1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OPTO_NODE_HPP
26 #define SHARE_OPTO_NODE_HPP
27 
28 #include "libadt/vectset.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/type.hpp"
31 #include "utilities/copy.hpp"
32 
33 // Portions of code courtesy of Clifford Click
34 
35 // Optimization - Graph Style
36 
37 
38 class AbstractLockNode;
39 class AddNode;
40 class AddPNode;
41 class AliasInfo;
42 class AllocateArrayNode;
43 class AllocateNode;
44 class ArrayCopyNode;
45 class BaseCountedLoopNode;
46 class BaseCountedLoopEndNode;
47 class Block;
48 class BoolNode;
49 class BoxLockNode;
50 class CMoveNode;
51 class CallDynamicJavaNode;
52 class CallJavaNode;
53 class CallLeafNode;
54 class CallLeafNoFPNode;
55 class CallNode;
56 class CallRuntimeNode;
57 class CallNativeNode;
58 class CallStaticJavaNode;
59 class CastIINode;
60 class CastLLNode;
61 class CatchNode;
62 class CatchProjNode;
63 class CheckCastPPNode;
64 class ClearArrayNode;
65 class CmpNode;
66 class CodeBuffer;
67 class ConstraintCastNode;
68 class ConNode;
69 class CompareAndSwapNode;
70 class CompareAndExchangeNode;
71 class CountedLoopNode;
72 class CountedLoopEndNode;
73 class DecodeNarrowPtrNode;
74 class DecodeNNode;
75 class DecodeNKlassNode;
76 class EncodeNarrowPtrNode;
77 class EncodePNode;
78 class EncodePKlassNode;
79 class FastLockNode;
80 class FastUnlockNode;
81 class HaltNode;
82 class IfNode;
83 class IfProjNode;
84 class IfFalseNode;
85 class IfTrueNode;
86 class InitializeNode;
87 class JVMState;
88 class JumpNode;
89 class JumpProjNode;
90 class LoadNode;
91 class LoadStoreNode;
92 class LoadStoreConditionalNode;
93 class LockNode;
94 class LongCountedLoopNode;
95 class LongCountedLoopEndNode;
96 class LoopNode;
97 class MachBranchNode;
98 class MachCallDynamicJavaNode;
99 class MachCallJavaNode;
100 class MachCallLeafNode;
101 class MachCallNode;
102 class MachCallNativeNode;
103 class MachCallRuntimeNode;
104 class MachCallStaticJavaNode;
105 class MachConstantBaseNode;
106 class MachConstantNode;
107 class MachGotoNode;
108 class MachIfNode;
109 class MachJumpNode;
110 class MachNode;
111 class MachNullCheckNode;
112 class MachProjNode;
113 class MachReturnNode;
114 class MachSafePointNode;
115 class MachSpillCopyNode;
116 class MachTempNode;
117 class MachMergeNode;
118 class MachMemBarNode;
119 class Matcher;
120 class MemBarNode;
121 class MemBarStoreStoreNode;
122 class MemNode;
123 class MergeMemNode;
124 class MoveNode;
125 class MulNode;
126 class MultiNode;
127 class MultiBranchNode;
128 class NeverBranchNode;
129 class Opaque1Node;
130 class OuterStripMinedLoopNode;
131 class OuterStripMinedLoopEndNode;
132 class Node;
133 class Node_Array;
134 class Node_List;
135 class Node_Stack;
136 class NullCheckNode;
137 class OopMap;
138 class ParmNode;
139 class PCTableNode;
140 class PhaseCCP;
141 class PhaseGVN;
142 class PhaseIterGVN;
143 class PhaseRegAlloc;
144 class PhaseTransform;
145 class PhaseValues;
146 class PhiNode;
147 class Pipeline;
148 class ProjNode;
149 class RangeCheckNode;
150 class RegMask;
151 class RegionNode;
152 class RootNode;
153 class SafePointNode;
154 class SafePointScalarObjectNode;
155 class StartNode;
156 class State;
157 class StoreNode;
158 class SubNode;
159 class SubTypeCheckNode;
160 class Type;
161 class TypeNode;
162 class UnlockNode;
163 class VectorNode;
164 class LoadVectorNode;
165 class LoadVectorMaskedNode;
166 class StoreVectorMaskedNode;
167 class LoadVectorGatherNode;
168 class StoreVectorNode;
169 class StoreVectorScatterNode;
170 class VectorMaskCmpNode;
171 class VectorSet;
172 
173 // The type of all node counts and indexes.
174 // It must hold at least 16 bits, but must also be fast to load and store.
175 // This type, if less than 32 bits, could limit the number of possible nodes.
176 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
177 typedef unsigned int node_idx_t;
178 
179 
180 #ifndef OPTO_DU_ITERATOR_ASSERT
181 #ifdef ASSERT
182 #define OPTO_DU_ITERATOR_ASSERT 1
183 #else
184 #define OPTO_DU_ITERATOR_ASSERT 0
185 #endif
186 #endif //OPTO_DU_ITERATOR_ASSERT
187 
188 #if OPTO_DU_ITERATOR_ASSERT
189 class DUIterator;
190 class DUIterator_Fast;
191 class DUIterator_Last;
192 #else
193 typedef uint   DUIterator;
194 typedef Node** DUIterator_Fast;
195 typedef Node** DUIterator_Last;
196 #endif
197 
198 // Node Sentinel
199 #define NodeSentinel (Node*)-1
200 
201 // Unknown count frequency
202 #define COUNT_UNKNOWN (-1.0f)
203 
204 //------------------------------Node-------------------------------------------
205 // Nodes define actions in the program.  They create values, which have types.
206 // They are both vertices in a directed graph and program primitives.  Nodes
207 // are labeled; the label is the "opcode", the primitive function in the lambda
208 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
209 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
210 // the Node's function.  These inputs also define a Type equation for the Node.
211 // Solving these Type equations amounts to doing dataflow analysis.
212 // Control and data are uniformly represented in the graph.  Finally, Nodes
213 // have a unique dense integer index which is used to index into side arrays
214 // whenever I have phase-specific information.
215 
216 class Node {
217   friend class VMStructs;
218 
219   // Lots of restrictions on cloning Nodes
220   Node(const Node&);            // not defined; linker error to use these
221   Node &operator=(const Node &rhs);
222 
223 public:
224   friend class Compile;
225   #if OPTO_DU_ITERATOR_ASSERT
226   friend class DUIterator_Common;
227   friend class DUIterator;
228   friend class DUIterator_Fast;
229   friend class DUIterator_Last;
230   #endif
231 
232   // Because Nodes come and go, I define an Arena of Node structures to pull
233   // from.  This should allow fast access to node creation & deletion.  This
234   // field is a local cache of a value defined in some "program fragment" for
235   // which these Nodes are just a part of.
236 
operator new(size_t x)237   inline void* operator new(size_t x) throw() {
238     Compile* C = Compile::current();
239     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
240     return (void*)n;
241   }
242 
243   // Delete is a NOP
operator delete(void * ptr)244   void operator delete( void *ptr ) {}
245   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
246   void destruct(PhaseValues* phase);
247 
248   // Create a new Node.  Required is the number is of inputs required for
249   // semantic correctness.
250   Node( uint required );
251 
252   // Create a new Node with given input edges.
253   // This version requires use of the "edge-count" new.
254   // E.g.  new (C,3) FooNode( C, NULL, left, right );
255   Node( Node *n0 );
256   Node( Node *n0, Node *n1 );
257   Node( Node *n0, Node *n1, Node *n2 );
258   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
259   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
260   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
261   Node( Node *n0, Node *n1, Node *n2, Node *n3,
262             Node *n4, Node *n5, Node *n6 );
263 
264   // Clone an inherited Node given only the base Node type.
265   Node* clone() const;
266 
267   // Clone a Node, immediately supplying one or two new edges.
268   // The first and second arguments, if non-null, replace in(1) and in(2),
269   // respectively.
clone_with_data_edge(Node * in1,Node * in2=NULL) const270   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
271     Node* nn = clone();
272     if (in1 != NULL)  nn->set_req(1, in1);
273     if (in2 != NULL)  nn->set_req(2, in2);
274     return nn;
275   }
276 
277 private:
278   // Shared setup for the above constructors.
279   // Handles all interactions with Compile::current.
280   // Puts initial values in all Node fields except _idx.
281   // Returns the initial value for _idx, which cannot
282   // be initialized by assignment.
283   inline int Init(int req);
284 
285 //----------------- input edge handling
286 protected:
287   friend class PhaseCFG;        // Access to address of _in array elements
288   Node **_in;                   // Array of use-def references to Nodes
289   Node **_out;                  // Array of def-use references to Nodes
290 
291   // Input edges are split into two categories.  Required edges are required
292   // for semantic correctness; order is important and NULLs are allowed.
