now a new-space node
1109         mstack.set_node(n);
1110       }
1111 
1112       // New space!
1113       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1114 
1115       int i;
1116       // Put precedence edges on stack first (match them last).
1117       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1118         Node *m = oldn->in(i);
1119         if (m == NULL) break;
1120         // set -1 to call add_prec() instead of set_req() during Step1
1121         mstack.push(m, Visit, n, -1);
1122       }
1123 
1124       // Handle precedence edges for interior nodes
1125       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1126         Node *m = n->in(i);
1127         if (m == NULL || C->node_arena()->contains(m)) continue;
1128         n->rm_prec(i);
1129         // set -1 to call add_prec() instead of set_req() during Step1
1130         mstack.push(m, Visit, n, -1);
1131       }
1132 
1133       // For constant debug info, I'd rather have unmatched constants.
1134       int cnt = n->req();
1135       JVMState* jvms = n->jvms();
1136       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1137 
1138       // Now do only debug info.  Clone constants rather than matching.
1139       // Constants are represented directly in the debug info without
1140       // the need for executable machine instructions.
1141       // Monitor boxes are also represented directly.
1142       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1143         Node *m = n->in(i);          // Get input
1144         int op = m->Opcode();
1145         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1146         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1147             op == Op_ConF || op == Op_ConD || op == Op_ConL
1148             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1149             ) {
1150           m = m->clone();
1151 #ifdef ASSERT
1152           _new2old_map.map(m->_idx, n);
1153 #endif
1154           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1155           mstack.push(m->in(0), Visit, m, 0);
1156         } else {
1157           mstack.push(m, Visit, n, i);
1158         }
1159       }
1160 
1161       // And now walk his children, and convert his inputs to new-space.
1162       for( ; i >= 0; --i ) { // For all normal inputs do
1163         Node *m = n->in(i);  // Get input
1164         if(m != NULL)
1165           mstack.push(m, Visit, n, i);
1166       }
1167 
1168     }
1169     else if (nstate == Post_Visit) {
1170       // Set xformed input
1171       Node *p = mstack.parent();
1172       if (p != NULL) { // root doesn't have parent
1173         int i = (int)mstack.index();
1174         if (i >= 0)
1175           p->set_req(i, n); // required input
1176         else if (i == -1)
1177           p->add_prec(n);   // precedence input
1178         else
1179           ShouldNotReachHere();
1180       }
1181       mstack.pop(); // remove processed node from stack
1182     }
1183     else {
1184       ShouldNotReachHere();
1185     }
1186   } // while (mstack.is_nonempty())
1187   return n; // Return new-space Node
1188 }
1189 
1190 //------------------------------warp_outgoing_stk_arg------------------------
warp_outgoing_stk_arg(VMReg reg,OptoReg::Name begin_out_arg_area,OptoReg::Name & out_arg_limit_per_call)1191 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1192   // Convert outgoing argument location to a pre-biased stack offset
1193   if (reg->is_stack()) {
1194     OptoReg::Name warped = reg->reg2stack();
1195     // Adjust the stack slot offset to be the register number used
1196     // by the allocator.
1197     warped = OptoReg::add(begin_out_arg_area, warped);
1198     // Keep track of the largest numbered stack slot used for an arg.
1199     // Largest used slot per call-site indicates the amount of stack
1200     // that is killed by the call.
1201     if( warped >= out_arg_limit_per_call )
1202       out_arg_limit_per_call = OptoReg::add(warped,1);
1203     if (!RegMask::can_represent_arg(warped)) {
1204       C->record_method_not_compilable("unsupported calling sequence");
1205       return OptoReg::Bad;
1206     }
1207     return warped;
1208   }
1209   return OptoReg::as_OptoReg(reg);
1210 }
1211 
1212 
1213 //------------------------------match_sfpt-------------------------------------
1214 // Helper function to match call instructions.  Calls match special.
1215 // They match alone with no children.  Their children, the incoming
1216 // arguments, match normally.
match_sfpt(SafePointNode * sfpt)1217 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1218   MachSafePointNode *msfpt = NULL;
1219   MachCallNode      *mcall = NULL;
1220   uint               cnt;
1221   // Split out case for SafePoint vs Call
1222   CallNode *call;
1223   const TypeTuple *domain;
1224   ciMethod*        method = NULL;
1225   bool             is_method_handle_invoke = false;  // for special kill effects
1226   if( sfpt->is_Call() ) {
1227     call = sfpt->as_Call();
1228     domain = call->tf()->domain();
1229     cnt = domain->cnt();
1230 
1231     // Match just the call, nothing else
1232     MachNode *m = match_tree(call);
1233     if (C->failing())  return NULL;
1234     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1235 
1236     // Copy data from the Ideal SafePoint to the machine version
1237     mcall = m->as_MachCall();
1238 
1239     mcall->set_tf(                  call->tf());
1240     mcall->set_entry_point(         call->entry_point());
1241     mcall->set_cnt(                 call->cnt());
1242     mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
1243 
1244     if( mcall->is_MachCallJava() ) {
1245       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1246       const CallJavaNode *call_java =  call->as_CallJava();
1247       assert(call_java->validate_symbolic_info(), "inconsistent info");
1248       method = call_java->method();
1249       mcall_java->_method = method;
1250       mcall_java->_bci = call_java->_bci;
1251       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1252       is_method_handle_invoke = call_java->is_method_handle_invoke();
1253       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1254       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1255       mcall_java->_arg_escape = call_java->arg_escape();
1256       if (is_method_handle_invoke) {
1257         C->set_has_method_handle_invokes(true);
1258       }
1259       if( mcall_java->is_MachCallStaticJava() )
1260         mcall_java->as_MachCallStaticJava()->_name =
1261          call_java->as_CallStaticJava()->_name;
1262       if( mcall_java->is_MachCallDynamicJava() )
1263         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1264          call_java->as_CallDynamicJava()->_vtable_index;
1265     }
1266     else if( mcall->is_MachCallRuntime() ) {
1267       MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
1268       mach_call_rt->_name = call->as_CallRuntime()->_name;
1269       mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
1270     }
1271     else if( mcall->is_MachCallNative() ) {
1272       MachCallNativeNode* mach_call_native = mcall->as_MachCallNative();
1273       CallNativeNode* call_native = call->as_CallNative();
1274       mach_call_native->_name = call_native->_name;
1275       mach_call_native->_arg_regs = call_native->_arg_regs;
1276       mach_call_native->_ret_regs = call_native->_ret_regs;
1277     }
1278     msfpt = mcall;
1279   }
1280   // This is a non-call safepoint
1281   else {
1282     call = NULL;
1283     domain = NULL;
1284     MachNode *mn = match_tree(sfpt);
1285     if (C->failing())  return NULL;
1286     msfpt = mn->as_MachSafePoint();
1287     cnt = TypeFunc::Parms;
1288   }
1289   msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
1290 
1291   // Advertise the correct memory effects (for anti-dependence computation).
1292   msfpt->set_adr_type(sfpt->adr_type());
1293 
1294   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1295   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1296   // Empty them all.
1297   for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1298 
1299   // Do all the pre-defined non-Empty register masks
1300   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1301   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1302 
1303   // Place first outgoing argument can possibly be put.
1304   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1305   assert( is_even(begin_out_arg_area), "" );
1306   // Compute max outgoing register number per call site.
1307   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1308   // Calls to C may hammer extra stack slots above and beyond any arguments.
1309   // These are usually backing store for register arguments for varargs.
1310   if( call != NULL && call->is_CallRuntime() )
1311     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1312   if( call != NULL && call->is_CallNative() )
1313     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes);
1314 
1315 
1316   // Do the normal argument list (parameters) register masks
1317   int argcnt = cnt - TypeFunc::Parms;
1318   if( argcnt > 0 ) {          // Skip it all if we have no args
1319     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1320     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1321     int i;
1322     for( i = 0; i < argcnt; i++ ) {
1323       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1324     }
1325     // V-call to pick proper calling convention
1326     call->calling_convention( sig_bt, parm_regs, argcnt );
1327 
1328 #ifdef ASSERT
1329     // Sanity check users' calling convention.  Really handy during
1330     // the initial porting effort.  Fairly expensive otherwise.
