1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciTypeFlow.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/node.hpp"
40 #include "opto/opcodes.hpp"
41 #include "opto/type.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 
44 // Portions of code courtesy of Clifford Click
45 
46 // Optimization - Graph Style
47 
48 // Dictionary of types shared among compilations.
49 Dict* Type::_shared_type_dict = NULL;
50 
51 // Array which maps compiler types to Basic Types
52 const Type::TypeInfo Type::_type_info[Type::lastype] = {
53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
63 
64 #if defined(PPC64)
65   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
66   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
67   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
68   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
69   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
70   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
71 #elif defined(S390)
72   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
73   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
74   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
75   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
76   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
77   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
78 #else // all other
79   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
80   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
81   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
82   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
83   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
84   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
85 #endif
86   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
87   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
88   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
89   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
90   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
91   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
92   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
93   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
94   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
95   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
96   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
97   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
98   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
99   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
100   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
101   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
102   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
103   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
104 };
105 
106 // Map ideal registers (machine types) to ideal types
107 const Type *Type::mreg2type[_last_machine_leaf];
108 
109 // Map basic types to canonical Type* pointers.
110 const Type* Type::     _const_basic_type[T_CONFLICT+1];
111 
112 // Map basic types to constant-zero Types.
113 const Type* Type::            _zero_type[T_CONFLICT+1];
114 
115 // Map basic types to array-body alias types.
116 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
117 
118 //=============================================================================
119 // Convenience common pre-built types.
120 const Type *Type::ABIO;         // State-of-machine only
121 const Type *Type::BOTTOM;       // All values
122 const Type *Type::CONTROL;      // Control only
123 const Type *Type::DOUBLE;       // All doubles
124 const Type *Type::FLOAT;        // All floats
125 const Type *Type::HALF;         // Placeholder half of doublewide type
126 const Type *Type::MEMORY;       // Abstract store only
127 const Type *Type::RETURN_ADDRESS;
128 const Type *Type::TOP;          // No values in set
129 
130 //------------------------------get_const_type---------------------------
get_const_type(ciType * type)131 const Type* Type::get_const_type(ciType* type) {
132   if (type == NULL) {
133     return NULL;
134   } else if (type->is_primitive_type()) {
135     return get_const_basic_type(type->basic_type());
136   } else {
137     return TypeOopPtr::make_from_klass(type->as_klass());
138   }
139 }
140 
141 //---------------------------array_element_basic_type---------------------------------
142 // Mapping to the array element's basic type.
array_element_basic_type() const143 BasicType Type::array_element_basic_type() const {
144   BasicType bt = basic_type();
145   if (bt == T_INT) {
146     if (this == TypeInt::INT)   return T_INT;
147     if (this == TypeInt::CHAR)  return T_CHAR;
148     if (this == TypeInt::BYTE)  return T_BYTE;
149     if (this == TypeInt::BOOL)  return T_BOOLEAN;
150     if (this == TypeInt::SHORT) return T_SHORT;
151     return T_VOID;
152   }
153   return bt;
154 }
155 
156 // For two instance arrays of same dimension, return the base element types.
157 // Otherwise or if the arrays have different dimensions, return NULL.
get_arrays_base_elements(const Type * a1,const Type * a2,const TypeInstPtr ** e1,const TypeInstPtr ** e2)158 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
159                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
160 
161   if (e1) *e1 = NULL;
162   if (e2) *e2 = NULL;
163   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
164   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
165 
166   if (a1tap != NULL && a2tap != NULL) {
167     // Handle multidimensional arrays
168     const TypePtr* a1tp = a1tap->elem()->make_ptr();
169     const TypePtr* a2tp = a2tap->elem()->make_ptr();
170     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
171       a1tap = a1tp->is_aryptr();
172       a2tap = a2tp->is_aryptr();
173       a1tp = a1tap->elem()->make_ptr();
174       a2tp = a2tap->elem()->make_ptr();
175     }
176     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
177       if (e1) *e1 = a1tp->is_instptr();
178       if (e2) *e2 = a2tp->is_instptr();
179     }
180   }
181 }
182 
183 //---------------------------get_typeflow_type---------------------------------
184 // Import a type produced by ciTypeFlow.
get_typeflow_type(ciType * type)185 const Type* Type::get_typeflow_type(ciType* type) {
186   switch (type->basic_type()) {
187 
188   case ciTypeFlow::StateVector::T_BOTTOM:
189     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
190     return Type::BOTTOM;
191 
192   case ciTypeFlow::StateVector::T_TOP:
193     assert(type == ciTypeFlow::StateVector::top_type(), "");
194     return Type::TOP;
195 
196   case ciTypeFlow::StateVector::T_NULL:
197     assert(type == ciTypeFlow::StateVector::null_type(), "");
198     return TypePtr::NULL_PTR;
199 
200   case ciTypeFlow::StateVector::T_LONG2:
201     // The ciTypeFlow pass pushes a long, then the half.
202     // We do the same.
203     assert(type == ciTypeFlow::StateVector::long2_type(), "");
204     return TypeInt::TOP;
205 
206   case ciTypeFlow::StateVector::T_DOUBLE2:
207     // The ciTypeFlow pass pushes double, then the half.
208     // Our convention is the same.
209     assert(type == ciTypeFlow::StateVector::double2_type(), "");
210     return Type::TOP;
211 
212   case T_ADDRESS:
213     assert(type->is_return_address(), "");
214     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
215 
216   default:
217     // make sure we did not mix up the cases:
218     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
219     assert(type != ciTypeFlow::StateVector::top_type(), "");
220     assert(type != ciTypeFlow::StateVector::null_type(), "");
221     assert(type != ciTypeFlow::StateVector::long2_type(), "");
222     assert(type != ciTypeFlow::StateVector::double2_type(), "");
223     assert(!type->is_return_address(), "");
224 
225     return Type::get_const_type(type);
226   }
227 }
228 
229 
230 //-----------------------make_from_constant------------------------------------
make_from_constant(ciConstant constant,bool require_constant,int stable_dimension,bool is_narrow_oop,bool is_autobox_cache)231 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
232                                      int stable_dimension, bool is_narrow_oop,
233                                      bool is_autobox_cache) {
234   switch (constant.basic_type()) {
235     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
236     case T_CHAR:     return TypeInt::make(constant.as_char());
237     case T_BYTE:     return TypeInt::make(constant.as_byte());
238     case T_SHORT:    return TypeInt::make(constant.as_short());
239     case T_INT:      return TypeInt::make(constant.as_int());
240     case T_LONG:     return TypeLong::make(constant.as_long());
241     case T_FLOAT:    return TypeF::make(constant.as_float());
242     case T_DOUBLE:   return TypeD::make(constant.as_double());
243     case T_ARRAY:
244     case T_OBJECT: {
245         const Type* con_type = NULL;
246         ciObject* oop_constant = constant.as_object();
247         if (oop_constant->is_null_object()) {
248           con_type = Type::get_zero_type(T_OBJECT);
249         } else {
250           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
251           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
252           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
253             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
254           }
255           if (stable_dimension > 0) {
256             assert(FoldStableValues, "sanity");
257             assert(!con_type->is_zero_type(), "default value for stable field");
258             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
259           }
260         }
261         if (is_narrow_oop) {
262           con_type = con_type->make_narrowoop();
263         }
264         return con_type;
265       }
266     case T_ILLEGAL:
267       // Invalid ciConstant returned due to OutOfMemoryError in the CI
268       assert(Compile::current()->env()->failing(), "otherwise should not see this");
269       return NULL;
270     default:
271       // Fall through to failure
272       return NULL;
273   }
274 }
275 
check_mismatched_access(ciConstant con,BasicType loadbt,bool is_unsigned)276 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
277   BasicType conbt = con.basic_type();
278   switch (conbt) {
279     case T_BOOLEAN: conbt = T_BYTE;   break;
280     case T_ARRAY:   conbt = T_OBJECT; break;
281     default:                          break;
282   }
283   switch (loadbt) {
284     case T_BOOLEAN:   loadbt = T_BYTE;   break;
285     case T_NARROWOOP: loadbt = T_OBJECT; break;
286     case T_ARRAY:     loadbt = T_OBJECT; break;
287     case T_ADDRESS:   loadbt = T_OBJECT; break;
288     default:                             break;
289   }
290   if (conbt == loadbt) {
291     if (is_unsigned && conbt == T_BYTE) {
292       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
293       return ciConstant(T_INT, con.as_int() & 0xFF);
294     } else {
295       return con;
296     }
297   }
298   if (conbt == T_SHORT && loadbt == T_CHAR) {
299     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
300     return ciConstant(T_INT, con.as_int() & 0xFFFF);
301   }
302   return ciConstant(); // T_ILLEGAL
303 }
304 
305 // Try to constant-fold a stable array element.
make_constant_from_array_element(ciArray * array,int off,int stable_dimension,BasicType loadbt,bool is_unsigned_load)306 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
307                                                    BasicType loadbt, bool is_unsigned_load) {
308   // Decode the results of GraphKit::array_element_address.
309   ciConstant element_value = array->element_value_by_offset(off);
310   if (element_value.basic_type() == T_ILLEGAL) {
311     return NULL; // wrong offset
312   }
313   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
314 
315   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
316          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
317 
318   if (con.is_valid() &&          // not a mismatched access
319       !con.is_null_or_zero()) {  // not a default value
320     bool is_narrow_oop = (loadbt == T_NARROWOOP);
321     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
322   }
323   return NULL;
324 }
325 
make_constant_from_field(ciInstance * holder,int off,bool is_unsigned_load,BasicType loadbt)326 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
327   ciField* field;
328   ciType* type = holder->java_mirror_type();
329   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
330     // Static field
331     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
332   } else {
333     // Instance field
334     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
335   }
336   if (field == NULL) {
337     return NULL; // Wrong offset
338   }
339   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
340 }
341 
make_constant_from_field(ciField * field,ciInstance * holder,BasicType loadbt,bool is_unsigned_load)342 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
343                                            BasicType loadbt, bool is_unsigned_load) {
344   if (!field->is_constant()) {
345     return NULL; // Non-constant field
346   }
347   ciConstant field_value;
348   if (field->is_static()) {
349     // final static field
350     field_value = field->constant_value();
351   } else if (holder != NULL) {
352     // final or stable non-static field
353     // Treat final non-static fields of trusted classes (classes in
354     // java.lang.invoke and sun.invoke packages and subpackages) as
355     // compile time constants.
356     field_value = field->constant_value_of(holder);
357   }
358   if (!field_value.is_valid()) {
359     return NULL; // Not a constant
360   }
361 
362   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
363 
364   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
365          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
366 
367   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
368   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
369   bool is_narrow_oop = (loadbt == T_NARROWOOP);
370 
371   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
372                                             stable_dimension, is_narrow_oop,
373                                             field->is_autobox_cache());
374   if (con_type != NULL && field->is_call_site_target()) {
375     ciCallSite* call_site = holder->as_call_site();
376     if (!call_site->is_fully_initialized_constant_call_site()) {
377       ciMethodHandle* target = con.as_object()->as_method_handle();
378       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
379     }
380   }
381   return con_type;
382 }
383 
384 //------------------------------make-------------------------------------------
385 // Create a simple Type, with default empty symbol sets.  Then hashcons it
386 // and look for an existing copy in the type dictionary.
make(enum TYPES t)387 const Type *Type::make( enum TYPES t ) {
388   return (new Type(t))->hashcons();
389 }
390 
391 //------------------------------cmp--------------------------------------------
cmp(const Type * const t1,const Type * const t2)392 int Type::cmp( const Type *const t1, const Type *const t2 ) {
393   if( t1->_base != t2->_base )
394     return 1;                   // Missed badly
395   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
396   return !t1->eq(t2);           // Return ZERO if equal
397 }
398 
maybe_remove_speculative(bool include_speculative) const399 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
400   if (!include_speculative) {
401     return remove_speculative();
402   }
403   return this;
404 }
405 
406 //------------------------------hash-------------------------------------------
uhash(const Type * const t)407 int Type::uhash( const Type *const t ) {
408   return t->hash();
409 }
410 
411 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
412 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
413 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
414 
415 //--------------------------Initialize_shared----------------------------------
Initialize_shared(Compile * current)416 void Type::Initialize_shared(Compile* current) {
417   // This method does not need to be locked because the first system
418   // compilations (stub compilations) occur serially.  If they are
419   // changed to proceed in parallel, then this section will need
420   // locking.
421 
422   Arena* save = current->type_arena();
423   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
424 
425   current->set_type_arena(shared_type_arena);
426   _shared_type_dict =
427     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
428                                   shared_type_arena, 128 );
429   current->set_type_dict(_shared_type_dict);
430 
431   // Make shared pre-built types.
432   CONTROL = make(Control);      // Control only
433   TOP     = make(Top);          // No values in set
434   MEMORY  = make(Memory);       // Abstract store only
435   ABIO    = make(Abio);         // State-of-machine only
436   RETURN_ADDRESS=make(Return_Address);
437   FLOAT   = make(FloatBot);     // All floats
438   DOUBLE  = make(DoubleBot);    // All doubles
439   BOTTOM  = make(Bottom);       // Everything
440   HALF    = make(Half);         // Placeholder half of doublewide type
441 
442   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
443   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
444   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
445   TypeF::ONE  = TypeF::make(1.0); // Float 1
446   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
447   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
448 
449   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
450   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
451   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
452   TypeD::ONE  = TypeD::make(1.0); // Double 1
453   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
454   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
455 
456   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
457   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
458   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
459   TypeInt::ZERO    = TypeInt::make( 0);  //  0
460   TypeInt::ONE     = TypeInt::make( 1);  //  1
461   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
462   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
463   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
464   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
465   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
466   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
467   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
468   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
469   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
470   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
471   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
472   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
473   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
474   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
475   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
476   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
477   // CmpL is overloaded both as the bytecode computation returning
478   // a trinary (-1,0,+1) integer result AND as an efficient long
479   // compare returning optimizer ideal-type flags.
480   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
481   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
482   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
483   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
484   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
485 
486   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
487   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
488   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
489   TypeLong::ZERO    = TypeLong::make( 0);        //  0
490   TypeLong::ONE     = TypeLong::make( 1);        //  1
491   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
492   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
493   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
494   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
495   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
496 
497   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
498   fboth[0] = Type::CONTROL;
499   fboth[1] = Type::CONTROL;
500   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
501 
502   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
503   ffalse[0] = Type::CONTROL;
504   ffalse[1] = Type::TOP;
505   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
506 
507   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
508   fneither[0] = Type::TOP;
509   fneither[1] = Type::TOP;
510   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
511 
512   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
513   ftrue[0] = Type::TOP;
514   ftrue[1] = Type::CONTROL;
515   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
516 
517   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
518   floop[0] = Type::CONTROL;
519   floop[1] = TypeInt::INT;
520   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
521 
522   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
523   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
524   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
525 
526   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
527   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
528 
529   const Type **fmembar = TypeTuple::fields(0);
530   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
531 
532   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
533   fsc[0] = TypeInt::CC;
534   fsc[1] = Type::MEMORY;
535   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
536 
537   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
538   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
539   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
540   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
541                                            false, 0, oopDesc::mark_offset_in_bytes());
542   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
543                                            false, 0, oopDesc::klass_offset_in_bytes());
544   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
545 
546   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
547 
548   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
549   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
550 
551   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
552 
553   mreg2type[Op_Node] = Type::BOTTOM;
554   mreg2type[Op_Set ] = 0;
555   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
556   mreg2type[Op_RegI] = TypeInt::INT;
557   mreg2type[Op_RegP] = TypePtr::BOTTOM;
558   mreg2type[Op_RegF] = Type::FLOAT;
559   mreg2type[Op_RegD] = Type::DOUBLE;
560   mreg2type[Op_RegL] = TypeLong::LONG;
561   mreg2type[Op_RegFlags] = TypeInt::CC;
562 
563   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
564 
565   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
566 
567 #ifdef _LP64
568   if (UseCompressedOops) {
569     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
570     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
571   } else
572 #endif
573   {
574     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
575     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
576   }
577   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
578   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
579   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
580   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
581   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
582   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
583   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
584 
585   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
586   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
587   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
588   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
589   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
590   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
591   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
592   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
593   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
594   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
595   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
596   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
597 
598   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
599   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
600 
601   const Type **fi2c = TypeTuple::fields(2);
602   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
603   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
604   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
605 
606   const Type **intpair = TypeTuple::fields(2);
607   intpair[0] = TypeInt::INT;
608   intpair[1] = TypeInt::INT;
609   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
610 
611   const Type **longpair = TypeTuple::fields(2);
612   longpair[0] = TypeLong::LONG;
613   longpair[1] = TypeLong::LONG;
614   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
615 
616   const Type **intccpair = TypeTuple::fields(2);
617   intccpair[0] = TypeInt::INT;
618   intccpair[1] = TypeInt::CC;
619   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
620 
621   const Type **longccpair = TypeTuple::fields(2);
622   longccpair[0] = TypeLong::LONG;
623   longccpair[1] = TypeInt::CC;
624   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
625 
626   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
627   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
628   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
629   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
630   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
631   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
632   _const_basic_type[T_INT]         = TypeInt::INT;
633   _const_basic_type[T_LONG]        = TypeLong::LONG;
634   _const_basic_type[T_FLOAT]       = Type::FLOAT;
635   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
636   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
637   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
638   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
639   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
640   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
641 
642   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
643   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
644   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
645   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
646   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
647   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
648   _zero_type[T_INT]         = TypeInt::ZERO;
649   _zero_type[T_LONG]        = TypeLong::ZERO;
650   _zero_type[T_FLOAT]       = TypeF::ZERO;
651   _zero_type[T_DOUBLE]      = TypeD::ZERO;
652   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
653   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
654   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
655   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
656 
657   // get_zero_type() should not happen for T_CONFLICT
658   _zero_type[T_CONFLICT]= NULL;
659 
660   if (Matcher::supports_scalable_vector()) {
661     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
662   }
663 
664   // Vector predefined types, it needs initialized _const_basic_type[].