293   // Precedence edges are used to help determine execution order and are
294   // added, e.g., for scheduling purposes.  They are unordered and not
295   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
296   // are required, from _cnt to _max-1 are precedence edges.
297   node_idx_t _cnt;              // Total number of required Node inputs.
298 
299   node_idx_t _max;              // Actual length of input array.
300 
301   // Output edges are an unordered list of def-use edges which exactly
302   // correspond to required input edges which point from other nodes
303   // to this one.  Thus the count of the output edges is the number of
304   // users of this node.
305   node_idx_t _outcnt;           // Total number of Node outputs.
306 
307   node_idx_t _outmax;           // Actual length of output array.
308 
309   // Grow the actual input array to the next larger power-of-2 bigger than len.
310   void grow( uint len );
311   // Grow the output array to the next larger power-of-2 bigger than len.
312   void out_grow( uint len );
313 
314  public:
315   // Each Node is assigned a unique small/dense number.  This number is used
316   // to index into auxiliary arrays of data and bit vectors.
317   // The field _idx is declared constant to defend against inadvertent assignments,
318   // since it is used by clients as a naked field. However, the field's value can be
319   // changed using the set_idx() method.
320   //
321   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
322   // Therefore, it updates the value of the _idx field. The parse-time _idx is
323   // preserved in _parse_idx.
324   const node_idx_t _idx;
DEBUG_ONLY(const node_idx_t _parse_idx;)325   DEBUG_ONLY(const node_idx_t _parse_idx;)
326 
327   // Get the (read-only) number of input edges
328   uint req() const { return _cnt; }
len() const329   uint len() const { return _max; }
330   // Get the (read-only) number of output edges
outcnt() const331   uint outcnt() const { return _outcnt; }
332 
333 #if OPTO_DU_ITERATOR_ASSERT
334   // Iterate over the out-edges of this node.  Deletions are illegal.
335   inline DUIterator outs() const;
336   // Use this when the out array might have changed to suppress asserts.
337   inline DUIterator& refresh_out_pos(DUIterator& i) const;
338   // Does the node have an out at this position?  (Used for iteration.)
339   inline bool has_out(DUIterator& i) const;
340   inline Node*    out(DUIterator& i) const;
341   // Iterate over the out-edges of this node.  All changes are illegal.
342   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
343   inline Node*    fast_out(DUIterator_Fast& i) const;
344   // Iterate over the out-edges of this node, deleting one at a time.
345   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
346   inline Node*    last_out(DUIterator_Last& i) const;
347   // The inline bodies of all these methods are after the iterator definitions.
348 #else
349   // Iterate over the out-edges of this node.  Deletions are illegal.
350   // This iteration uses integral indexes, to decouple from array reallocations.
outs() const351   DUIterator outs() const  { return 0; }
352   // Use this when the out array might have changed to suppress asserts.
refresh_out_pos(DUIterator i) const353   DUIterator refresh_out_pos(DUIterator i) const { return i; }
354 
355   // Reference to the i'th output Node.  Error if out of bounds.
out(DUIterator i) const356   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
357   // Does the node have an out at this position?  (Used for iteration.)
has_out(DUIterator i) const358   bool has_out(DUIterator i) const { return i < _outcnt; }
359 
360   // Iterate over the out-edges of this node.  All changes are illegal.
361   // This iteration uses a pointer internal to the out array.
fast_outs(DUIterator_Fast & max) const362   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
363     Node** out = _out;
364     // Assign a limit pointer to the reference argument:
365     max = out + (ptrdiff_t)_outcnt;
366     // Return the base pointer:
367     return out;
368   }
fast_out(DUIterator_Fast i) const369   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
370   // Iterate over the out-edges of this node, deleting one at a time.
371   // This iteration uses a pointer internal to the out array.
last_outs(DUIterator_Last & min) const372   DUIterator_Last last_outs(DUIterator_Last& min) const {
373     Node** out = _out;
374     // Assign a limit pointer to the reference argument:
375     min = out;
376     // Return the pointer to the start of the iteration:
377     return out + (ptrdiff_t)_outcnt - 1;
378   }
last_out(DUIterator_Last i) const379   Node*    last_out(DUIterator_Last i) const  { return *i; }
380 #endif
381 
382   // Reference to the i'th input Node.  Error if out of bounds.
in(uint i) const383   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
384   // Reference to the i'th input Node.  NULL if out of bounds.
lookup(uint i) const385   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
386   // Reference to the i'th output Node.  Error if out of bounds.
387   // Use this accessor sparingly.  We are going trying to use iterators instead.
raw_out(uint i) const388   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
389   // Return the unique out edge.
unique_out() const390   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
391   // Delete out edge at position 'i' by moving last out edge to position 'i'
raw_del_out(uint i)392   void  raw_del_out(uint i) {
393     assert(i < _outcnt,"oob");
394     assert(_outcnt > 0,"oob");
395     #if OPTO_DU_ITERATOR_ASSERT
396     // Record that a change happened here.
397     debug_only(_last_del = _out[i]; ++_del_tick);
398     #endif
399     _out[i] = _out[--_outcnt];
400     // Smash the old edge so it can't be used accidentally.
401     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
402   }
403 
404 #ifdef ASSERT
405   bool is_dead() const;
406 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
407   bool is_reachable_from_root() const;
408 #endif
409   // Check whether node has become unreachable
410   bool is_unreachable(PhaseIterGVN &igvn) const;
411 
412   // Set a required input edge, also updates corresponding output edge
413   void add_req( Node *n ); // Append a NEW required input
add_req(Node * n0,Node * n1)414   void add_req( Node *n0, Node *n1 ) {
415     add_req(n0); add_req(n1); }
add_req(Node * n0,Node * n1,Node * n2)416   void add_req( Node *n0, Node *n1, Node *n2 ) {
417     add_req(n0); add_req(n1); add_req(n2); }
418   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
419   void del_req( uint idx ); // Delete required edge & compact
420   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
421   void ins_req( uint i, Node *n ); // Insert a NEW required input
set_req(uint i,Node * n)422   void set_req( uint i, Node *n ) {
423     assert( is_not_dead(n), "can not use dead node");
424     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
425     assert( !VerifyHashTableKeys || _hash_lock == 0,
426             "remove node from hash table before modifying it");
427     Node** p = &_in[i];    // cache this._in, across the del_out call
428     if (*p != NULL)  (*p)->del_out((Node *)this);
429     (*p) = n;
430     if (n != NULL)      n->add_out((Node *)this);
431     Compile::current()->record_modified_node(this);
432   }
433   // Light version of set_req() to init inputs after node creation.
init_req(uint i,Node * n)434   void init_req( uint i, Node *n ) {
435     assert( i == 0 && this == n ||
436             is_not_dead(n), "can not use dead node");
437     assert( i < _cnt, "oob");
438     assert( !VerifyHashTableKeys || _hash_lock == 0,
439             "remove node from hash table before modifying it");
440     assert( _in[i] == NULL, "sanity");
441     _in[i] = n;
442     if (n != NULL)      n->add_out((Node *)this);
443     Compile::current()->record_modified_node(this);
444   }
445   // Find first occurrence of n among my edges:
446   int find_edge(Node* n);
find_prec_edge(Node * n)447   int find_prec_edge(Node* n) {
448     for (uint i = req(); i < len(); i++) {
449       if (_in[i] == n) return i;
450       if (_in[i] == NULL) {
451         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
452         break;
453       }
454     }
455     return -1;
456   }
457   int replace_edge(Node* old, Node* neww);
458   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
459   // NULL out all inputs to eliminate incoming Def-Use edges.
460   void disconnect_inputs(Compile* C);
461 
462   // Quickly, return true if and only if I am Compile::current()->top().
is_top() const463   bool is_top() const {
464     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
465     return (_out == NULL);
466   }
467   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
468   void setup_is_top();
469 
470   // Strip away casting.  (It is depth-limited.)
471   Node* uncast(bool keep_deps = false) const;
472   // Return whether two Nodes are equivalent, after stripping casting.
eqv_uncast(const Node * n,bool keep_deps=false) const473   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
474     return (this->uncast(keep_deps) == n->uncast(keep_deps));
475   }
476 
477   // Find out of current node that matches opcode.
478   Node* find_out_with(int opcode);
479   // Return true if the current node has an out that matches opcode.
480   bool has_out_with(int opcode);
481   // Return true if the current node has an out that matches any of the opcodes.