1331     { for (int i = 0; i<argcnt; i++) {
1332       if( !parm_regs[i].first()->is_valid() &&
1333           !parm_regs[i].second()->is_valid() ) continue;
1334       VMReg reg1 = parm_regs[i].first();
1335       VMReg reg2 = parm_regs[i].second();
1336       for (int j = 0; j < i; j++) {
1337         if( !parm_regs[j].first()->is_valid() &&
1338             !parm_regs[j].second()->is_valid() ) continue;
1339         VMReg reg3 = parm_regs[j].first();
1340         VMReg reg4 = parm_regs[j].second();
1341         if( !reg1->is_valid() ) {
1342           assert( !reg2->is_valid(), "valid halvsies" );
1343         } else if( !reg3->is_valid() ) {
1344           assert( !reg4->is_valid(), "valid halvsies" );
1345         } else {
1346           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1347           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1348           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1349           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1350           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1351           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1352         }
1353       }
1354     }
1355     }
1356 #endif
1357 
1358     // Visit each argument.  Compute its outgoing register mask.
1359     // Return results now can have 2 bits returned.
1360     // Compute max over all outgoing arguments both per call-site
1361     // and over the entire method.
1362     for( i = 0; i < argcnt; i++ ) {
1363       // Address of incoming argument mask to fill in
1364       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1365       if( !parm_regs[i].first()->is_valid() &&
1366           !parm_regs[i].second()->is_valid() ) {
1367         continue;               // Avoid Halves
1368       }
1369       // Grab first register, adjust stack slots and insert in mask.
1370       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1371       if (OptoReg::is_valid(reg1))
1372         rm->Insert( reg1 );
1373       // Grab second register (if any), adjust stack slots and insert in mask.
1374       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1375       if (OptoReg::is_valid(reg2))
1376         rm->Insert( reg2 );
1377     } // End of for all arguments
1378   }
1379 
1380   // Compute the max stack slot killed by any call.  These will not be
1381   // available for debug info, and will be used to adjust FIRST_STACK_mask
1382   // after all call sites have been visited.
1383   if( _out_arg_limit < out_arg_limit_per_call)
1384     _out_arg_limit = out_arg_limit_per_call;
1385 
1386   if (mcall) {
1387     // Kill the outgoing argument area, including any non-argument holes and
1388     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1389     // Since the max-per-method covers the max-per-call-site and debug info
1390     // is excluded on the max-per-method basis, debug info cannot land in
1391     // this killed area.
1392     uint r_cnt = mcall->tf()->range()->cnt();
1393     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1394     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1395       C->record_method_not_compilable("unsupported outgoing calling sequence");
1396     } else {
1397       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1398         proj->_rout.Insert(OptoReg::Name(i));
1399     }
1400     if (proj->_rout.is_NotEmpty()) {
1401       push_projection(proj);
1402     }
1403   }
1404   // Transfer the safepoint information from the call to the mcall
1405   // Move the JVMState list
1406   msfpt->set_jvms(sfpt->jvms());
1407   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1408     jvms->set_map(sfpt);
1409   }
1410 
1411   // Debug inputs begin just after the last incoming parameter
1412   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1413          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1414 
1415   // Add additional edges.
1416   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1417     // For these calls we can not add MachConstantBase in expand(), as the
1418     // ins are not complete then.
1419     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1420     if (msfpt->jvms() &&
1421         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1422       // We added an edge before jvms, so we must adapt the position of the ins.
1423       msfpt->jvms()->adapt_position(+1);
1424     }
1425   }
1426 
1427   // Registers killed by the call are set in the local scheduling pass
1428   // of Global Code Motion.
1429   return msfpt;
1430 }
1431 
1432 //---------------------------match_tree----------------------------------------
1433 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1434 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1435 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1436 // a Load's result RegMask for memoization in idealreg2regmask[]
match_tree(const Node * n)1437 MachNode *Matcher::match_tree( const Node *n ) {
1438   assert( n->Opcode() != Op_Phi, "cannot match" );
1439   assert( !n->is_block_start(), "cannot match" );
1440   // Set the mark for all locally allocated State objects.
1441   // When this call returns, the _states_arena arena will be reset
1442   // freeing all State objects.
1443   ResourceMark rm( &_states_arena );
1444 
1445   LabelRootDepth = 0;
1446 
1447   // StoreNodes require their Memory input to match any LoadNodes
1448   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1449 #ifdef ASSERT
1450   Node* save_mem_node = _mem_node;
1451   _mem_node = n->is_Store() ? (Node*)n : NULL;
1452 #endif
1453   // State object for root node of match tree
1454   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1455   State *s = new (&_states_arena) State;
1456   s->_kids[0] = NULL;
1457   s->_kids[1] = NULL;
1458   s->_leaf = (Node*)n;
1459   // Label the input tree, allocating labels from top-level arena
1460   Node* root_mem = mem;
1461   Label_Root(n, s, n->in(0), root_mem);
1462   if (C->failing())  return NULL;
1463 
1464   // The minimum cost match for the whole tree is found at the root State
1465   uint mincost = max_juint;
1466   uint cost = max_juint;
1467   uint i;
1468   for (i = 0; i < NUM_OPERANDS; i++) {
1469     if (s->valid(i) &&               // valid entry and
1470         s->cost(i) < cost &&         // low cost and
1471         s->rule(i) >= NUM_OPERANDS) {// not an operand
1472       mincost = i;
1473       cost = s->cost(i);
1474     }
1475   }
1476   if (mincost == max_juint) {
1477 #ifndef PRODUCT
1478     tty->print("No matching rule for:");
1479     s->dump();
1480 #endif
1481     Matcher::soft_match_failure();
1482     return NULL;
1483   }
1484   // Reduce input tree based upon the state labels to machine Nodes
1485   MachNode *m = ReduceInst(s, s->rule(mincost), mem);
1486 #ifdef ASSERT
1487   _old2new_map.map(n->_idx, m);
1488   _new2old_map.map(m->_idx, (Node*)n);
1489 #endif
1490 
1491   // Add any Matcher-ignored edges
1492   uint cnt = n->req();
1493   uint start = 1;
1494   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1495   if( n->is_AddP() ) {
1496     assert( mem == (Node*)1, "" );
1497     start = AddPNode::Base+1;
1498   }
1499   for( i = start; i < cnt; i++ ) {
1500     if( !n->match_edge(i) ) {
1501       if( i < m->req() )
1502         m->ins_req( i, n->in(i) );
1503       else
1504         m->add_req( n->in(i) );
1505     }
1506   }
1507 
1508   debug_only( _mem_node = save_mem_node; )
1509   return m;
1510 }
1511 
1512 
1513 //------------------------------match_into_reg---------------------------------
1514 // Choose to either match this Node in a register or part of the current
1515 // match tree.  Return true for requiring a register and false for matching
1516 // as part of the current match tree.
match_into_reg(const Node * n,Node * m,Node * control,int i,bool shared)1517 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1518 
1519   const Type *t = m->bottom_type();
1520 
1521   if (t->singleton()) {
1522     // Never force constants into registers.  Allow them to match as
1523     // constants or registers.  Copies of the same value will share
1524     // the same register.  See find_shared_node.
1525     return false;
1526   } else {                      // Not a constant
1527     // Stop recursion if they have different Controls.
1528     Node* m_control = m->in(0);
1529     // Control of load's memory can post-dominates load's control.
1530     // So use it since load can't float above its memory.
1531     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1532     if (control && m_control && control != m_control && control != mem_control) {
1533 
1534       // Actually, we can live with the most conservative control we
1535       // find, if it post-dominates the others.  This allows us to
1536       // pick up load/op/store trees where the load can float a little
1537       // above the store.
1538       Node *x = control;
1539       const uint max_scan = 6;  // Arbitrary scan cutoff
1540       uint j;
1541       for (j=0; j<max_scan; j++) {
1542         if (x->is_Region())     // Bail out at merge points
1543           return true;
1544         x = x->in(0);
1545         if (x == m_control)     // Does 'control' post-dominate
1546           break;                // m->in(0)?  If so, we can use it
1547         if (x == mem_control)   // Does 'control' post-dominate
1548           break;                // mem_control?  If so, we can use it
1549       }
1550       if (j == max_scan)        // No post-domination before scan end?
1551         return true;            // Then break the match tree up
1552     }
1553     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1554         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1555       // These are commonly used in address expressions and can
1556       // efficiently fold into them on X64 in some cases.