665   if (Matcher::vector_size_supported(T_BYTE,4)) {
666     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
667   }
668   if (Matcher::vector_size_supported(T_FLOAT,2)) {
669     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
670   }
671   if (Matcher::vector_size_supported(T_FLOAT,4)) {
672     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
673   }
674   if (Matcher::vector_size_supported(T_FLOAT,8)) {
675     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
676   }
677   if (Matcher::vector_size_supported(T_FLOAT,16)) {
678     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
679   }
680 
681   mreg2type[Op_VecA] = TypeVect::VECTA;
682   mreg2type[Op_VecS] = TypeVect::VECTS;
683   mreg2type[Op_VecD] = TypeVect::VECTD;
684   mreg2type[Op_VecX] = TypeVect::VECTX;
685   mreg2type[Op_VecY] = TypeVect::VECTY;
686   mreg2type[Op_VecZ] = TypeVect::VECTZ;
687 
688   // Restore working type arena.
689   current->set_type_arena(save);
690   current->set_type_dict(NULL);
691 }
692 
693 //------------------------------Initialize-------------------------------------
Initialize(Compile * current)694 void Type::Initialize(Compile* current) {
695   assert(current->type_arena() != NULL, "must have created type arena");
696 
697   if (_shared_type_dict == NULL) {
698     Initialize_shared(current);
699   }
700 
701   Arena* type_arena = current->type_arena();
702 
703   // Create the hash-cons'ing dictionary with top-level storage allocation
704   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
705   current->set_type_dict(tdic);
706 }
707 
708 //------------------------------hashcons---------------------------------------
709 // Do the hash-cons trick.  If the Type already exists in the type table,
710 // delete the current Type and return the existing Type.  Otherwise stick the
711 // current Type in the Type table.
hashcons(void)712 const Type *Type::hashcons(void) {
713   debug_only(base());           // Check the assertion in Type::base().
714   // Look up the Type in the Type dictionary
715   Dict *tdic = type_dict();
716   Type* old = (Type*)(tdic->Insert(this, this, false));
717   if( old ) {                   // Pre-existing Type?
718     if( old != this )           // Yes, this guy is not the pre-existing?
719       delete this;              // Yes, Nuke this guy
720     assert( old->_dual, "" );
721     return old;                 // Return pre-existing
722   }
723 
724   // Every type has a dual (to make my lattice symmetric).
725   // Since we just discovered a new Type, compute its dual right now.
726   assert( !_dual, "" );         // No dual yet
727   _dual = xdual();              // Compute the dual
728   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
729     if (_dual != this) {
730       delete _dual;
731       _dual = this;
732     }
733     return this;
734   }
735   assert( !_dual->_dual, "" );  // No reverse dual yet
736   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
737   // New Type, insert into Type table
738   tdic->Insert((void*)_dual,(void*)_dual);
739   ((Type*)_dual)->_dual = this; // Finish up being symmetric
740 #ifdef ASSERT
741   Type *dual_dual = (Type*)_dual->xdual();
742   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
743   delete dual_dual;
744 #endif
745   return this;                  // Return new Type
746 }
747 
748 //------------------------------eq---------------------------------------------
749 // Structural equality check for Type representations
eq(const Type *) const750 bool Type::eq( const Type * ) const {
751   return true;                  // Nothing else can go wrong
752 }
753 
754 //------------------------------hash-------------------------------------------
755 // Type-specific hashing function.
hash(void) const756 int Type::hash(void) const {
757   return _base;
758 }
759 
760 //------------------------------is_finite--------------------------------------
761 // Has a finite value
is_finite() const762 bool Type::is_finite() const {
763   return false;
764 }
765 
766 //------------------------------is_nan-----------------------------------------
767 // Is not a number (NaN)
is_nan() const768 bool Type::is_nan()    const {
769   return false;
770 }
771 
772 //----------------------interface_vs_oop---------------------------------------
773 #ifdef ASSERT
interface_vs_oop_helper(const Type * t) const774 bool Type::interface_vs_oop_helper(const Type *t) const {
775   bool result = false;
776 
777   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
778   const TypePtr*    t_ptr =    t->make_ptr();
779   if( this_ptr == NULL || t_ptr == NULL )
780     return result;
781 
782   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
783   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
784   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
785     bool this_interface = this_inst->klass()->is_interface();
786     bool    t_interface =    t_inst->klass()->is_interface();
787     result = this_interface ^ t_interface;
788   }
789 
790   return result;
791 }
792 
interface_vs_oop(const Type * t) const793 bool Type::interface_vs_oop(const Type *t) const {
794   if (interface_vs_oop_helper(t)) {
795     return true;
796   }
797   // Now check the speculative parts as well
798   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
799   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
800   if (this_spec != NULL && t_spec != NULL) {
801     if (this_spec->interface_vs_oop_helper(t_spec)) {
802       return true;
803     }
804     return false;
805   }
806   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
807     return true;
808   }
809   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
810     return true;
811   }
812   return false;
813 }
814 
815 #endif
816 
check_symmetrical(const Type * t,const Type * mt) const817 void Type::check_symmetrical(const Type* t, const Type* mt) const {
818 #ifdef ASSERT
819   const Type* mt2 = t->xmeet(this);
820   if (mt != mt2) {
821     tty->print_cr("=== Meet Not Commutative ===");
822     tty->print("t           = ");   t->dump(); tty->cr();
823     tty->print("this        = ");      dump(); tty->cr();
824     tty->print("t meet this = "); mt2->dump(); tty->cr();
825     tty->print("this meet t = ");  mt->dump(); tty->cr();
826     fatal("meet not commutative");
827   }
828   const Type* dual_join = mt->_dual;
829   const Type* t2t    = dual_join->xmeet(t->_dual);
830   const Type* t2this = dual_join->xmeet(this->_dual);
831 
832   // Interface meet Oop is Not Symmetric:
833   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
834   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
835 
836   if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) {
837     tty->print_cr("=== Meet Not Symmetric ===");
838     tty->print("t   =                   ");              t->dump(); tty->cr();
839     tty->print("this=                   ");                 dump(); tty->cr();
840     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
841 
842     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
843     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
844     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
845 
846     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
847     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
848 
849     fatal("meet not symmetric");
850   }
851 #endif
852 }
853 
854 //------------------------------meet-------------------------------------------
855 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
856 // commutative and the lattice is symmetric.
meet_helper(const Type * t,bool include_speculative) const857 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
858   if (isa_narrowoop() && t->isa_narrowoop()) {
859     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
860     return result->make_narrowoop();
861   }
862   if (isa_narrowklass() && t->isa_narrowklass()) {
863     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
864     return result->make_narrowklass();
865   }
866 
867   const Type *this_t = maybe_remove_speculative(include_speculative);
868   t = t->maybe_remove_speculative(include_speculative);
869 
870   const Type *mt = this_t->xmeet(t);
871 #ifdef ASSERT
872   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
873   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
874   Compile* C = Compile::current();
875   if (!C->_type_verify_symmetry) {
876     return mt;
877   }
878   this_t->check_symmetrical(t, mt);
879   // In the case of an array, computing the meet above, caused the
880   // computation of the meet of the elements which at verification
881   // time caused the computation of the meet of the dual of the
882   // elements. Computing the meet of the dual of the arrays here
883   // causes the meet of the dual of the elements to be computed which
884   // would cause the meet of the dual of the dual of the elements,
885   // that is the meet of the elements already computed above to be
886   // computed. Avoid redundant computations by requesting no
887   // verification.
888   C->_type_verify_symmetry = false;
889   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
890   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
891   assert(!C->_type_verify_symmetry, "shouldn't have changed");
892   C->_type_verify_symmetry = true;
893 #endif
894   return mt;
895 }
896 
897 //------------------------------xmeet------------------------------------------
898 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const899 const Type *Type::xmeet( const Type *t ) const {
900   // Perform a fast test for common case; meeting the same types together.
901   if( this == t ) return this;  // Meeting same type-rep?
902 
903   // Meeting TOP with anything?
904   if( _base == Top ) return t;
905 
906   // Meeting BOTTOM with anything?
907   if( _base == Bottom ) return BOTTOM;
908 
909   // Current "this->_base" is one of: Bad, Multi, Control, Top,
910   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
911   switch (t->base()) {  // Switch on original type
912 
913   // Cut in half the number of cases I must handle.  Only need cases for when
914   // the given enum "t->type" is less than or equal to the local enum "type".
915   case FloatCon:
916   case DoubleCon:
917   case Int:
918   case Long:
919     return t->xmeet(this);
920 
921   case OopPtr:
922     return t->xmeet(this);
923 
924   case InstPtr:
925     return t->xmeet(this);
926 
927   case MetadataPtr:
928   case KlassPtr:
929     return t->xmeet(this);
930 
931   case AryPtr:
932     return t->xmeet(this);
933 
934   case NarrowOop:
935     return t->xmeet(this);
936 
937   case NarrowKlass:
938     return t->xmeet(this);
939 
940   case Bad:                     // Type check
941   default:                      // Bogus type not in lattice
942     typerr(t);
943     return Type::BOTTOM;
944 
945   case Bottom:                  // Ye Olde Default
946     return t;
947 
948   case FloatTop:
949     if( _base == FloatTop ) return this;
950   case FloatBot:                // Float
951     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
952     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
953     typerr(t);
954     return Type::BOTTOM;
955 
956   case DoubleTop:
957     if( _base == DoubleTop ) return this;
958   case DoubleBot:               // Double
959     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
960     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
961     typerr(t);
962     return Type::BOTTOM;
963 
964   // These next few cases must match exactly or it is a compile-time error.
965   case Control:                 // Control of code
966   case Abio:                    // State of world outside of program
967   case Memory:
968     if( _base == t->_base )  return this;
969     typerr(t);
970     return Type::BOTTOM;
971 
972   case Top:                     // Top of the lattice
973     return this;
974   }
975 
976   // The type is unchanged
977   return this;
978 }
979 
980 //-----------------------------filter------------------------------------------
filter_helper(const Type * kills,bool include_speculative) const981 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
982   const Type* ft = join_helper(kills, include_speculative);
983   if (ft->empty())
984     return Type::TOP;           // Canonical empty value
985   return ft;
986 }
987 
988 //------------------------------xdual------------------------------------------
989 // Compute dual right now.
990 const Type::TYPES Type::dual_type[Type::lastype] = {
991   Bad,          // Bad
992   Control,      // Control
993   Bottom,       // Top
994   Bad,          // Int - handled in v-call
995   Bad,          // Long - handled in v-call
996   Half,         // Half
997   Bad,          // NarrowOop - handled in v-call
998   Bad,          // NarrowKlass - handled in v-call
999 
1000   Bad,          // Tuple - handled in v-call
1001   Bad,          // Array - handled in v-call
1002   Bad,          // VectorA - handled in v-call
1003   Bad,          // VectorS - handled in v-call
1004   Bad,          // VectorD - handled in v-call
1005   Bad,          // VectorX - handled in v-call
1006   Bad,          // VectorY - handled in v-call
1007   Bad,          // VectorZ - handled in v-call
1008 
1009   Bad,          // AnyPtr - handled in v-call
1010   Bad,          // RawPtr - handled in v-call
1011   Bad,          // OopPtr - handled in v-call
1012   Bad,          // InstPtr - handled in v-call
1013   Bad,          // AryPtr - handled in v-call
1014 
1015   Bad,          //  MetadataPtr - handled in v-call
1016   Bad,          // KlassPtr - handled in v-call
1017 
1018   Bad,          // Function - handled in v-call
1019   Abio,         // Abio
1020   Return_Address,// Return_Address
1021   Memory,       // Memory
1022   FloatBot,     // FloatTop
1023   FloatCon,     // FloatCon
1024   FloatTop,     // FloatBot
1025   DoubleBot,    // DoubleTop
1026   DoubleCon,    // DoubleCon
1027   DoubleTop,    // DoubleBot
1028   Top           // Bottom
1029 };
1030 
xdual() const1031 const Type *Type::xdual() const {
1032   // Note: the base() accessor asserts the sanity of _base.
1033   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1034   return new Type(_type_info[_base].dual_type);
1035 }
1036 
1037 //------------------------------has_memory-------------------------------------
has_memory() const1038 bool Type::has_memory() const {
1039   Type::TYPES tx = base();
1040   if (tx == Memory) return true;
1041   if (tx == Tuple) {
1042     const TypeTuple *t = is_tuple();
1043     for (uint i=0; i < t->cnt(); i++) {
1044       tx = t->field_at(i)->base();
1045       if (tx == Memory)  return true;
1046     }
1047   }
1048   return false;
1049 }
1050 
1051 #ifndef PRODUCT
1052 //------------------------------dump2------------------------------------------
dump2(Dict & d,uint depth,outputStream * st) const1053 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1054   st->print("%s", _type_info[_base].msg);
1055 }
1056 
1057 //------------------------------dump-------------------------------------------
dump_on(outputStream * st) const1058 void Type::dump_on(outputStream *st) const {
1059   ResourceMark rm;
1060   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1061   dump2(d,1, st);
1062   if (is_ptr_to_narrowoop()) {
1063     st->print(" [narrow]");
1064   } else if (is_ptr_to_narrowklass()) {
1065     st->print(" [narrowklass]");
1066   }
1067 }
1068 
1069 //-----------------------------------------------------------------------------
str(const Type * t)1070 const char* Type::str(const Type* t) {
1071   stringStream ss;
1072   t->dump_on(&ss);
1073   return ss.as_string();
1074 }
1075 #endif
1076 
1077 //------------------------------singleton--------------------------------------
1078 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1079 // constants (Ldi nodes).  Singletons are integer, float or double constants.
singleton(void) const1080 bool Type::singleton(void) const {
1081   return _base == Top || _base == Half;
1082 }
1083 
1084 //------------------------------empty------------------------------------------
1085 // TRUE if Type is a type with no values, FALSE otherwise.
empty(void) const1086 bool Type::empty(void) const {
1087   switch (_base) {
1088   case DoubleTop:
1089   case FloatTop:
1090   case Top:
1091     return true;
1092 
1093   case Half:
1094   case Abio:
1095   case Return_Address:
1096   case Memory:
1097   case Bottom:
1098   case FloatBot:
1099   case DoubleBot:
1100     return false;  // never a singleton, therefore never empty
1101 
1102   default:
1103     ShouldNotReachHere();
1104     return false;
1105   }
1106 }
1107 
1108 //------------------------------dump_stats-------------------------------------
1109 // Dump collected statistics to stderr
1110 #ifndef PRODUCT
dump_stats()1111 void Type::dump_stats() {
1112   tty->print("Types made: %d\n", type_dict()->Size());
1113 }
1114 #endif
1115 
1116 //------------------------------typerr-----------------------------------------
typerr(const Type * t) const1117 void Type::typerr( const Type *t ) const {
1118 #ifndef PRODUCT
1119   tty->print("\nError mixing types: ");
1120   dump();
1121   tty->print(" and ");
1122   t->dump();
1123   tty->print("\n");
1124 #endif
1125   ShouldNotReachHere();
1126 }
1127 
1128 
1129 //=============================================================================
1130 // Convenience common pre-built types.
