1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "opto/block.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/cfgnode.hpp"
34 #include "opto/idealGraphPrinter.hpp"
35 #include "opto/loopnode.hpp"
36 #include "opto/machnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/phaseX.hpp"
39 #include "opto/regalloc.hpp"
40 #include "opto/rootnode.hpp"
41 #include "utilities/macros.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 
44 //=============================================================================
45 #define NODE_HASH_MINIMUM_SIZE    255
46 //------------------------------NodeHash---------------------------------------
NodeHash(uint est_max_size)47 NodeHash::NodeHash(uint est_max_size) :
48   _a(Thread::current()->resource_area()),
49   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
50   _inserts(0), _insert_limit( insert_limit() ),
51   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
52 #ifndef PRODUCT
53   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
54   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
55    _total_inserts(0), _total_insert_probes(0)
56 #endif
57 {
58   // _sentinel must be in the current node space
59   _sentinel = new ProjNode(NULL, TypeFunc::Control);
60   memset(_table,0,sizeof(Node*)*_max);
61 }
62 
63 //------------------------------NodeHash---------------------------------------
NodeHash(Arena * arena,uint est_max_size)64 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
65   _a(arena),
66   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
67   _inserts(0), _insert_limit( insert_limit() ),
68   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
69 #ifndef PRODUCT
70   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
71   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
72    _total_inserts(0), _total_insert_probes(0)
73 #endif
74 {
75   // _sentinel must be in the current node space
76   _sentinel = new ProjNode(NULL, TypeFunc::Control);
77   memset(_table,0,sizeof(Node*)*_max);
78 }
79 
80 //------------------------------NodeHash---------------------------------------
NodeHash(NodeHash * nh)81 NodeHash::NodeHash(NodeHash *nh) {
82   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
83   // just copy in all the fields
84   *this = *nh;
85   // nh->_sentinel must be in the current node space
86 }
87 
replace_with(NodeHash * nh)88 void NodeHash::replace_with(NodeHash *nh) {
89   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
90   // just copy in all the fields
91   *this = *nh;
92   // nh->_sentinel must be in the current node space
93 }
94 
95 //------------------------------hash_find--------------------------------------
96 // Find in hash table
hash_find(const Node * n)97 Node *NodeHash::hash_find( const Node *n ) {
98   // ((Node*)n)->set_hash( n->hash() );
99   uint hash = n->hash();
100   if (hash == Node::NO_HASH) {
101     NOT_PRODUCT( _lookup_misses++ );
102     return NULL;
103   }
104   uint key = hash & (_max-1);
105   uint stride = key | 0x01;
106   NOT_PRODUCT( _look_probes++ );
107   Node *k = _table[key];        // Get hashed value
108   if( !k ) {                    // ?Miss?
109     NOT_PRODUCT( _lookup_misses++ );
110     return NULL;                // Miss!
111   }
112 
113   int op = n->Opcode();
114   uint req = n->req();
115   while( 1 ) {                  // While probing hash table
116     if( k->req() == req &&      // Same count of inputs
117         k->Opcode() == op ) {   // Same Opcode
118       for( uint i=0; i<req; i++ )
119         if( n->in(i)!=k->in(i)) // Different inputs?
120           goto collision;       // "goto" is a speed hack...
121       if( n->cmp(*k) ) {        // Check for any special bits
122         NOT_PRODUCT( _lookup_hits++ );
123         return k;               // Hit!
124       }
125     }
126   collision:
127     NOT_PRODUCT( _look_probes++ );
128     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
129     k = _table[key];            // Get hashed value
130     if( !k ) {                  // ?Miss?
131       NOT_PRODUCT( _lookup_misses++ );
132       return NULL;              // Miss!
133     }
134   }
135   ShouldNotReachHere();
136   return NULL;
137 }
138 
139 //------------------------------hash_find_insert-------------------------------
140 // Find in hash table, insert if not already present
141 // Used to preserve unique entries in hash table
hash_find_insert(Node * n)142 Node *NodeHash::hash_find_insert( Node *n ) {
143   // n->set_hash( );
144   uint hash = n->hash();
145   if (hash == Node::NO_HASH) {
146     NOT_PRODUCT( _lookup_misses++ );
147     return NULL;
148   }
149   uint key = hash & (_max-1);
150   uint stride = key | 0x01;     // stride must be relatively prime to table siz
151   uint first_sentinel = 0;      // replace a sentinel if seen.
152   NOT_PRODUCT( _look_probes++ );
153   Node *k = _table[key];        // Get hashed value
154   if( !k ) {                    // ?Miss?
155     NOT_PRODUCT( _lookup_misses++ );
156     _table[key] = n;            // Insert into table!
157     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
158     check_grow();               // Grow table if insert hit limit
159     return NULL;                // Miss!
160   }
161   else if( k == _sentinel ) {
162     first_sentinel = key;      // Can insert here
163   }
164 
165   int op = n->Opcode();
166   uint req = n->req();
167   while( 1 ) {                  // While probing hash table
168     if( k->req() == req &&      // Same count of inputs
169         k->Opcode() == op ) {   // Same Opcode
170       for( uint i=0; i<req; i++ )
171         if( n->in(i)!=k->in(i)) // Different inputs?
172           goto collision;       // "goto" is a speed hack...
173       if( n->cmp(*k) ) {        // Check for any special bits
174         NOT_PRODUCT( _lookup_hits++ );
175         return k;               // Hit!
176       }
177     }
178   collision:
179     NOT_PRODUCT( _look_probes++ );
180     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
181     k = _table[key];            // Get hashed value
182     if( !k ) {                  // ?Miss?
183       NOT_PRODUCT( _lookup_misses++ );
184       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
185       _table[key] = n;          // Insert into table!
186       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
187       check_grow();             // Grow table if insert hit limit
188       return NULL;              // Miss!
189     }
190     else if( first_sentinel == 0 && k == _sentinel ) {
191       first_sentinel = key;    // Can insert here
192     }
193 
194   }
195   ShouldNotReachHere();
196   return NULL;
197 }
198 
199 //------------------------------hash_insert------------------------------------
200 // Insert into hash table
hash_insert(Node * n)201 void NodeHash::hash_insert( Node *n ) {
202   // // "conflict" comments -- print nodes that conflict
203   // bool conflict = false;
204   // n->set_hash();
205   uint hash = n->hash();
206   if (hash == Node::NO_HASH) {
207     return;
208   }
209   check_grow();
210   uint key = hash & (_max-1);
211   uint stride = key | 0x01;
212 
213   while( 1 ) {                  // While probing hash table
214     NOT_PRODUCT( _insert_probes++ );
215     Node *k = _table[key];      // Get hashed value
216     if( !k || (k == _sentinel) ) break;       // Found a slot
217     assert( k != n, "already inserted" );
218     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
219     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
220   }
221   _table[key] = n;              // Insert into table!
222   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
223   // if( conflict ) { n->dump(); }
224 }
225 
226 //------------------------------hash_delete------------------------------------
227 // Replace in hash table with sentinel
hash_delete(const Node * n)228 bool NodeHash::hash_delete( const Node *n ) {
229   Node *k;
230   uint hash = n->hash();
231   if (hash == Node::NO_HASH) {
232     NOT_PRODUCT( _delete_misses++ );
233     return false;
234   }
235   uint key = hash & (_max-1);
236   uint stride = key | 0x01;
237   debug_only( uint counter = 0; );
238   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
239     debug_only( counter++ );
240     NOT_PRODUCT( _delete_probes++ );
241     k = _table[key];            // Get hashed value
242     if( !k ) {                  // Miss?
243       NOT_PRODUCT( _delete_misses++ );
244       return false;             // Miss! Not in chain
245     }
246     else if( n == k ) {
247       NOT_PRODUCT( _delete_hits++ );
248       _table[key] = _sentinel;  // Hit! Label as deleted entry
249       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
250       return true;
251     }
252     else {
253       // collision: move through table with prime offset
254       key = (key + stride/*7*/) & (_max-1);
255       assert( counter <= _insert_limit, "Cycle in hash-table");
256     }
257   }
258   ShouldNotReachHere();
259   return false;
260 }
261 
262 //------------------------------round_up---------------------------------------
263 // Round up to nearest power of 2
round_up(uint x)264 uint NodeHash::round_up(uint x) {
265   x += (x >> 2);                  // Add 25% slop
266   return MAX2(16U, round_up_power_of_2(x));
267 }
268 
269 //------------------------------grow-------------------------------------------
270 // Grow _table to next power of 2 and insert old entries
grow()271 void  NodeHash::grow() {
272   // Record old state
273   uint   old_max   = _max;
274   Node **old_table = _table;
275   // Construct new table with twice the space
276 #ifndef PRODUCT
277   _grows++;
278   _total_inserts       += _inserts;
279   _total_insert_probes += _insert_probes;
280   _insert_probes   = 0;
281 #endif
282   _inserts         = 0;
283   _max     = _max << 1;
284   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
285   memset(_table,0,sizeof(Node*)*_max);
286   _insert_limit = insert_limit();
287   // Insert old entries into the new table
288   for( uint i = 0; i < old_max; i++ ) {
289     Node *m = *old_table++;
290     if( !m || m == _sentinel ) continue;
291     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
292     hash_insert(m);
293   }
294 }
295 
296 //------------------------------clear------------------------------------------
297 // Clear all entries in _table to NULL but keep storage
clear()298 void  NodeHash::clear() {
299 #ifdef ASSERT
300   // Unlock all nodes upon removal from table.