1557       return false;
1558     }
1559   }
1560 
1561   // Not forceable cloning.  If shared, put it into a register.
1562   return shared;
1563 }
1564 
1565 
1566 //------------------------------Instruction Selection--------------------------
1567 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1568 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1569 // things the Matcher does not match (e.g., Memory), and things with different
1570 // Controls (hence forced into different blocks).  We pass in the Control
1571 // selected for this entire State tree.
1572 
1573 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1574 // Store and the Load must have identical Memories (as well as identical
1575 // pointers).  Since the Matcher does not have anything for Memory (and
1576 // does not handle DAGs), I have to match the Memory input myself.  If the
1577 // Tree root is a Store or if there are multiple Loads in the tree, I require
1578 // all Loads to have the identical memory.
Label_Root(const Node * n,State * svec,Node * control,Node * & mem)1579 Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) {
1580   // Since Label_Root is a recursive function, its possible that we might run
1581   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1582   LabelRootDepth++;
1583   if (LabelRootDepth > MaxLabelRootDepth) {
1584     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1585     return NULL;
1586   }
1587   uint care = 0;                // Edges matcher cares about
1588   uint cnt = n->req();
1589   uint i = 0;
1590 
1591   // Examine children for memory state
1592   // Can only subsume a child into your match-tree if that child's memory state
1593   // is not modified along the path to another input.
1594   // It is unsafe even if the other inputs are separate roots.
1595   Node *input_mem = NULL;
1596   for( i = 1; i < cnt; i++ ) {
1597     if( !n->match_edge(i) ) continue;
1598     Node *m = n->in(i);         // Get ith input
1599     assert( m, "expect non-null children" );
1600     if( m->is_Load() ) {
1601       if( input_mem == NULL ) {
1602         input_mem = m->in(MemNode::Memory);
1603         if (mem == (Node*)1) {
1604           // Save this memory to bail out if there's another memory access
1605           // to a different memory location in the same tree.
1606           mem = input_mem;
1607         }
1608       } else if( input_mem != m->in(MemNode::Memory) ) {
1609         input_mem = NodeSentinel;
1610       }
1611     }
1612   }
1613 
1614   for( i = 1; i < cnt; i++ ){// For my children
1615     if( !n->match_edge(i) ) continue;
1616     Node *m = n->in(i);         // Get ith input
1617     // Allocate states out of a private arena
1618     State *s = new (&_states_arena) State;
1619     svec->_kids[care++] = s;
1620     assert( care <= 2, "binary only for now" );
1621 
1622     // Recursively label the State tree.
1623     s->_kids[0] = NULL;
1624     s->_kids[1] = NULL;
1625     s->_leaf = m;
1626 
1627     // Check for leaves of the State Tree; things that cannot be a part of
1628     // the current tree.  If it finds any, that value is matched as a
1629     // register operand.  If not, then the normal matching is used.
1630     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1631         // Stop recursion if this is a LoadNode and there is another memory access
1632         // to a different memory location in the same tree (for example, a StoreNode
1633         // at the root of this tree or another LoadNode in one of the children).
1634         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1635         // Can NOT include the match of a subtree when its memory state
1636         // is used by any of the other subtrees
1637         (input_mem == NodeSentinel) ) {
1638       // Print when we exclude matching due to different memory states at input-loads
1639       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1640           && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1641         tty->print_cr("invalid input_mem");
1642       }
1643       // Switch to a register-only opcode; this value must be in a register
1644       // and cannot be subsumed as part of a larger instruction.
1645       s->DFA( m->ideal_reg(), m );
1646 
1647     } else {
1648       // If match tree has no control and we do, adopt it for entire tree
1649       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1650         control = m->in(0);         // Pick up control
1651       // Else match as a normal part of the match tree.
1652       control = Label_Root(m, s, control, mem);
1653       if (C->failing()) return NULL;
1654     }
1655   }
1656 
1657   // Call DFA to match this node, and return
1658   svec->DFA( n->Opcode(), n );
1659 
1660 #ifdef ASSERT
1661   uint x;
1662   for( x = 0; x < _LAST_MACH_OPER; x++ )
1663     if( svec->valid(x) )
1664       break;
1665 
1666   if (x >= _LAST_MACH_OPER) {
1667     n->dump();
1668     svec->dump();
1669     assert( false, "bad AD file" );
1670   }
1671 #endif
1672   return control;
1673 }
1674 
1675 
1676 // Con nodes reduced using the same rule can share their MachNode
1677 // which reduces the number of copies of a constant in the final
1678 // program.  The register allocator is free to split uses later to
1679 // split live ranges.
find_shared_node(Node * leaf,uint rule)1680 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1681   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1682 
1683   // See if this Con has already been reduced using this rule.
1684   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1685   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1686   if (last != NULL && rule == last->rule()) {
1687     // Don't expect control change for DecodeN
1688     if (leaf->is_DecodeNarrowPtr())
1689       return last;
1690     // Get the new space root.
1691     Node* xroot = new_node(C->root());
1692     if (xroot == NULL) {
1693       // This shouldn't happen give the order of matching.
1694       return NULL;
1695     }
1696 
1697     // Shared constants need to have their control be root so they
1698     // can be scheduled properly.
1699     Node* control = last->in(0);
1700     if (control != xroot) {
1701       if (control == NULL || control == C->root()) {
1702         last->set_req(0, xroot);
1703       } else {
1704         assert(false, "unexpected control");
1705         return NULL;
1706       }
1707     }
1708     return last;
1709   }
1710   return NULL;
1711 }
1712 
1713 
1714 //------------------------------ReduceInst-------------------------------------
1715 // Reduce a State tree (with given Control) into a tree of MachNodes.
1716 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1717 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1718 // Each MachNode has a number of complicated MachOper operands; each
1719 // MachOper also covers a further tree of Ideal Nodes.
1720 
1721 // The root of the Ideal match tree is always an instruction, so we enter
1722 // the recursion here.  After building the MachNode, we need to recurse
1723 // the tree checking for these cases:
1724 // (1) Child is an instruction -
1725 //     Build the instruction (recursively), add it as an edge.
1726 //     Build a simple operand (register) to hold the result of the instruction.
1727 // (2) Child is an interior part of an instruction -
1728 //     Skip over it (do nothing)
1729 // (3) Child is the start of a operand -
1730 //     Build the operand, place it inside the instruction
1731 //     Call ReduceOper.
ReduceInst(State * s,int rule,Node * & mem)1732 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1733   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1734 
1735   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1736   if (shared_node != NULL) {
1737     return shared_node;
1738   }
1739 
1740   // Build the object to represent this state & prepare for recursive calls
1741   MachNode *mach = s->MachNodeGenerator(rule);
1742   guarantee(mach != NULL, "Missing MachNode");
1743   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1744   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1745   Node *leaf = s->_leaf;
1746   // Check for instruction or instruction chain rule
1747   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1748     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1749            "duplicating node that's already been matched");
1750     // Instruction
1751     mach->add_req( leaf->in(0) ); // Set initial control
1752     // Reduce interior of complex instruction
1753     ReduceInst_Interior( s, rule, mem, mach, 1 );
1754   } else {
1755     // Instruction chain rules are data-dependent on their inputs
1756     mach->add_req(0);             // Set initial control to none
1757     ReduceInst_Chain_Rule( s, rule, mem, mach );
1758   }
1759 
1760   // If a Memory was used, insert a Memory edge
1761   if( mem != (Node*)1 ) {
1762     mach->ins_req(MemNode::Memory,mem);
1763 #ifdef ASSERT
1764     // Verify adr type after matching memory operation
1765     const MachOper* oper = mach->memory_operand();
1766     if (oper != NULL && oper != (MachOper*)-1) {
1767       // It has a unique memory operand.  Find corresponding ideal mem node.
1768       Node* m = NULL;
1769       if (leaf->is_Mem()) {
1770         m = leaf;
1771       } else {
1772         m = _mem_node;
1773         assert(m != NULL && m->is_Mem(), "expecting memory node");
1774       }
1775       const Type* mach_at = mach->adr_type();
1776       // DecodeN node consumed by an address may have different type
1777       // than its input. Don't compare types for such case.