482   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
483 
484 private:
485   static Node* uncast_helper(const Node* n, bool keep_deps);
486 
487   // Add an output edge to the end of the list
add_out(Node * n)488   void add_out( Node *n ) {
489     if (is_top())  return;
490     if( _outcnt == _outmax ) out_grow(_outcnt);
491     _out[_outcnt++] = n;
492   }
493   // Delete an output edge
del_out(Node * n)494   void del_out( Node *n ) {
495     if (is_top())  return;
496     Node** outp = &_out[_outcnt];
497     // Find and remove n
498     do {
499       assert(outp > _out, "Missing Def-Use edge");
500     } while (*--outp != n);
501     *outp = _out[--_outcnt];
502     // Smash the old edge so it can't be used accidentally.
503     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
504     // Record that a change happened here.
505     #if OPTO_DU_ITERATOR_ASSERT
506     debug_only(_last_del = n; ++_del_tick);
507     #endif
508   }
509   // Close gap after removing edge.
close_prec_gap_at(uint gap)510   void close_prec_gap_at(uint gap) {
511     assert(_cnt <= gap && gap < _max, "no valid prec edge");
512     uint i = gap;
513     Node *last = NULL;
514     for (; i < _max-1; ++i) {
515       Node *next = _in[i+1];
516       if (next == NULL) break;
517       last = next;
518     }
519     _in[gap] = last; // Move last slot to empty one.
520     _in[i] = NULL;   // NULL out last slot.
521   }
522 
523 public:
524   // Globally replace this node by a given new node, updating all uses.
525   void replace_by(Node* new_node);
526   // Globally replace this node by a given new node, updating all uses
527   // and cutting input edges of old node.
subsume_by(Node * new_node,Compile * c)528   void subsume_by(Node* new_node, Compile* c) {
529     replace_by(new_node);
530     disconnect_inputs(c);
531   }
532   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
533   // Find the one non-null required input.  RegionNode only
534   Node *nonnull_req() const;
535   // Add or remove precedence edges
536   void add_prec( Node *n );
537   void rm_prec( uint i );
538 
539   // Note: prec(i) will not necessarily point to n if edge already exists.
set_prec(uint i,Node * n)540   void set_prec( uint i, Node *n ) {
541     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
542     assert(is_not_dead(n), "can not use dead node");
543     assert(i >= _cnt, "not a precedence edge");
544     // Avoid spec violation: duplicated prec edge.
545     if (_in[i] == n) return;
546     if (n == NULL || find_prec_edge(n) != -1) {
547       rm_prec(i);
548       return;
549     }
550     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
551     _in[i] = n;
552     n->add_out((Node *)this);
553   }
554 
555   // Set this node's index, used by cisc_version to replace current node
set_idx(uint new_idx)556   void set_idx(uint new_idx) {
557     const node_idx_t* ref = &_idx;
558     *(node_idx_t*)ref = new_idx;
559   }
560   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
swap_edges(uint i1,uint i2)561   void swap_edges(uint i1, uint i2) {
562     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
563     // Def-Use info is unchanged
564     Node* n1 = in(i1);
565     Node* n2 = in(i2);
566     _in[i1] = n2;
567     _in[i2] = n1;
568     // If this node is in the hash table, make sure it doesn't need a rehash.
569     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
570   }
571 
572   // Iterators over input Nodes for a Node X are written as:
573   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
574   // NOTE: Required edges can contain embedded NULL pointers.
575 
576 //----------------- Other Node Properties
577 
578   // Generate class IDs for (some) ideal nodes so that it is possible to determine
579   // the type of a node using a non-virtual method call (the method is_<Node>() below).
580   //
581   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
582   // the type of the node the ID represents; another subset of an ID's bits are reserved
583   // for the superclasses of the node represented by the ID.
584   //
585   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
586   // returns false. A.is_A() returns true.
587   //
588   // If two classes, A and B, have the same superclass, a different bit of A's class id
589   // is reserved for A's type than for B's type. That bit is specified by the third
590   // parameter in the macro DEFINE_CLASS_ID.
591   //
592   // By convention, classes with deeper hierarchy are declared first. Moreover,
593   // classes with the same hierarchy depth are sorted by usage frequency.
594   //
595   // The query method masks the bits to cut off bits of subclasses and then compares
596   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
597   //
598   //  Class_MachCall=30, ClassMask_MachCall=31
599   // 12               8               4               0
600   //  0   0   0   0   0   0   0   0   1   1   1   1   0
601   //                                  |   |   |   |
602   //                                  |   |   |   Bit_Mach=2
603   //                                  |   |   Bit_MachReturn=4
604   //                                  |   Bit_MachSafePoint=8
605   //                                  Bit_MachCall=16
606   //
607   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
608   // 12               8               4               0
609   //  0   0   0   0   0   0   0   1   1   1   0   0   0
610   //                              |   |   |
611   //                              |   |   Bit_Region=8
612   //                              |   Bit_Loop=16
613   //                              Bit_CountedLoop=32
614 
615   #define DEFINE_CLASS_ID(cl, supcl, subn) \
616   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
617   Class_##cl = Class_##supcl + Bit_##cl , \
618   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
619 
620   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
621   // so that its values fit into 32 bits.
622   enum NodeClasses {
623     Bit_Node   = 0x00000000,
624     Class_Node = 0x00000000,
625     ClassMask_Node = 0xFFFFFFFF,
626 
627     DEFINE_CLASS_ID(Multi, Node, 0)
628       DEFINE_CLASS_ID(SafePoint, Multi, 0)
629         DEFINE_CLASS_ID(Call,      SafePoint, 0)
630           DEFINE_CLASS_ID(CallJava,         Call, 0)
631             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
632             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
633           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
634             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
635               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
636           DEFINE_CLASS_ID(Allocate,         Call, 2)
637             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
638           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
639             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
640             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
641           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
642           DEFINE_CLASS_ID(CallNative,       Call, 5)
643       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
644         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
645           DEFINE_CLASS_ID(Catch,       PCTable, 0)
646           DEFINE_CLASS_ID(Jump,        PCTable, 1)
647         DEFINE_CLASS_ID(If,          MultiBranch, 1)
648           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
649             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
650             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
651           DEFINE_CLASS_ID(RangeCheck,             If, 1)
652           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
653         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
654       DEFINE_CLASS_ID(Start,       Multi, 2)
655       DEFINE_CLASS_ID(MemBar,      Multi, 3)
656         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
657         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
658 
659     DEFINE_CLASS_ID(Mach,  Node, 1)
660       DEFINE_CLASS_ID(MachReturn, Mach, 0)
661         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
662           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
663             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
664               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
665               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
666             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
667               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
668             DEFINE_CLASS_ID(MachCallNative,       MachCall, 2)
669       DEFINE_CLASS_ID(MachBranch, Mach, 1)
670         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
671         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
672         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
673       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
674       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
675       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
676       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
677         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
678       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
679       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
680 
681     DEFINE_CLASS_ID(Type,  Node, 2)
682       DEFINE_CLASS_ID(Phi,   Type, 0)
683       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
684         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
685         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
686         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
687       DEFINE_CLASS_ID(CMove, Type, 3)
688       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
689       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
690         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
691         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
692       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
693         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
694         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
695 
696     DEFINE_CLASS_ID(Proj,  Node, 3)
697       DEFINE_CLASS_ID(CatchProj, Proj, 0)
698       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
699       DEFINE_CLASS_ID(IfProj,    Proj, 2)
700         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
701         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
702       DEFINE_CLASS_ID(Parm,      Proj, 4)
703       DEFINE_CLASS_ID(MachProj,  Proj, 5)
704 
705     DEFINE_CLASS_ID(Mem, Node, 4)
706       DEFINE_CLASS_ID(Load, Mem, 0)
707         DEFINE_CLASS_ID(LoadVector,  Load, 0)
708           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
709           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 1)
710       DEFINE_CLASS_ID(Store, Mem, 1)
711         DEFINE_CLASS_ID(StoreVector, Store, 0)
712           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
713           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 1)
714       DEFINE_CLASS_ID(LoadStore, Mem, 2)
715         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
716           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
717         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
718 
719     DEFINE_CLASS_ID(Region, Node, 5)
720       DEFINE_CLASS_ID(Loop, Region, 0)
721         DEFINE_CLASS_ID(Root,                Loop, 0)
722         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
723           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
724           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
725         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
726 
727     DEFINE_CLASS_ID(Sub,   Node, 6)
728       DEFINE_CLASS_ID(Cmp,   Sub, 0)
729         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
730         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
731         DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)
732 
733     DEFINE_CLASS_ID(MergeMem, Node, 7)
734     DEFINE_CLASS_ID(Bool,     Node, 8)
735     DEFINE_CLASS_ID(AddP,     Node, 9)
736     DEFINE_CLASS_ID(BoxLock,  Node, 10)
737     DEFINE_CLASS_ID(Add,      Node, 11)
738     DEFINE_CLASS_ID(Mul,      Node, 12)
739     DEFINE_CLASS_ID(Vector,   Node, 13)
740       DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
741     DEFINE_CLASS_ID(ClearArray, Node, 14)
742     DEFINE_CLASS_ID(Halt,     Node, 15)
743     DEFINE_CLASS_ID(Opaque1,  Node, 16)
744     DEFINE_CLASS_ID(Move,     Node, 17)
745 
746     _max_classes  = ClassMask_Move
747   };
748   #undef DEFINE_CLASS_ID
749 
750   // Flags are sorted by usage frequency.