301   for (uint i = 0; i < _max; i++) {
302     Node* n = _table[i];
303     if (!n || n == _sentinel)  continue;
304     n->exit_hash_lock();
305   }
306 #endif
307 
308   memset( _table, 0, _max * sizeof(Node*) );
309 }
310 
311 //-----------------------remove_useless_nodes----------------------------------
312 // Remove useless nodes from value table,
313 // implementation does not depend on hash function
remove_useless_nodes(VectorSet & useful)314 void NodeHash::remove_useless_nodes(VectorSet &useful) {
315 
316   // Dead nodes in the hash table inherited from GVN should not replace
317   // existing nodes, remove dead nodes.
318   uint max = size();
319   Node *sentinel_node = sentinel();
320   for( uint i = 0; i < max; ++i ) {
321     Node *n = at(i);
322     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
323       debug_only(n->exit_hash_lock()); // Unlock the node when removed
324       _table[i] = sentinel_node;       // Replace with placeholder
325     }
326   }
327 }
328 
329 
check_no_speculative_types()330 void NodeHash::check_no_speculative_types() {
331 #ifdef ASSERT
332   uint max = size();
333   Node *sentinel_node = sentinel();
334   for (uint i = 0; i < max; ++i) {
335     Node *n = at(i);
336     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
337       TypeNode* tn = n->as_Type();
338       const Type* t = tn->type();
339       const Type* t_no_spec = t->remove_speculative();
340       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
341     }
342   }
343 #endif
344 }
345 
346 #ifndef PRODUCT
347 //------------------------------dump-------------------------------------------
348 // Dump statistics for the hash table
dump()349 void NodeHash::dump() {
350   _total_inserts       += _inserts;
351   _total_insert_probes += _insert_probes;
352   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
353     if (WizardMode) {
354       for (uint i=0; i<_max; i++) {
355         if (_table[i])
356           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
357       }
358     }
359     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
360     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
361     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
362     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
363     // sentinels increase lookup cost, but not insert cost
364     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
365     assert( _inserts+(_inserts>>3) < _max, "table too full" );
366     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
367   }
368 }
369 
find_index(uint idx)370 Node *NodeHash::find_index(uint idx) { // For debugging
371   // Find an entry by its index value
372   for( uint i = 0; i < _max; i++ ) {
373     Node *m = _table[i];
374     if( !m || m == _sentinel ) continue;
375     if( m->_idx == (uint)idx ) return m;
376   }
377   return NULL;
378 }
379 #endif
380 
381 #ifdef ASSERT
~NodeHash()382 NodeHash::~NodeHash() {
383   // Unlock all nodes upon destruction of table.
384   if (_table != (Node**)badAddress)  clear();
385 }
386 
operator =(const NodeHash & nh)387 void NodeHash::operator=(const NodeHash& nh) {
388   // Unlock all nodes upon replacement of table.
389   if (&nh == this)  return;
390   if (_table != (Node**)badAddress)  clear();
391   memcpy((void*)this, (void*)&nh, sizeof(*this));
392   // Do not increment hash_lock counts again.
393   // Instead, be sure we never again use the source table.
394   ((NodeHash*)&nh)->_table = (Node**)badAddress;
395 }
396 
397 
398 #endif
399 
400 
401 //=============================================================================
402 //------------------------------PhaseRemoveUseless-----------------------------
403 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
PhaseRemoveUseless(PhaseGVN * gvn,Unique_Node_List * worklist,PhaseNumber phase_num)404 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN* gvn, Unique_Node_List* worklist, PhaseNumber phase_num) : Phase(phase_num) {
405 
406   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
407   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
408   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
409 
410   // Identify nodes that are reachable from below, useful.
411   C->identify_useful_nodes(_useful);
412   // Update dead node list
413   C->update_dead_node_list(_useful);
414 
415   // Remove all useless nodes from PhaseValues' recorded types
416   // Must be done before disconnecting nodes to preserve hash-table-invariant
417   gvn->remove_useless_nodes(_useful.member_set());
418 
419   // Remove all useless nodes from future worklist
420   worklist->remove_useless_nodes(_useful.member_set());
421 
422   // Disconnect 'useless' nodes that are adjacent to useful nodes
423   C->remove_useless_nodes(_useful);
424 }
425 
426 //=============================================================================
427 //------------------------------PhaseRenumberLive------------------------------
428 // First, remove useless nodes (equivalent to identifying live nodes).
429 // Then, renumber live nodes.
430 //
431 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
432 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
433 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
434 // value in the range [0, x).
435 //
436 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
437 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
438 //
439 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
440 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
441 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
442 // 'worklist' is cleared upon returning.
443 // (2) Type information (the field PhaseGVN::_types) maps type information to each
444 // node ID. The mapping is updated to use the new node IDs as well. Updated type
445 // information is returned in PhaseGVN::_types.
446 //
447 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
448 //
449 // Other data structures used by the compiler are not updated. The hash table for value
450 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
451 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
452 // because it is empty wherever PhaseRenumberLive is used.
PhaseRenumberLive(PhaseGVN * gvn,Unique_Node_List * worklist,Unique_Node_List * new_worklist,PhaseNumber phase_num)453 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
454                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
455                                      PhaseNumber phase_num) :
456   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live),
457   _new_type_array(C->comp_arena()),
458   _old2new_map(C->unique(), C->unique(), -1),
459   _is_pass_finished(false),
460   _live_node_count(C->live_nodes())
461 {
462   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
463   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
464   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
465   assert(_delayed.size() == 0, "should be empty");
466 
467   uint worklist_size = worklist->size();
468 
469   // Iterate over the set of live nodes.
470   for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) {
471     Node* n = _useful.at(current_idx);
472 
473     bool in_worklist = false;
474     if (worklist->member(n)) {
475       in_worklist = true;
476     }
477 
478     const Type* type = gvn->type_or_null(n);
479     _new_type_array.map(current_idx, type);
480 
481     assert(_old2new_map.at(n->_idx) == -1, "already seen");
482     _old2new_map.at_put(n->_idx, current_idx);
483 
484     n->set_idx(current_idx); // Update node ID.
485 
486     if (in_worklist) {
487       new_worklist->push(n);
488     }
489 
490     if (update_embedded_ids(n) < 0) {
491       _delayed.push(n); // has embedded IDs; handle later
492     }
493   }
494 
495   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
496   assert(_live_node_count == _useful.size(), "all live nodes must be processed");
497 
498   _is_pass_finished = true; // pass finished; safe to process delayed updates
499 
500   while (_delayed.size() > 0) {
501     Node* n = _delayed.pop();
502     int no_of_updates = update_embedded_ids(n);
503     assert(no_of_updates > 0, "should be updated");
504   }
505 
506   // Replace the compiler's type information with the updated type information.
507   gvn->replace_types(_new_type_array);
508 
509   // Update the unique node count of the compilation to the number of currently live nodes.
510   C->set_unique(_live_node_count);
511 
512   // Set the dead node count to 0 and reset dead node list.