1778       if (m->adr_type() != mach_at &&
1779           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1780            (m->in(MemNode::Address)->is_AddP() &&
1781             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1782            (m->in(MemNode::Address)->is_AddP() &&
1783             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1784             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1785         mach_at = m->adr_type();
1786       }
1787       if (m->adr_type() != mach_at) {
1788         m->dump();
1789         tty->print_cr("mach:");
1790         mach->dump(1);
1791       }
1792       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1793     }
1794 #endif
1795   }
1796 
1797   // If the _leaf is an AddP, insert the base edge
1798   if (leaf->is_AddP()) {
1799     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1800   }
1801 
1802   uint number_of_projections_prior = number_of_projections();
1803 
1804   // Perform any 1-to-many expansions required
1805   MachNode *ex = mach->Expand(s, _projection_list, mem);
1806   if (ex != mach) {
1807     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1808     if( ex->in(1)->is_Con() )
1809       ex->in(1)->set_req(0, C->root());
1810     // Remove old node from the graph
1811     for( uint i=0; i<mach->req(); i++ ) {
1812       mach->set_req(i,NULL);
1813     }
1814 #ifdef ASSERT
1815     _new2old_map.map(ex->_idx, s->_leaf);
1816 #endif
1817   }
1818 
1819   // PhaseChaitin::fixup_spills will sometimes generate spill code
1820   // via the matcher.  By the time, nodes have been wired into the CFG,
1821   // and any further nodes generated by expand rules will be left hanging
1822   // in space, and will not get emitted as output code.  Catch this.
1823   // Also, catch any new register allocation constraints ("projections")
1824   // generated belatedly during spill code generation.
1825   if (_allocation_started) {
1826     guarantee(ex == mach, "no expand rules during spill generation");
1827     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1828   }
1829 
1830   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1831     // Record the con for sharing
1832     _shared_nodes.map(leaf->_idx, ex);
1833   }
1834 
1835   // Have mach nodes inherit GC barrier data
1836   if (leaf->is_LoadStore()) {
1837     mach->set_barrier_data(leaf->as_LoadStore()->barrier_data());
1838   } else if (leaf->is_Mem()) {
1839     mach->set_barrier_data(leaf->as_Mem()->barrier_data());
1840   }
1841 
1842   return ex;
1843 }
1844 
handle_precedence_edges(Node * n,MachNode * mach)1845 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1846   for (uint i = n->req(); i < n->len(); i++) {
1847     if (n->in(i) != NULL) {
1848       mach->add_prec(n->in(i));
1849     }
1850   }
1851 }
1852 
ReduceInst_Chain_Rule(State * s,int rule,Node * & mem,MachNode * mach)1853 void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) {
1854   // 'op' is what I am expecting to receive
1855   int op = _leftOp[rule];
1856   // Operand type to catch childs result
1857   // This is what my child will give me.
1858   unsigned int opnd_class_instance = s->rule(op);
1859   // Choose between operand class or not.
1860   // This is what I will receive.
1861   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1862   // New rule for child.  Chase operand classes to get the actual rule.
1863   unsigned int newrule = s->rule(catch_op);
1864 
1865   if (newrule < NUM_OPERANDS) {
1866     // Chain from operand or operand class, may be output of shared node
1867     assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand");
1868     // Insert operand into array of operands for this instruction
1869     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1870 
1871     ReduceOper(s, newrule, mem, mach);
1872   } else {
1873     // Chain from the result of an instruction
1874     assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1875     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1876     Node *mem1 = (Node*)1;
1877     debug_only(Node *save_mem_node = _mem_node;)
1878     mach->add_req( ReduceInst(s, newrule, mem1) );
1879     debug_only(_mem_node = save_mem_node;)
1880   }
1881   return;
1882 }
1883 
1884 
ReduceInst_Interior(State * s,int rule,Node * & mem,MachNode * mach,uint num_opnds)1885 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1886   handle_precedence_edges(s->_leaf, mach);
1887 
1888   if( s->_leaf->is_Load() ) {
1889     Node *mem2 = s->_leaf->in(MemNode::Memory);
1890     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1891     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1892     mem = mem2;
1893   }
1894   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1895     if( mach->in(0) == NULL )
1896       mach->set_req(0, s->_leaf->in(0));
1897   }
1898 
1899   // Now recursively walk the state tree & add operand list.
1900   for( uint i=0; i<2; i++ ) {   // binary tree
1901     State *newstate = s->_kids[i];
1902     if( newstate == NULL ) break;      // Might only have 1 child
1903     // 'op' is what I am expecting to receive
1904     int op;
1905     if( i == 0 ) {
1906       op = _leftOp[rule];
1907     } else {
1908       op = _rightOp[rule];
1909     }
1910     // Operand type to catch childs result
1911     // This is what my child will give me.
1912     int opnd_class_instance = newstate->rule(op);
1913     // Choose between operand class or not.
1914     // This is what I will receive.
1915     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1916     // New rule for child.  Chase operand classes to get the actual rule.
1917     int newrule = newstate->rule(catch_op);
1918 
1919     if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction?
1920       // Operand/operandClass
1921       // Insert operand into array of operands for this instruction
1922       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1923       ReduceOper(newstate, newrule, mem, mach);
1924 
1925     } else {                    // Child is internal operand or new instruction
1926       if (newrule < _LAST_MACH_OPER) { // internal operand or instruction?
1927         // internal operand --> call ReduceInst_Interior
1928         // Interior of complex instruction.  Do nothing but recurse.
1929         num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds);
1930       } else {
1931         // instruction --> call build operand(  ) to catch result
1932         //             --> ReduceInst( newrule )
1933         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1934         Node *mem1 = (Node*)1;
1935         debug_only(Node *save_mem_node = _mem_node;)
1936         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1937         debug_only(_mem_node = save_mem_node;)
1938       }
1939     }
1940     assert( mach->_opnds[num_opnds-1], "" );
1941   }
1942   return num_opnds;
1943 }
1944 
1945 // This routine walks the interior of possible complex operands.
1946 // At each point we check our children in the match tree:
1947 // (1) No children -
1948 //     We are a leaf; add _leaf field as an input to the MachNode
1949 // (2) Child is an internal operand -
1950 //     Skip over it ( do nothing )
1951 // (3) Child is an instruction -
1952 //     Call ReduceInst recursively and
1953 //     and instruction as an input to the MachNode
ReduceOper(State * s,int rule,Node * & mem,MachNode * mach)1954 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1955   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1956   State *kid = s->_kids[0];
1957   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1958 
1959   // Leaf?  And not subsumed?
1960   if( kid == NULL && !_swallowed[rule] ) {
1961     mach->add_req( s->_leaf );  // Add leaf pointer
1962     return;                     // Bail out
1963   }
1964 
1965   if( s->_leaf->is_Load() ) {
1966     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1967     mem = s->_leaf->in(MemNode::Memory);
1968     debug_only(_mem_node = s->_leaf;)
1969   }
1970 
1971   handle_precedence_edges(s->_leaf, mach);
1972 
1973   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1974     if( !mach->in(0) )
1975       mach->set_req(0,s->_leaf->in(0));
1976     else {
1977       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1978     }
1979   }
1980 
1981   for (uint i = 0; kid != NULL && i < 2; kid = s->_kids[1], i++) {   // binary tree
1982     int newrule;
1983     if( i == 0) {
1984       newrule = kid->rule(_leftOp[rule]);
1985     } else {
1986       newrule = kid->rule(_rightOp[rule]);
1987     }
1988 
1989     if (newrule < _LAST_MACH_OPER) { // Operand or instruction?
1990       // Internal operand; recurse but do nothing else
1991       ReduceOper(kid, newrule, mem, mach);
1992 
1993     } else {                    // Child is a new instruction
1994       // Reduce the instruction, and add a direct pointer from this
1995       // machine instruction to the newly reduced one.
1996       Node *mem1 = (Node*)1;
1997       debug_only(Node *save_mem_node = _mem_node;)
1998       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1999       debug_only(_mem_node = save_mem_node;)
2000     }
2001   }
2002 }
2003 
2004 
2005 // -------------------------------------------------------------------------
2006 // Java-Java calling convention
2007 // (what you use when Java calls Java)
2008 
2009 //------------------------------find_receiver----------------------------------
2010 // For a given signature, return the OptoReg for parameter 0.
find_receiver()2011 OptoReg::Name Matcher::find_receiver() {
2012   VMRegPair regs;
2013   BasicType sig_bt = T_OBJECT;
2014   SharedRuntime::java_calling_convention(&sig_bt, &regs, 1);
2015   // Return argument 0 register.  In the LP64 build pointers
2016   // take 2 registers, but the VM wants only the 'main' name.