751   enum NodeFlags {
752     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
753     Flag_rematerialize               = 1 << 1,
754     Flag_needs_anti_dependence_check = 1 << 2,
755     Flag_is_macro                    = 1 << 3,
756     Flag_is_Con                      = 1 << 4,
757     Flag_is_cisc_alternate           = 1 << 5,
758     Flag_is_dead_loop_safe           = 1 << 6,
759     Flag_may_be_short_branch         = 1 << 7,
760     Flag_avoid_back_to_back_before   = 1 << 8,
761     Flag_avoid_back_to_back_after    = 1 << 9,
762     Flag_has_call                    = 1 << 10,
763     Flag_is_reduction                = 1 << 11,
764     Flag_is_scheduled                = 1 << 12,
765     Flag_has_vector_mask_set         = 1 << 13,
766     Flag_is_expensive                = 1 << 14,
767     Flag_for_post_loop_opts_igvn     = 1 << 15,
768     _last_flag                       = Flag_for_post_loop_opts_igvn
769   };
770 
771   class PD;
772 
773 private:
774   juint _class_id;
775   juint _flags;
776 
777   static juint max_flags();
778 
779 protected:
780   // These methods should be called from constructors only.
init_class_id(juint c)781   void init_class_id(juint c) {
782     _class_id = c; // cast out const
783   }
init_flags(uint fl)784   void init_flags(uint fl) {
785     assert(fl <= max_flags(), "invalid node flag");
786     _flags |= fl;
787   }
clear_flag(uint fl)788   void clear_flag(uint fl) {
789     assert(fl <= max_flags(), "invalid node flag");
790     _flags &= ~fl;
791   }
792 
793 public:
class_id() const794   const juint class_id() const { return _class_id; }
795 
flags() const796   const juint flags() const { return _flags; }
797 
add_flag(juint fl)798   void add_flag(juint fl) { init_flags(fl); }
799 
remove_flag(juint fl)800   void remove_flag(juint fl) { clear_flag(fl); }
801 
802   // Return a dense integer opcode number
803   virtual int Opcode() const;
804 
805   // Virtual inherited Node size
806   virtual uint size_of() const;
807 
808   // Other interesting Node properties
809   #define DEFINE_CLASS_QUERY(type)                           \
810   bool is_##type() const {                                   \
811     return ((_class_id & ClassMask_##type) == Class_##type); \
812   }                                                          \
813   type##Node *as_##type() const {                            \
814     assert(is_##type(), "invalid node class: %s", Name()); \
815     return (type##Node*)this;                                \
816   }                                                          \
817   type##Node* isa_##type() const {                           \
818     return (is_##type()) ? as_##type() : NULL;               \
819   }
820 
821   DEFINE_CLASS_QUERY(AbstractLock)
DEFINE_CLASS_QUERY(Add)822   DEFINE_CLASS_QUERY(Add)
823   DEFINE_CLASS_QUERY(AddP)
824   DEFINE_CLASS_QUERY(Allocate)
825   DEFINE_CLASS_QUERY(AllocateArray)
826   DEFINE_CLASS_QUERY(ArrayCopy)
827   DEFINE_CLASS_QUERY(BaseCountedLoop)
828   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
829   DEFINE_CLASS_QUERY(Bool)
830   DEFINE_CLASS_QUERY(BoxLock)
831   DEFINE_CLASS_QUERY(Call)
832   DEFINE_CLASS_QUERY(CallNative)
833   DEFINE_CLASS_QUERY(CallDynamicJava)
834   DEFINE_CLASS_QUERY(CallJava)
835   DEFINE_CLASS_QUERY(CallLeaf)
836   DEFINE_CLASS_QUERY(CallLeafNoFP)
837   DEFINE_CLASS_QUERY(CallRuntime)
838   DEFINE_CLASS_QUERY(CallStaticJava)
839   DEFINE_CLASS_QUERY(Catch)
840   DEFINE_CLASS_QUERY(CatchProj)
841   DEFINE_CLASS_QUERY(CheckCastPP)
842   DEFINE_CLASS_QUERY(CastII)
843   DEFINE_CLASS_QUERY(CastLL)
844   DEFINE_CLASS_QUERY(ConstraintCast)
845   DEFINE_CLASS_QUERY(ClearArray)
846   DEFINE_CLASS_QUERY(CMove)
847   DEFINE_CLASS_QUERY(Cmp)
848   DEFINE_CLASS_QUERY(CountedLoop)
849   DEFINE_CLASS_QUERY(CountedLoopEnd)
850   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
851   DEFINE_CLASS_QUERY(DecodeN)
852   DEFINE_CLASS_QUERY(DecodeNKlass)
853   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
854   DEFINE_CLASS_QUERY(EncodeP)
855   DEFINE_CLASS_QUERY(EncodePKlass)
856   DEFINE_CLASS_QUERY(FastLock)
857   DEFINE_CLASS_QUERY(FastUnlock)
858   DEFINE_CLASS_QUERY(Halt)
859   DEFINE_CLASS_QUERY(If)
860   DEFINE_CLASS_QUERY(RangeCheck)
861   DEFINE_CLASS_QUERY(IfProj)
862   DEFINE_CLASS_QUERY(IfFalse)
863   DEFINE_CLASS_QUERY(IfTrue)
864   DEFINE_CLASS_QUERY(Initialize)
865   DEFINE_CLASS_QUERY(Jump)
866   DEFINE_CLASS_QUERY(JumpProj)
867   DEFINE_CLASS_QUERY(LongCountedLoop)
868   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
869   DEFINE_CLASS_QUERY(Load)
870   DEFINE_CLASS_QUERY(LoadStore)
871   DEFINE_CLASS_QUERY(LoadStoreConditional)
872   DEFINE_CLASS_QUERY(Lock)
873   DEFINE_CLASS_QUERY(Loop)
874   DEFINE_CLASS_QUERY(Mach)
875   DEFINE_CLASS_QUERY(MachBranch)
876   DEFINE_CLASS_QUERY(MachCall)
877   DEFINE_CLASS_QUERY(MachCallNative)
878   DEFINE_CLASS_QUERY(MachCallDynamicJava)
879   DEFINE_CLASS_QUERY(MachCallJava)
880   DEFINE_CLASS_QUERY(MachCallLeaf)
881   DEFINE_CLASS_QUERY(MachCallRuntime)
882   DEFINE_CLASS_QUERY(MachCallStaticJava)
883   DEFINE_CLASS_QUERY(MachConstantBase)
884   DEFINE_CLASS_QUERY(MachConstant)
885   DEFINE_CLASS_QUERY(MachGoto)
886   DEFINE_CLASS_QUERY(MachIf)
887   DEFINE_CLASS_QUERY(MachJump)
888   DEFINE_CLASS_QUERY(MachNullCheck)
889   DEFINE_CLASS_QUERY(MachProj)
890   DEFINE_CLASS_QUERY(MachReturn)
891   DEFINE_CLASS_QUERY(MachSafePoint)
892   DEFINE_CLASS_QUERY(MachSpillCopy)
893   DEFINE_CLASS_QUERY(MachTemp)
894   DEFINE_CLASS_QUERY(MachMemBar)
895   DEFINE_CLASS_QUERY(MachMerge)
896   DEFINE_CLASS_QUERY(Mem)
897   DEFINE_CLASS_QUERY(MemBar)
898   DEFINE_CLASS_QUERY(MemBarStoreStore)
899   DEFINE_CLASS_QUERY(MergeMem)
900   DEFINE_CLASS_QUERY(Move)
901   DEFINE_CLASS_QUERY(Mul)
902   DEFINE_CLASS_QUERY(Multi)
903   DEFINE_CLASS_QUERY(MultiBranch)
904   DEFINE_CLASS_QUERY(Opaque1)
905   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
906   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
907   DEFINE_CLASS_QUERY(Parm)
908   DEFINE_CLASS_QUERY(PCTable)
909   DEFINE_CLASS_QUERY(Phi)
910   DEFINE_CLASS_QUERY(Proj)
911   DEFINE_CLASS_QUERY(Region)
912   DEFINE_CLASS_QUERY(Root)
913   DEFINE_CLASS_QUERY(SafePoint)
914   DEFINE_CLASS_QUERY(SafePointScalarObject)
915   DEFINE_CLASS_QUERY(Start)
916   DEFINE_CLASS_QUERY(Store)
917   DEFINE_CLASS_QUERY(Sub)
918   DEFINE_CLASS_QUERY(SubTypeCheck)
919   DEFINE_CLASS_QUERY(Type)
920   DEFINE_CLASS_QUERY(Vector)
921   DEFINE_CLASS_QUERY(LoadVector)
922   DEFINE_CLASS_QUERY(LoadVectorGather)
923   DEFINE_CLASS_QUERY(StoreVector)
924   DEFINE_CLASS_QUERY(StoreVectorScatter)
925   DEFINE_CLASS_QUERY(VectorMaskCmp)
926   DEFINE_CLASS_QUERY(Unlock)
927 
928   #undef DEFINE_CLASS_QUERY
929 
930   // duplicate of is_MachSpillCopy()
931   bool is_SpillCopy () const {
932     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
933   }
934 
is_Con() const935   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
936   // The data node which is safe to leave in dead loop during IGVN optimization.