513   C->reset_dead_node_list();
514 
515   // Clear the original worklist
516   worklist->clear();
517 }
518 
new_index(int old_idx)519 int PhaseRenumberLive::new_index(int old_idx) {
520   assert(_is_pass_finished, "not finished");
521   if (_old2new_map.at(old_idx) == -1) { // absent
522     // Allocate a placeholder to preserve uniqueness
523     _old2new_map.at_put(old_idx, _live_node_count);
524     _live_node_count++;
525   }
526   return _old2new_map.at(old_idx);
527 }
528 
update_embedded_ids(Node * n)529 int PhaseRenumberLive::update_embedded_ids(Node* n) {
530   int no_of_updates = 0;
531   if (n->is_Phi()) {
532     PhiNode* phi = n->as_Phi();
533     if (phi->_inst_id != -1) {
534       if (!_is_pass_finished) {
535         return -1; // delay
536       }
537       int new_idx = new_index(phi->_inst_id);
538       assert(new_idx != -1, "");
539       phi->_inst_id = new_idx;
540       no_of_updates++;
541     }
542     if (phi->_inst_mem_id != -1) {
543       if (!_is_pass_finished) {
544         return -1; // delay
545       }
546       int new_idx = new_index(phi->_inst_mem_id);
547       assert(new_idx != -1, "");
548       phi->_inst_mem_id = new_idx;
549       no_of_updates++;
550     }
551   }
552 
553   const Type* type = _new_type_array.fast_lookup(n->_idx);
554   if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) {
555     if (!_is_pass_finished) {
556         return -1; // delay
557     }
558     int old_idx = type->is_oopptr()->instance_id();
559     int new_idx = new_index(old_idx);
560     const Type* new_type = type->is_oopptr()->with_instance_id(new_idx);
561     _new_type_array.map(n->_idx, new_type);
562     no_of_updates++;
563   }
564 
565   return no_of_updates;
566 }
567 
568 //=============================================================================
569 //------------------------------PhaseTransform---------------------------------
PhaseTransform(PhaseNumber pnum)570 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
571   _arena(Thread::current()->resource_area()),
572   _nodes(_arena),
573   _types(_arena)
574 {
575   init_con_caches();
576 #ifndef PRODUCT
577   clear_progress();
578   clear_transforms();
579   set_allow_progress(true);
580 #endif
581   // Force allocation for currently existing nodes
582   _types.map(C->unique(), NULL);
583 }
584 
585 //------------------------------PhaseTransform---------------------------------
PhaseTransform(Arena * arena,PhaseNumber pnum)586 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
587   _arena(arena),
588   _nodes(arena),
589   _types(arena)
590 {
591   init_con_caches();
592 #ifndef PRODUCT
593   clear_progress();
594   clear_transforms();
595   set_allow_progress(true);
596 #endif
597   // Force allocation for currently existing nodes
598   _types.map(C->unique(), NULL);
599 }
600 
601 //------------------------------PhaseTransform---------------------------------
602 // Initialize with previously generated type information
PhaseTransform(PhaseTransform * pt,PhaseNumber pnum)603 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
604   _arena(pt->_arena),
605   _nodes(pt->_nodes),
606   _types(pt->_types)
607 {
608   init_con_caches();
609 #ifndef PRODUCT
610   clear_progress();
611   clear_transforms();
612   set_allow_progress(true);
613 #endif
614 }
615 
init_con_caches()616 void PhaseTransform::init_con_caches() {
617   memset(_icons,0,sizeof(_icons));
618   memset(_lcons,0,sizeof(_lcons));
619   memset(_zcons,0,sizeof(_zcons));
620 }
621 
622 
623 //--------------------------------find_int_type--------------------------------
find_int_type(Node * n)624 const TypeInt* PhaseTransform::find_int_type(Node* n) {
625   if (n == NULL)  return NULL;
626   // Call type_or_null(n) to determine node's type since we might be in
627   // parse phase and call n->Value() may return wrong type.
628   // (For example, a phi node at the beginning of loop parsing is not ready.)
629   const Type* t = type_or_null(n);
630   if (t == NULL)  return NULL;
631   return t->isa_int();
632 }
633 
634 
635 //-------------------------------find_long_type--------------------------------
find_long_type(Node * n)636 const TypeLong* PhaseTransform::find_long_type(Node* n) {
637   if (n == NULL)  return NULL;
638   // (See comment above on type_or_null.)
639   const Type* t = type_or_null(n);
640   if (t == NULL)  return NULL;
641   return t->isa_long();
642 }
643 
644 
645 #ifndef PRODUCT
dump_old2new_map() const646 void PhaseTransform::dump_old2new_map() const {
647   _nodes.dump();
648 }
649 
dump_new(uint nidx) const650 void PhaseTransform::dump_new( uint nidx ) const {
651   for( uint i=0; i<_nodes.Size(); i++ )
652     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
653       _nodes[i]->dump();
654       tty->cr();
655       tty->print_cr("Old index= %d",i);
656       return;
657     }
658   tty->print_cr("Node %d not found in the new indices", nidx);
659 }
660 
661 //------------------------------dump_types-------------------------------------
dump_types() const662 void PhaseTransform::dump_types( ) const {
663   _types.dump();
664 }
665 
666 //------------------------------dump_nodes_and_types---------------------------
dump_nodes_and_types(const Node * root,uint depth,bool only_ctrl)667 void PhaseTransform::dump_nodes_and_types(const Node* root, uint depth, bool only_ctrl) {
668   VectorSet visited;
669   dump_nodes_and_types_recur(root, depth, only_ctrl, visited);
670 }
671 
672 //------------------------------dump_nodes_and_types_recur---------------------
dump_nodes_and_types_recur(const Node * n,uint depth,bool only_ctrl,VectorSet & visited)673 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
674   if( !n ) return;
675   if( depth == 0 ) return;
676   if( visited.test_set(n->_idx) ) return;
677   for( uint i=0; i<n->len(); i++ ) {
678     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
679     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
680   }
681   n->dump();
682   if (type_or_null(n) != NULL) {
683     tty->print("      "); type(n)->dump(); tty->cr();
684   }
685 }
686 
687 #endif
688 
689 
690 //=============================================================================
691 //------------------------------PhaseValues------------------------------------
692 // Set minimum table size to "255"
PhaseValues(Arena * arena,uint est_max_size)693 PhaseValues::PhaseValues( Arena *arena, uint est_max_size )
694   : PhaseTransform(arena, GVN), _table(arena, est_max_size), _iterGVN(false) {
695   NOT_PRODUCT( clear_new_values(); )
696 }
697 
698 //------------------------------PhaseValues------------------------------------
699 // Set minimum table size to "255"
PhaseValues(PhaseValues * ptv)700 PhaseValues::PhaseValues(PhaseValues* ptv)
701   : PhaseTransform(ptv, GVN), _table(&ptv->_table), _iterGVN(false) {
702   NOT_PRODUCT( clear_new_values(); )
703 }
704 
705 //------------------------------~PhaseValues-----------------------------------
706 #ifndef PRODUCT
~PhaseValues()707 PhaseValues::~PhaseValues() {
708   _table.dump();
709 
710   // Statistics for value progress and efficiency
711   if( PrintCompilation && Verbose && WizardMode ) {
712     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
713       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
714     if( made_transforms() != 0 ) {
715       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
716     } else {
717       tty->cr();
718     }
719   }
720 }
721 #endif
722 
723 //------------------------------makecon----------------------------------------
makecon(const Type * t)724 ConNode* PhaseTransform::makecon(const Type *t) {
725   assert(t->singleton(), "must be a constant");
726   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
727   switch (t->base()) {  // fast paths
728   case Type::Half:
729   case Type::Top:  return (ConNode*) C->top();
730   case Type::Int:  return intcon( t->is_int()->get_con() );
731   case Type::Long: return longcon( t->is_long()->get_con() );
732   default:         break;
733   }
734   if (t->is_zero_type())
735     return zerocon(t->basic_type());
736   return uncached_makecon(t);
737 }
738 
739 //--------------------------uncached_makecon-----------------------------------
740 // Make an idealized constant - one of ConINode, ConPNode, etc.
uncached_makecon(const Type * t)741 ConNode* PhaseValues::uncached_makecon(const Type *t) {
742   assert(t->singleton(), "must be a constant");
743   ConNode* x = ConNode::make(t);
744   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
745   if (k == NULL) {
746     set_type(x, t);             // Missed, provide type mapping
747     GrowableArray<Node_Notes*>* nna = C->node_note_array();
748     if (nna != NULL) {
749       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
750       loc->clear(); // do not put debug info on constants
751     }
752   } else {
753     x->destruct(this);          // Hit, destroy duplicate constant
754     x = k;                      // use existing constant
755   }
756   return x;
757 }
758 
759 //------------------------------intcon-----------------------------------------
760 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
intcon(jint i)761 ConINode* PhaseTransform::intcon(jint i) {
762   // Small integer?  Check cache! Check that cached node is not dead
763   if (i >= _icon_min && i <= _icon_max) {
764     ConINode* icon = _icons[i-_icon_min];
765     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
766       return icon;
767   }
768   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
769   assert(icon->is_Con(), "");
770   if (i >= _icon_min && i <= _icon_max)
771     _icons[i-_icon_min] = icon;   // Cache small integers
772   return icon;
773 }
774 
775 //------------------------------longcon----------------------------------------
776 // Fast long constant.
longcon(jlong l)777 ConLNode* PhaseTransform::longcon(jlong l) {
778   // Small integer?  Check cache! Check that cached node is not dead
779   if (l >= _lcon_min && l <= _lcon_max) {
780     ConLNode* lcon = _lcons[l-_lcon_min];
781     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
782       return lcon;
783   }
784   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
785   assert(lcon->is_Con(), "");
786   if (l >= _lcon_min && l <= _lcon_max)
787     _lcons[l-_lcon_min] = lcon;      // Cache small integers
788   return lcon;
789 }
integercon(jlong l,BasicType bt)790 ConNode* PhaseTransform::integercon(jlong l, BasicType bt) {
791   if (bt == T_INT) {
792     jint int_con = (jint)l;
793     assert(((long)int_con) == l, "not an int");
794     return intcon(int_con);
795   }
796   assert(bt == T_LONG, "not an integer");
797   return longcon(l);
798 }
799 
800 
801 //------------------------------zerocon-----------------------------------------
802 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
zerocon(BasicType bt)803 ConNode* PhaseTransform::zerocon(BasicType bt) {
804   assert((uint)bt <= _zcon_max, "domain check");
805   ConNode* zcon = _zcons[bt];
806   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
807     return zcon;
808   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
809   _zcons[bt] = zcon;
810   return zcon;
811 }
812 
813 
814 
815 //=============================================================================
apply_ideal(Node * k,bool can_reshape)816 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
817   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
818   if (i == NULL) {
819     i = k->Ideal(this, can_reshape);
820   }
821   return i;
822 }
823 
824 //------------------------------transform--------------------------------------
825 // Return a node which computes the same function as this node, but in a
826 // faster or cheaper fashion.
transform(Node * n)827 Node *PhaseGVN::transform( Node *n ) {
828   return transform_no_reclaim(n);
829 }
830 
831 //------------------------------transform--------------------------------------
832 // Return a node which computes the same function as this node, but
833 // in a faster or cheaper fashion.
transform_no_reclaim(Node * n)834 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
835   NOT_PRODUCT( set_transforms(); )
836 
837   // Apply the Ideal call in a loop until it no longer applies
838   Node *k = n;
839   NOT_PRODUCT( uint loop_count = 0; )
840   while( 1 ) {
841     Node *i = apply_ideal(k, /*can_reshape=*/false);
842     if( !i ) break;
843     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
844     k = i;
845     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
846   }
847   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
848 
849 
850   // If brand new node, make space in type array.