2017   return OptoReg::as_OptoReg(regs.first());
2018 }
2019 
is_vshift_con_pattern(Node * n,Node * m)2020 bool Matcher::is_vshift_con_pattern(Node *n, Node *m) {
2021   if (n != NULL && m != NULL) {
2022     return VectorNode::is_vector_shift(n) &&
2023            VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con();
2024   }
2025   return false;
2026 }
2027 
clone_node(Node * n,Node * m,Matcher::MStack & mstack)2028 bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
2029   // Must clone all producers of flags, or we will not match correctly.
2030   // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2031   // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2032   // are also there, so we may match a float-branch to int-flags and
2033   // expect the allocator to haul the flags from the int-side to the
2034   // fp-side.  No can do.
2035   if (_must_clone[m->Opcode()]) {
2036     mstack.push(m, Visit);
2037     return true;
2038   }
2039   return pd_clone_node(n, m, mstack);
2040 }
2041 
clone_base_plus_offset_address(AddPNode * m,Matcher::MStack & mstack,VectorSet & address_visited)2042 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2043   Node *off = m->in(AddPNode::Offset);
2044   if (off->is_Con()) {
2045     address_visited.test_set(m->_idx); // Flag as address_visited
2046     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2047     // Clone X+offset as it also folds into most addressing expressions
2048     mstack.push(off, Visit);
2049     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2050     return true;
2051   }
2052   return false;
2053 }
2054 
2055 // A method-klass-holder may be passed in the inline_cache_reg
2056 // and then expanded into the inline_cache_reg and a method_ptr register
2057 //   defined in ad_<arch>.cpp
2058 
2059 //------------------------------find_shared------------------------------------
2060 // Set bits if Node is shared or otherwise a root
find_shared(Node * n)2061 void Matcher::find_shared(Node* n) {
2062   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2063   MStack mstack(C->live_nodes() * 2);
2064   // Mark nodes as address_visited if they are inputs to an address expression
2065   VectorSet address_visited;
2066   mstack.push(n, Visit);     // Don't need to pre-visit root node
2067   while (mstack.is_nonempty()) {
2068     n = mstack.node();       // Leave node on stack
2069     Node_State nstate = mstack.state();
2070     uint nop = n->Opcode();
2071     if (nstate == Pre_Visit) {
2072       if (address_visited.test(n->_idx)) { // Visited in address already?
2073         // Flag as visited and shared now.
2074         set_visited(n);
2075       }
2076       if (is_visited(n)) {   // Visited already?
2077         // Node is shared and has no reason to clone.  Flag it as shared.
2078         // This causes it to match into a register for the sharing.
2079         set_shared(n);       // Flag as shared and
2080         if (n->is_DecodeNarrowPtr()) {
2081           // Oop field/array element loads must be shared but since
2082           // they are shared through a DecodeN they may appear to have
2083           // a single use so force sharing here.
2084           set_shared(n->in(1));
2085         }
2086         mstack.pop();        // remove node from stack
2087         continue;
2088       }
2089       nstate = Visit; // Not already visited; so visit now
2090     }
2091     if (nstate == Visit) {
2092       mstack.set_state(Post_Visit);
2093       set_visited(n);   // Flag as visited now
2094       bool mem_op = false;
2095       int mem_addr_idx = MemNode::Address;
2096       if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2097         continue;
2098       }
2099       for (int i = n->req() - 1; i >= 0; --i) { // For my children
2100         Node* m = n->in(i); // Get ith input
2101         if (m == NULL) {
2102           continue;  // Ignore NULLs
2103         }
2104         if (clone_node(n, m, mstack)) {
2105           continue;
2106         }
2107 
2108         // Clone addressing expressions as they are "free" in memory access instructions
2109         if (mem_op && i == mem_addr_idx && m->is_AddP() &&
2110             // When there are other uses besides address expressions
2111             // put it on stack and mark as shared.
2112             !is_visited(m)) {
2113           // Some inputs for address expression are not put on stack
2114           // to avoid marking them as shared and forcing them into register
2115           // if they are used only in address expressions.
2116           // But they should be marked as shared if there are other uses
2117           // besides address expressions.
2118 
2119           if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2120             continue;
2121           }
2122         }   // if( mem_op &&
2123         mstack.push(m, Pre_Visit);
2124       }     // for(int i = ...)
2125     }
2126     else if (nstate == Alt_Post_Visit) {
2127       mstack.pop(); // Remove node from stack
2128       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2129       // shared and all users of the Bool need to move the Cmp in parallel.
2130       // This leaves both the Bool and the If pointing at the Cmp.  To
2131       // prevent the Matcher from trying to Match the Cmp along both paths
2132       // BoolNode::match_edge always returns a zero.
2133 
2134       // We reorder the Op_If in a pre-order manner, so we can visit without
2135       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2136       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2137     }
2138     else if (nstate == Post_Visit) {
2139       mstack.pop(); // Remove node from stack
2140 
2141       // Now hack a few special opcodes
2142       uint opcode = n->Opcode();
2143       bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
2144       if (!gc_handled) {
2145         find_shared_post_visit(n, opcode);
2146       }
2147     }
2148     else {
2149       ShouldNotReachHere();
2150     }
2151   } // end of while (mstack.is_nonempty())
2152 }
2153 
find_shared_visit(MStack & mstack,Node * n,uint opcode,bool & mem_op,int & mem_addr_idx)2154 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
2155   switch(opcode) {  // Handle some opcodes special
2156     case Op_Phi:             // Treat Phis as shared roots
2157     case Op_Parm:
2158     case Op_Proj:            // All handled specially during matching
2159     case Op_SafePointScalarObject:
2160       set_shared(n);
2161       set_dontcare(n);
2162       break;
2163     case Op_If:
2164     case Op_CountedLoopEnd:
2165       mstack.set_state(Alt_Post_Visit); // Alternative way
2166       // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2167       // with matching cmp/branch in 1 instruction.  The Matcher needs the
2168       // Bool and CmpX side-by-side, because it can only get at constants
2169       // that are at the leaves of Match trees, and the Bool's condition acts
2170       // as a constant here.
2171       mstack.push(n->in(1), Visit);         // Clone the Bool
2172       mstack.push(n->in(0), Pre_Visit);     // Visit control input
2173       return true; // while (mstack.is_nonempty())
2174     case Op_ConvI2D:         // These forms efficiently match with a prior
2175     case Op_ConvI2F:         //   Load but not a following Store
2176       if( n->in(1)->is_Load() &&        // Prior load
2177           n->outcnt() == 1 &&           // Not already shared
2178           n->unique_out()->is_Store() ) // Following store
2179         set_shared(n);       // Force it to be a root
2180       break;
2181     case Op_ReverseBytesI:
2182     case Op_ReverseBytesL:
2183       if( n->in(1)->is_Load() &&        // Prior load
2184           n->outcnt() == 1 )            // Not already shared
2185         set_shared(n);                  // Force it to be a root
2186       break;
2187     case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2188     case Op_IfFalse:
2189     case Op_IfTrue:
2190     case Op_MachProj:
2191     case Op_MergeMem:
2192     case Op_Catch:
2193     case Op_CatchProj:
2194     case Op_CProj:
2195     case Op_JumpProj:
2196     case Op_JProj:
2197     case Op_NeverBranch:
2198       set_dontcare(n);
2199       break;
2200     case Op_Jump:
2201       mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2202       mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2203       return true;                             // while (mstack.is_nonempty())
2204     case Op_StrComp:
2205     case Op_StrEquals:
2206     case Op_StrIndexOf:
2207     case Op_StrIndexOfChar:
2208     case Op_AryEq:
2209     case Op_HasNegatives:
2210     case Op_StrInflatedCopy:
2211     case Op_StrCompressedCopy:
2212     case Op_EncodeISOArray:
2213     case Op_FmaD:
2214     case Op_FmaF:
2215     case Op_FmaVD:
2216     case Op_FmaVF:
2217     case Op_MacroLogicV:
2218     case Op_LoadVectorMasked:
2219       set_shared(n); // Force result into register (it will be anyways)
2220       break;
2221     case Op_ConP: {  // Convert pointers above the centerline to NUL
2222       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2223       const TypePtr* tp = tn->type()->is_ptr();
2224       if (tp->_ptr == TypePtr::AnyNull) {
2225         tn->set_type(TypePtr::NULL_PTR);
2226       }
2227       break;
2228     }
2229     case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2230       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2231       const TypePtr* tp = tn->type()->make_ptr();
2232       if (tp && tp->_ptr == TypePtr::AnyNull) {
2233         tn->set_type(TypeNarrowOop::NULL_PTR);
2234       }
2235       break;
2236     }
2237     case Op_Binary:         // These are introduced in the Post_Visit state.