937   bool is_dead_loop_safe() const;
938 
939   // is_Copy() returns copied edge index (0 or 1)
is_Copy() const940   uint is_Copy() const { return (_flags & Flag_is_Copy); }
941 
is_CFG() const942   virtual bool is_CFG() const { return false; }
943 
944   // If this node is control-dependent on a test, can it be
945   // rerouted to a dominating equivalent test?  This is usually
946   // true of non-CFG nodes, but can be false for operations which
947   // depend for their correct sequencing on more than one test.
948   // (In that case, hoisting to a dominating test may silently
949   // skip some other important test.)
depends_only_on_test() const950   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
951 
952   // When building basic blocks, I need to have a notion of block beginning
953   // Nodes, next block selector Nodes (block enders), and next block
954   // projections.  These calls need to work on their machine equivalents.  The
955   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
is_block_start() const956   bool is_block_start() const {
957     if ( is_Region() )
958       return this == (const Node*)in(0);
959     else
960       return is_Start();
961   }
962 
963   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
964   // Goto and Return.  This call also returns the block ending Node.
965   virtual const Node *is_block_proj() const;
966 
967   // The node is a "macro" node which needs to be expanded before matching
is_macro() const968   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
969   // The node is expensive: the best control is set during loop opts
is_expensive() const970   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
971 
972   // An arithmetic node which accumulates a data in a loop.
973   // It must have the loop's phi as input and provide a def to the phi.
is_reduction() const974   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
975 
976   // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
has_vector_mask_set() const977   bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
978 
979   // Used in lcm to mark nodes that have scheduled
is_scheduled() const980   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
981 
for_post_loop_opts_igvn() const982   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
983 
984 //----------------- Optimization
985 
986   // Get the worst-case Type output for this Node.
987   virtual const class Type *bottom_type() const;
988 
989   // If we find a better type for a node, try to record it permanently.
990   // Return true if this node actually changed.
991   // Be sure to do the hash_delete game in the "rehash" variant.
992   void raise_bottom_type(const Type* new_type);
993 
994   // Get the address type with which this node uses and/or defs memory,
995   // or NULL if none.  The address type is conservatively wide.
996   // Returns non-null for calls, membars, loads, stores, etc.
997   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
adr_type() const998   virtual const class TypePtr *adr_type() const { return NULL; }
999 
1000   // Return an existing node which computes the same function as this node.
1001   // The optimistic combined algorithm requires this to return a Node which
1002   // is a small number of steps away (e.g., one of my inputs).
1003   virtual Node* Identity(PhaseGVN* phase);
1004 
1005   // Return the set of values this Node can take on at runtime.
1006   virtual const Type* Value(PhaseGVN* phase) const;
1007 
1008   // Return a node which is more "ideal" than the current node.
1009   // The invariants on this call are subtle.  If in doubt, read the
1010   // treatise in node.cpp above the default implemention AND TEST WITH
1011   // +VerifyIterativeGVN!
1012   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1013 
1014   // Some nodes have specific Ideal subgraph transformations only if they are
1015   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1016   // for the transformations to happen.
1017   bool has_special_unique_user() const;
1018 
1019   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1020   Node* find_exact_control(Node* ctrl);
1021 
1022   // Check if 'this' node dominates or equal to 'sub'.
1023   bool dominates(Node* sub, Node_List &nlist);
1024 
1025 protected:
1026   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1027 public:
1028 
1029   // See if there is valid pipeline info
1030   static  const Pipeline *pipeline_class();
1031   virtual const Pipeline *pipeline() const;
1032 
1033   // Compute the latency from the def to this instruction of the ith input node
1034   uint latency(uint i);
1035 
1036   // Hash & compare functions, for pessimistic value numbering
1037 
1038   // If the hash function returns the special sentinel value NO_HASH,
1039   // the node is guaranteed never to compare equal to any other node.
1040   // If we accidentally generate a hash with value NO_HASH the node
1041   // won't go into the table and we'll lose a little optimization.
1042   static const uint NO_HASH = 0;
1043   virtual uint hash() const;
1044   virtual bool cmp( const Node &n ) const;
1045 
1046   // Operation appears to be iteratively computed (such as an induction variable)
1047   // It is possible for this operation to return false for a loop-varying
1048   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1049   bool is_iteratively_computed();
1050 
1051   // Determine if a node is a counted loop induction variable.
1052   // NOTE: The method is defined in "loopnode.cpp".
1053   bool is_cloop_ind_var() const;
1054 
1055   // Return a node with opcode "opc" and same inputs as "this" if one can
1056   // be found; Otherwise return NULL;
1057   Node* find_similar(int opc);
1058 
1059   // Return the unique control out if only one. Null if none or more than one.
1060   Node* unique_ctrl_out() const;
1061 
1062   // Set control or add control as precedence edge
1063   void ensure_control_or_add_prec(Node* c);
1064 
1065 //----------------- Code Generation
1066 
1067   // Ideal register class for Matching.  Zero means unmatched instruction
1068   // (these are cloned instead of converted to machine nodes).
1069   virtual uint ideal_reg() const;
1070 
1071   static const uint NotAMachineReg;   // must be > max. machine register
1072 
1073   // Do we Match on this edge index or not?  Generally false for Control
1074   // and true for everything else.  Weird for calls & returns.
1075   virtual uint match_edge(uint idx) const;
1076 
1077   // Register class output is returned in
1078   virtual const RegMask &out_RegMask() const;
1079   // Register class input is expected in
1080   virtual const RegMask &in_RegMask(uint) const;
1081   // Should we clone rather than spill this instruction?
1082   bool rematerialize() const;
1083 
1084   // Return JVM State Object if this Node carries debug info, or NULL otherwise
1085   virtual JVMState* jvms() const;
1086 
1087   // Print as assembly
1088   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1089   // Emit bytes starting at parameter 'ptr'
1090   // Bump 'ptr' by the number of output bytes
1091   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1092   // Size of instruction in bytes
1093   virtual uint size(PhaseRegAlloc *ra_) const;
1094 
1095   // Convenience function to extract an integer constant from a node.
1096   // If it is not an integer constant (either Con, CastII, or Mach),
1097   // return value_if_unknown.
find_int_con(jint value_if_unknown) const1098   jint find_int_con(jint value_if_unknown) const {
1099     const TypeInt* t = find_int_type();
1100     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1101   }
1102   // Return the constant, knowing it is an integer constant already
get_int() const1103   jint get_int() const {
1104     const TypeInt* t = find_int_type();
1105     guarantee(t != NULL, "must be con");
1106     return t->get_con();
1107   }
1108   // Here's where the work is done.  Can produce non-constant int types too.