851   ensure_type_or_null(k);
852 
853   // Since I just called 'Value' to compute the set of run-time values
854   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
855   // cache Value.  Later requests for the local phase->type of this Node can
856   // use the cached Value instead of suffering with 'bottom_type'.
857   const Type *t = k->Value(this); // Get runtime Value set
858   assert(t != NULL, "value sanity");
859   if (type_or_null(k) != t) {
860 #ifndef PRODUCT
861     // Do not count initial visit to node as a transformation
862     if (type_or_null(k) == NULL) {
863       inc_new_values();
864       set_progress();
865     }
866 #endif
867     set_type(k, t);
868     // If k is a TypeNode, capture any more-precise type permanently into Node
869     k->raise_bottom_type(t);
870   }
871 
872   if( t->singleton() && !k->is_Con() ) {
873     NOT_PRODUCT( set_progress(); )
874     return makecon(t);          // Turn into a constant
875   }
876 
877   // Now check for Identities
878   Node *i = k->Identity(this);  // Look for a nearby replacement
879   if( i != k ) {                // Found? Return replacement!
880     NOT_PRODUCT( set_progress(); )
881     return i;
882   }
883 
884   // Global Value Numbering
885   i = hash_find_insert(k);      // Insert if new
886   if( i && (i != k) ) {
887     // Return the pre-existing node
888     NOT_PRODUCT( set_progress(); )
889     return i;
890   }
891 
892   // Return Idealized original
893   return k;
894 }
895 
is_dominator_helper(Node * d,Node * n,bool linear_only)896 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
897   if (d->is_top() || (d->is_Proj() && d->in(0)->is_top())) {
898     return false;
899   }
900   if (n->is_top() || (n->is_Proj() && n->in(0)->is_top())) {
901     return false;
902   }
903   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
904   int i = 0;
905   while (d != n) {
906     n = IfNode::up_one_dom(n, linear_only);
907     i++;
908     if (n == NULL || i >= 100) {
909       return false;
910     }
911   }
912   return true;
913 }
914 
915 #ifdef ASSERT
916 //------------------------------dead_loop_check--------------------------------
917 // Check for a simple dead loop when a data node references itself directly
918 // or through an other data node excluding cons and phis.
dead_loop_check(Node * n)919 void PhaseGVN::dead_loop_check( Node *n ) {
920   // Phi may reference itself in a loop
921   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
922     // Do 2 levels check and only data inputs.
923     bool no_dead_loop = true;
924     uint cnt = n->req();
925     for (uint i = 1; i < cnt && no_dead_loop; i++) {
926       Node *in = n->in(i);
927       if (in == n) {
928         no_dead_loop = false;
929       } else if (in != NULL && !in->is_dead_loop_safe()) {
930         uint icnt = in->req();
931         for (uint j = 1; j < icnt && no_dead_loop; j++) {
932           if (in->in(j) == n || in->in(j) == in)
933             no_dead_loop = false;
934         }
935       }
936     }
937     if (!no_dead_loop) n->dump(3);
938     assert(no_dead_loop, "dead loop detected");
939   }
940 }
941 #endif
942 
943 //=============================================================================
944 //------------------------------PhaseIterGVN-----------------------------------
945 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
PhaseIterGVN(PhaseIterGVN * igvn)946 PhaseIterGVN::PhaseIterGVN(PhaseIterGVN* igvn) : PhaseGVN(igvn),
947                                                  _delay_transform(igvn->_delay_transform),
948                                                  _stack(igvn->_stack ),
949                                                  _worklist(igvn->_worklist)
950 {
951   _iterGVN = true;
952 }
953 
954 //------------------------------PhaseIterGVN-----------------------------------
955 // Initialize with previous PhaseGVN info from Parser
PhaseIterGVN(PhaseGVN * gvn)956 PhaseIterGVN::PhaseIterGVN(PhaseGVN* gvn) : PhaseGVN(gvn),
957                                             _delay_transform(false),
958 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
959 //       the constructor is used in incremental inlining, this consumes too much memory:
960 //                                            _stack(C->live_nodes() >> 1),
961 //       So, as a band-aid, we replace this by:
962                                             _stack(C->comp_arena(), 32),
963                                             _worklist(*C->for_igvn())
964 {
965   _iterGVN = true;
966   uint max;
967 
968   // Dead nodes in the hash table inherited from GVN were not treated as
969   // roots during def-use info creation; hence they represent an invisible
970   // use.  Clear them out.
971   max = _table.size();
972   for( uint i = 0; i < max; ++i ) {
973     Node *n = _table.at(i);
974     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
975       if( n->is_top() ) continue;
976       // If remove_useless_nodes() has run, we expect no such nodes left.
977       assert(!UseLoopSafepoints || !OptoRemoveUseless,
978              "remove_useless_nodes missed this node");
979       hash_delete(n);
980     }
981   }
982 
983   // Any Phis or Regions on the worklist probably had uses that could not
984   // make more progress because the uses were made while the Phis and Regions
985   // were in half-built states.  Put all uses of Phis and Regions on worklist.
986   max = _worklist.size();
987   for( uint j = 0; j < max; j++ ) {
988     Node *n = _worklist.at(j);
989     uint uop = n->Opcode();
990     if( uop == Op_Phi || uop == Op_Region ||
991         n->is_Type() ||
992         n->is_Mem() )
993       add_users_to_worklist(n);
994   }
995 }
996 
shuffle_worklist()997 void PhaseIterGVN::shuffle_worklist() {
998   if (_worklist.size() < 2) return;
999   for (uint i = _worklist.size() - 1; i >= 1; i--) {
1000     uint j = C->random() % (i + 1);
1001     swap(_worklist.adr()[i], _worklist.adr()[j]);
1002   }
1003 }
1004 
1005 #ifndef PRODUCT
verify_step(Node * n)1006 void PhaseIterGVN::verify_step(Node* n) {
1007   if (VerifyIterativeGVN) {
1008     _verify_window[_verify_counter % _verify_window_size] = n;
1009     ++_verify_counter;
1010     if (C->unique() < 1000 || 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
1011       ++_verify_full_passes;
1012       Node::verify(C->root(), -1);
1013     }
1014     for (int i = 0; i < _verify_window_size; i++) {
1015       Node* n = _verify_window[i];
1016       if (n == NULL) {
1017         continue;
1018       }
1019       if (n->in(0) == NodeSentinel) { // xform_idom
1020         _verify_window[i] = n->in(1);
1021         --i;
1022         continue;
1023       }
1024       // Typical fanout is 1-2, so this call visits about 6 nodes.
1025       Node::verify(n, 4);
1026     }
1027   }
1028 }
1029 
trace_PhaseIterGVN(Node * n,Node * nn,const Type * oldtype)1030 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
1031   if (TraceIterativeGVN) {
1032     uint wlsize = _worklist.size();
1033     const Type* newtype = type_or_null(n);
1034     if (nn != n) {
1035       // print old node
1036       tty->print("< ");
1037       if (oldtype != newtype && oldtype != NULL) {
1038         oldtype->dump();
1039       }
1040       do { tty->print("\t"); } while (tty->position() < 16);
1041       tty->print("<");
1042       n->dump();
1043     }
1044     if (oldtype != newtype || nn != n) {
1045       // print new node and/or new type
1046       if (oldtype == NULL) {
1047         tty->print("* ");
1048       } else if (nn != n) {
1049         tty->print("> ");
1050       } else {
1051         tty->print("= ");
1052       }
1053       if (newtype == NULL) {
1054         tty->print("null");
1055       } else {
1056         newtype->dump();
1057       }
1058       do { tty->print("\t"); } while (tty->position() < 16);
1059       nn->dump();
1060     }
1061     if (Verbose && wlsize < _worklist.size()) {
1062       tty->print("  Push {");
1063       while (wlsize != _worklist.size()) {
1064         Node* pushed = _worklist.at(wlsize++);
1065         tty->print(" %d", pushed->_idx);
1066       }
1067       tty->print_cr(" }");
1068     }
1069     if (nn != n) {
1070       // ignore n, it might be subsumed
1071       verify_step((Node*) NULL);
1072     }
1073   }
1074 }
1075 
init_verifyPhaseIterGVN()1076 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1077   _verify_counter = 0;
1078   _verify_full_passes = 0;
1079   for (int i = 0; i < _verify_window_size; i++) {
1080     _verify_window[i] = NULL;
1081   }
1082 #ifdef ASSERT
1083   // Verify that all modified nodes are on _worklist
1084   Unique_Node_List* modified_list = C->modified_nodes();
1085   while (modified_list != NULL && modified_list->size()) {
1086     Node* n = modified_list->pop();
1087     if (!n->is_Con() && !_worklist.member(n)) {
1088       n->dump();
1089       fatal("modified node is not on IGVN._worklist");
1090     }
1091   }
1092 #endif
1093 }
1094 
verify_PhaseIterGVN()1095 void PhaseIterGVN::verify_PhaseIterGVN() {
1096 #ifdef ASSERT
1097   // Verify nodes with changed inputs.