2238       ShouldNotReachHere();
2239       break;
2240     case Op_ClearArray:
2241     case Op_SafePoint:
2242       mem_op = true;
2243       break;
2244     default:
2245       if( n->is_Store() ) {
2246         // Do match stores, despite no ideal reg
2247         mem_op = true;
2248         break;
2249       }
2250       if( n->is_Mem() ) { // Loads and LoadStores
2251         mem_op = true;
2252         // Loads must be root of match tree due to prior load conflict
2253         if( C->subsume_loads() == false )
2254           set_shared(n);
2255       }
2256       // Fall into default case
2257       if( !n->ideal_reg() )
2258         set_dontcare(n);  // Unmatchable Nodes
2259   } // end_switch
2260   return false;
2261 }
2262 
find_shared_post_visit(Node * n,uint opcode)2263 void Matcher::find_shared_post_visit(Node* n, uint opcode) {
2264   switch(opcode) {       // Handle some opcodes special
2265     case Op_StorePConditional:
2266     case Op_StoreIConditional:
2267     case Op_StoreLConditional:
2268     case Op_CompareAndExchangeB:
2269     case Op_CompareAndExchangeS:
2270     case Op_CompareAndExchangeI:
2271     case Op_CompareAndExchangeL:
2272     case Op_CompareAndExchangeP:
2273     case Op_CompareAndExchangeN:
2274     case Op_WeakCompareAndSwapB:
2275     case Op_WeakCompareAndSwapS:
2276     case Op_WeakCompareAndSwapI:
2277     case Op_WeakCompareAndSwapL:
2278     case Op_WeakCompareAndSwapP:
2279     case Op_WeakCompareAndSwapN:
2280     case Op_CompareAndSwapB:
2281     case Op_CompareAndSwapS:
2282     case Op_CompareAndSwapI:
2283     case Op_CompareAndSwapL:
2284     case Op_CompareAndSwapP:
2285     case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2286       Node* newval = n->in(MemNode::ValueIn);
2287       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
2288       Node* pair = new BinaryNode(oldval, newval);
2289       n->set_req(MemNode::ValueIn, pair);
2290       n->del_req(LoadStoreConditionalNode::ExpectedIn);
2291       break;
2292     }
2293     case Op_CMoveD:              // Convert trinary to binary-tree
2294     case Op_CMoveF:
2295     case Op_CMoveI:
2296     case Op_CMoveL:
2297     case Op_CMoveN:
2298     case Op_CMoveP:
2299     case Op_CMoveVF:
2300     case Op_CMoveVD:  {
2301       // Restructure into a binary tree for Matching.  It's possible that
2302       // we could move this code up next to the graph reshaping for IfNodes
2303       // or vice-versa, but I do not want to debug this for Ladybird.
2304       // 10/2/2000 CNC.
2305       Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
2306       n->set_req(1, pair1);
2307       Node* pair2 = new BinaryNode(n->in(2), n->in(3));
2308       n->set_req(2, pair2);
2309       n->del_req(3);
2310       break;
2311     }
2312     case Op_MacroLogicV: {
2313       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2314       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2315       n->set_req(1, pair1);
2316       n->set_req(2, pair2);
2317       n->del_req(4);
2318       n->del_req(3);
2319       break;
2320     }
2321     case Op_StoreVectorMasked: {
2322       Node* pair = new BinaryNode(n->in(3), n->in(4));
2323       n->set_req(3, pair);
2324       n->del_req(4);
2325       break;
2326     }
2327     case Op_LoopLimit: {
2328       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2329       n->set_req(1, pair1);
2330       n->set_req(2, n->in(3));
2331       n->del_req(3);
2332       break;
2333     }
2334     case Op_StrEquals:
2335     case Op_StrIndexOfChar: {
2336       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2337       n->set_req(2, pair1);
2338       n->set_req(3, n->in(4));
2339       n->del_req(4);
2340       break;
2341     }
2342     case Op_StrComp:
2343     case Op_StrIndexOf: {
2344       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2345       n->set_req(2, pair1);
2346       Node* pair2 = new BinaryNode(n->in(4),n->in(5));
2347       n->set_req(3, pair2);
2348       n->del_req(5);
2349       n->del_req(4);
2350       break;
2351     }
2352     case Op_StrCompressedCopy:
2353     case Op_StrInflatedCopy:
2354     case Op_EncodeISOArray: {
2355       // Restructure into a binary tree for Matching.
2356       Node* pair = new BinaryNode(n->in(3), n->in(4));
2357       n->set_req(3, pair);
2358       n->del_req(4);
2359       break;
2360     }
2361     case Op_FmaD:
2362     case Op_FmaF:
2363     case Op_FmaVD:
2364     case Op_FmaVF: {
2365       // Restructure into a binary tree for Matching.
2366       Node* pair = new BinaryNode(n->in(1), n->in(2));
2367       n->set_req(2, pair);
2368       n->set_req(1, n->in(3));
2369       n->del_req(3);
2370       break;
2371     }
2372     case Op_MulAddS2I: {
2373       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2374       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2375       n->set_req(1, pair1);
2376       n->set_req(2, pair2);
2377       n->del_req(4);
2378       n->del_req(3);
2379       break;
2380     }
2381     case Op_CopySignD:
2382     case Op_SignumF:
2383     case Op_SignumD: {
2384       Node* pair = new BinaryNode(n->in(2), n->in(3));
2385       n->set_req(2, pair);
2386       n->del_req(3);
2387       break;
2388     }
2389     case Op_VectorBlend:
2390     case Op_VectorInsert: {
2391       Node* pair = new BinaryNode(n->in(1), n->in(2));
2392       n->set_req(1, pair);
2393       n->set_req(2, n->in(3));
2394       n->del_req(3);
2395       break;
2396     }
2397     case Op_StoreVectorScatter: {
2398       Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
2399       n->set_req(MemNode::ValueIn, pair);
2400       n->del_req(MemNode::ValueIn+1);
2401       break;
2402     }
2403     case Op_VectorMaskCmp: {
2404       n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
2405       n->set_req(2, n->in(3));
2406       n->del_req(3);
2407       break;
2408     }
2409     default:
2410       break;
2411   }
2412 }
2413 
2414 #ifdef ASSERT
2415 // machine-independent root to machine-dependent root
dump_old2new_map()2416 void Matcher::dump_old2new_map() {
2417   _old2new_map.dump();
2418 }
2419 #endif
2420 
2421 //---------------------------collect_null_checks-------------------------------
2422 // Find null checks in the ideal graph; write a machine-specific node for
2423 // it.  Used by later implicit-null-check handling.  Actually collects
2424 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2425 // value being tested.
collect_null_checks(Node * proj,Node * orig_proj)2426 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2427   Node *iff = proj->in(0);
2428   if( iff->Opcode() == Op_If ) {
2429     // During matching If's have Bool & Cmp side-by-side
2430     BoolNode *b = iff->in(1)->as_Bool();
2431     Node *cmp = iff->in(2);
2432     int opc = cmp->Opcode();
2433     if (opc != Op_CmpP && opc != Op_CmpN) return;
2434 
2435     const Type* ct = cmp->in(2)->bottom_type();
2436     if (ct == TypePtr::NULL_PTR ||
2437         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2438 
2439       bool push_it = false;
2440       if( proj->Opcode() == Op_IfTrue ) {
2441 #ifndef PRODUCT
2442         extern int all_null_checks_found;
2443         all_null_checks_found++;
2444 #endif
2445         if( b->_test._test == BoolTest::ne ) {
2446           push_it = true;
2447         }
2448       } else {
2449         assert( proj->Opcode() == Op_IfFalse, "" );
2450         if( b->_test._test == BoolTest::eq ) {
2451           push_it = true;
2452         }
2453       }
2454       if( push_it ) {
2455         _null_check_tests.push(proj);
2456         Node* val = cmp->in(1);
2457 #ifdef _LP64
2458         if (val->bottom_type()->isa_narrowoop() &&
2459             !Matcher::narrow_oop_use_complex_address()) {
2460           //
2461           // Look for DecodeN node which should be pinned to orig_proj.