1131 const TypeF *TypeF::MAX;        // Floating point max
1132 const TypeF *TypeF::MIN;        // Floating point min
1133 const TypeF *TypeF::ZERO;       // Floating point zero
1134 const TypeF *TypeF::ONE;        // Floating point one
1135 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1136 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1137 
1138 //------------------------------make-------------------------------------------
1139 // Create a float constant
make(float f)1140 const TypeF *TypeF::make(float f) {
1141   return (TypeF*)(new TypeF(f))->hashcons();
1142 }
1143 
1144 //------------------------------meet-------------------------------------------
1145 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const1146 const Type *TypeF::xmeet( const Type *t ) const {
1147   // Perform a fast test for common case; meeting the same types together.
1148   if( this == t ) return this;  // Meeting same type-rep?
1149 
1150   // Current "this->_base" is FloatCon
1151   switch (t->base()) {          // Switch on original type
1152   case AnyPtr:                  // Mixing with oops happens when javac
1153   case RawPtr:                  // reuses local variables
1154   case OopPtr:
1155   case InstPtr:
1156   case AryPtr:
1157   case MetadataPtr:
1158   case KlassPtr:
1159   case NarrowOop:
1160   case NarrowKlass:
1161   case Int:
1162   case Long:
1163   case DoubleTop:
1164   case DoubleCon:
1165   case DoubleBot:
1166   case Bottom:                  // Ye Olde Default
1167     return Type::BOTTOM;
1168 
1169   case FloatBot:
1170     return t;
1171 
1172   default:                      // All else is a mistake
1173     typerr(t);
1174 
1175   case FloatCon:                // Float-constant vs Float-constant?
1176     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1177                                 // must compare bitwise as positive zero, negative zero and NaN have
1178                                 // all the same representation in C++
1179       return FLOAT;             // Return generic float
1180                                 // Equal constants
1181   case Top:
1182   case FloatTop:
1183     break;                      // Return the float constant
1184   }
1185   return this;                  // Return the float constant
1186 }
1187 
1188 //------------------------------xdual------------------------------------------
1189 // Dual: symmetric
xdual() const1190 const Type *TypeF::xdual() const {
1191   return this;
1192 }
1193 
1194 //------------------------------eq---------------------------------------------
1195 // Structural equality check for Type representations
eq(const Type * t) const1196 bool TypeF::eq(const Type *t) const {
1197   // Bitwise comparison to distinguish between +/-0. These values must be treated
1198   // as different to be consistent with C1 and the interpreter.
1199   return (jint_cast(_f) == jint_cast(t->getf()));
1200 }
1201 
1202 //------------------------------hash-------------------------------------------
1203 // Type-specific hashing function.
hash(void) const1204 int TypeF::hash(void) const {
1205   return *(int*)(&_f);
1206 }
1207 
1208 //------------------------------is_finite--------------------------------------
1209 // Has a finite value
is_finite() const1210 bool TypeF::is_finite() const {
1211   return g_isfinite(getf()) != 0;
1212 }
1213 
1214 //------------------------------is_nan-----------------------------------------
1215 // Is not a number (NaN)
is_nan() const1216 bool TypeF::is_nan()    const {
1217   return g_isnan(getf()) != 0;
1218 }
1219 
1220 //------------------------------dump2------------------------------------------
1221 // Dump float constant Type
1222 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const1223 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1224   Type::dump2(d,depth, st);
1225   st->print("%f", _f);
1226 }
1227 #endif
1228 
1229 //------------------------------singleton--------------------------------------
1230 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1231 // constants (Ldi nodes).  Singletons are integer, float or double constants
1232 // or a single symbol.
singleton(void) const1233 bool TypeF::singleton(void) const {
1234   return true;                  // Always a singleton
1235 }
1236 
empty(void) const1237 bool TypeF::empty(void) const {
1238   return false;                 // always exactly a singleton
1239 }
1240 
1241 //=============================================================================
1242 // Convenience common pre-built types.
1243 const TypeD *TypeD::MAX;        // Floating point max
1244 const TypeD *TypeD::MIN;        // Floating point min
1245 const TypeD *TypeD::ZERO;       // Floating point zero
1246 const TypeD *TypeD::ONE;        // Floating point one
1247 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1248 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1249 
1250 //------------------------------make-------------------------------------------
make(double d)1251 const TypeD *TypeD::make(double d) {
1252   return (TypeD*)(new TypeD(d))->hashcons();
1253 }
1254 
1255 //------------------------------meet-------------------------------------------
1256 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const1257 const Type *TypeD::xmeet( const Type *t ) const {
1258   // Perform a fast test for common case; meeting the same types together.
1259   if( this == t ) return this;  // Meeting same type-rep?
1260 
1261   // Current "this->_base" is DoubleCon
1262   switch (t->base()) {          // Switch on original type
1263   case AnyPtr:                  // Mixing with oops happens when javac
1264   case RawPtr:                  // reuses local variables
1265   case OopPtr:
1266   case InstPtr:
1267   case AryPtr:
1268   case MetadataPtr:
1269   case KlassPtr:
1270   case NarrowOop:
1271   case NarrowKlass:
1272   case Int:
1273   case Long:
1274   case FloatTop:
1275   case FloatCon:
1276   case FloatBot:
1277   case Bottom:                  // Ye Olde Default
1278     return Type::BOTTOM;
1279 
1280   case DoubleBot:
1281     return t;
1282 
1283   default:                      // All else is a mistake
1284     typerr(t);
1285 
1286   case DoubleCon:               // Double-constant vs Double-constant?
1287     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1288       return DOUBLE;            // Return generic double
1289   case Top:
1290   case DoubleTop:
1291     break;
1292   }
1293   return this;                  // Return the double constant
1294 }
1295 
1296 //------------------------------xdual------------------------------------------
1297 // Dual: symmetric
xdual() const1298 const Type *TypeD::xdual() const {
1299   return this;
1300 }
1301 
1302 //------------------------------eq---------------------------------------------
1303 // Structural equality check for Type representations
eq(const Type * t) const1304 bool TypeD::eq(const Type *t) const {
1305   // Bitwise comparison to distinguish between +/-0. These values must be treated
1306   // as different to be consistent with C1 and the interpreter.
1307   return (jlong_cast(_d) == jlong_cast(t->getd()));
1308 }
1309 
1310 //------------------------------hash-------------------------------------------
1311 // Type-specific hashing function.
hash(void) const1312 int TypeD::hash(void) const {
1313   return *(int*)(&_d);
1314 }
1315 
1316 //------------------------------is_finite--------------------------------------
1317 // Has a finite value
is_finite() const1318 bool TypeD::is_finite() const {
1319   return g_isfinite(getd()) != 0;
1320 }
1321 
1322 //------------------------------is_nan-----------------------------------------
1323 // Is not a number (NaN)
is_nan() const1324 bool TypeD::is_nan()    const {
1325   return g_isnan(getd()) != 0;
1326 }
1327 
1328 //------------------------------dump2------------------------------------------
1329 // Dump double constant Type
1330 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const1331 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1332   Type::dump2(d,depth,st);
1333   st->print("%f", _d);
1334 }
1335 #endif
1336 
1337 //------------------------------singleton--------------------------------------
1338 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1339 // constants (Ldi nodes).  Singletons are integer, float or double constants
1340 // or a single symbol.
singleton(void) const1341 bool TypeD::singleton(void) const {
1342   return true;                  // Always a singleton
1343 }
1344 
empty(void) const1345 bool TypeD::empty(void) const {
1346   return false;                 // always exactly a singleton
1347 }
1348 
make(jlong lo,jlong hi,int w,BasicType bt)1349 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1350   if (bt == T_INT) {
1351     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1352   }
1353   assert(bt == T_LONG, "basic type not an int or long");
1354   return TypeLong::make(lo, hi, w);
1355 }
1356 
get_con_as_long(BasicType bt) const1357 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1358   if (bt == T_INT) {
1359     return is_int()->get_con();
1360   }
1361   assert(bt == T_LONG, "basic type not an int or long");
1362   return is_long()->get_con();
1363 }
1364 
bottom(BasicType bt)1365 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1366   if (bt == T_INT) {
1367     return TypeInt::INT;
1368   }
1369   assert(bt == T_LONG, "basic type not an int or long");
1370   return TypeLong::LONG;
1371 }
1372 
1373 //=============================================================================
1374 // Convience common pre-built types.
1375 const TypeInt *TypeInt::MAX;    // INT_MAX
1376 const TypeInt *TypeInt::MIN;    // INT_MIN
1377 const TypeInt *TypeInt::MINUS_1;// -1
1378 const TypeInt *TypeInt::ZERO;   // 0
1379 const TypeInt *TypeInt::ONE;    // 1
1380 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1381 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1382 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1383 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1384 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1385 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1386 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1387 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1388 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1389 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1390 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1391 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1392 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1393 const TypeInt *TypeInt::INT;    // 32-bit integers
1394 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1395 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1396 
1397 //------------------------------TypeInt----------------------------------------
TypeInt(jint lo,jint hi,int w)1398 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) {
1399 }
1400 
1401 //------------------------------make-------------------------------------------
make(jint lo)1402 const TypeInt *TypeInt::make( jint lo ) {
1403   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1404 }
1405 
normalize_int_widen(jint lo,jint hi,int w)1406 static int normalize_int_widen( jint lo, jint hi, int w ) {
1407   // Certain normalizations keep us sane when comparing types.
1408   // The 'SMALLINT' covers constants and also CC and its relatives.
1409   if (lo <= hi) {
1410     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1411     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1412   } else {
1413     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1414     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1415   }
1416   return w;
1417 }
1418 
make(jint lo,jint hi,int w)1419 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1420   w = normalize_int_widen(lo, hi, w);
1421   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1422 }
1423 
1424 //------------------------------meet-------------------------------------------
1425 // Compute the MEET of two types.  It returns a new Type representation object
1426 // with reference count equal to the number of Types pointing at it.
1427 // Caller should wrap a Types around it.
xmeet(const Type * t) const1428 const Type *TypeInt::xmeet( const Type *t ) const {
1429   // Perform a fast test for common case; meeting the same types together.
1430   if( this == t ) return this;  // Meeting same type?
1431 
1432   // Currently "this->_base" is a TypeInt
1433   switch (t->base()) {          // Switch on original type
1434   case AnyPtr:                  // Mixing with oops happens when javac
1435   case RawPtr:                  // reuses local variables
1436   case OopPtr:
1437   case InstPtr:
1438   case AryPtr:
1439   case MetadataPtr:
1440   case KlassPtr:
1441   case NarrowOop:
1442   case NarrowKlass:
1443   case Long:
1444   case FloatTop:
1445   case FloatCon:
1446   case FloatBot:
1447   case DoubleTop:
1448   case DoubleCon:
1449   case DoubleBot:
1450   case Bottom:                  // Ye Olde Default
1451     return Type::BOTTOM;
1452   default:                      // All else is a mistake
1453     typerr(t);
1454   case Top:                     // No change
1455     return this;
1456   case Int:                     // Int vs Int?
1457     break;
1458   }
1459 
1460   // Expand covered set
1461   const TypeInt *r = t->is_int();
1462   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1463 }
1464 
1465 //------------------------------xdual------------------------------------------
1466 // Dual: reverse hi & lo; flip widen
xdual() const1467 const Type *TypeInt::xdual() const {
1468   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1469   return new TypeInt(_hi,_lo,w);
1470 }
1471 
1472 //------------------------------widen------------------------------------------
1473 // Only happens for optimistic top-down optimizations.
widen(const Type * old,const Type * limit) const1474 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1475   // Coming from TOP or such; no widening
1476   if( old->base() != Int ) return this;
1477   const TypeInt *ot = old->is_int();
1478 
1479   // If new guy is equal to old guy, no widening
1480   if( _lo == ot->_lo && _hi == ot->_hi )
1481     return old;
1482 
1483   // If new guy contains old, then we widened
1484   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1485     // New contains old
1486     // If new guy is already wider than old, no widening
1487     if( _widen > ot->_widen ) return this;
1488     // If old guy was a constant, do not bother
1489     if (ot->_lo == ot->_hi)  return this;
1490     // Now widen new guy.
1491     // Check for widening too far
1492     if (_widen == WidenMax) {
1493       int max = max_jint;
1494       int min = min_jint;
1495       if (limit->isa_int()) {
1496         max = limit->is_int()->_hi;
1497         min = limit->is_int()->_lo;
1498       }
1499       if (min < _lo && _hi < max) {
1500         // If neither endpoint is extremal yet, push out the endpoint
1501         // which is closer to its respective limit.
1502         if (_lo >= 0 ||                 // easy common case
1503             (juint)(_lo - min) >= (juint)(max - _hi)) {
1504           // Try to widen to an unsigned range type of 31 bits:
1505           return make(_lo, max, WidenMax);
1506         } else {
1507           return make(min, _hi, WidenMax);
1508         }
1509       }
1510       return TypeInt::INT;
1511     }
1512     // Returned widened new guy
1513     return make(_lo,_hi,_widen+1);
1514   }
1515 
1516   // If old guy contains new, then we probably widened too far & dropped to
1517   // bottom.  Return the wider fellow.
1518   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1519     return old;
1520 
1521   //fatal("Integer value range is not subset");
1522   //return this;
1523   return TypeInt::INT;
1524 }
1525 
1526 //------------------------------narrow---------------------------------------
1527 // Only happens for pessimistic optimizations.
narrow(const Type * old) const1528 const Type *TypeInt::narrow( const Type *old ) const {
1529   if (_lo >= _hi)  return this;   // already narrow enough
1530   if (old == NULL)  return this;
1531   const TypeInt* ot = old->isa_int();
1532   if (ot == NULL)  return this;
1533   jint olo = ot->_lo;
1534   jint ohi = ot->_hi;
1535 
1536   // If new guy is equal to old guy, no narrowing
1537   if (_lo == olo && _hi == ohi)  return old;
1538 
1539   // If old guy was maximum range, allow the narrowing
1540   if (olo == min_jint && ohi == max_jint)  return this;
1541 
1542   if (_lo < olo || _hi > ohi)
1543     return this;                // doesn't narrow; pretty wierd
1544 
1545   // The new type narrows the old type, so look for a "death march".
1546   // See comments on PhaseTransform::saturate.
1547   juint nrange = (juint)_hi - _lo;
1548   juint orange = (juint)ohi - olo;
1549   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1550     // Use the new type only if the range shrinks a lot.
1551     // We do not want the optimizer computing 2^31 point by point.
1552     return old;
1553   }
1554 
1555   return this;
1556 }
1557 
1558 //-----------------------------filter------------------------------------------
filter_helper(const Type * kills,bool include_speculative) const1559 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1560   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1561   if (ft == NULL || ft->empty())
1562     return Type::TOP;           // Canonical empty value
1563   if (ft->_widen < this->_widen) {
1564     // Do not allow the value of kill->_widen to affect the outcome.
1565     // The widen bits must be allowed to run freely through the graph.
1566     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1567   }
1568   return ft;
1569 }
1570 
1571 //------------------------------eq---------------------------------------------
1572 // Structural equality check for Type representations
eq(const Type * t) const1573 bool TypeInt::eq( const Type *t ) const {
1574   const TypeInt *r = t->is_int(); // Handy access
1575   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1576 }
1577 
1578 //------------------------------hash-------------------------------------------
1579 // Type-specific hashing function.
hash(void) const1580 int TypeInt::hash(void) const {
1581   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1582 }
1583 
1584 //------------------------------is_finite--------------------------------------
1585 // Has a finite value
is_finite() const1586 bool TypeInt::is_finite() const {
1587   return true;
1588 }
1589 
1590 //------------------------------dump2------------------------------------------
1591 // Dump TypeInt
1592 #ifndef PRODUCT
intname(char * buf,jint n)1593 static const char* intname(char* buf, jint n) {
1594   if (n == min_jint)
1595     return "min";
1596   else if (n < min_jint + 10000)
1597     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1598   else if (n == max_jint)
1599     return "max";
1600   else if (n > max_jint - 10000)
1601     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1602   else
1603     sprintf(buf, INT32_FORMAT, n);
1604   return buf;
1605 }
1606 
dump2(Dict & d,uint depth,outputStream * st) const1607 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1608   char buf[40], buf2[40];
1609   if (_lo == min_jint && _hi == max_jint)
1610     st->print("int");
1611   else if (is_con())
1612     st->print("int:%s", intname(buf, get_con()));
1613   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1614     st->print("bool");
1615   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1616     st->print("byte");
1617   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1618     st->print("char");
1619   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1620     st->print("short");
1621   else if (_hi == max_jint)
1622     st->print("int:>=%s", intname(buf, _lo));
1623   else if (_lo == min_jint)
1624     st->print("int:<=%s", intname(buf, _hi));
1625   else
1626     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1627 
1628   if (_widen != 0 && this != TypeInt::INT)
1629     st->print(":%.*s", _widen, "wwww");
1630 }
1631 #endif
1632 
1633 //------------------------------singleton--------------------------------------
1634 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1635 // constants.
singleton(void) const1636 bool TypeInt::singleton(void) const {
1637   return _lo >= _hi;
1638 }
1639 
empty(void) const1640 bool TypeInt::empty(void) const {
1641   return _lo > _hi;
1642 }
1643 
1644 //=============================================================================
1645 // Convenience common pre-built types.