1098   Unique_Node_List* modified_list = C->modified_nodes();
1099   while (modified_list != NULL && modified_list->size()) {
1100     Node* n = modified_list->pop();
1101     if (!n->is_Con()) { // skip Con nodes
1102       n->dump();
1103       fatal("modified node was not processed by IGVN.transform_old()");
1104     }
1105   }
1106 #endif
1107 
1108   C->verify_graph_edges();
1109   if (VerifyIterativeGVN && PrintOpto) {
1110     if (_verify_counter == _verify_full_passes) {
1111       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1112                     (int) _verify_full_passes);
1113     } else {
1114       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1115                   (int) _verify_counter, (int) _verify_full_passes);
1116     }
1117   }
1118 
1119 #ifdef ASSERT
1120   if (modified_list != NULL) {
1121     while (modified_list->size() > 0) {
1122       Node* n = modified_list->pop();
1123       n->dump();
1124       assert(false, "VerifyIterativeGVN: new modified node was added");
1125     }
1126   }
1127 #endif
1128 }
1129 #endif /* PRODUCT */
1130 
1131 #ifdef ASSERT
1132 /**
1133  * Dumps information that can help to debug the problem. A debug
1134  * build fails with an assert.
1135  */
dump_infinite_loop_info(Node * n)1136 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1137   n->dump(4);
1138   _worklist.dump();
1139   assert(false, "infinite loop in PhaseIterGVN::optimize");
1140 }
1141 
1142 /**
1143  * Prints out information about IGVN if the 'verbose' option is used.
1144  */
trace_PhaseIterGVN_verbose(Node * n,int num_processed)1145 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1146   if (TraceIterativeGVN && Verbose) {
1147     tty->print("  Pop ");
1148     n->dump();
1149     if ((num_processed % 100) == 0) {
1150       _worklist.print_set();
1151     }
1152   }
1153 }
1154 #endif /* ASSERT */
1155 
optimize()1156 void PhaseIterGVN::optimize() {
1157   DEBUG_ONLY(uint num_processed  = 0;)
1158   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1159   if (StressIGVN) {
1160     shuffle_worklist();
1161   }
1162 
1163   uint loop_count = 0;
1164   // Pull from worklist and transform the node. If the node has changed,
1165   // update edge info and put uses on worklist.
1166   while(_worklist.size()) {
1167     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1168       return;
1169     }
1170     Node* n  = _worklist.pop();
1171     if (++loop_count >= K * C->live_nodes()) {
1172       DEBUG_ONLY(dump_infinite_loop_info(n);)
1173       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1174       return;
1175     }
1176     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1177     if (n->outcnt() != 0) {
1178       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1179       // Do the transformation
1180       Node* nn = transform_old(n);
1181       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1182     } else if (!n->is_top()) {
1183       remove_dead_node(n);
1184     }
1185   }
1186   NOT_PRODUCT(verify_PhaseIterGVN();)
1187 }
1188 
1189 
1190 /**
1191  * Register a new node with the optimizer.  Update the types array, the def-use
1192  * info.  Put on worklist.
1193  */
register_new_node_with_optimizer(Node * n,Node * orig)1194 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1195   set_type_bottom(n);
1196   _worklist.push(n);
1197   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1198   return n;
1199 }
1200 
1201 //------------------------------transform--------------------------------------
1202 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
transform(Node * n)1203 Node *PhaseIterGVN::transform( Node *n ) {
1204   if (_delay_transform) {
1205     // Register the node but don't optimize for now
1206     register_new_node_with_optimizer(n);
1207     return n;
1208   }
1209 
1210   // If brand new node, make space in type array, and give it a type.
1211   ensure_type_or_null(n);
1212   if (type_or_null(n) == NULL) {
1213     set_type_bottom(n);
1214   }
1215 
1216   return transform_old(n);
1217 }
1218 
transform_old(Node * n)1219 Node *PhaseIterGVN::transform_old(Node* n) {
1220   DEBUG_ONLY(uint loop_count = 0;);
1221   NOT_PRODUCT(set_transforms());
1222 
1223   // Remove 'n' from hash table in case it gets modified
1224   _table.hash_delete(n);
1225   if (VerifyIterativeGVN) {
1226    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1227   }
1228 
1229   // Apply the Ideal call in a loop until it no longer applies
1230   Node* k = n;
1231   DEBUG_ONLY(dead_loop_check(k);)
1232   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1233   C->remove_modified_node(k);
1234   Node* i = apply_ideal(k, /*can_reshape=*/true);
1235   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1236 #ifndef PRODUCT
1237   verify_step(k);
1238 #endif
1239 
1240   while (i != NULL) {
1241 #ifdef ASSERT
1242     if (loop_count >= K) {
1243       dump_infinite_loop_info(i);
1244     }
1245     loop_count++;
1246 #endif
1247     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1248     // Made a change; put users of original Node on worklist
1249     add_users_to_worklist(k);
1250     // Replacing root of transform tree?
1251     if (k != i) {
1252       // Make users of old Node now use new.
1253       subsume_node(k, i);
1254       k = i;
1255     }
1256     DEBUG_ONLY(dead_loop_check(k);)
1257     // Try idealizing again
1258     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1259     C->remove_modified_node(k);
1260     i = apply_ideal(k, /*can_reshape=*/true);
1261     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1262 #ifndef PRODUCT
1263     verify_step(k);
1264 #endif
1265   }
1266 
1267   // If brand new node, make space in type array.
1268   ensure_type_or_null(k);
1269 
1270   // See what kind of values 'k' takes on at runtime
1271   const Type* t = k->Value(this);
1272   assert(t != NULL, "value sanity");
1273 
1274   // Since I just called 'Value' to compute the set of run-time values
1275   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1276   // cache Value.  Later requests for the local phase->type of this Node can
1277   // use the cached Value instead of suffering with 'bottom_type'.
1278   if (type_or_null(k) != t) {
1279 #ifndef PRODUCT
1280     inc_new_values();
1281     set_progress();
1282 #endif
1283     set_type(k, t);
1284     // If k is a TypeNode, capture any more-precise type permanently into Node
1285     k->raise_bottom_type(t);
1286     // Move users of node to worklist
1287     add_users_to_worklist(k);
1288   }
1289   // If 'k' computes a constant, replace it with a constant
1290   if (t->singleton() && !k->is_Con()) {
1291     NOT_PRODUCT(set_progress();)
1292     Node* con = makecon(t);     // Make a constant
1293     add_users_to_worklist(k);
1294     subsume_node(k, con);       // Everybody using k now uses con
1295     return con;
1296   }
1297 
1298   // Now check for Identities
1299   i = k->Identity(this);      // Look for a nearby replacement
1300   if (i != k) {                // Found? Return replacement!
1301     NOT_PRODUCT(set_progress();)
1302     add_users_to_worklist(k);
1303     subsume_node(k, i);       // Everybody using k now uses i
1304     return i;
1305   }
1306 
1307   // Global Value Numbering
1308   i = hash_find_insert(k);      // Check for pre-existing node
1309   if (i && (i != k)) {
1310     // Return the pre-existing node if it isn't dead
1311     NOT_PRODUCT(set_progress();)
1312     add_users_to_worklist(k);
1313     subsume_node(k, i);       // Everybody using k now uses i
1314     return i;
1315   }
1316 
1317   // Return Idealized original
1318   return k;
1319 }
1320 
1321 //---------------------------------saturate------------------------------------
saturate(const Type * new_type,const Type * old_type,const Type * limit_type) const1322 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1323                                    const Type* limit_type) const {
1324   return new_type->narrow(old_type);
1325 }
1326 
1327 //------------------------------remove_globally_dead_node----------------------
1328 // Kill a globally dead Node.  All uses are also globally dead and are
1329 // aggressively trimmed.
remove_globally_dead_node(Node * dead)1330 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1331   enum DeleteProgress {
1332     PROCESS_INPUTS,
1333     PROCESS_OUTPUTS
1334   };
1335   assert(_stack.is_empty(), "not empty");
1336   _stack.push(dead, PROCESS_INPUTS);
1337 
1338   while (_stack.is_nonempty()) {
1339     dead = _stack.node();
1340     if (dead->Opcode() == Op_SafePoint) {
1341       dead->as_SafePoint()->disconnect_from_root(this);
1342     }
1343     uint progress_state = _stack.index();
1344     assert(dead != C->root(), "killing root, eh?");
1345     assert(!dead->is_top(), "add check for top when pushing");
1346     NOT_PRODUCT( set_progress(); )
1347     if (progress_state == PROCESS_INPUTS) {
1348       // After following inputs, continue to outputs
1349       _stack.set_index(PROCESS_OUTPUTS);
1350       if (!dead->is_Con()) { // Don't kill cons but uses
1351         bool recurse = false;
1352         // Remove from hash table
1353         _table.hash_delete( dead );
1354         // Smash all inputs to 'dead', isolating him completely
1355         for (uint i = 0; i < dead->req(); i++) {
1356           Node *in = dead->in(i);
1357           if (in != NULL && in != C->top()) {  // Points to something?