2462           // On platforms (Sparc) which can not handle 2 adds
2463           // in addressing mode we have to keep a DecodeN node and
2464           // use it to do implicit NULL check in address.
2465           //
2466           // DecodeN node was pinned to non-null path (orig_proj) during
2467           // CastPP transformation in final_graph_reshaping_impl().
2468           //
2469           uint cnt = orig_proj->outcnt();
2470           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2471             Node* d = orig_proj->raw_out(i);
2472             if (d->is_DecodeN() && d->in(1) == val) {
2473               val = d;
2474               val->set_req(0, NULL); // Unpin now.
2475               // Mark this as special case to distinguish from
2476               // a regular case: CmpP(DecodeN, NULL).
2477               val = (Node*)(((intptr_t)val) | 1);
2478               break;
2479             }
2480           }
2481         }
2482 #endif
2483         _null_check_tests.push(val);
2484       }
2485     }
2486   }
2487 }
2488 
2489 //---------------------------validate_null_checks------------------------------
2490 // Its possible that the value being NULL checked is not the root of a match
2491 // tree.  If so, I cannot use the value in an implicit null check.
validate_null_checks()2492 void Matcher::validate_null_checks( ) {
2493   uint cnt = _null_check_tests.size();
2494   for( uint i=0; i < cnt; i+=2 ) {
2495     Node *test = _null_check_tests[i];
2496     Node *val = _null_check_tests[i+1];
2497     bool is_decoden = ((intptr_t)val) & 1;
2498     val = (Node*)(((intptr_t)val) & ~1);
2499     if (has_new_node(val)) {
2500       Node* new_val = new_node(val);
2501       if (is_decoden) {
2502         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2503         // Note: new_val may have a control edge if
2504         // the original ideal node DecodeN was matched before
2505         // it was unpinned in Matcher::collect_null_checks().
2506         // Unpin the mach node and mark it.
2507         new_val->set_req(0, NULL);
2508         new_val = (Node*)(((intptr_t)new_val) | 1);
2509       }
2510       // Is a match-tree root, so replace with the matched value
2511       _null_check_tests.map(i+1, new_val);
2512     } else {
2513       // Yank from candidate list
2514       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2515       _null_check_tests.map(i,_null_check_tests[--cnt]);
2516       _null_check_tests.pop();
2517       _null_check_tests.pop();
2518       i-=2;
2519     }
2520   }
2521 }
2522 
gen_narrow_oop_implicit_null_checks()2523 bool Matcher::gen_narrow_oop_implicit_null_checks() {
2524   // Advice matcher to perform null checks on the narrow oop side.
2525   // Implicit checks are not possible on the uncompressed oop side anyway
2526   // (at least not for read accesses).
2527   // Performs significantly better (especially on Power 6).
2528   if (!os::zero_page_read_protected()) {
2529     return true;
2530   }
2531   return CompressedOops::use_implicit_null_checks() &&
2532          (narrow_oop_use_complex_address() ||
2533           CompressedOops::base() != NULL);
2534 }
2535 
2536 // Compute RegMask for an ideal register.
regmask_for_ideal_register(uint ideal_reg,Node * ret)2537 const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) {
2538   const Type* t = Type::mreg2type[ideal_reg];
2539   if (t == NULL) {
2540     assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg);
2541     return NULL; // not supported
2542   }
2543   Node* fp  = ret->in(TypeFunc::FramePtr);
2544   Node* mem = ret->in(TypeFunc::Memory);
2545   const TypePtr* atp = TypePtr::BOTTOM;
2546   MemNode::MemOrd mo = MemNode::unordered;
2547 
2548   Node* spill;
2549   switch (ideal_reg) {
2550     case Op_RegN: spill = new LoadNNode(NULL, mem, fp, atp, t->is_narrowoop(), mo); break;
2551     case Op_RegI: spill = new LoadINode(NULL, mem, fp, atp, t->is_int(),       mo); break;
2552     case Op_RegP: spill = new LoadPNode(NULL, mem, fp, atp, t->is_ptr(),       mo); break;
2553     case Op_RegF: spill = new LoadFNode(NULL, mem, fp, atp, t,                 mo); break;
2554     case Op_RegD: spill = new LoadDNode(NULL, mem, fp, atp, t,                 mo); break;
2555     case Op_RegL: spill = new LoadLNode(NULL, mem, fp, atp, t->is_long(),      mo); break;
2556 
2557     case Op_VecA: // fall-through
2558     case Op_VecS: // fall-through
2559     case Op_VecD: // fall-through
2560     case Op_VecX: // fall-through
2561     case Op_VecY: // fall-through
2562     case Op_VecZ: spill = new LoadVectorNode(NULL, mem, fp, atp, t->is_vect()); break;
2563 
2564     default: ShouldNotReachHere();
2565   }
2566   MachNode* mspill = match_tree(spill);
2567   assert(mspill != NULL, "matching failed: %d", ideal_reg);
2568   // Handle generic vector operand case
2569   if (Matcher::supports_generic_vector_operands && t->isa_vect()) {
2570     specialize_mach_node(mspill);
2571   }
2572   return &mspill->out_RegMask();
2573 }
2574 
2575 // Process Mach IR right after selection phase is over.
do_postselect_cleanup()2576 void Matcher::do_postselect_cleanup() {
2577   if (supports_generic_vector_operands) {
2578     specialize_generic_vector_operands();
2579     if (C->failing())  return;
2580   }
2581 }
2582 
2583 //----------------------------------------------------------------------
2584 // Generic machine operands elision.
2585 //----------------------------------------------------------------------
2586 
2587 // Compute concrete vector operand for a generic TEMP vector mach node based on its user info.
specialize_temp_node(MachTempNode * tmp,MachNode * use,uint idx)2588 void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) {
2589   assert(use->in(idx) == tmp, "not a user");
2590   assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet");
2591 
2592   if ((uint)idx == use->two_adr()) { // DEF_TEMP case
2593     tmp->_opnds[0] = use->_opnds[0]->clone();
2594   } else {
2595     uint ideal_vreg = vector_ideal_reg(C->max_vector_size());
2596     tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/);
2597   }
2598 }
2599 
2600 // Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx).
specialize_vector_operand(MachNode * m,uint opnd_idx)2601 MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) {
2602   assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates");
2603   Node* def = NULL;
2604   if (opnd_idx == 0) { // DEF
2605     def = m; // use mach node itself to compute vector operand type
2606   } else {
2607     int base_idx = m->operand_index(opnd_idx);
2608     def = m->in(base_idx);
2609     if (def->is_Mach()) {
2610       if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) {
2611         specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site
2612       } else if (is_generic_reg2reg_move(def->as_Mach())) {
2613         def = def->in(1); // skip over generic reg-to-reg moves
2614       }
2615     }
2616   }
2617   assert(def->bottom_type()->isa_vect(), "not a vector");
2618   uint ideal_vreg = def->bottom_type()->ideal_reg();
2619   return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/);
2620 }
2621 
specialize_mach_node(MachNode * m)2622 void Matcher::specialize_mach_node(MachNode* m) {
2623   assert(!m->is_MachTemp(), "processed along with its user");
2624   // For generic use operands pull specific register class operands from
2625   // its def instruction's output operand (def operand).
2626   for (uint i = 0; i < m->num_opnds(); i++) {
2627     if (Matcher::is_generic_vector(m->_opnds[i])) {
2628       m->_opnds[i] = specialize_vector_operand(m, i);
2629     }
2630   }
2631 }
2632 
2633 // Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph.
specialize_generic_vector_operands()2634 void Matcher::specialize_generic_vector_operands() {
2635   assert(supports_generic_vector_operands, "sanity");
2636   ResourceMark rm;
2637 
2638   if (C->max_vector_size() == 0) {
2639     return; // no vector instructions or operands
2640   }
2641   // Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ])
2642   // and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec).