1646 const TypeLong *TypeLong::MAX;
1647 const TypeLong *TypeLong::MIN;
1648 const TypeLong *TypeLong::MINUS_1;// -1
1649 const TypeLong *TypeLong::ZERO; // 0
1650 const TypeLong *TypeLong::ONE;  // 1
1651 const TypeLong *TypeLong::POS;  // >=0
1652 const TypeLong *TypeLong::LONG; // 64-bit integers
1653 const TypeLong *TypeLong::INT;  // 32-bit subrange
1654 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1655 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1656 
1657 //------------------------------TypeLong---------------------------------------
TypeLong(jlong lo,jlong hi,int w)1658 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) {
1659 }
1660 
1661 //------------------------------make-------------------------------------------
make(jlong lo)1662 const TypeLong *TypeLong::make( jlong lo ) {
1663   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1664 }
1665 
normalize_long_widen(jlong lo,jlong hi,int w)1666 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1667   // Certain normalizations keep us sane when comparing types.
1668   // The 'SMALLINT' covers constants.
1669   if (lo <= hi) {
1670     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1671     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1672   } else {
1673     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1674     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1675   }
1676   return w;
1677 }
1678 
make(jlong lo,jlong hi,int w)1679 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1680   w = normalize_long_widen(lo, hi, w);
1681   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1682 }
1683 
1684 
1685 //------------------------------meet-------------------------------------------
1686 // Compute the MEET of two types.  It returns a new Type representation object
1687 // with reference count equal to the number of Types pointing at it.
1688 // Caller should wrap a Types around it.
xmeet(const Type * t) const1689 const Type *TypeLong::xmeet( const Type *t ) const {
1690   // Perform a fast test for common case; meeting the same types together.
1691   if( this == t ) return this;  // Meeting same type?
1692 
1693   // Currently "this->_base" is a TypeLong
1694   switch (t->base()) {          // Switch on original type
1695   case AnyPtr:                  // Mixing with oops happens when javac
1696   case RawPtr:                  // reuses local variables
1697   case OopPtr:
1698   case InstPtr:
1699   case AryPtr:
1700   case MetadataPtr:
1701   case KlassPtr:
1702   case NarrowOop:
1703   case NarrowKlass:
1704   case Int:
1705   case FloatTop:
1706   case FloatCon:
1707   case FloatBot:
1708   case DoubleTop:
1709   case DoubleCon:
1710   case DoubleBot:
1711   case Bottom:                  // Ye Olde Default
1712     return Type::BOTTOM;
1713   default:                      // All else is a mistake
1714     typerr(t);
1715   case Top:                     // No change
1716     return this;
1717   case Long:                    // Long vs Long?
1718     break;
1719   }
1720 
1721   // Expand covered set
1722   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1723   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1724 }
1725 
1726 //------------------------------xdual------------------------------------------
1727 // Dual: reverse hi & lo; flip widen
xdual() const1728 const Type *TypeLong::xdual() const {
1729   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1730   return new TypeLong(_hi,_lo,w);
1731 }
1732 
1733 //------------------------------widen------------------------------------------
1734 // Only happens for optimistic top-down optimizations.
widen(const Type * old,const Type * limit) const1735 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1736   // Coming from TOP or such; no widening
1737   if( old->base() != Long ) return this;
1738   const TypeLong *ot = old->is_long();
1739 
1740   // If new guy is equal to old guy, no widening
1741   if( _lo == ot->_lo && _hi == ot->_hi )
1742     return old;
1743 
1744   // If new guy contains old, then we widened
1745   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1746     // New contains old
1747     // If new guy is already wider than old, no widening
1748     if( _widen > ot->_widen ) return this;
1749     // If old guy was a constant, do not bother
1750     if (ot->_lo == ot->_hi)  return this;
1751     // Now widen new guy.
1752     // Check for widening too far
1753     if (_widen == WidenMax) {
1754       jlong max = max_jlong;
1755       jlong min = min_jlong;
1756       if (limit->isa_long()) {
1757         max = limit->is_long()->_hi;
1758         min = limit->is_long()->_lo;
1759       }
1760       if (min < _lo && _hi < max) {
1761         // If neither endpoint is extremal yet, push out the endpoint
1762         // which is closer to its respective limit.
1763         if (_lo >= 0 ||                 // easy common case
1764             ((julong)_lo - min) >= ((julong)max - _hi)) {
1765           // Try to widen to an unsigned range type of 32/63 bits:
1766           if (max >= max_juint && _hi < max_juint)
1767             return make(_lo, max_juint, WidenMax);
1768           else
1769             return make(_lo, max, WidenMax);
1770         } else {
1771           return make(min, _hi, WidenMax);
1772         }
1773       }
1774       return TypeLong::LONG;
1775     }
1776     // Returned widened new guy
1777     return make(_lo,_hi,_widen+1);
1778   }
1779 
1780   // If old guy contains new, then we probably widened too far & dropped to
1781   // bottom.  Return the wider fellow.
1782   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1783     return old;
1784 
1785   //  fatal("Long value range is not subset");
1786   // return this;
1787   return TypeLong::LONG;
1788 }
1789 
1790 //------------------------------narrow----------------------------------------
1791 // Only happens for pessimistic optimizations.
narrow(const Type * old) const1792 const Type *TypeLong::narrow( const Type *old ) const {
1793   if (_lo >= _hi)  return this;   // already narrow enough
1794   if (old == NULL)  return this;
1795   const TypeLong* ot = old->isa_long();
1796   if (ot == NULL)  return this;
1797   jlong olo = ot->_lo;
1798   jlong ohi = ot->_hi;
1799 
1800   // If new guy is equal to old guy, no narrowing
1801   if (_lo == olo && _hi == ohi)  return old;
1802 
1803   // If old guy was maximum range, allow the narrowing
1804   if (olo == min_jlong && ohi == max_jlong)  return this;
1805 
1806   if (_lo < olo || _hi > ohi)
1807     return this;                // doesn't narrow; pretty wierd
1808 
1809   // The new type narrows the old type, so look for a "death march".
1810   // See comments on PhaseTransform::saturate.
1811   julong nrange = _hi - _lo;
1812   julong orange = ohi - olo;
1813   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1814     // Use the new type only if the range shrinks a lot.
1815     // We do not want the optimizer computing 2^31 point by point.
1816     return old;
1817   }
1818 
1819   return this;
1820 }
1821 
1822 //-----------------------------filter------------------------------------------
filter_helper(const Type * kills,bool include_speculative) const1823 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1824   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1825   if (ft == NULL || ft->empty())
1826     return Type::TOP;           // Canonical empty value
1827   if (ft->_widen < this->_widen) {
1828     // Do not allow the value of kill->_widen to affect the outcome.
1829     // The widen bits must be allowed to run freely through the graph.
1830     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1831   }
1832   return ft;
1833 }
1834 
1835 //------------------------------eq---------------------------------------------
1836 // Structural equality check for Type representations
eq(const Type * t) const1837 bool TypeLong::eq( const Type *t ) const {
1838   const TypeLong *r = t->is_long(); // Handy access
1839   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1840 }
1841 
1842 //------------------------------hash-------------------------------------------
1843 // Type-specific hashing function.
hash(void) const1844 int TypeLong::hash(void) const {
1845   return (int)(_lo+_hi+_widen+(int)Type::Long);
1846 }
1847 
1848 //------------------------------is_finite--------------------------------------
1849 // Has a finite value
is_finite() const1850 bool TypeLong::is_finite() const {
1851   return true;
1852 }
1853 
1854 //------------------------------dump2------------------------------------------
1855 // Dump TypeLong
1856 #ifndef PRODUCT
longnamenear(jlong x,const char * xname,char * buf,jlong n)1857 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1858   if (n > x) {
1859     if (n >= x + 10000)  return NULL;
1860     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1861   } else if (n < x) {
1862     if (n <= x - 10000)  return NULL;
1863     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1864   } else {
1865     return xname;
1866   }
1867   return buf;
1868 }
1869 
longname(char * buf,jlong n)1870 static const char* longname(char* buf, jlong n) {
1871   const char* str;
1872   if (n == min_jlong)
1873     return "min";
1874   else if (n < min_jlong + 10000)
1875     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1876   else if (n == max_jlong)
1877     return "max";
1878   else if (n > max_jlong - 10000)
1879     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1880   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1881     return str;
1882   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1883     return str;
1884   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1885     return str;
1886   else
1887     sprintf(buf, JLONG_FORMAT, n);
1888   return buf;
1889 }
1890 
dump2(Dict & d,uint depth,outputStream * st) const1891 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1892   char buf[80], buf2[80];
1893   if (_lo == min_jlong && _hi == max_jlong)
1894     st->print("long");
1895   else if (is_con())
1896     st->print("long:%s", longname(buf, get_con()));
1897   else if (_hi == max_jlong)
1898     st->print("long:>=%s", longname(buf, _lo));
1899   else if (_lo == min_jlong)
1900     st->print("long:<=%s", longname(buf, _hi));
1901   else
1902     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1903 
1904   if (_widen != 0 && this != TypeLong::LONG)
1905     st->print(":%.*s", _widen, "wwww");
1906 }
1907 #endif
1908 
1909 //------------------------------singleton--------------------------------------
1910 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1911 // constants
singleton(void) const1912 bool TypeLong::singleton(void) const {
1913   return _lo >= _hi;
1914 }
1915 
empty(void) const1916 bool TypeLong::empty(void) const {
1917   return _lo > _hi;
1918 }
1919 
1920 //=============================================================================
1921 // Convenience common pre-built types.
1922 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1923 const TypeTuple *TypeTuple::IFFALSE;
1924 const TypeTuple *TypeTuple::IFTRUE;
1925 const TypeTuple *TypeTuple::IFNEITHER;
1926 const TypeTuple *TypeTuple::LOOPBODY;
1927 const TypeTuple *TypeTuple::MEMBAR;
1928 const TypeTuple *TypeTuple::STORECONDITIONAL;
1929 const TypeTuple *TypeTuple::START_I2C;
1930 const TypeTuple *TypeTuple::INT_PAIR;
1931 const TypeTuple *TypeTuple::LONG_PAIR;
1932 const TypeTuple *TypeTuple::INT_CC_PAIR;
1933 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1934 
1935 //------------------------------make-------------------------------------------
1936 // Make a TypeTuple from the range of a method signature
make_range(ciSignature * sig)1937 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1938   ciType* return_type = sig->return_type();
1939   uint arg_cnt = return_type->size();
1940   const Type **field_array = fields(arg_cnt);
1941   switch (return_type->basic_type()) {
1942   case T_LONG:
1943     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1944     field_array[TypeFunc::Parms+1] = Type::HALF;
1945     break;
1946   case T_DOUBLE:
1947     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1948     field_array[TypeFunc::Parms+1] = Type::HALF;
1949     break;
1950   case T_OBJECT:
1951   case T_ARRAY:
1952   case T_BOOLEAN:
1953   case T_CHAR:
1954   case T_FLOAT:
1955   case T_BYTE:
1956   case T_SHORT:
1957   case T_INT:
1958     field_array[TypeFunc::Parms] = get_const_type(return_type);
1959     break;
1960   case T_VOID:
1961     break;
1962   default:
1963     ShouldNotReachHere();
1964   }
1965   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1966 }
1967 
1968 // Make a TypeTuple from the domain of a method signature
make_domain(ciInstanceKlass * recv,ciSignature * sig)1969 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1970   uint arg_cnt = sig->size();
1971 
1972   uint pos = TypeFunc::Parms;
1973   const Type **field_array;
1974   if (recv != NULL) {
1975     arg_cnt++;
1976     field_array = fields(arg_cnt);
1977     // Use get_const_type here because it respects UseUniqueSubclasses:
1978     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1979   } else {
1980     field_array = fields(arg_cnt);
1981   }
1982 
1983   int i = 0;
1984   while (pos < TypeFunc::Parms + arg_cnt) {
1985     ciType* type = sig->type_at(i);
1986 
1987     switch (type->basic_type()) {
1988     case T_LONG:
1989       field_array[pos++] = TypeLong::LONG;
1990       field_array[pos++] = Type::HALF;
1991       break;
1992     case T_DOUBLE:
1993       field_array[pos++] = Type::DOUBLE;
1994       field_array[pos++] = Type::HALF;
1995       break;
1996     case T_OBJECT:
1997     case T_ARRAY:
1998     case T_FLOAT:
1999     case T_INT:
2000       field_array[pos++] = get_const_type(type);
2001       break;
2002     case T_BOOLEAN:
2003     case T_CHAR:
2004     case T_BYTE:
2005     case T_SHORT:
2006       field_array[pos++] = TypeInt::INT;
2007       break;
2008     default:
2009       ShouldNotReachHere();
2010     }
2011     i++;
2012   }
2013 
2014   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2015 }
2016 
make(uint cnt,const Type ** fields)2017 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2018   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2019 }
2020 
2021 //------------------------------fields-----------------------------------------
2022 // Subroutine call type with space allocated for argument types
2023 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
fields(uint arg_cnt)2024 const Type **TypeTuple::fields( uint arg_cnt ) {
2025   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2026   flds[TypeFunc::Control  ] = Type::CONTROL;
2027   flds[TypeFunc::I_O      ] = Type::ABIO;
2028   flds[TypeFunc::Memory   ] = Type::MEMORY;
2029   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2030   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2031 
2032   return flds;
2033 }
2034 
2035 //------------------------------meet-------------------------------------------
2036 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const2037 const Type *TypeTuple::xmeet( const Type *t ) const {
2038   // Perform a fast test for common case; meeting the same types together.
2039   if( this == t ) return this;  // Meeting same type-rep?
2040 
2041   // Current "this->_base" is Tuple
2042   switch (t->base()) {          // switch on original type
2043 
2044   case Bottom:                  // Ye Olde Default
2045     return t;
2046 
2047   default:                      // All else is a mistake
2048     typerr(t);
2049 
2050   case Tuple: {                 // Meeting 2 signatures?
2051     const TypeTuple *x = t->is_tuple();
2052     assert( _cnt == x->_cnt, "" );
2053     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2054     for( uint i=0; i<_cnt; i++ )
2055       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2056     return TypeTuple::make(_cnt,fields);
2057   }
2058   case Top:
2059     break;
2060   }
2061   return this;                  // Return the double constant
2062 }
2063 
2064 //------------------------------xdual------------------------------------------
2065 // Dual: compute field-by-field dual
xdual() const2066 const Type *TypeTuple::xdual() const {
2067   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2068   for( uint i=0; i<_cnt; i++ )
2069     fields[i] = _fields[i]->dual();
2070   return new TypeTuple(_cnt,fields);
2071 }
2072 
2073 //------------------------------eq---------------------------------------------
2074 // Structural equality check for Type representations
eq(const Type * t) const2075 bool TypeTuple::eq( const Type *t ) const {
2076   const TypeTuple *s = (const TypeTuple *)t;
2077   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2078   for (uint i = 0; i < _cnt; i++)
2079     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2080       return false;             // Missed
2081   return true;
2082 }
2083 
2084 //------------------------------hash-------------------------------------------
2085 // Type-specific hashing function.
hash(void) const2086 int TypeTuple::hash(void) const {
2087   intptr_t sum = _cnt;
2088   for( uint i=0; i<_cnt; i++ )
2089     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2090   return sum;
2091 }
2092 
2093 //------------------------------dump2------------------------------------------
2094 // Dump signature Type
2095 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const2096 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2097   st->print("{");
2098   if( !depth || d[this] ) {     // Check for recursive print
2099     st->print("...}");
2100     return;
2101   }
2102   d.Insert((void*)this, (void*)this);   // Stop recursion
2103   if( _cnt ) {
2104     uint i;
2105     for( i=0; i<_cnt-1; i++ ) {
2106       st->print("%d:", i);
2107       _fields[i]->dump2(d, depth-1, st);
2108       st->print(", ");
2109     }
2110     st->print("%d:", i);
2111     _fields[i]->dump2(d, depth-1, st);
2112   }
2113   st->print("}");
2114 }
2115 #endif
2116 
2117 //------------------------------singleton--------------------------------------
2118 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2119 // constants (Ldi nodes).  Singletons are integer, float or double constants
2120 // or a single symbol.
singleton(void) const2121 bool TypeTuple::singleton(void) const {
2122   return false;                 // Never a singleton
2123 }
2124 
empty(void) const2125 bool TypeTuple::empty(void) const {
2126   for( uint i=0; i<_cnt; i++ ) {
2127     if (_fields[i]->empty())  return true;
2128   }
2129   return false;
2130 }
2131 
2132 //=============================================================================
2133 // Convenience common pre-built types.