1358             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1359             assert((nrep > 0), "sanity");
1360             if (in->outcnt() == 0) { // Made input go dead?
1361               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1362               recurse = true;
1363             } else if (in->outcnt() == 1 &&
1364                        in->has_special_unique_user()) {
1365               _worklist.push(in->unique_out());
1366             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1367               if (in->Opcode() == Op_Region) {
1368                 _worklist.push(in);
1369               } else if (in->is_Store()) {
1370                 DUIterator_Fast imax, i = in->fast_outs(imax);
1371                 _worklist.push(in->fast_out(i));
1372                 i++;
1373                 if (in->outcnt() == 2) {
1374                   _worklist.push(in->fast_out(i));
1375                   i++;
1376                 }
1377                 assert(!(i < imax), "sanity");
1378               }
1379             } else {
1380               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
1381             }
1382             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1383                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1384               // A Load that directly follows an InitializeNode is
1385               // going away. The Stores that follow are candidates
1386               // again to be captured by the InitializeNode.
1387               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1388                 Node *n = in->fast_out(j);
1389                 if (n->is_Store()) {
1390                   _worklist.push(n);
1391                 }
1392               }
1393             }
1394           } // if (in != NULL && in != C->top())
1395         } // for (uint i = 0; i < dead->req(); i++)
1396         if (recurse) {
1397           continue;
1398         }
1399       } // if (!dead->is_Con())
1400     } // if (progress_state == PROCESS_INPUTS)
1401 
1402     // Aggressively kill globally dead uses
1403     // (Rather than pushing all the outs at once, we push one at a time,
1404     // plus the parent to resume later, because of the indefinite number
1405     // of edge deletions per loop trip.)
1406     if (dead->outcnt() > 0) {
1407       // Recursively remove output edges
1408       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1409     } else {
1410       // Finished disconnecting all input and output edges.
1411       _stack.pop();
1412       // Remove dead node from iterative worklist
1413       _worklist.remove(dead);
1414       C->remove_useless_node(dead);
1415     }
1416   } // while (_stack.is_nonempty())
1417 }
1418 
1419 //------------------------------subsume_node-----------------------------------
1420 // Remove users from node 'old' and add them to node 'nn'.
subsume_node(Node * old,Node * nn)1421 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1422   if (old->Opcode() == Op_SafePoint) {
1423     old->as_SafePoint()->disconnect_from_root(this);
1424   }
1425   assert( old != hash_find(old), "should already been removed" );
1426   assert( old != C->top(), "cannot subsume top node");
1427   // Copy debug or profile information to the new version:
1428   C->copy_node_notes_to(nn, old);
1429   // Move users of node 'old' to node 'nn'
1430   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1431     Node* use = old->last_out(i);  // for each use...
1432     // use might need re-hashing (but it won't if it's a new node)
1433     rehash_node_delayed(use);
1434     // Update use-def info as well
1435     // We remove all occurrences of old within use->in,
1436     // so as to avoid rehashing any node more than once.
1437     // The hash table probe swamps any outer loop overhead.
1438     uint num_edges = 0;
1439     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1440       if (use->in(j) == old) {
1441         use->set_req(j, nn);
1442         ++num_edges;
1443       }
1444     }
1445     i -= num_edges;    // we deleted 1 or more copies of this edge
1446   }
1447 
1448   // Search for instance field data PhiNodes in the same region pointing to the old
1449   // memory PhiNode and update their instance memory ids to point to the new node.
1450   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1451     Node* region = old->in(0);
1452     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1453       PhiNode* phi = region->fast_out(i)->isa_Phi();
1454       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1455         phi->set_inst_mem_id((int)nn->_idx);
1456       }
1457     }
1458   }
1459 
1460   // Smash all inputs to 'old', isolating him completely
1461   Node *temp = new Node(1);
1462   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1463   remove_dead_node( old );
1464   temp->del_req(0);         // Yank bogus edge
1465 #ifndef PRODUCT
1466   if( VerifyIterativeGVN ) {
1467     for ( int i = 0; i < _verify_window_size; i++ ) {
1468       if ( _verify_window[i] == old )
1469         _verify_window[i] = nn;
1470     }
1471   }
1472 #endif
1473   temp->destruct(this);     // reuse the _idx of this little guy
1474 }
1475 
1476 //------------------------------add_users_to_worklist--------------------------
add_users_to_worklist0(Node * n)1477 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1478   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1479     _worklist.push(n->fast_out(i));  // Push on worklist
1480   }
1481 }
1482 
1483 // Return counted loop Phi if as a counted loop exit condition, cmp
1484 // compares the the induction variable with n
countedloop_phi_from_cmp(CmpINode * cmp,Node * n)1485 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1486   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1487     Node* bol = cmp->fast_out(i);
1488     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1489       Node* iff = bol->fast_out(i2);
1490       if (iff->is_CountedLoopEnd()) {
1491         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1492         if (cle->limit() == n) {
1493           PhiNode* phi = cle->phi();
1494           if (phi != NULL) {
1495             return phi;
1496           }
1497         }
1498       }
1499     }
1500   }
1501   return NULL;
1502 }
1503 
add_users_to_worklist(Node * n)1504 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1505   add_users_to_worklist0(n);
1506 
1507   // Move users of node to worklist
1508   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1509     Node* use = n->fast_out(i); // Get use
1510 
1511     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1512         use->is_Store() )       // Enable store/load same address
1513       add_users_to_worklist0(use);
1514 
1515     // If we changed the receiver type to a call, we need to revisit
1516     // the Catch following the call.  It's looking for a non-NULL
1517     // receiver to know when to enable the regular fall-through path
1518     // in addition to the NullPtrException path.
1519     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1520       Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
1521       if (p != NULL) {
1522         add_users_to_worklist0(p);
1523       }
1524     }
1525 
1526     uint use_op = use->Opcode();
1527     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1528       add_users_to_worklist(use); // Put Bool on worklist
1529       if (use->outcnt() > 0) {
1530         Node* bol = use->raw_out(0);
1531         if (bol->outcnt() > 0) {
1532           Node* iff = bol->raw_out(0);
1533           if (iff->outcnt() == 2) {
1534             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1535             // phi merging either 0 or 1 onto the worklist
1536             Node* ifproj0 = iff->raw_out(0);
1537             Node* ifproj1 = iff->raw_out(1);
1538             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1539               Node* region0 = ifproj0->raw_out(0);
1540               Node* region1 = ifproj1->raw_out(0);
1541               if( region0 == region1 )
1542                 add_users_to_worklist0(region0);
1543             }
1544           }
1545         }
1546       }
1547       if (use_op == Op_CmpI) {
1548         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1549         if (phi != NULL) {
1550           // If an opaque node feeds into the limit condition of a
1551           // CountedLoop, we need to process the Phi node for the
1552           // induction variable when the opaque node is removed:
1553           // the range of values taken by the Phi is now known and
1554           // so its type is also known.
1555           _worklist.push(phi);
1556         }
1557         Node* in1 = use->in(1);
1558         for (uint i = 0; i < in1->outcnt(); i++) {
1559           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1560             Node* castii = in1->raw_out(i);
1561             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1562               Node* ifnode = castii->in(0)->in(0);
1563               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1564                 // Reprocess a CastII node that may depend on an
1565                 // opaque node value when the opaque node is
1566                 // removed. In case it carries a dependency we can do
1567                 // a better job of computing its type.