1109   const TypeInt* find_int_type() const;
1110   const TypeInteger* find_integer_type(BasicType bt) const;
1111 
1112   // Same thing for long (and intptr_t, via type.hpp):
get_long() const1113   jlong get_long() const {
1114     const TypeLong* t = find_long_type();
1115     guarantee(t != NULL, "must be con");
1116     return t->get_con();
1117   }
find_long_con(jint value_if_unknown) const1118   jlong find_long_con(jint value_if_unknown) const {
1119     const TypeLong* t = find_long_type();
1120     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1121   }
1122   const TypeLong* find_long_type() const;
1123 
get_integer_as_long(BasicType bt) const1124   jlong get_integer_as_long(BasicType bt) const {
1125     const TypeInteger* t = find_integer_type(bt);
1126     guarantee(t != NULL, "must be con");
1127     return t->get_con_as_long(bt);
1128   }
1129   const TypePtr* get_ptr_type() const;
1130 
1131   // These guys are called by code generated by ADLC:
1132   intptr_t get_ptr() const;
1133   intptr_t get_narrowcon() const;
1134   jdouble getd() const;
1135   jfloat getf() const;
1136 
1137   // Nodes which are pinned into basic blocks
pinned() const1138   virtual bool pinned() const { return false; }
1139 
1140   // Nodes which use memory without consuming it, hence need antidependences
1141   // More specifically, needs_anti_dependence_check returns true iff the node
1142   // (a) does a load, and (b) does not perform a store (except perhaps to a
1143   // stack slot or some other unaliased location).
1144   bool needs_anti_dependence_check() const;
1145 
1146   // Return which operand this instruction may cisc-spill. In other words,
1147   // return operand position that can convert from reg to memory access
cisc_operand() const1148   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
is_cisc_alternate() const1149   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1150 
1151 //----------------- Printing, etc
1152 #ifndef PRODUCT
1153  private:
1154   int _indent;
1155 
1156  public:
set_indent(int indent)1157   void set_indent(int indent) { _indent = indent; }
1158 
1159  private:
1160   static bool add_to_worklist(Node* n, Node_List* worklist, Arena* old_arena, VectorSet* old_space, VectorSet* new_space);
1161 public:
1162   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1163   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
dump() const1164   void dump() const { dump("\n"); }  // Print this node.
1165   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1166   void dump(int depth) const;        // Print this node, recursively to depth d
1167   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1168   void dump_comp() const;            // Print this node in compact representation.
1169   // Print this node in compact representation.
1170   void dump_comp(const char* suffix, outputStream *st = tty) const;
1171   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1172   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1173   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
dump_spec(outputStream * st) const1174   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1175   // Print compact per-node info
dump_compact_spec(outputStream * st) const1176   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1177   void dump_related() const;             // Print related nodes (depends on node at hand).
1178   // Print related nodes up to given depths for input and output nodes.
1179   void dump_related(uint d_in, uint d_out) const;
1180   void dump_related_compact() const;     // Print related nodes in compact representation.
1181   // Collect related nodes.
1182   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1183   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1184   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1185 
1186   // Node collectors, to be used in implementations of Node::rel().
1187   // Collect the entire data input graph. Include control inputs if requested.
1188   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1189   // Collect the entire control input graph. Include data inputs if requested.
1190   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1191   // Collect the entire output graph until hitting and including control nodes.
1192   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1193 
1194   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1195   static void verify(Node* n, int verify_depth);
1196 
1197   // This call defines a class-unique string used to identify class instances
1198   virtual const char *Name() const;
1199 
1200   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1201   // RegMask Print Functions
dump_in_regmask(int idx)1202   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
dump_out_regmask()1203   void dump_out_regmask() { out_RegMask().dump(); }
in_dump()1204   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
fast_dump() const1205   void fast_dump() const {
1206     tty->print("%4d: %-17s", _idx, Name());
1207     for (uint i = 0; i < len(); i++)
1208       if (in(i))
1209         tty->print(" %4d", in(i)->_idx);
1210       else
1211         tty->print(" NULL");
1212     tty->print("\n");
1213   }
1214 #endif
1215 #ifdef ASSERT
1216   void verify_construction();
1217   bool verify_jvms(const JVMState* jvms) const;
1218   int  _debug_idx;                     // Unique value assigned to every node.
debug_idx() const1219   int   debug_idx() const              { return _debug_idx; }
set_debug_idx(int debug_idx)1220   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1221 
1222   Node* _debug_orig;                   // Original version of this, if any.
debug_orig() const1223   Node*  debug_orig() const            { return _debug_orig; }
1224   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1225   void   dump_orig(outputStream *st, bool print_key = true) const;
1226 
1227   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
enter_hash_lock()1228   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
exit_hash_lock()1229   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1230 
1231   static void init_NodeProperty();
1232 
1233   #if OPTO_DU_ITERATOR_ASSERT
1234   const Node* _last_del;               // The last deleted node.
1235   uint        _del_tick;               // Bumped when a deletion happens..
1236   #endif
1237 #endif
1238 public:
operates_on(BasicType bt,bool signed_int) const1239   virtual bool operates_on(BasicType bt, bool signed_int) const {
1240     assert(bt == T_INT || bt == T_LONG, "unsupported");
1241     Unimplemented();
1242     return false;
1243   }
1244 };
1245 
1246 
1247 #ifndef PRODUCT
1248 
1249 // Used in debugging code to avoid walking across dead or uninitialized edges.
NotANode(const Node * n)1250 inline bool NotANode(const Node* n) {
1251   if (n == NULL)                   return true;
1252   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1253   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1254   return false;
1255 }
1256 
1257 #endif
1258 
1259 
1260 //-----------------------------------------------------------------------------
1261 // Iterators over DU info, and associated Node functions.
1262 
1263 #if OPTO_DU_ITERATOR_ASSERT
1264 
1265 // Common code for assertion checking on DU iterators.
1266 class DUIterator_Common {
1267 #ifdef ASSERT
1268  protected:
1269   bool         _vdui;               // cached value of VerifyDUIterators
1270   const Node*  _node;               // the node containing the _out array
1271   uint         _outcnt;             // cached node->_outcnt
1272   uint         _del_tick;           // cached node->_del_tick
1273   Node*        _last;               // last value produced by the iterator
1274 
1275   void sample(const Node* node);    // used by c'tor to set up for verifies
1276   void verify(const Node* node, bool at_end_ok = false);
1277   void verify_resync();
1278   void reset(const DUIterator_Common& that);
1279 
1280 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1281   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1282 #else
1283   #define I_VDUI_ONLY(i,x) { }
1284 #endif //ASSERT
1285 };
1286 
1287 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1288 
1289 // Default DU iterator.  Allows appends onto the out array.
1290 // Allows deletion from the out array only at the current point.
1291 // Usage:
1292 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1293 //    Node* y = x->out(i);
1294 //    ...
1295 //  }
1296 // Compiles in product mode to a unsigned integer index, which indexes
1297 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1298 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1299 // before continuing the loop.  You must delete only the last-produced
1300 // edge.  You must delete only a single copy of the last-produced edge,
1301 // or else you must delete all copies at once (the first time the edge
1302 // is produced by the iterator).
1303 class DUIterator : public DUIterator_Common {
1304   friend class Node;
1305 
1306   // This is the index which provides the product-mode behavior.
1307   // Whatever the product-mode version of the system does to the
1308   // DUI index is done to this index.  All other fields in
1309   // this class are used only for assertion checking.
1310   uint         _idx;
1311 
1312   #ifdef ASSERT
1313   uint         _refresh_tick;    // Records the refresh activity.
1314 
1315   void sample(const Node* node); // Initialize _refresh_tick etc.
1316   void verify(const Node* node, bool at_end_ok = false);
1317   void verify_increment();       // Verify an increment operation.
1318   void verify_resync();          // Verify that we can back up over a deletion.
1319   void verify_finish();          // Verify that the loop terminated properly.
1320   void refresh();                // Resample verification info.
1321   void reset(const DUIterator& that);  // Resample after assignment.
1322   #endif
1323 
DUIterator(const Node * node,int dummy_to_avoid_conversion)1324   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1325     { _idx = 0;                         debug_only(sample(node)); }
1326 
1327  public:
1328   // initialize to garbage; clear _vdui to disable asserts
DUIterator()1329   DUIterator()
1330     { /*initialize to garbage*/         debug_only(_vdui = false); }
1331 
operator ++(int dummy_to_specify_postfix_op)1332   void operator++(int dummy_to_specify_postfix_op)
1333     { _idx++;                           VDUI_ONLY(verify_increment()); }
1334 
operator --()1335   void operator--()
1336     { VDUI_ONLY(verify_resync());       --_idx; }
1337 
~DUIterator()1338   ~DUIterator()
1339     { VDUI_ONLY(verify_finish()); }
1340 
operator =(const DUIterator & that)1341   void operator=(const DUIterator& that)
1342     { _idx = that._idx;                 debug_only(reset(that)); }
1343 };
1344 
outs() const1345 DUIterator Node::outs() const
1346   { return DUIterator(this, 0); }
refresh_out_pos(DUIterator & i) const1347 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1348   { I_VDUI_ONLY(i, i.refresh());        return i; }
has_out(DUIterator & i) const1349 bool Node::has_out(DUIterator& i) const
1350   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
out(DUIterator & i) const1351 Node*    Node::out(DUIterator& i) const
1352   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1353 
1354 
1355 // Faster DU iterator.  Disallows insertions into the out array.