2134 
normalize_array_size(const TypeInt * size)2135 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2136   // Certain normalizations keep us sane when comparing types.
2137   // We do not want arrayOop variables to differ only by the wideness
2138   // of their index types.  Pick minimum wideness, since that is the
2139   // forced wideness of small ranges anyway.
2140   if (size->_widen != Type::WidenMin)
2141     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2142   else
2143     return size;
2144 }
2145 
2146 //------------------------------make-------------------------------------------
make(const Type * elem,const TypeInt * size,bool stable)2147 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2148   if (UseCompressedOops && elem->isa_oopptr()) {
2149     elem = elem->make_narrowoop();
2150   }
2151   size = normalize_array_size(size);
2152   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2153 }
2154 
2155 //------------------------------meet-------------------------------------------
2156 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const2157 const Type *TypeAry::xmeet( const Type *t ) const {
2158   // Perform a fast test for common case; meeting the same types together.
2159   if( this == t ) return this;  // Meeting same type-rep?
2160 
2161   // Current "this->_base" is Ary
2162   switch (t->base()) {          // switch on original type
2163 
2164   case Bottom:                  // Ye Olde Default
2165     return t;
2166 
2167   default:                      // All else is a mistake
2168     typerr(t);
2169 
2170   case Array: {                 // Meeting 2 arrays?
2171     const TypeAry *a = t->is_ary();
2172     return TypeAry::make(_elem->meet_speculative(a->_elem),
2173                          _size->xmeet(a->_size)->is_int(),
2174                          _stable && a->_stable);
2175   }
2176   case Top:
2177     break;
2178   }
2179   return this;                  // Return the double constant
2180 }
2181 
2182 //------------------------------xdual------------------------------------------
2183 // Dual: compute field-by-field dual
xdual() const2184 const Type *TypeAry::xdual() const {
2185   const TypeInt* size_dual = _size->dual()->is_int();
2186   size_dual = normalize_array_size(size_dual);
2187   return new TypeAry(_elem->dual(), size_dual, !_stable);
2188 }
2189 
2190 //------------------------------eq---------------------------------------------
2191 // Structural equality check for Type representations
eq(const Type * t) const2192 bool TypeAry::eq( const Type *t ) const {
2193   const TypeAry *a = (const TypeAry*)t;
2194   return _elem == a->_elem &&
2195     _stable == a->_stable &&
2196     _size == a->_size;
2197 }
2198 
2199 //------------------------------hash-------------------------------------------
2200 // Type-specific hashing function.
hash(void) const2201 int TypeAry::hash(void) const {
2202   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2203 }
2204 
2205 /**
2206  * Return same type without a speculative part in the element
2207  */
remove_speculative() const2208 const Type* TypeAry::remove_speculative() const {
2209   return make(_elem->remove_speculative(), _size, _stable);
2210 }
2211 
2212 /**
2213  * Return same type with cleaned up speculative part of element
2214  */
cleanup_speculative() const2215 const Type* TypeAry::cleanup_speculative() const {
2216   return make(_elem->cleanup_speculative(), _size, _stable);
2217 }
2218 
2219 /**
2220  * Return same type but with a different inline depth (used for speculation)
2221  *
2222  * @param depth  depth to meet with
2223  */
with_inline_depth(int depth) const2224 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2225   if (!UseInlineDepthForSpeculativeTypes) {
2226     return this;
2227   }
2228   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2229 }
2230 
2231 //----------------------interface_vs_oop---------------------------------------
2232 #ifdef ASSERT
interface_vs_oop(const Type * t) const2233 bool TypeAry::interface_vs_oop(const Type *t) const {
2234   const TypeAry* t_ary = t->is_ary();
2235   if (t_ary) {
2236     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2237     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2238     if(this_ptr != NULL && t_ptr != NULL) {
2239       return this_ptr->interface_vs_oop(t_ptr);
2240     }
2241   }
2242   return false;
2243 }
2244 #endif
2245 
2246 //------------------------------dump2------------------------------------------
2247 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const2248 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2249   if (_stable)  st->print("stable:");
2250   _elem->dump2(d, depth, st);
2251   st->print("[");
2252   _size->dump2(d, depth, st);
2253   st->print("]");
2254 }
2255 #endif
2256 
2257 //------------------------------singleton--------------------------------------
2258 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2259 // constants (Ldi nodes).  Singletons are integer, float or double constants
2260 // or a single symbol.
singleton(void) const2261 bool TypeAry::singleton(void) const {
2262   return false;                 // Never a singleton
2263 }
2264 
empty(void) const2265 bool TypeAry::empty(void) const {
2266   return _elem->empty() || _size->empty();
2267 }
2268 
2269 //--------------------------ary_must_be_exact----------------------------------
ary_must_be_exact() const2270 bool TypeAry::ary_must_be_exact() const {
2271   // This logic looks at the element type of an array, and returns true
2272   // if the element type is either a primitive or a final instance class.
2273   // In such cases, an array built on this ary must have no subclasses.
2274   if (_elem == BOTTOM)      return false;  // general array not exact
2275   if (_elem == TOP   )      return false;  // inverted general array not exact
2276   const TypeOopPtr*  toop = NULL;
2277   if (UseCompressedOops && _elem->isa_narrowoop()) {
2278     toop = _elem->make_ptr()->isa_oopptr();
2279   } else {
2280     toop = _elem->isa_oopptr();
2281   }
2282   if (!toop)                return true;   // a primitive type, like int
2283   ciKlass* tklass = toop->klass();
2284   if (tklass == NULL)       return false;  // unloaded class
2285   if (!tklass->is_loaded()) return false;  // unloaded class
2286   const TypeInstPtr* tinst;
2287   if (_elem->isa_narrowoop())
2288     tinst = _elem->make_ptr()->isa_instptr();
2289   else
2290     tinst = _elem->isa_instptr();
2291   if (tinst)
2292     return tklass->as_instance_klass()->is_final();
2293   const TypeAryPtr*  tap;
2294   if (_elem->isa_narrowoop())
2295     tap = _elem->make_ptr()->isa_aryptr();
2296   else
2297     tap = _elem->isa_aryptr();
2298   if (tap)
2299     return tap->ary()->ary_must_be_exact();
2300   return false;
2301 }
2302 
2303 //==============================TypeVect=======================================
2304 // Convenience common pre-built types.
2305 const TypeVect *TypeVect::VECTA = NULL; // vector length agnostic
2306 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2307 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2308 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2309 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2310 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2311 
2312 //------------------------------make-------------------------------------------
make(const Type * elem,uint length)2313 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2314   BasicType elem_bt = elem->array_element_basic_type();
2315   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2316   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2317   int size = length * type2aelembytes(elem_bt);
2318   switch (Matcher::vector_ideal_reg(size)) {
2319   case Op_VecA:
2320     return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2321   case Op_VecS:
2322     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2323   case Op_RegL:
2324   case Op_VecD:
2325   case Op_RegD:
2326     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2327   case Op_VecX:
2328     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2329   case Op_VecY:
2330     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2331   case Op_VecZ:
2332     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2333   }
2334  ShouldNotReachHere();
2335   return NULL;
2336 }
2337 
2338 //------------------------------meet-------------------------------------------
2339 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const2340 const Type *TypeVect::xmeet( const Type *t ) const {
2341   // Perform a fast test for common case; meeting the same types together.
2342   if( this == t ) return this;  // Meeting same type-rep?
2343 
2344   // Current "this->_base" is Vector
2345   switch (t->base()) {          // switch on original type
2346 
2347   case Bottom:                  // Ye Olde Default
2348     return t;
2349 
2350   default:                      // All else is a mistake
2351     typerr(t);
2352   case VectorA:
2353   case VectorS:
2354   case VectorD:
2355   case VectorX:
2356   case VectorY:
2357   case VectorZ: {                // Meeting 2 vectors?
2358     const TypeVect* v = t->is_vect();
2359     assert(  base() == v->base(), "");
2360     assert(length() == v->length(), "");
2361     assert(element_basic_type() == v->element_basic_type(), "");
2362     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2363   }
2364   case Top:
2365     break;
2366   }
2367   return this;
2368 }
2369 
2370 //------------------------------xdual------------------------------------------
2371 // Dual: compute field-by-field dual
xdual() const2372 const Type *TypeVect::xdual() const {
2373   return new TypeVect(base(), _elem->dual(), _length);
2374 }
2375 
2376 //------------------------------eq---------------------------------------------
2377 // Structural equality check for Type representations
eq(const Type * t) const2378 bool TypeVect::eq(const Type *t) const {
2379   const TypeVect *v = t->is_vect();
2380   return (_elem == v->_elem) && (_length == v->_length);
2381 }
2382 
2383 //------------------------------hash-------------------------------------------
2384 // Type-specific hashing function.
hash(void) const2385 int TypeVect::hash(void) const {
2386   return (intptr_t)_elem + (intptr_t)_length;
2387 }
2388 
2389 //------------------------------singleton--------------------------------------
2390 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2391 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2392 // constant value (when vector is created with Replicate code).
singleton(void) const2393 bool TypeVect::singleton(void) const {
2394 // There is no Con node for vectors yet.
2395 //  return _elem->singleton();
2396   return false;
2397 }
2398 
empty(void) const2399 bool TypeVect::empty(void) const {
2400   return _elem->empty();
2401 }
2402 
2403 //------------------------------dump2------------------------------------------
2404 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const2405 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2406   switch (base()) {
2407   case VectorA:
2408     st->print("vectora["); break;
2409   case VectorS:
2410     st->print("vectors["); break;
2411   case VectorD:
2412     st->print("vectord["); break;
2413   case VectorX:
2414     st->print("vectorx["); break;
2415   case VectorY:
2416     st->print("vectory["); break;
2417   case VectorZ:
2418     st->print("vectorz["); break;
2419   default:
2420     ShouldNotReachHere();
2421   }
2422   st->print("%d]:{", _length);
2423   _elem->dump2(d, depth, st);
2424   st->print("}");
2425 }
2426 #endif
2427 
2428 
2429 //=============================================================================
2430 // Convenience common pre-built types.
2431 const TypePtr *TypePtr::NULL_PTR;
2432 const TypePtr *TypePtr::NOTNULL;
2433 const TypePtr *TypePtr::BOTTOM;
2434 
2435 //------------------------------meet-------------------------------------------
2436 // Meet over the PTR enum
2437 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2438   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2439   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2440   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2441   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2442   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2443   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2444   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2445 };
2446 
2447 //------------------------------make-------------------------------------------
make(TYPES t,enum PTR ptr,int offset,const TypePtr * speculative,int inline_depth)2448 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2449   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2450 }
2451 
2452 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const2453 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2454   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2455   if( ptr == _ptr ) return this;
2456   return make(_base, ptr, _offset, _speculative, _inline_depth);
2457 }
2458 
2459 //------------------------------get_con----------------------------------------
get_con() const2460 intptr_t TypePtr::get_con() const {
2461   assert( _ptr == Null, "" );
2462   return _offset;
2463 }
2464 
2465 //------------------------------meet-------------------------------------------
2466 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const2467 const Type *TypePtr::xmeet(const Type *t) const {
2468   const Type* res = xmeet_helper(t);
2469   if (res->isa_ptr() == NULL) {
2470     return res;
2471   }
2472 
2473   const TypePtr* res_ptr = res->is_ptr();
2474   if (res_ptr->speculative() != NULL) {
2475     // type->speculative() == NULL means that speculation is no better
2476     // than type, i.e. type->speculative() == type. So there are 2
2477     // ways to represent the fact that we have no useful speculative
2478     // data and we should use a single one to be able to test for
2479     // equality between types. Check whether type->speculative() ==
2480     // type and set speculative to NULL if it is the case.
2481     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2482       return res_ptr->remove_speculative();
2483     }
2484   }
2485 
2486   return res;
2487 }
2488 
xmeet_helper(const Type * t) const2489 const Type *TypePtr::xmeet_helper(const Type *t) const {
2490   // Perform a fast test for common case; meeting the same types together.
2491   if( this == t ) return this;  // Meeting same type-rep?
2492 
2493   // Current "this->_base" is AnyPtr
2494   switch (t->base()) {          // switch on original type
2495   case Int:                     // Mixing ints & oops happens when javac
2496   case Long:                    // reuses local variables
2497   case FloatTop:
2498   case FloatCon:
2499   case FloatBot:
2500   case DoubleTop:
2501   case DoubleCon:
2502   case DoubleBot:
2503   case NarrowOop:
2504   case NarrowKlass:
2505   case Bottom:                  // Ye Olde Default
2506     return Type::BOTTOM;
2507   case Top:
2508     return this;
2509 
2510   case AnyPtr: {                // Meeting to AnyPtrs
2511     const TypePtr *tp = t->is_ptr();
2512     const TypePtr* speculative = xmeet_speculative(tp);
2513     int depth = meet_inline_depth(tp->inline_depth());
2514     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2515   }
2516   case RawPtr:                  // For these, flip the call around to cut down
2517   case OopPtr:
2518   case InstPtr:                 // on the cases I have to handle.
2519   case AryPtr:
2520   case MetadataPtr:
2521   case KlassPtr:
2522     return t->xmeet(this);      // Call in reverse direction
2523   default:                      // All else is a mistake
2524     typerr(t);
2525 
2526   }
2527   return this;
2528 }
2529 
2530 //------------------------------meet_offset------------------------------------
meet_offset(int offset) const2531 int TypePtr::meet_offset( int offset ) const {
2532   // Either is 'TOP' offset?  Return the other offset!
2533   if( _offset == OffsetTop ) return offset;
2534   if( offset == OffsetTop ) return _offset;
2535   // If either is different, return 'BOTTOM' offset
2536   if( _offset != offset ) return OffsetBot;
2537   return _offset;
2538 }
2539 
2540 //------------------------------dual_offset------------------------------------
dual_offset() const2541 int TypePtr::dual_offset( ) const {
2542   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2543   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2544   return _offset;               // Map everything else into self
2545 }
2546 
2547 //------------------------------xdual------------------------------------------
2548 // Dual: compute field-by-field dual
2549 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2550   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2551 };
xdual() const2552 const Type *TypePtr::xdual() const {
2553   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2554 }
2555 
2556 //------------------------------xadd_offset------------------------------------
xadd_offset(intptr_t offset) const2557 int TypePtr::xadd_offset( intptr_t offset ) const {
2558   // Adding to 'TOP' offset?  Return 'TOP'!
2559   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2560   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2561   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2562   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2563   offset += (intptr_t)_offset;
2564   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2565 
2566   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2567   // It is possible to construct a negative offset during PhaseCCP
2568 
2569   return (int)offset;        // Sum valid offsets
2570 }
2571 
2572 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const2573 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2574   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2575 }
2576 
2577 //------------------------------eq---------------------------------------------
2578 // Structural equality check for Type representations
eq(const Type * t) const2579 bool TypePtr::eq( const Type *t ) const {
2580   const TypePtr *a = (const TypePtr*)t;
2581   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2582 }
2583 
2584 //------------------------------hash-------------------------------------------
2585 // Type-specific hashing function.
hash(void) const2586 int TypePtr::hash(void) const {
2587   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2588 ;
2589 }
2590 
2591 /**
2592  * Return same type without a speculative part
2593  */
remove_speculative() const2594 const Type* TypePtr::remove_speculative() const {
2595   if (_speculative == NULL) {
2596     return this;
2597   }
2598   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2599   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2600 }
2601 
2602 /**
2603  * Return same type but drop speculative part if we know we won't use
2604  * it
2605  */
cleanup_speculative() const2606 const Type* TypePtr::cleanup_speculative() const {
2607   if (speculative() == NULL) {
2608     return this;
2609   }
2610   const Type* no_spec = remove_speculative();
2611   // If this is NULL_PTR then we don't need the speculative type
2612   // (with_inline_depth in case the current type inline depth is
2613   // InlineDepthTop)
2614   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2615     return no_spec;
2616   }
2617   if (above_centerline(speculative()->ptr())) {
2618     return no_spec;
2619   }
2620   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2621   // If the speculative may be null and is an inexact klass then it
2622   // doesn't help
2623   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2624       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2625     return no_spec;
2626   }
2627   return this;
2628 }
2629 
2630 /**
2631  * dual of the speculative part of the type
2632  */
dual_speculative() const2633 const TypePtr* TypePtr::dual_speculative() const {
2634   if (_speculative == NULL) {
2635     return NULL;
2636   }
2637   return _speculative->dual()->is_ptr();
2638 }
2639 
2640 /**
2641  * meet of the speculative parts of 2 types
2642  *
2643  * @param other  type to meet with
2644  */
xmeet_speculative(const TypePtr * other) const2645 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2646   bool this_has_spec = (_speculative != NULL);
2647   bool other_has_spec = (other->speculative() != NULL);
2648 
2649   if (!this_has_spec && !other_has_spec) {
2650     return NULL;
2651   }
2652 
2653   // If we are at a point where control flow meets and one branch has
2654   // a speculative type and the other has not, we meet the speculative
2655   // type of one branch with the actual type of the other. If the
2656   // actual type is exact and the speculative is as well, then the
2657   // result is a speculative type which is exact and we can continue
2658   // speculation further.