1568                 _worklist.push(castii);
1569               }
1570             }
1571           }
1572         }
1573       }
1574     }
1575 
1576     // If changed Cast input, check Phi users for simple cycles
1577     if (use->is_ConstraintCast()) {
1578       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1579         Node* u = use->fast_out(i2);
1580         if (u->is_Phi())
1581           _worklist.push(u);
1582       }
1583     }
1584     // If changed LShift inputs, check RShift users for useless sign-ext
1585     if( use_op == Op_LShiftI ) {
1586       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1587         Node* u = use->fast_out(i2);
1588         if (u->Opcode() == Op_RShiftI)
1589           _worklist.push(u);
1590       }
1591     }
1592     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1593     if (use_op == Op_AddI || use_op == Op_SubI) {
1594       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1595         Node* u = use->fast_out(i2);
1596         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1597           _worklist.push(u);
1598         }
1599       }
1600     }
1601     // If changed AddP inputs, check Stores for loop invariant
1602     if( use_op == Op_AddP ) {
1603       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1604         Node* u = use->fast_out(i2);
1605         if (u->is_Mem())
1606           _worklist.push(u);
1607       }
1608     }
1609     // If changed initialization activity, check dependent Stores
1610     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1611       InitializeNode* init = use->as_Allocate()->initialization();
1612       if (init != NULL) {
1613         Node* imem = init->proj_out_or_null(TypeFunc::Memory);
1614         if (imem != NULL)  add_users_to_worklist0(imem);
1615       }
1616     }
1617     if (use_op == Op_Initialize) {
1618       Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory);
1619       if (imem != NULL)  add_users_to_worklist0(imem);
1620     }
1621     // Loading the java mirror from a Klass requires two loads and the type
1622     // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1623     //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1624     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1625     bool has_load_barrier_nodes = bs->has_load_barrier_nodes();
1626 
1627     if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
1628       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1629         Node* u = use->fast_out(i2);
1630         const Type* ut = u->bottom_type();
1631         if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
1632           if (has_load_barrier_nodes) {
1633             // Search for load barriers behind the load
1634             for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1635               Node* b = u->fast_out(i3);
1636               if (bs->is_gc_barrier_node(b)) {
1637                 _worklist.push(b);
1638               }
1639             }
1640           }
1641           _worklist.push(u);
1642         }
1643       }
1644     }
1645   }
1646 }
1647 
1648 /**
1649  * Remove the speculative part of all types that we know of
1650  */
remove_speculative_types()1651 void PhaseIterGVN::remove_speculative_types()  {
1652   assert(UseTypeSpeculation, "speculation is off");
1653   for (uint i = 0; i < _types.Size(); i++)  {
1654     const Type* t = _types.fast_lookup(i);
1655     if (t != NULL) {
1656       _types.map(i, t->remove_speculative());
1657     }
1658   }
1659   _table.check_no_speculative_types();
1660 }
1661 
1662 // Check if the type of a divisor of a Div or Mod node includes zero.
no_dependent_zero_check(Node * n) const1663 bool PhaseIterGVN::no_dependent_zero_check(Node* n) const {
1664   switch (n->Opcode()) {
1665     case Op_DivI:
1666     case Op_ModI: {
1667       // Type of divisor includes 0?
1668       if (n->in(2)->is_top()) {
1669         // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations.
1670         return false;
1671       }
1672       const TypeInt* type_divisor = type(n->in(2))->is_int();
1673       return (type_divisor->_hi < 0 || type_divisor->_lo > 0);
1674     }
1675     case Op_DivL:
1676     case Op_ModL: {
1677       // Type of divisor includes 0?
1678       if (n->in(2)->is_top()) {
1679         // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations.
1680         return false;
1681       }
1682       const TypeLong* type_divisor = type(n->in(2))->is_long();
1683       return (type_divisor->_hi < 0 || type_divisor->_lo > 0);
1684     }
1685   }
1686   return true;
1687 }
1688 
1689 //=============================================================================
1690 #ifndef PRODUCT
1691 uint PhaseCCP::_total_invokes   = 0;
1692 uint PhaseCCP::_total_constants = 0;
1693 #endif
1694 //------------------------------PhaseCCP---------------------------------------
1695 // Conditional Constant Propagation, ala Wegman & Zadeck
PhaseCCP(PhaseIterGVN * igvn)1696 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1697   NOT_PRODUCT( clear_constants(); )
1698   assert( _worklist.size() == 0, "" );
1699   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1700   _nodes.clear();               // Clear out from IterGVN
1701   analyze();
1702 }
1703 
1704 #ifndef PRODUCT
1705 //------------------------------~PhaseCCP--------------------------------------
~PhaseCCP()1706 PhaseCCP::~PhaseCCP() {
1707   inc_invokes();
1708   _total_constants += count_constants();
1709 }
1710 #endif
1711 
1712 
1713 #ifdef ASSERT
ccp_type_widens(const Type * t,const Type * t0)1714 static bool ccp_type_widens(const Type* t, const Type* t0) {
1715   assert(t->meet(t0) == t, "Not monotonic");
1716   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1717   case Type::Int:
1718     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1719     break;
1720   case Type::Long:
1721     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1722     break;
1723   default:
1724     break;
1725   }
1726   return true;
1727 }
1728 #endif //ASSERT
1729 
1730 //------------------------------analyze----------------------------------------
analyze()1731 void PhaseCCP::analyze() {
1732   // Initialize all types to TOP, optimistic analysis
1733   for (int i = C->unique() - 1; i >= 0; i--)  {
1734     _types.map(i,Type::TOP);
1735   }
1736 
1737   // Push root onto worklist
1738   Unique_Node_List worklist;
1739   worklist.push(C->root());
1740 
1741   // Pull from worklist; compute new value; push changes out.
1742   // This loop is the meat of CCP.
1743   while( worklist.size() ) {
1744     Node *n = worklist.pop();
1745     const Type *t = n->Value(this);
1746     if (t != type(n)) {
1747       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1748 #ifndef PRODUCT
1749       if( TracePhaseCCP ) {
1750         t->dump();
1751         do { tty->print("\t"); } while (tty->position() < 16);
1752         n->dump();
1753       }
1754 #endif
1755       set_type(n, t);
1756       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1757         Node* m = n->fast_out(i);   // Get user
1758         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1759           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1760             Node* p = m->fast_out(i2); // Propagate changes to uses
1761             if (p->bottom_type() != type(p)) { // If not already bottomed out
1762               worklist.push(p); // Propagate change to user
1763             }
1764           }
1765         }
1766         // If we changed the receiver type to a call, we need to revisit
1767         // the Catch following the call.  It's looking for a non-NULL
1768         // receiver to know when to enable the regular fall-through path
1769         // in addition to the NullPtrException path
1770         if (m->is_Call()) {
1771           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1772             Node* p = m->fast_out(i2);  // Propagate changes to uses
1773             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control) {
1774               Node* catch_node = p->find_out_with(Op_Catch);
1775               if (catch_node != NULL) {
1776                 worklist.push(catch_node);
1777               }
1778             }
1779           }
1780         }
1781         if (m->bottom_type() != type(m)) { // If not already bottomed out
1782           worklist.push(m);     // Propagate change to user
1783         }
1784 
1785         // CmpU nodes can get their type information from two nodes up in the
1786         // graph (instead of from the nodes immediately above). Make sure they
1787         // are added to the worklist if nodes they depend on are updated, since
1788         // they could be missed and get wrong types otherwise.
1789         uint m_op = m->Opcode();
1790         if (m_op == Op_AddI || m_op == Op_SubI) {
1791           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1792             Node* p = m->fast_out(i2); // Propagate changes to uses
1793             if (p->Opcode() == Op_CmpU) {
1794               // Got a CmpU which might need the new type information from node n.
1795               if(p->bottom_type() != type(p)) { // If not already bottomed out
1796                 worklist.push(p); // Propagate change to user
1797               }
1798             }
1799           }
1800         }
1801         // If n is used in a counted loop exit condition then the type
1802         // of the counted loop's Phi depends on the type of n. See
1803         // PhiNode::Value().
1804         if (m_op == Op_CmpI) {
1805           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1806           if (phi != NULL) {
1807             worklist.push(phi);
1808           }
1809         }
1810         // Loading the java mirror from a Klass requires two loads and the type
1811         // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1812         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1813         bool has_load_barrier_nodes = bs->has_load_barrier_nodes();
1814 
1815         if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) {
1816           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1817             Node* u = m->fast_out(i2);
1818             const Type* ut = u->bottom_type();
1819             if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) {
1820               if (has_load_barrier_nodes) {
1821                 // Search for load barriers behind the load
1822                 for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1823                   Node* b = u->fast_out(i3);
1824                   if (bs->is_gc_barrier_node(b)) {
1825                     worklist.push(b);
1826                   }
1827                 }
1828               }
1829               worklist.push(u);
1830             }
1831           }
1832         }
1833       }
1834     }
1835   }
1836 }
1837 
1838 //------------------------------do_transform-----------------------------------
1839 // Top level driver for the recursive transformer
do_transform()1840 void PhaseCCP::do_transform() {
1841   // Correct leaves of new-space Nodes; they point to old-space.
1842   C->set_root( transform(C->root())->as_Root() );
1843   assert( C->top(),  "missing TOP node" );
1844   assert( C->root(), "missing root" );
1845 }
1846 
1847 //------------------------------transform--------------------------------------
1848 // Given a Node in old-space, clone him into new-space.