2643   Unique_Node_List live_nodes;
2644   C->identify_useful_nodes(live_nodes);
2645 
2646   while (live_nodes.size() > 0) {
2647     MachNode* m = live_nodes.pop()->isa_Mach();
2648     if (m != NULL) {
2649       if (Matcher::is_generic_reg2reg_move(m)) {
2650         // Register allocator properly handles vec <=> leg moves using register masks.
2651         int opnd_idx = m->operand_index(1);
2652         Node* def = m->in(opnd_idx);
2653         m->subsume_by(def, C);
2654       } else if (m->is_MachTemp()) {
2655         // process MachTemp nodes at use site (see Matcher::specialize_vector_operand)
2656       } else {
2657         specialize_mach_node(m);
2658       }
2659     }
2660   }
2661 }
2662 
2663 #ifdef ASSERT
verify_after_postselect_cleanup()2664 bool Matcher::verify_after_postselect_cleanup() {
2665   assert(!C->failing(), "sanity");
2666   if (supports_generic_vector_operands) {
2667     Unique_Node_List useful;
2668     C->identify_useful_nodes(useful);
2669     for (uint i = 0; i < useful.size(); i++) {
2670       MachNode* m = useful.at(i)->isa_Mach();
2671       if (m != NULL) {
2672         assert(!Matcher::is_generic_reg2reg_move(m), "no MoveVec nodes allowed");
2673         for (uint j = 0; j < m->num_opnds(); j++) {
2674           assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed");
2675         }
2676       }
2677     }
2678   }
2679   return true;
2680 }
2681 #endif // ASSERT
2682 
2683 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2684 // atomic instruction acting as a store_load barrier without any
2685 // intervening volatile load, and thus we don't need a barrier here.
2686 // We retain the Node to act as a compiler ordering barrier.
post_store_load_barrier(const Node * vmb)2687 bool Matcher::post_store_load_barrier(const Node* vmb) {
2688   Compile* C = Compile::current();
2689   assert(vmb->is_MemBar(), "");
2690   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2691   const MemBarNode* membar = vmb->as_MemBar();
2692 
2693   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2694   Node* ctrl = NULL;
2695   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2696     Node* p = membar->fast_out(i);
2697     assert(p->is_Proj(), "only projections here");
2698     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2699         !C->node_arena()->contains(p)) { // Unmatched old-space only
2700       ctrl = p;
2701       break;
2702     }
2703   }
2704   assert((ctrl != NULL), "missing control projection");
2705 
2706   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2707     Node *x = ctrl->fast_out(j);
2708     int xop = x->Opcode();
2709 
2710     // We don't need current barrier if we see another or a lock
2711     // before seeing volatile load.
2712     //
2713     // Op_Fastunlock previously appeared in the Op_* list below.
2714     // With the advent of 1-0 lock operations we're no longer guaranteed
2715     // that a monitor exit operation contains a serializing instruction.
2716 
2717     if (xop == Op_MemBarVolatile ||
2718         xop == Op_CompareAndExchangeB ||
2719         xop == Op_CompareAndExchangeS ||
2720         xop == Op_CompareAndExchangeI ||
2721         xop == Op_CompareAndExchangeL ||
2722         xop == Op_CompareAndExchangeP ||
2723         xop == Op_CompareAndExchangeN ||
2724         xop == Op_WeakCompareAndSwapB ||
2725         xop == Op_WeakCompareAndSwapS ||
2726         xop == Op_WeakCompareAndSwapL ||
2727         xop == Op_WeakCompareAndSwapP ||
2728         xop == Op_WeakCompareAndSwapN ||
2729         xop == Op_WeakCompareAndSwapI ||
2730         xop == Op_CompareAndSwapB ||
2731         xop == Op_CompareAndSwapS ||
2732         xop == Op_CompareAndSwapL ||
2733         xop == Op_CompareAndSwapP ||
2734         xop == Op_CompareAndSwapN ||
2735         xop == Op_CompareAndSwapI ||
2736         BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
2737       return true;
2738     }
2739 
2740     // Op_FastLock previously appeared in the Op_* list above.
2741     // With biased locking we're no longer guaranteed that a monitor
2742     // enter operation contains a serializing instruction.
2743     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2744       return true;
2745     }
2746 
2747     if (x->is_MemBar()) {
2748       // We must retain this membar if there is an upcoming volatile
2749       // load, which will be followed by acquire membar.
2750       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2751         return false;
2752       } else {
2753         // For other kinds of barriers, check by pretending we
2754         // are them, and seeing if we can be removed.
2755         return post_store_load_barrier(x->as_MemBar());
2756       }
2757     }
2758 
2759     // probably not necessary to check for these
2760     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2761       return false;
2762     }
2763   }
2764   return false;
2765 }
2766 
2767 // Check whether node n is a branch to an uncommon trap that we could
2768 // optimize as test with very high branch costs in case of going to
2769 // the uncommon trap. The code must be able to be recompiled to use
2770 // a cheaper test.
branches_to_uncommon_trap(const Node * n)2771 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2772   // Don't do it for natives, adapters, or runtime stubs
2773   Compile *C = Compile::current();
2774   if (!C->is_method_compilation()) return false;
2775 
2776   assert(n->is_If(), "You should only call this on if nodes.");
2777   IfNode *ifn = n->as_If();
2778 
2779   Node *ifFalse = NULL;
2780   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2781     if (ifn->fast_out(i)->is_IfFalse()) {
2782       ifFalse = ifn->fast_out(i);
2783       break;
2784     }
2785   }
2786   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2787 
2788   Node *reg = ifFalse;
2789   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2790                // Alternatively use visited set?  Seems too expensive.
2791   while (reg != NULL && cnt > 0) {
2792     CallNode *call = NULL;
2793     RegionNode *nxt_reg = NULL;
2794     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2795       Node *o = reg->fast_out(i);
2796       if (o->is_Call()) {
2797         call = o->as_Call();
2798       }
2799       if (o->is_Region()) {
2800         nxt_reg = o->as_Region();
2801       }
2802     }
2803 
2804     if (call &&
2805         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2806       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2807       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2808         jint tr_con = trtype->is_int()->get_con();
2809         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2810         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2811         assert((int)reason < (int)BitsPerInt, "recode bit map");
2812 
2813         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2814             && action != Deoptimization::Action_none) {
2815           // This uncommon trap is sure to recompile, eventually.
2816           // When that happens, C->too_many_traps will prevent
2817           // this transformation from happening again.
2818           return true;
2819         }
2820       }
2821     }
2822 
2823     reg = nxt_reg;
2824     cnt--;
2825   }
2826 
2827   return false;
2828 }
2829 
2830 //=============================================================================
2831 //---------------------------State---------------------------------------------
State(void)2832 State::State(void) : _rule() {
2833 #ifdef ASSERT
2834   _id = 0;
2835   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2836   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2837 #endif
2838 }
2839 
2840 #ifdef ASSERT
~State()2841 State::~State() {
2842   _id = 99;
2843   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2844   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2845   memset(_cost, -3, sizeof(_cost));
2846   memset(_rule, -3, sizeof(_rule));
2847 }
2848 #endif
2849 
2850 #ifndef PRODUCT
2851 //---------------------------dump----------------------------------------------
dump()2852 void State::dump() {
2853   tty->print("\n");
2854   dump(0);
2855 }
2856 
dump(int depth)2857 void State::dump(int depth) {
2858   for (int j = 0; j < depth; j++) {
2859     tty->print("   ");
2860   }
2861   tty->print("--N: ");
2862   _leaf->dump();
2863   uint i;
2864   for (i = 0; i < _LAST_MACH_OPER; i++) {
2865     // Check for valid entry
2866     if (valid(i)) {
2867       for (int j = 0; j < depth; j++) {
2868         tty->print("   ");
2869       }
2870       assert(cost(i) != max_juint, "cost must be a valid value");
2871       assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule");
2872       tty->print_cr("%s  %d  %s",
2873                     ruleName[i], cost(i), ruleName[rule(i)] );
2874     }
2875   }
2876   tty->cr();
2877 
2878   for (i = 0; i < 2; i++) {
2879     if (_kids[i]) {
2880       _kids[i]->dump(depth + 1);
2881     }
2882   }
2883 }
2884 #endif
2885