2659   const TypePtr* this_spec = _speculative;
2660   const TypePtr* other_spec = other->speculative();
2661 
2662   if (!this_has_spec) {
2663     this_spec = this;
2664   }
2665 
2666   if (!other_has_spec) {
2667     other_spec = other;
2668   }
2669 
2670   return this_spec->meet(other_spec)->is_ptr();
2671 }
2672 
2673 /**
2674  * dual of the inline depth for this type (used for speculation)
2675  */
dual_inline_depth() const2676 int TypePtr::dual_inline_depth() const {
2677   return -inline_depth();
2678 }
2679 
2680 /**
2681  * meet of 2 inline depths (used for speculation)
2682  *
2683  * @param depth  depth to meet with
2684  */
meet_inline_depth(int depth) const2685 int TypePtr::meet_inline_depth(int depth) const {
2686   return MAX2(inline_depth(), depth);
2687 }
2688 
2689 /**
2690  * Are the speculative parts of 2 types equal?
2691  *
2692  * @param other  type to compare this one to
2693  */
eq_speculative(const TypePtr * other) const2694 bool TypePtr::eq_speculative(const TypePtr* other) const {
2695   if (_speculative == NULL || other->speculative() == NULL) {
2696     return _speculative == other->speculative();
2697   }
2698 
2699   if (_speculative->base() != other->speculative()->base()) {
2700     return false;
2701   }
2702 
2703   return _speculative->eq(other->speculative());
2704 }
2705 
2706 /**
2707  * Hash of the speculative part of the type
2708  */
hash_speculative() const2709 int TypePtr::hash_speculative() const {
2710   if (_speculative == NULL) {
2711     return 0;
2712   }
2713 
2714   return _speculative->hash();
2715 }
2716 
2717 /**
2718  * add offset to the speculative part of the type
2719  *
2720  * @param offset  offset to add
2721  */
add_offset_speculative(intptr_t offset) const2722 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2723   if (_speculative == NULL) {
2724     return NULL;
2725   }
2726   return _speculative->add_offset(offset)->is_ptr();
2727 }
2728 
2729 /**
2730  * return exact klass from the speculative type if there's one
2731  */
speculative_type() const2732 ciKlass* TypePtr::speculative_type() const {
2733   if (_speculative != NULL && _speculative->isa_oopptr()) {
2734     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2735     if (speculative->klass_is_exact()) {
2736       return speculative->klass();
2737     }
2738   }
2739   return NULL;
2740 }
2741 
2742 /**
2743  * return true if speculative type may be null
2744  */
speculative_maybe_null() const2745 bool TypePtr::speculative_maybe_null() const {
2746   if (_speculative != NULL) {
2747     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2748     return speculative->maybe_null();
2749   }
2750   return true;
2751 }
2752 
speculative_always_null() const2753 bool TypePtr::speculative_always_null() const {
2754   if (_speculative != NULL) {
2755     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2756     return speculative == TypePtr::NULL_PTR;
2757   }
2758   return false;
2759 }
2760 
2761 /**
2762  * Same as TypePtr::speculative_type() but return the klass only if
2763  * the speculative tells us is not null
2764  */
speculative_type_not_null() const2765 ciKlass* TypePtr::speculative_type_not_null() const {
2766   if (speculative_maybe_null()) {
2767     return NULL;
2768   }
2769   return speculative_type();
2770 }
2771 
2772 /**
2773  * Check whether new profiling would improve speculative type
2774  *
2775  * @param   exact_kls    class from profiling
2776  * @param   inline_depth inlining depth of profile point
2777  *
2778  * @return  true if type profile is valuable
2779  */
would_improve_type(ciKlass * exact_kls,int inline_depth) const2780 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2781   // no profiling?
2782   if (exact_kls == NULL) {
2783     return false;
2784   }
2785   if (speculative() == TypePtr::NULL_PTR) {
2786     return false;
2787   }
2788   // no speculative type or non exact speculative type?
2789   if (speculative_type() == NULL) {
2790     return true;
2791   }
2792   // If the node already has an exact speculative type keep it,
2793   // unless it was provided by profiling that is at a deeper
2794   // inlining level. Profiling at a higher inlining depth is
2795   // expected to be less accurate.
2796   if (_speculative->inline_depth() == InlineDepthBottom) {
2797     return false;
2798   }
2799   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2800   return inline_depth < _speculative->inline_depth();
2801 }
2802 
2803 /**
2804  * Check whether new profiling would improve ptr (= tells us it is non
2805  * null)
2806  *
2807  * @param   ptr_kind always null or not null?
2808  *
2809  * @return  true if ptr profile is valuable
2810  */
would_improve_ptr(ProfilePtrKind ptr_kind) const2811 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2812   // profiling doesn't tell us anything useful
2813   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2814     return false;
2815   }
2816   // We already know this is not null
2817   if (!this->maybe_null()) {
2818     return false;
2819   }
2820   // We already know the speculative type cannot be null
2821   if (!speculative_maybe_null()) {
2822     return false;
2823   }
2824   // We already know this is always null
2825   if (this == TypePtr::NULL_PTR) {
2826     return false;
2827   }
2828   // We already know the speculative type is always null
2829   if (speculative_always_null()) {
2830     return false;
2831   }
2832   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2833     return false;
2834   }
2835   return true;
2836 }
2837 
2838 //------------------------------dump2------------------------------------------
2839 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2840   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2841 };
2842 
2843 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const2844 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2845   if( _ptr == Null ) st->print("NULL");
2846   else st->print("%s *", ptr_msg[_ptr]);
2847   if( _offset == OffsetTop ) st->print("+top");
2848   else if( _offset == OffsetBot ) st->print("+bot");
2849   else if( _offset ) st->print("+%d", _offset);
2850   dump_inline_depth(st);
2851   dump_speculative(st);
2852 }
2853 
2854 /**
2855  *dump the speculative part of the type
2856  */
dump_speculative(outputStream * st) const2857 void TypePtr::dump_speculative(outputStream *st) const {
2858   if (_speculative != NULL) {
2859     st->print(" (speculative=");
2860     _speculative->dump_on(st);
2861     st->print(")");
2862   }
2863 }
2864 
2865 /**
2866  *dump the inline depth of the type
2867  */
dump_inline_depth(outputStream * st) const2868 void TypePtr::dump_inline_depth(outputStream *st) const {
2869   if (_inline_depth != InlineDepthBottom) {
2870     if (_inline_depth == InlineDepthTop) {
2871       st->print(" (inline_depth=InlineDepthTop)");
2872     } else {
2873       st->print(" (inline_depth=%d)", _inline_depth);
2874     }
2875   }
2876 }
2877 #endif
2878 
2879 //------------------------------singleton--------------------------------------
2880 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2881 // constants
singleton(void) const2882 bool TypePtr::singleton(void) const {
2883   // TopPTR, Null, AnyNull, Constant are all singletons
2884   return (_offset != OffsetBot) && !below_centerline(_ptr);
2885 }
2886 
empty(void) const2887 bool TypePtr::empty(void) const {
2888   return (_offset == OffsetTop) || above_centerline(_ptr);
2889 }
2890 
2891 //=============================================================================
2892 // Convenience common pre-built types.
2893 const TypeRawPtr *TypeRawPtr::BOTTOM;
2894 const TypeRawPtr *TypeRawPtr::NOTNULL;
2895 
2896 //------------------------------make-------------------------------------------
make(enum PTR ptr)2897 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2898   assert( ptr != Constant, "what is the constant?" );
2899   assert( ptr != Null, "Use TypePtr for NULL" );
2900   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2901 }
2902 
make(address bits)2903 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2904   assert( bits, "Use TypePtr for NULL" );
2905   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2906 }
2907 
2908 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const2909 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2910   assert( ptr != Constant, "what is the constant?" );
2911   assert( ptr != Null, "Use TypePtr for NULL" );
2912   assert( _bits==0, "Why cast a constant address?");
2913   if( ptr == _ptr ) return this;
2914   return make(ptr);
2915 }
2916 
2917 //------------------------------get_con----------------------------------------
get_con() const2918 intptr_t TypeRawPtr::get_con() const {
2919   assert( _ptr == Null || _ptr == Constant, "" );
2920   return (intptr_t)_bits;
2921 }
2922 
2923 //------------------------------meet-------------------------------------------
2924 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const2925 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2926   // Perform a fast test for common case; meeting the same types together.
2927   if( this == t ) return this;  // Meeting same type-rep?
2928 
2929   // Current "this->_base" is RawPtr
2930   switch( t->base() ) {         // switch on original type
2931   case Bottom:                  // Ye Olde Default
2932     return t;
2933   case Top:
2934     return this;
2935   case AnyPtr:                  // Meeting to AnyPtrs
2936     break;
2937   case RawPtr: {                // might be top, bot, any/not or constant
2938     enum PTR tptr = t->is_ptr()->ptr();
2939     enum PTR ptr = meet_ptr( tptr );
2940     if( ptr == Constant ) {     // Cannot be equal constants, so...
2941       if( tptr == Constant && _ptr != Constant)  return t;
2942       if( _ptr == Constant && tptr != Constant)  return this;
2943       ptr = NotNull;            // Fall down in lattice
2944     }
2945     return make( ptr );
2946   }
2947 
2948   case OopPtr:
2949   case InstPtr:
2950   case AryPtr:
2951   case MetadataPtr:
2952   case KlassPtr:
2953     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2954   default:                      // All else is a mistake
2955     typerr(t);
2956   }
2957 
2958   // Found an AnyPtr type vs self-RawPtr type
2959   const TypePtr *tp = t->is_ptr();
2960   switch (tp->ptr()) {
2961   case TypePtr::TopPTR:  return this;
2962   case TypePtr::BotPTR:  return t;
2963   case TypePtr::Null:
2964     if( _ptr == TypePtr::TopPTR ) return t;
2965     return TypeRawPtr::BOTTOM;
2966   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2967   case TypePtr::AnyNull:
2968     if( _ptr == TypePtr::Constant) return this;
2969     return make( meet_ptr(TypePtr::AnyNull) );
2970   default: ShouldNotReachHere();
2971   }
2972   return this;
2973 }
2974 
2975 //------------------------------xdual------------------------------------------
2976 // Dual: compute field-by-field dual
xdual() const2977 const Type *TypeRawPtr::xdual() const {
2978   return new TypeRawPtr( dual_ptr(), _bits );
2979 }
2980 
2981 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const2982 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2983   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2984   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2985   if( offset == 0 ) return this; // No change
2986   switch (_ptr) {
2987   case TypePtr::TopPTR:
2988   case TypePtr::BotPTR:
2989   case TypePtr::NotNull:
2990     return this;
2991   case TypePtr::Null:
2992   case TypePtr::Constant: {
2993     address bits = _bits+offset;
2994     if ( bits == 0 ) return TypePtr::NULL_PTR;
2995     return make( bits );
2996   }
2997   default:  ShouldNotReachHere();
2998   }
2999   return NULL;                  // Lint noise
3000 }
3001 
3002 //------------------------------eq---------------------------------------------
3003 // Structural equality check for Type representations
eq(const Type * t) const3004 bool TypeRawPtr::eq( const Type *t ) const {
3005   const TypeRawPtr *a = (const TypeRawPtr*)t;
3006   return _bits == a->_bits && TypePtr::eq(t);
3007 }
3008 
3009 //------------------------------hash-------------------------------------------
3010 // Type-specific hashing function.
hash(void) const3011 int TypeRawPtr::hash(void) const {
3012   return (intptr_t)_bits + TypePtr::hash();
3013 }
3014 
3015 //------------------------------dump2------------------------------------------
3016 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const3017 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3018   if( _ptr == Constant )
3019     st->print(INTPTR_FORMAT, p2i(_bits));
3020   else
3021     st->print("rawptr:%s", ptr_msg[_ptr]);
3022 }
3023 #endif
3024 
3025 //=============================================================================
3026 // Convenience common pre-built type.
3027 const TypeOopPtr *TypeOopPtr::BOTTOM;
3028 
3029 //------------------------------TypeOopPtr-------------------------------------
TypeOopPtr(TYPES t,PTR ptr,ciKlass * k,bool xk,ciObject * o,int offset,int instance_id,const TypePtr * speculative,int inline_depth)3030 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
3031                        int instance_id, const TypePtr* speculative, int inline_depth)
3032   : TypePtr(t, ptr, offset, speculative, inline_depth),
3033     _const_oop(o), _klass(k),
3034     _klass_is_exact(xk),
3035     _is_ptr_to_narrowoop(false),
3036     _is_ptr_to_narrowklass(false),
3037     _is_ptr_to_boxed_value(false),
3038     _instance_id(instance_id) {
3039   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3040       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3041     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3042   }
3043 #ifdef _LP64
3044   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3045     if (_offset == oopDesc::klass_offset_in_bytes()) {
3046       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3047     } else if (klass() == NULL) {
3048       // Array with unknown body type
3049       assert(this->isa_aryptr(), "only arrays without klass");
3050       _is_ptr_to_narrowoop = UseCompressedOops;
3051     } else if (this->isa_aryptr()) {
3052       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3053                              _offset != arrayOopDesc::length_offset_in_bytes());
3054     } else if (klass()->is_instance_klass()) {
3055       ciInstanceKlass* ik = klass()->as_instance_klass();
3056       ciField* field = NULL;
3057       if (this->isa_klassptr()) {
3058         // Perm objects don't use compressed references
3059       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3060         // unsafe access
3061         _is_ptr_to_narrowoop = UseCompressedOops;
3062       } else {
3063         assert(this->isa_instptr(), "must be an instance ptr.");
3064 
3065         if (klass() == ciEnv::current()->Class_klass() &&
3066             (_offset == java_lang_Class::klass_offset() ||
3067              _offset == java_lang_Class::array_klass_offset())) {
3068           // Special hidden fields from the Class.
3069           assert(this->isa_instptr(), "must be an instance ptr.");
3070           _is_ptr_to_narrowoop = false;
3071         } else if (klass() == ciEnv::current()->Class_klass() &&
3072                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3073           // Static fields
3074           ciField* field = NULL;
3075           if (const_oop() != NULL) {
3076             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3077             field = k->get_field_by_offset(_offset, true);
3078           }
3079           if (field != NULL) {
3080             BasicType basic_elem_type = field->layout_type();
3081             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3082           } else {
3083             // unsafe access
3084             _is_ptr_to_narrowoop = UseCompressedOops;
3085           }
3086         } else {
3087           // Instance fields which contains a compressed oop references.
3088           field = ik->get_field_by_offset(_offset, false);
3089           if (field != NULL) {
3090             BasicType basic_elem_type = field->layout_type();
3091             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3092           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3093             // Compile::find_alias_type() cast exactness on all types to verify
3094             // that it does not affect alias type.
3095             _is_ptr_to_narrowoop = UseCompressedOops;
3096           } else {
3097             // Type for the copy start in LibraryCallKit::inline_native_clone().
3098             _is_ptr_to_narrowoop = UseCompressedOops;
3099           }
3100         }
3101       }
3102     }
3103   }
3104 #endif
3105 }
3106 
3107 //------------------------------make-------------------------------------------
make(PTR ptr,int offset,int instance_id,const TypePtr * speculative,int inline_depth)3108 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3109                                      const TypePtr* speculative, int inline_depth) {
3110   assert(ptr != Constant, "no constant generic pointers");
3111   ciKlass*  k = Compile::current()->env()->Object_klass();
3112   bool      xk = false;
3113   ciObject* o = NULL;
3114   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3115 }
3116 
3117 
3118 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const3119 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3120   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3121   if( ptr == _ptr ) return this;
3122   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3123 }
3124 
3125 //-----------------------------cast_to_instance_id----------------------------
cast_to_instance_id(int instance_id) const3126 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3127   // There are no instances of a general oop.
3128   // Return self unchanged.
3129   return this;
3130 }
3131 
3132 //-----------------------------cast_to_exactness-------------------------------
cast_to_exactness(bool klass_is_exact) const3133 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3134   // There is no such thing as an exact general oop.