1849 // Convert any of his old-space children into new-space children.
transform(Node * n)1850 Node *PhaseCCP::transform( Node *n ) {
1851   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1852   if( new_node != NULL )
1853     return new_node;                // Been there, done that, return old answer
1854   new_node = transform_once(n);     // Check for constant
1855   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1856 
1857   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1858   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1859 
1860   trstack.push(new_node);           // Process children of cloned node
1861   while ( trstack.is_nonempty() ) {
1862     Node *clone = trstack.pop();
1863     uint cnt = clone->req();
1864     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1865       Node *input = clone->in(i);
1866       if( input != NULL ) {                    // Ignore NULLs
1867         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1868         if( new_input == NULL ) {
1869           new_input = transform_once(input);   // Check for constant
1870           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1871           trstack.push(new_input);
1872         }
1873         assert( new_input == clone->in(i), "insanity check");
1874       }
1875     }
1876   }
1877   return new_node;
1878 }
1879 
1880 
1881 //------------------------------transform_once---------------------------------
1882 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
transform_once(Node * n)1883 Node *PhaseCCP::transform_once( Node *n ) {
1884   const Type *t = type(n);
1885   // Constant?  Use constant Node instead
1886   if( t->singleton() ) {
1887     Node *nn = n;               // Default is to return the original constant
1888     if( t == Type::TOP ) {
1889       // cache my top node on the Compile instance
1890       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1891         C->set_cached_top_node(ConNode::make(Type::TOP));
1892         set_type(C->top(), Type::TOP);
1893       }
1894       nn = C->top();
1895     }
1896     if( !n->is_Con() ) {
1897       if( t != Type::TOP ) {
1898         nn = makecon(t);        // ConNode::make(t);
1899         NOT_PRODUCT( inc_constants(); )
1900       } else if( n->is_Region() ) { // Unreachable region
1901         // Note: nn == C->top()
1902         n->set_req(0, NULL);        // Cut selfreference
1903         bool progress = true;
1904         uint max = n->outcnt();
1905         DUIterator i;
1906         while (progress) {
1907           progress = false;
1908           // Eagerly remove dead phis to avoid phis copies creation.
1909           for (i = n->outs(); n->has_out(i); i++) {
1910             Node* m = n->out(i);
1911             if (m->is_Phi()) {
1912               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1913               replace_node(m, nn);
1914               if (max != n->outcnt()) {
1915                 progress = true;
1916                 i = n->refresh_out_pos(i);
1917                 max = n->outcnt();
1918               }
1919             }
1920           }
1921         }
1922       }
1923       replace_node(n,nn);       // Update DefUse edges for new constant
1924     }
1925     return nn;
1926   }
1927 
1928   // If x is a TypeNode, capture any more-precise type permanently into Node
1929   if (t != n->bottom_type()) {
1930     hash_delete(n);             // changing bottom type may force a rehash
1931     n->raise_bottom_type(t);
1932     _worklist.push(n);          // n re-enters the hash table via the worklist
1933   }
1934 
1935   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1936   switch( n->Opcode() ) {
1937   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1938   case Op_If:
1939   case Op_CountedLoopEnd:
1940   case Op_Region:
1941   case Op_Loop:
1942   case Op_CountedLoop:
1943   case Op_Conv2B:
1944   case Op_Opaque1:
1945   case Op_Opaque2:
1946     _worklist.push(n);
1947     break;
1948   default:
1949     break;
1950   }
1951 
1952   return  n;
1953 }
1954 
1955 //---------------------------------saturate------------------------------------
saturate(const Type * new_type,const Type * old_type,const Type * limit_type) const1956 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1957                                const Type* limit_type) const {
1958   const Type* wide_type = new_type->widen(old_type, limit_type);
1959   if (wide_type != new_type) {          // did we widen?
1960     // If so, we may have widened beyond the limit type.  Clip it back down.
1961     new_type = wide_type->filter(limit_type);
1962   }
1963   return new_type;
1964 }
1965 
1966 //------------------------------print_statistics-------------------------------
1967 #ifndef PRODUCT
print_statistics()1968 void PhaseCCP::print_statistics() {
1969   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1970 }
1971 #endif
1972 
1973 
1974 //=============================================================================
1975 #ifndef PRODUCT
1976 uint PhasePeephole::_total_peepholes = 0;
1977 #endif
1978 //------------------------------PhasePeephole----------------------------------
1979 // Conditional Constant Propagation, ala Wegman & Zadeck
PhasePeephole(PhaseRegAlloc * regalloc,PhaseCFG & cfg)1980 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1981   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1982   NOT_PRODUCT( clear_peepholes(); )
1983 }
1984 
1985 #ifndef PRODUCT
1986 //------------------------------~PhasePeephole---------------------------------
~PhasePeephole()1987 PhasePeephole::~PhasePeephole() {
1988   _total_peepholes += count_peepholes();
1989 }
1990 #endif
1991 
1992 //------------------------------transform--------------------------------------
transform(Node * n)1993 Node *PhasePeephole::transform( Node *n ) {
1994   ShouldNotCallThis();
1995   return NULL;
1996 }
1997 
1998 //------------------------------do_transform-----------------------------------
do_transform()1999 void PhasePeephole::do_transform() {
2000   bool method_name_not_printed = true;
2001 
2002   // Examine each basic block
2003   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
2004     Block* block = _cfg.get_block(block_number);
2005     bool block_not_printed = true;
2006 
2007     // and each instruction within a block
2008     uint end_index = block->number_of_nodes();
2009     // block->end_idx() not valid after PhaseRegAlloc
2010     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
2011       Node     *n = block->get_node(instruction_index);
2012       if( n->is_Mach() ) {
2013         MachNode *m = n->as_Mach();
2014         int deleted_count = 0;
2015         // check for peephole opportunities
2016         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
2017         if( m2 != NULL ) {
2018 #ifndef PRODUCT
2019           if( PrintOptoPeephole ) {
2020             // Print method, first time only
2021             if( C->method() && method_name_not_printed ) {
2022               C->method()->print_short_name(); tty->cr();
2023               method_name_not_printed = false;
2024             }
2025             // Print this block
2026             if( Verbose && block_not_printed) {
2027               tty->print_cr("in block");
2028               block->dump();
2029               block_not_printed = false;
2030             }
2031             // Print instructions being deleted
2032             for( int i = (deleted_count - 1); i >= 0; --i ) {
2033               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
2034             }
2035             tty->print_cr("replaced with");
2036             // Print new instruction
2037             m2->format(_regalloc);
2038             tty->print("\n\n");
2039           }
2040 #endif
2041           // Remove old nodes from basic block and update instruction_index
2042           // (old nodes still exist and may have edges pointing to them
2043           //  as register allocation info is stored in the allocator using
2044           //  the node index to live range mappings.)
2045           uint safe_instruction_index = (instruction_index - deleted_count);
2046           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
2047             block->remove_node( instruction_index );
2048           }
2049           // install new node after safe_instruction_index
2050           block->insert_node(m2, safe_instruction_index + 1);
2051           end_index = block->number_of_nodes() - 1; // Recompute new block size
2052           NOT_PRODUCT( inc_peepholes(); )
2053         }
2054       }
2055     }
2056   }
2057 }
2058 
2059 //------------------------------print_statistics-------------------------------
2060 #ifndef PRODUCT
print_statistics()2061 void PhasePeephole::print_statistics() {
2062   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2063 }
2064 #endif
2065 
2066 
2067 //=============================================================================
2068 //------------------------------set_req_X--------------------------------------
set_req_X(uint i,Node * n,PhaseIterGVN * igvn)2069 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2070   assert( is_not_dead(n), "can not use dead node");
2071   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2072   Node *old = in(i);
2073   set_req(i, n);
2074 
2075   // old goes dead?
2076   if( old ) {
2077     switch (old->outcnt()) {
2078     case 0:
2079       // Put into the worklist to kill later. We do not kill it now because the
2080       // recursive kill will delete the current node (this) if dead-loop exists
2081       if (!old->is_top())
2082         igvn->_worklist.push( old );
2083       break;
2084     case 1:
2085       if( old->is_Store() || old->has_special_unique_user() )
2086         igvn->add_users_to_worklist( old );
2087       break;
2088     case 2:
2089       if( old->is_Store() )
2090         igvn->add_users_to_worklist( old );
2091       if( old->Opcode() == Op_Region )
2092         igvn->_worklist.push(old);
2093       break;
2094     case 3:
2095       if( old->Opcode() == Op_Region ) {
2096         igvn->_worklist.push(old);
2097         igvn->add_users_to_worklist( old );
2098       }
2099       break;
2100     default:
2101       break;
2102     }
2103 
2104     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
2105   }
2106 
2107 }
2108 
2109 //-------------------------------replace_by-----------------------------------
2110 // Using def-use info, replace one node for another.  Follow the def-use info
2111 // to all users of the OLD node.  Then make all uses point to the NEW node.
replace_by(Node * new_node)2112 void Node::replace_by(Node *new_node) {
2113   assert(!is_top(), "top node has no DU info");
2114   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2115     Node* use = last_out(i);
2116     uint uses_found = 0;
2117     for (uint j = 0; j < use->len(); j++) {
2118       if (use->in(j) == this) {
2119         if (j < use->req())
2120               use->set_req(j, new_node);
2121         else  use->set_prec(j, new_node);
2122         uses_found++;
2123       }
2124     }
2125     i -= uses_found;    // we deleted 1 or more copies of this edge
2126   }
2127 }
2128 
2129 //=============================================================================
2130 //-----------------------------------------------------------------------------
grow(uint i)2131 void Type_Array::grow( uint i ) {
2132   if( !_max ) {
2133     _max = 1;
2134     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2135     _types[0] = NULL;
2136   }
2137   uint old = _max;
2138   _max = next_power_of_2(i);
2139   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2140   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2141 }
2142 
2143 //------------------------------dump-------------------------------------------
2144 #ifndef PRODUCT
dump() const2145 void Type_Array::dump() const {
2146   uint max = Size();
2147   for( uint i = 0; i < max; i++ ) {
2148     if( _types[i] != NULL ) {
2149       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2150     }
2151   }
2152 }
2153 #endif
2154