1356 // Allows deletion from the out array only at the current point.
1357 // Usage:
1358 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1359 //    Node* y = x->fast_out(i);
1360 //    ...
1361 //  }
1362 // Compiles in product mode to raw Node** pointer arithmetic, with
1363 // no reloading of pointers from the original node x.  If you delete,
1364 // you must perform "--i; --imax" just before continuing the loop.
1365 // If you delete multiple copies of the same edge, you must decrement
1366 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1367 class DUIterator_Fast : public DUIterator_Common {
1368   friend class Node;
1369   friend class DUIterator_Last;
1370 
1371   // This is the pointer which provides the product-mode behavior.
1372   // Whatever the product-mode version of the system does to the
1373   // DUI pointer is done to this pointer.  All other fields in
1374   // this class are used only for assertion checking.
1375   Node**       _outp;
1376 
1377   #ifdef ASSERT
1378   void verify(const Node* node, bool at_end_ok = false);
1379   void verify_limit();
1380   void verify_resync();
1381   void verify_relimit(uint n);
1382   void reset(const DUIterator_Fast& that);
1383   #endif
1384 
1385   // Note:  offset must be signed, since -1 is sometimes passed
DUIterator_Fast(const Node * node,ptrdiff_t offset)1386   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1387     { _outp = node->_out + offset;      debug_only(sample(node)); }
1388 
1389  public:
1390   // initialize to garbage; clear _vdui to disable asserts
DUIterator_Fast()1391   DUIterator_Fast()
1392     { /*initialize to garbage*/         debug_only(_vdui = false); }
1393 
operator ++(int dummy_to_specify_postfix_op)1394   void operator++(int dummy_to_specify_postfix_op)
1395     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1396 
operator --()1397   void operator--()
1398     { VDUI_ONLY(verify_resync());       --_outp; }
1399 
operator -=(uint n)1400   void operator-=(uint n)   // applied to the limit only
1401     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1402 
operator <(DUIterator_Fast & limit)1403   bool operator<(DUIterator_Fast& limit) {
1404     I_VDUI_ONLY(*this, this->verify(_node, true));
1405     I_VDUI_ONLY(limit, limit.verify_limit());
1406     return _outp < limit._outp;
1407   }
1408 
operator =(const DUIterator_Fast & that)1409   void operator=(const DUIterator_Fast& that)
1410     { _outp = that._outp;               debug_only(reset(that)); }
1411 };
1412 
fast_outs(DUIterator_Fast & imax) const1413 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1414   // Assign a limit pointer to the reference argument:
1415   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1416   // Return the base pointer:
1417   return DUIterator_Fast(this, 0);
1418 }
fast_out(DUIterator_Fast & i) const1419 Node* Node::fast_out(DUIterator_Fast& i) const {
1420   I_VDUI_ONLY(i, i.verify(this));
1421   return debug_only(i._last=) *i._outp;
1422 }
1423 
1424 
1425 // Faster DU iterator.  Requires each successive edge to be removed.
1426 // Does not allow insertion of any edges.
1427 // Usage:
1428 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1429 //    Node* y = x->last_out(i);
1430 //    ...
1431 //  }
1432 // Compiles in product mode to raw Node** pointer arithmetic, with
1433 // no reloading of pointers from the original node x.
1434 class DUIterator_Last : private DUIterator_Fast {
1435   friend class Node;
1436 
1437   #ifdef ASSERT
1438   void verify(const Node* node, bool at_end_ok = false);
1439   void verify_limit();
1440   void verify_step(uint num_edges);
1441   #endif
1442 
1443   // Note:  offset must be signed, since -1 is sometimes passed
DUIterator_Last(const Node * node,ptrdiff_t offset)1444   DUIterator_Last(const Node* node, ptrdiff_t offset)
1445     : DUIterator_Fast(node, offset) { }
1446 
operator ++(int dummy_to_specify_postfix_op)1447   void operator++(int dummy_to_specify_postfix_op) {} // do not use
operator <(int)1448   void operator<(int)                              {} // do not use
1449 
1450  public:
DUIterator_Last()1451   DUIterator_Last() { }
1452   // initialize to garbage
1453 
operator --()1454   void operator--()
1455     { _outp--;              VDUI_ONLY(verify_step(1));  }
1456 
operator -=(uint n)1457   void operator-=(uint n)
1458     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1459 
operator >=(DUIterator_Last & limit)1460   bool operator>=(DUIterator_Last& limit) {
1461     I_VDUI_ONLY(*this, this->verify(_node, true));
1462     I_VDUI_ONLY(limit, limit.verify_limit());
1463     return _outp >= limit._outp;
1464   }
1465 
operator =(const DUIterator_Last & that)1466   void operator=(const DUIterator_Last& that)
1467     { DUIterator_Fast::operator=(that); }
1468 };
1469 
last_outs(DUIterator_Last & imin) const1470 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1471   // Assign a limit pointer to the reference argument:
1472   imin = DUIterator_Last(this, 0);
1473   // Return the initial pointer:
1474   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1475 }
last_out(DUIterator_Last & i) const1476 Node* Node::last_out(DUIterator_Last& i) const {
1477   I_VDUI_ONLY(i, i.verify(this));
1478   return debug_only(i._last=) *i._outp;
1479 }
1480 
1481 #endif //OPTO_DU_ITERATOR_ASSERT
1482 
1483 #undef I_VDUI_ONLY
1484 #undef VDUI_ONLY
1485 
1486 // An Iterator that truly follows the iterator pattern.  Doesn't
1487 // support deletion but could be made to.
1488 //
1489 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1490 //     Node* m = i.get();
1491 //
1492 class SimpleDUIterator : public StackObj {
1493  private:
1494   Node* node;
1495   DUIterator_Fast i;
1496   DUIterator_Fast imax;
1497  public:
SimpleDUIterator(Node * n)1498   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
has_next()1499   bool has_next() { return i < imax; }
next()1500   void next() { i++; }
get()1501   Node* get() { return node->fast_out(i); }
1502 };
1503 
1504 
1505 //-----------------------------------------------------------------------------
1506 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1507 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1508 // Note that the constructor just zeros things, and since I use Arena
1509 // allocation I do not need a destructor to reclaim storage.
1510 class Node_Array : public ResourceObj {
1511   friend class VMStructs;
1512 protected:
1513   Arena* _a;                    // Arena to allocate in
1514   uint   _max;
1515   Node** _nodes;
1516   void   grow( uint i );        // Grow array node to fit
1517 public:
Node_Array(Arena * a,uint max=OptoNodeListSize)1518   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1519     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1520     clear();
1521   }
1522 
Node_Array(Node_Array * na)1523   Node_Array(Node_Array* na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
operator [](uint i) const1524   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1525   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
at(uint i) const1526   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
adr()1527   Node** adr() { return _nodes; }
1528   // Extend the mapping: index i maps to Node *n.