3135   // Return self unchanged.
3136   return this;
3137 }
3138 
3139 
3140 //------------------------------as_klass_type----------------------------------
3141 // Return the klass type corresponding to this instance or array type.
3142 // It is the type that is loaded from an object of this type.
as_klass_type() const3143 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3144   ciKlass* k = klass();
3145   bool    xk = klass_is_exact();
3146   if (k == NULL)
3147     return TypeKlassPtr::OBJECT;
3148   else
3149     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3150 }
3151 
3152 //------------------------------meet-------------------------------------------
3153 // Compute the MEET of two types.  It returns a new Type object.
xmeet_helper(const Type * t) const3154 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3155   // Perform a fast test for common case; meeting the same types together.
3156   if( this == t ) return this;  // Meeting same type-rep?
3157 
3158   // Current "this->_base" is OopPtr
3159   switch (t->base()) {          // switch on original type
3160 
3161   case Int:                     // Mixing ints & oops happens when javac
3162   case Long:                    // reuses local variables
3163   case FloatTop:
3164   case FloatCon:
3165   case FloatBot:
3166   case DoubleTop:
3167   case DoubleCon:
3168   case DoubleBot:
3169   case NarrowOop:
3170   case NarrowKlass:
3171   case Bottom:                  // Ye Olde Default
3172     return Type::BOTTOM;
3173   case Top:
3174     return this;
3175 
3176   default:                      // All else is a mistake
3177     typerr(t);
3178 
3179   case RawPtr:
3180   case MetadataPtr:
3181   case KlassPtr:
3182     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3183 
3184   case AnyPtr: {
3185     // Found an AnyPtr type vs self-OopPtr type
3186     const TypePtr *tp = t->is_ptr();
3187     int offset = meet_offset(tp->offset());
3188     PTR ptr = meet_ptr(tp->ptr());
3189     const TypePtr* speculative = xmeet_speculative(tp);
3190     int depth = meet_inline_depth(tp->inline_depth());
3191     switch (tp->ptr()) {
3192     case Null:
3193       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3194       // else fall through:
3195     case TopPTR:
3196     case AnyNull: {
3197       int instance_id = meet_instance_id(InstanceTop);
3198       return make(ptr, offset, instance_id, speculative, depth);
3199     }
3200     case BotPTR:
3201     case NotNull:
3202       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3203     default: typerr(t);
3204     }
3205   }
3206 
3207   case OopPtr: {                 // Meeting to other OopPtrs
3208     const TypeOopPtr *tp = t->is_oopptr();
3209     int instance_id = meet_instance_id(tp->instance_id());
3210     const TypePtr* speculative = xmeet_speculative(tp);
3211     int depth = meet_inline_depth(tp->inline_depth());
3212     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3213   }
3214 
3215   case InstPtr:                  // For these, flip the call around to cut down
3216   case AryPtr:
3217     return t->xmeet(this);      // Call in reverse direction
3218 
3219   } // End of switch
3220   return this;                  // Return the double constant
3221 }
3222 
3223 
3224 //------------------------------xdual------------------------------------------
3225 // Dual of a pure heap pointer.  No relevant klass or oop information.
xdual() const3226 const Type *TypeOopPtr::xdual() const {
3227   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3228   assert(const_oop() == NULL,             "no constants here");
3229   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3230 }
3231 
3232 //--------------------------make_from_klass_common-----------------------------
3233 // Computes the element-type given a klass.
make_from_klass_common(ciKlass * klass,bool klass_change,bool try_for_exact)3234 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3235   if (klass->is_instance_klass()) {
3236     Compile* C = Compile::current();
3237     Dependencies* deps = C->dependencies();
3238     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3239     // Element is an instance
3240     bool klass_is_exact = false;
3241     if (klass->is_loaded()) {
3242       // Try to set klass_is_exact.
3243       ciInstanceKlass* ik = klass->as_instance_klass();
3244       klass_is_exact = ik->is_final();
3245       if (!klass_is_exact && klass_change
3246           && deps != NULL && UseUniqueSubclasses) {
3247         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3248         if (sub != NULL) {
3249           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3250           klass = ik = sub;
3251           klass_is_exact = sub->is_final();
3252         }
3253       }
3254       if (!klass_is_exact && try_for_exact && deps != NULL &&
3255           !ik->is_interface() && !ik->has_subklass()) {
3256         // Add a dependence; if concrete subclass added we need to recompile
3257         deps->assert_leaf_type(ik);
3258         klass_is_exact = true;
3259       }
3260     }
3261     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3262   } else if (klass->is_obj_array_klass()) {
3263     // Element is an object array. Recursively call ourself.
3264     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3265     bool xk = etype->klass_is_exact();
3266     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3267     // We used to pass NotNull in here, asserting that the sub-arrays
3268     // are all not-null.  This is not true in generally, as code can
3269     // slam NULLs down in the subarrays.
3270     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3271     return arr;
3272   } else if (klass->is_type_array_klass()) {
3273     // Element is an typeArray
3274     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3275     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3276     // We used to pass NotNull in here, asserting that the array pointer
3277     // is not-null. That was not true in general.
3278     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3279     return arr;
3280   } else {
3281     ShouldNotReachHere();
3282     return NULL;
3283   }
3284 }
3285 
3286 //------------------------------make_from_constant-----------------------------
3287 // Make a java pointer from an oop constant
make_from_constant(ciObject * o,bool require_constant)3288 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3289   assert(!o->is_null_object(), "null object not yet handled here.");
3290 
3291   const bool make_constant = require_constant || o->should_be_constant();
3292 
3293   ciKlass* klass = o->klass();
3294   if (klass->is_instance_klass()) {
3295     // Element is an instance
3296     if (make_constant) {
3297       return TypeInstPtr::make(o);
3298     } else {
3299       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3300     }
3301   } else if (klass->is_obj_array_klass()) {
3302     // Element is an object array. Recursively call ourself.
3303     const TypeOopPtr *etype =
3304       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3305     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3306     // We used to pass NotNull in here, asserting that the sub-arrays
3307     // are all not-null.  This is not true in generally, as code can
3308     // slam NULLs down in the subarrays.
3309     if (make_constant) {
3310       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3311     } else {
3312       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3313     }
3314   } else if (klass->is_type_array_klass()) {
3315     // Element is an typeArray
3316     const Type* etype =
3317       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3318     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3319     // We used to pass NotNull in here, asserting that the array pointer
3320     // is not-null. That was not true in general.
3321     if (make_constant) {
3322       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3323     } else {
3324       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3325     }
3326   }
3327 
3328   fatal("unhandled object type");
3329   return NULL;
3330 }
3331 
3332 //------------------------------get_con----------------------------------------
get_con() const3333 intptr_t TypeOopPtr::get_con() const {
3334   assert( _ptr == Null || _ptr == Constant, "" );
3335   assert( _offset >= 0, "" );
3336 
3337   if (_offset != 0) {
3338     // After being ported to the compiler interface, the compiler no longer
3339     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3340     // to a handle at compile time.  This handle is embedded in the generated
3341     // code and dereferenced at the time the nmethod is made.  Until that time,
3342     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3343     // have access to the addresses!).  This does not seem to currently happen,
3344     // but this assertion here is to help prevent its occurence.
3345     tty->print_cr("Found oop constant with non-zero offset");
3346     ShouldNotReachHere();
3347   }
3348 
3349   return (intptr_t)const_oop()->constant_encoding();
3350 }
3351 
3352 
3353 //-----------------------------filter------------------------------------------
3354 // Do not allow interface-vs.-noninterface joins to collapse to top.
filter_helper(const Type * kills,bool include_speculative) const3355 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3356 
3357   const Type* ft = join_helper(kills, include_speculative);
3358   const TypeInstPtr* ftip = ft->isa_instptr();
3359   const TypeInstPtr* ktip = kills->isa_instptr();
3360 
3361   if (ft->empty()) {
3362     // Check for evil case of 'this' being a class and 'kills' expecting an
3363     // interface.  This can happen because the bytecodes do not contain
3364     // enough type info to distinguish a Java-level interface variable
3365     // from a Java-level object variable.  If we meet 2 classes which
3366     // both implement interface I, but their meet is at 'j/l/O' which
3367     // doesn't implement I, we have no way to tell if the result should
3368     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3369     // into a Phi which "knows" it's an Interface type we'll have to
3370     // uplift the type.
3371     if (!empty()) {
3372       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3373         return kills;           // Uplift to interface
3374       }
3375       // Also check for evil cases of 'this' being a class array
3376       // and 'kills' expecting an array of interfaces.
3377       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3378       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3379         return kills;           // Uplift to array of interface
3380       }
3381     }
3382 
3383     return Type::TOP;           // Canonical empty value
3384   }
3385 
3386   // If we have an interface-typed Phi or cast and we narrow to a class type,
3387   // the join should report back the class.  However, if we have a J/L/Object
3388   // class-typed Phi and an interface flows in, it's possible that the meet &
3389   // join report an interface back out.  This isn't possible but happens
3390   // because the type system doesn't interact well with interfaces.
3391   if (ftip != NULL && ktip != NULL &&
3392       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3393       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3394     assert(!ftip->klass_is_exact(), "interface could not be exact");
3395     return ktip->cast_to_ptr_type(ftip->ptr());
3396   }
3397 
3398   return ft;
3399 }
3400 
3401 //------------------------------eq---------------------------------------------
3402 // Structural equality check for Type representations
eq(const Type * t) const3403 bool TypeOopPtr::eq( const Type *t ) const {
3404   const TypeOopPtr *a = (const TypeOopPtr*)t;
3405   if (_klass_is_exact != a->_klass_is_exact ||
3406       _instance_id != a->_instance_id)  return false;
3407   ciObject* one = const_oop();
3408   ciObject* two = a->const_oop();
3409   if (one == NULL || two == NULL) {
3410     return (one == two) && TypePtr::eq(t);
3411   } else {
3412     return one->equals(two) && TypePtr::eq(t);
3413   }
3414 }
3415 
3416 //------------------------------hash-------------------------------------------
3417 // Type-specific hashing function.
hash(void) const3418 int TypeOopPtr::hash(void) const {
3419   return
3420     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3421              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3422 }
3423 
3424 //------------------------------dump2------------------------------------------
3425 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const3426 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3427   st->print("oopptr:%s", ptr_msg[_ptr]);
3428   if( _klass_is_exact ) st->print(":exact");
3429   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3430   switch( _offset ) {
3431   case OffsetTop: st->print("+top"); break;
3432   case OffsetBot: st->print("+any"); break;
3433   case         0: break;
3434   default:        st->print("+%d",_offset); break;
3435   }
3436   if (_instance_id == InstanceTop)
3437     st->print(",iid=top");
3438   else if (_instance_id != InstanceBot)
3439     st->print(",iid=%d",_instance_id);
3440 
3441   dump_inline_depth(st);
3442   dump_speculative(st);
3443 }
3444 #endif
3445 
3446 //------------------------------singleton--------------------------------------
3447 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3448 // constants
singleton(void) const3449 bool TypeOopPtr::singleton(void) const {
3450   // detune optimizer to not generate constant oop + constant offset as a constant!
3451   // TopPTR, Null, AnyNull, Constant are all singletons
3452   return (_offset == 0) && !below_centerline(_ptr);
3453 }
3454 
3455 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const3456 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3457   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3458 }
3459 
3460 /**
3461  * Return same type without a speculative part
3462  */
remove_speculative() const3463 const Type* TypeOopPtr::remove_speculative() const {
3464   if (_speculative == NULL) {
3465     return this;
3466   }
3467   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3468   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3469 }
3470 
3471 /**
3472  * Return same type but drop speculative part if we know we won't use
3473  * it
3474  */
cleanup_speculative() const3475 const Type* TypeOopPtr::cleanup_speculative() const {
3476   // If the klass is exact and the ptr is not null then there's
3477   // nothing that the speculative type can help us with
3478   if (klass_is_exact() && !maybe_null()) {
3479     return remove_speculative();
3480   }
3481   return TypePtr::cleanup_speculative();
3482 }
3483 
3484 /**
3485  * Return same type but with a different inline depth (used for speculation)
3486  *
3487  * @param depth  depth to meet with
3488  */
with_inline_depth(int depth) const3489 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3490   if (!UseInlineDepthForSpeculativeTypes) {
3491     return this;
3492   }
3493   return make(_ptr, _offset, _instance_id, _speculative, depth);
3494 }
3495 
3496 //------------------------------with_instance_id--------------------------------
with_instance_id(int instance_id) const3497 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3498   assert(_instance_id != -1, "should be known");
3499   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3500 }
3501 
3502 //------------------------------meet_instance_id--------------------------------
meet_instance_id(int instance_id) const3503 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3504   // Either is 'TOP' instance?  Return the other instance!
3505   if( _instance_id == InstanceTop ) return  instance_id;
3506   if(  instance_id == InstanceTop ) return _instance_id;
3507   // If either is different, return 'BOTTOM' instance
3508   if( _instance_id != instance_id ) return InstanceBot;
3509   return _instance_id;
3510 }
3511 
3512 //------------------------------dual_instance_id--------------------------------
dual_instance_id() const3513 int TypeOopPtr::dual_instance_id( ) const {
3514   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3515   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3516   return _instance_id;              // Map everything else into self
3517 }
3518 
3519 /**
3520  * Check whether new profiling would improve speculative type
3521  *
3522  * @param   exact_kls    class from profiling
3523  * @param   inline_depth inlining depth of profile point
3524  *
3525  * @return  true if type profile is valuable
3526  */
would_improve_type(ciKlass * exact_kls,int inline_depth) const3527 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3528   // no way to improve an already exact type
3529   if (klass_is_exact()) {
3530     return false;
3531   }
3532   return TypePtr::would_improve_type(exact_kls, inline_depth);
3533 }
3534 
3535 //=============================================================================
3536 // Convenience common pre-built types.
3537 const TypeInstPtr *TypeInstPtr::NOTNULL;
3538 const TypeInstPtr *TypeInstPtr::BOTTOM;
3539 const TypeInstPtr *TypeInstPtr::MIRROR;
3540 const TypeInstPtr *TypeInstPtr::MARK;
3541 const TypeInstPtr *TypeInstPtr::KLASS;
3542 
3543 //------------------------------TypeInstPtr-------------------------------------
TypeInstPtr(PTR ptr,ciKlass * k,bool xk,ciObject * o,int off,int instance_id,const TypePtr * speculative,int inline_depth)3544 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3545                          int instance_id, const TypePtr* speculative, int inline_depth)
3546   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3547     _name(k->name()) {
3548    assert(k != NULL &&
3549           (k->is_loaded() || o == NULL),
3550           "cannot have constants with non-loaded klass");
3551 };
3552 
3553 //------------------------------make-------------------------------------------
make(PTR ptr,ciKlass * k,bool xk,ciObject * o,int offset,int instance_id,const TypePtr * speculative,int inline_depth)3554 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3555                                      ciKlass* k,
3556                                      bool xk,
3557                                      ciObject* o,
3558                                      int offset,
3559                                      int instance_id,
3560                                      const TypePtr* speculative,
3561                                      int inline_depth) {
3562   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3563   // Either const_oop() is NULL or else ptr is Constant
3564   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3565           "constant pointers must have a value supplied" );
3566   // Ptr is never Null
3567   assert( ptr != Null, "NULL pointers are not typed" );
3568 
3569   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3570   if (ptr == Constant) {
3571     // Note:  This case includes meta-object constants, such as methods.
3572     xk = true;
3573   } else if (k->is_loaded()) {
3574     ciInstanceKlass* ik = k->as_instance_klass();
3575     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3576     if (xk && ik->is_interface())  xk = false;  // no exact interface
3577   }
3578 
3579   // Now hash this baby
3580   TypeInstPtr *result =
3581     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3582 
3583   return result;
3584 }
3585 
3586 /**
3587  *  Create constant type for a constant boxed value
3588  */
get_const_boxed_value() const3589 const Type* TypeInstPtr::get_const_boxed_value() const {
3590   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3591   assert((const_oop() != NULL), "should be called only for constant object");
3592   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3593   BasicType bt = constant.basic_type();
3594   switch (bt) {
3595     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3596     case T_INT:      return TypeInt::make(constant.as_int());
3597     case T_CHAR:     return TypeInt::make(constant.as_char());
3598     case T_BYTE:     return TypeInt::make(constant.as_byte());
3599     case T_SHORT:    return TypeInt::make(constant.as_short());
3600     case T_FLOAT:    return TypeF::make(constant.as_float());
3601     case T_DOUBLE:   return TypeD::make(constant.as_double());
3602     case T_LONG:     return TypeLong::make(constant.as_long());
3603     default:         break;
3604   }
3605   fatal("Invalid boxed value type '%s'", type2name(bt));
3606   return NULL;
3607 }
3608 
3609 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const3610 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3611   if( ptr == _ptr ) return this;
3612   // Reconstruct _sig info here since not a problem with later lazy
3613   // construction, _sig will show up on demand.