map(uint i,Node * n)1529   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1530   void insert( uint i, Node *n );
1531   void remove( uint i );        // Remove, preserving order
1532   // Clear all entries in _nodes to NULL but keep storage
clear()1533   void clear() {
1534     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1535   }
1536 
Size() const1537   uint Size() const { return _max; }
1538   void dump() const;
1539 };
1540 
1541 class Node_List : public Node_Array {
1542   friend class VMStructs;
1543   uint _cnt;
1544 public:
Node_List(uint max=OptoNodeListSize)1545   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
Node_List(Arena * a,uint max=OptoNodeListSize)1546   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
contains(const Node * n) const1547   bool contains(const Node* n) const {
1548     for (uint e = 0; e < size(); e++) {
1549       if (at(e) == n) return true;
1550     }
1551     return false;
1552   }
insert(uint i,Node * n)1553   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
remove(uint i)1554   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
push(Node * b)1555   void push( Node *b ) { map(_cnt++,b); }
1556   void yank( Node *n );         // Find and remove
pop()1557   Node *pop() { return _nodes[--_cnt]; }
clear()1558   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
copy(const Node_List & from)1559   void copy(const Node_List& from) {
1560     if (from._max > _max) {
1561       grow(from._max);
1562     }
1563     _cnt = from._cnt;
1564     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1565   }
1566 
size() const1567   uint size() const { return _cnt; }
1568   void dump() const;
1569   void dump_simple() const;
1570 };
1571 
1572 //------------------------------Unique_Node_List-------------------------------
1573 class Unique_Node_List : public Node_List {
1574   friend class VMStructs;
1575   VectorSet _in_worklist;
1576   uint _clock_index;            // Index in list where to pop from next
1577 public:
Unique_Node_List()1578   Unique_Node_List() : Node_List(), _clock_index(0) {}
Unique_Node_List(Arena * a)1579   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1580 
1581   void remove( Node *n );
member(Node * n)1582   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
member_set()1583   VectorSet& member_set(){ return _in_worklist; }
1584 
push(Node * b)1585   void push(Node* b) {
1586     if( !_in_worklist.test_set(b->_idx) )
1587       Node_List::push(b);
1588   }
pop()1589   Node *pop() {
1590     if( _clock_index >= size() ) _clock_index = 0;
1591     Node *b = at(_clock_index);
1592     map( _clock_index, Node_List::pop());
1593     if (size() != 0) _clock_index++; // Always start from 0
1594     _in_worklist.remove(b->_idx);
1595     return b;
1596   }
remove(uint i)1597   Node *remove(uint i) {
1598     Node *b = Node_List::at(i);
1599     _in_worklist.remove(b->_idx);
1600     map(i,Node_List::pop());
1601     return b;
1602   }
yank(Node * n)1603   void yank(Node *n) {
1604     _in_worklist.remove(n->_idx);
1605     Node_List::yank(n);
1606   }
clear()1607   void  clear() {
1608     _in_worklist.clear();        // Discards storage but grows automatically
1609     Node_List::clear();
1610     _clock_index = 0;
1611   }
1612 
1613   // Used after parsing to remove useless nodes before Iterative GVN
1614   void remove_useless_nodes(VectorSet& useful);
1615 
contains(const Node * n) const1616   bool contains(const Node* n) const {
1617     fatal("use faster member() instead");
1618     return false;
1619   }
1620 
1621 #ifndef PRODUCT
print_set() const1622   void print_set() const { _in_worklist.print(); }
1623 #endif
1624 };
1625 
1626 // Inline definition of Compile::record_for_igvn must be deferred to this point.
record_for_igvn(Node * n)1627 inline void Compile::record_for_igvn(Node* n) {
1628   _for_igvn->push(n);
1629 }
1630 
1631 //------------------------------Node_Stack-------------------------------------
1632 class Node_Stack {
1633   friend class VMStructs;
1634 protected:
1635   struct INode {
1636     Node *node; // Processed node
1637     uint  indx; // Index of next node's child
1638   };
1639   INode *_inode_top; // tos, stack grows up
1640   INode *_inode_max; // End of _inodes == _inodes + _max
1641   INode *_inodes;    // Array storage for the stack
1642   Arena *_a;         // Arena to allocate in
1643   void grow();
1644 public:
Node_Stack(int size)1645   Node_Stack(int size) {
1646     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1647     _a = Thread::current()->resource_area();
1648     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1649     _inode_max = _inodes + max;
1650     _inode_top = _inodes - 1; // stack is empty
1651   }
1652 
Node_Stack(Arena * a,int size)1653   Node_Stack(Arena *a, int size) : _a(a) {
1654     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1655     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1656     _inode_max = _inodes + max;
1657     _inode_top = _inodes - 1; // stack is empty
1658   }
1659 
pop()1660   void pop() {
1661     assert(_inode_top >= _inodes, "node stack underflow");
1662     --_inode_top;
1663   }
push(Node * n,uint i)1664   void push(Node *n, uint i) {
1665     ++_inode_top;
1666     if (_inode_top >= _inode_max) grow();
1667     INode *top = _inode_top; // optimization
1668     top->node = n;
1669     top->indx = i;
1670   }
node() const1671   Node *node() const {
1672     return _inode_top->node;
1673   }
node_at(uint i) const1674   Node* node_at(uint i) const {
1675     assert(_inodes + i <= _inode_top, "in range");
1676     return _inodes[i].node;
1677   }
index() const1678   uint index() const {
1679     return _inode_top->indx;
1680   }
index_at(uint i) const1681   uint index_at(uint i) const {
1682     assert(_inodes + i <= _inode_top, "in range");
1683     return _inodes[i].indx;
1684   }
set_node(Node * n)1685   void set_node(Node *n) {
1686     _inode_top->node = n;
1687   }
set_index(uint i)1688   void set_index(uint i) {
1689     _inode_top->indx = i;
1690   }
size_max() const1691   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
size() const1692   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
is_nonempty() const1693   bool is_nonempty() const { return (_inode_top >= _inodes); }
is_empty() const1694   bool is_empty() const { return (_inode_top < _inodes); }
clear()1695   void clear() { _inode_top = _inodes - 1; } // retain storage
1696 
1697   // Node_Stack is used to map nodes.
1698   Node* find(uint idx) const;
1699 };
1700 
1701 
1702 //-----------------------------Node_Notes--------------------------------------
1703 // Debugging or profiling annotations loosely and sparsely associated
1704 // with some nodes.  See Compile::node_notes_at for the accessor.
1705 class Node_Notes {
1706   friend class VMStructs;
1707   JVMState* _jvms;
1708 
1709 public:
Node_Notes(JVMState * jvms=NULL)1710   Node_Notes(JVMState* jvms = NULL) {
1711     _jvms = jvms;
1712   }
1713 
jvms()1714   JVMState* jvms()            { return _jvms; }
set_jvms(JVMState * x)1715   void  set_jvms(JVMState* x) {        _jvms = x; }
1716 
1717   // True if there is nothing here.
is_clear()1718   bool is_clear() {
1719     return (_jvms == NULL);
1720   }
1721 
1722   // Make there be nothing here.
clear()1723   void clear() {
1724     _jvms = NULL;
1725   }
1726 
1727   // Make a new, clean node notes.
make(Compile * C)1728   static Node_Notes* make(Compile* C) {
1729     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1730     nn->clear();
1731     return nn;
1732   }
1733 
clone(Compile * C)1734   Node_Notes* clone(Compile* C) {
1735     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1736     (*nn) = (*this);
1737     return nn;
1738   }
1739 
1740   // Absorb any information from source.
update_from(Node_Notes * source)1741   bool update_from(Node_Notes* source) {
1742     bool changed = false;
1743     if (source != NULL) {
1744       if (source->jvms() != NULL) {
1745         set_jvms(source->jvms());
1746         changed = true;
1747       }
1748     }
1749     return changed;
1750   }
1751 };
1752 
1753 // Inlined accessors for Compile::node_nodes that require the preceding class:
1754 inline Node_Notes*
locate_node_notes(GrowableArray<Node_Notes * > * arr,int idx,bool can_grow)1755 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1756                            int idx, bool can_grow) {
1757   assert(idx >= 0, "oob");
1758   int block_idx = (idx >> _log2_node_notes_block_size);
1759   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1760   if (grow_by >= 0) {
1761     if (!can_grow) return NULL;
1762     grow_node_notes(arr, grow_by + 1);
1763   }
1764   if (arr == NULL) return NULL;
1765   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1766   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1767 }
1768 
1769 inline bool
set_node_notes_at(int idx,Node_Notes * value)1770 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1771   if (value == NULL || value->is_clear())
1772     return false;  // nothing to write => write nothing
1773   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1774   assert(loc != NULL, "");
1775   return loc->update_from(value);
1776 }
1777 
1778 
1779 //------------------------------TypeNode---------------------------------------
1780 // Node with a Type constant.
1781 class TypeNode : public Node {
1782 protected:
1783   virtual uint hash() const;    // Check the type
1784   virtual bool cmp( const Node &n ) const;
1785   virtual uint size_of() const; // Size is bigger
1786   const Type* const _type;
1787 public:
set_type(const Type * t)1788   void set_type(const Type* t) {
1789     assert(t != NULL, "sanity");
1790     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1791     *(const Type**)&_type = t;   // cast away const-ness
1792     // If this node is in the hash table, make sure it doesn't need a rehash.
1793     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1794   }
type() const1795   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
TypeNode(const Type * t,uint required)1796   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1797     init_class_id(Class_Type);
1798   }
1799   virtual const Type* Value(PhaseGVN* phase) const;
1800   virtual const Type *bottom_type() const;
1801   virtual       uint  ideal_reg() const;
1802 #ifndef PRODUCT
1803   virtual void dump_spec(outputStream *st) const;
1804   virtual void dump_compact_spec(outputStream *st) const;
1805 #endif
1806 };
1807 
1808 #endif // SHARE_OPTO_NODE_HPP
1809