3614   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3615 }
3616 
3617 
3618 //-----------------------------cast_to_exactness-------------------------------
cast_to_exactness(bool klass_is_exact) const3619 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3620   if( klass_is_exact == _klass_is_exact ) return this;
3621   if (!_klass->is_loaded())  return this;
3622   ciInstanceKlass* ik = _klass->as_instance_klass();
3623   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3624   if( ik->is_interface() )              return this;  // cannot set xk
3625   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3626 }
3627 
3628 //-----------------------------cast_to_instance_id----------------------------
cast_to_instance_id(int instance_id) const3629 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3630   if( instance_id == _instance_id ) return this;
3631   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3632 }
3633 
3634 //------------------------------xmeet_unloaded---------------------------------
3635 // Compute the MEET of two InstPtrs when at least one is unloaded.
3636 // Assume classes are different since called after check for same name/class-loader
xmeet_unloaded(const TypeInstPtr * tinst) const3637 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3638     int off = meet_offset(tinst->offset());
3639     PTR ptr = meet_ptr(tinst->ptr());
3640     int instance_id = meet_instance_id(tinst->instance_id());
3641     const TypePtr* speculative = xmeet_speculative(tinst);
3642     int depth = meet_inline_depth(tinst->inline_depth());
3643 
3644     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3645     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3646     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3647       //
3648       // Meet unloaded class with java/lang/Object
3649       //
3650       // Meet
3651       //          |                     Unloaded Class
3652       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3653       //  ===================================================================
3654       //   TOP    | ..........................Unloaded......................|
3655       //  AnyNull |  U-AN    |................Unloaded......................|
3656       // Constant | ... O-NN .................................. |   O-BOT   |
3657       //  NotNull | ... O-NN .................................. |   O-BOT   |
3658       //  BOTTOM  | ........................Object-BOTTOM ..................|
3659       //
3660       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3661       //
3662       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3663       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3664       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3665       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3666         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3667         else                                      { return TypeInstPtr::NOTNULL; }
3668       }
3669       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3670 
3671       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3672     }
3673 
3674     // Both are unloaded, not the same class, not Object
3675     // Or meet unloaded with a different loaded class, not java/lang/Object
3676     if( ptr != TypePtr::BotPTR ) {
3677       return TypeInstPtr::NOTNULL;
3678     }
3679     return TypeInstPtr::BOTTOM;
3680 }
3681 
3682 
3683 //------------------------------meet-------------------------------------------
3684 // Compute the MEET of two types.  It returns a new Type object.
xmeet_helper(const Type * t) const3685 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3686   // Perform a fast test for common case; meeting the same types together.
3687   if( this == t ) return this;  // Meeting same type-rep?
3688 
3689   // Current "this->_base" is Pointer
3690   switch (t->base()) {          // switch on original type
3691 
3692   case Int:                     // Mixing ints & oops happens when javac
3693   case Long:                    // reuses local variables
3694   case FloatTop:
3695   case FloatCon:
3696   case FloatBot:
3697   case DoubleTop:
3698   case DoubleCon:
3699   case DoubleBot:
3700   case NarrowOop:
3701   case NarrowKlass:
3702   case Bottom:                  // Ye Olde Default
3703     return Type::BOTTOM;
3704   case Top:
3705     return this;
3706 
3707   default:                      // All else is a mistake
3708     typerr(t);
3709 
3710   case MetadataPtr:
3711   case KlassPtr:
3712   case RawPtr: return TypePtr::BOTTOM;
3713 
3714   case AryPtr: {                // All arrays inherit from Object class
3715     const TypeAryPtr *tp = t->is_aryptr();
3716     int offset = meet_offset(tp->offset());
3717     PTR ptr = meet_ptr(tp->ptr());
3718     int instance_id = meet_instance_id(tp->instance_id());
3719     const TypePtr* speculative = xmeet_speculative(tp);
3720     int depth = meet_inline_depth(tp->inline_depth());
3721     switch (ptr) {
3722     case TopPTR:
3723     case AnyNull:                // Fall 'down' to dual of object klass
3724       // For instances when a subclass meets a superclass we fall
3725       // below the centerline when the superclass is exact. We need to
3726       // do the same here.
3727       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3728         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3729       } else {
3730         // cannot subclass, so the meet has to fall badly below the centerline
3731         ptr = NotNull;
3732         instance_id = InstanceBot;
3733         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3734       }
3735     case Constant:
3736     case NotNull:
3737     case BotPTR:                // Fall down to object klass
3738       // LCA is object_klass, but if we subclass from the top we can do better
3739       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3740         // If 'this' (InstPtr) is above the centerline and it is Object class
3741         // then we can subclass in the Java class hierarchy.
3742         // For instances when a subclass meets a superclass we fall
3743         // below the centerline when the superclass is exact. We need
3744         // to do the same here.
3745         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3746           // that is, tp's array type is a subtype of my klass
3747           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3748                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3749         }
3750       }
3751       // The other case cannot happen, since I cannot be a subtype of an array.
3752       // The meet falls down to Object class below centerline.
3753       if( ptr == Constant )
3754          ptr = NotNull;
3755       instance_id = InstanceBot;
3756       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3757     default: typerr(t);
3758     }
3759   }
3760 
3761   case OopPtr: {                // Meeting to OopPtrs
3762     // Found a OopPtr type vs self-InstPtr type
3763     const TypeOopPtr *tp = t->is_oopptr();
3764     int offset = meet_offset(tp->offset());
3765     PTR ptr = meet_ptr(tp->ptr());
3766     switch (tp->ptr()) {
3767     case TopPTR:
3768     case AnyNull: {
3769       int instance_id = meet_instance_id(InstanceTop);
3770       const TypePtr* speculative = xmeet_speculative(tp);
3771       int depth = meet_inline_depth(tp->inline_depth());
3772       return make(ptr, klass(), klass_is_exact(),
3773                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3774     }
3775     case NotNull:
3776     case BotPTR: {
3777       int instance_id = meet_instance_id(tp->instance_id());
3778       const TypePtr* speculative = xmeet_speculative(tp);
3779       int depth = meet_inline_depth(tp->inline_depth());
3780       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3781     }
3782     default: typerr(t);
3783     }
3784   }
3785 
3786   case AnyPtr: {                // Meeting to AnyPtrs
3787     // Found an AnyPtr type vs self-InstPtr type
3788     const TypePtr *tp = t->is_ptr();
3789     int offset = meet_offset(tp->offset());
3790     PTR ptr = meet_ptr(tp->ptr());
3791     int instance_id = meet_instance_id(InstanceTop);
3792     const TypePtr* speculative = xmeet_speculative(tp);
3793     int depth = meet_inline_depth(tp->inline_depth());
3794     switch (tp->ptr()) {
3795     case Null:
3796       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3797       // else fall through to AnyNull
3798     case TopPTR:
3799     case AnyNull: {
3800       return make(ptr, klass(), klass_is_exact(),
3801                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3802     }
3803     case NotNull:
3804     case BotPTR:
3805       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3806     default: typerr(t);
3807     }
3808   }
3809 
3810   /*
3811                  A-top         }
3812                /   |   \       }  Tops
3813            B-top A-any C-top   }
3814               | /  |  \ |      }  Any-nulls
3815            B-any   |   C-any   }
3816               |    |    |
3817            B-con A-con C-con   } constants; not comparable across classes
3818               |    |    |
3819            B-not   |   C-not   }
3820               | \  |  / |      }  not-nulls
3821            B-bot A-not C-bot   }
3822                \   |   /       }  Bottoms
3823                  A-bot         }
3824   */
3825 
3826   case InstPtr: {                // Meeting 2 Oops?
3827     // Found an InstPtr sub-type vs self-InstPtr type
3828     const TypeInstPtr *tinst = t->is_instptr();
3829     int off = meet_offset( tinst->offset() );
3830     PTR ptr = meet_ptr( tinst->ptr() );
3831     int instance_id = meet_instance_id(tinst->instance_id());
3832     const TypePtr* speculative = xmeet_speculative(tinst);
3833     int depth = meet_inline_depth(tinst->inline_depth());
3834 
3835     // Check for easy case; klasses are equal (and perhaps not loaded!)
3836     // If we have constants, then we created oops so classes are loaded
3837     // and we can handle the constants further down.  This case handles
3838     // both-not-loaded or both-loaded classes
3839     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3840       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3841     }
3842 
3843     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3844     ciKlass* tinst_klass = tinst->klass();
3845     ciKlass* this_klass  = this->klass();
3846     bool tinst_xk = tinst->klass_is_exact();
3847     bool this_xk  = this->klass_is_exact();
3848     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3849       // One of these classes has not been loaded
3850       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3851 #ifndef PRODUCT
3852       if( PrintOpto && Verbose ) {
3853         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3854         tty->print("  this == "); this->dump(); tty->cr();
3855         tty->print(" tinst == "); tinst->dump(); tty->cr();
3856       }
3857 #endif
3858       return unloaded_meet;
3859     }
3860 
3861     // Handle mixing oops and interfaces first.
3862     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3863                                         tinst_klass == ciEnv::current()->Object_klass())) {
3864       ciKlass *tmp = tinst_klass; // Swap interface around
3865       tinst_klass = this_klass;
3866       this_klass = tmp;
3867       bool tmp2 = tinst_xk;
3868       tinst_xk = this_xk;
3869       this_xk = tmp2;
3870     }
3871     if (tinst_klass->is_interface() &&
3872         !(this_klass->is_interface() ||
3873           // Treat java/lang/Object as an honorary interface,
3874           // because we need a bottom for the interface hierarchy.
3875           this_klass == ciEnv::current()->Object_klass())) {
3876       // Oop meets interface!
3877 
3878       // See if the oop subtypes (implements) interface.
3879       ciKlass *k;
3880       bool xk;
3881       if( this_klass->is_subtype_of( tinst_klass ) ) {
3882         // Oop indeed subtypes.  Now keep oop or interface depending
3883         // on whether we are both above the centerline or either is
3884         // below the centerline.  If we are on the centerline
3885         // (e.g., Constant vs. AnyNull interface), use the constant.
3886         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3887         // If we are keeping this_klass, keep its exactness too.
3888         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3889       } else {                  // Does not implement, fall to Object
3890         // Oop does not implement interface, so mixing falls to Object
3891         // just like the verifier does (if both are above the
3892         // centerline fall to interface)
3893         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3894         xk = above_centerline(ptr) ? tinst_xk : false;
3895         // Watch out for Constant vs. AnyNull interface.
3896         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3897         instance_id = InstanceBot;
3898       }
3899       ciObject* o = NULL;  // the Constant value, if any
3900       if (ptr == Constant) {
3901         // Find out which constant.
3902         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3903       }
3904       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3905     }
3906 
3907     // Either oop vs oop or interface vs interface or interface vs Object
3908 
3909     // !!! Here's how the symmetry requirement breaks down into invariants:
3910     // If we split one up & one down AND they subtype, take the down man.
3911     // If we split one up & one down AND they do NOT subtype, "fall hard".
3912     // If both are up and they subtype, take the subtype class.
3913     // If both are up and they do NOT subtype, "fall hard".
3914     // If both are down and they subtype, take the supertype class.
3915     // If both are down and they do NOT subtype, "fall hard".
3916     // Constants treated as down.
3917 
3918     // Now, reorder the above list; observe that both-down+subtype is also
3919     // "fall hard"; "fall hard" becomes the default case:
3920     // If we split one up & one down AND they subtype, take the down man.
3921     // If both are up and they subtype, take the subtype class.
3922 
3923     // If both are down and they subtype, "fall hard".
3924     // If both are down and they do NOT subtype, "fall hard".
3925     // If both are up and they do NOT subtype, "fall hard".
3926     // If we split one up & one down AND they do NOT subtype, "fall hard".
3927 
3928     // If a proper subtype is exact, and we return it, we return it exactly.
3929     // If a proper supertype is exact, there can be no subtyping relationship!
3930     // If both types are equal to the subtype, exactness is and-ed below the
3931     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3932 
3933     // Check for subtyping:
3934     ciKlass *subtype = NULL;
3935     bool subtype_exact = false;
3936     if( tinst_klass->equals(this_klass) ) {
3937       subtype = this_klass;
3938       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3939     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3940       subtype = this_klass;     // Pick subtyping class
3941       subtype_exact = this_xk;
3942     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3943       subtype = tinst_klass;    // Pick subtyping class
3944       subtype_exact = tinst_xk;
3945     }
3946 
3947     if( subtype ) {
3948       if( above_centerline(ptr) ) { // both are up?
3949         this_klass = tinst_klass = subtype;
3950         this_xk = tinst_xk = subtype_exact;
3951       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3952         this_klass = tinst_klass; // tinst is down; keep down man
3953         this_xk = tinst_xk;
3954       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3955         tinst_klass = this_klass; // this is down; keep down man
3956         tinst_xk = this_xk;
3957       } else {
3958         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3959       }
3960     }
3961 
3962     // Check for classes now being equal
3963     if (tinst_klass->equals(this_klass)) {
3964       // If the klasses are equal, the constants may still differ.  Fall to
3965       // NotNull if they do (neither constant is NULL; that is a special case
3966       // handled elsewhere).
3967       ciObject* o = NULL;             // Assume not constant when done
3968       ciObject* this_oop  = const_oop();
3969       ciObject* tinst_oop = tinst->const_oop();
3970       if( ptr == Constant ) {
3971         if (this_oop != NULL && tinst_oop != NULL &&
3972             this_oop->equals(tinst_oop) )
3973           o = this_oop;
3974         else if (above_centerline(this ->_ptr))
3975           o = tinst_oop;
3976         else if (above_centerline(tinst ->_ptr))
3977           o = this_oop;
3978         else
3979           ptr = NotNull;
3980       }
3981       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3982     } // Else classes are not equal
3983 
3984     // Since klasses are different, we require a LCA in the Java
3985     // class hierarchy - which means we have to fall to at least NotNull.
3986     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3987       ptr = NotNull;
3988 
3989     instance_id = InstanceBot;
3990 
3991     // Now we find the LCA of Java classes
3992     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3993     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3994   } // End of case InstPtr
3995 
3996   } // End of switch
3997   return this;                  // Return the double constant
3998 }
3999 
4000 
4001 //------------------------java_mirror_type--------------------------------------
java_mirror_type() const4002 ciType* TypeInstPtr::java_mirror_type() const {
4003   // must be a singleton type
4004   if( const_oop() == NULL )  return NULL;
4005 
4006   // must be of type java.lang.Class
4007   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4008 
4009   return const_oop()->as_instance()->java_mirror_type();
4010 }
4011 
4012 
4013 //------------------------------xdual------------------------------------------
4014 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4015 // inheritance mechanism.
xdual() const4016 const Type *TypeInstPtr::xdual() const {
4017   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4018 }
4019 
4020 //------------------------------eq---------------------------------------------
4021 // Structural equality check for Type representations
eq(const Type * t) const4022 bool TypeInstPtr::eq( const Type *t ) const {
4023   const TypeInstPtr *p = t->is_instptr();
4024   return
4025     klass()->equals(p->klass()) &&
4026     TypeOopPtr::eq(p);          // Check sub-type stuff
4027 }
4028 
4029 //------------------------------hash-------------------------------------------
4030 // Type-specific hashing function.
hash(void) const4031 int TypeInstPtr::hash(void) const {
4032   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4033   return hash;
4034 }
4035 
4036 //------------------------------dump2------------------------------------------
4037 // Dump oop Type
4038 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4039 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4040   // Print the name of the klass.
4041   klass()->print_name_on(st);
4042 
4043   switch( _ptr ) {
4044   case Constant:
4045     // TO DO: Make CI print the hex address of the underlying oop.
4046     if (WizardMode || Verbose) {
4047       const_oop()->print_oop(st);
4048     }
4049   case BotPTR:
4050     if (!WizardMode && !Verbose) {
4051       if( _klass_is_exact ) st->print(":exact");
4052       break;
4053     }
4054   case TopPTR:
4055   case AnyNull:
4056   case NotNull:
4057     st->print(":%s", ptr_msg[_ptr]);
4058     if( _klass_is_exact ) st->print(":exact");
4059     break;
4060   default:
4061     break;
4062   }
4063 
4064   if( _offset ) {               // Dump offset, if any
4065     if( _offset == OffsetBot )      st->print("+any");
4066     else if( _offset == OffsetTop ) st->print("+unknown");
4067     else st->print("+%d", _offset);
4068   }
4069 
4070   st->print(" *");
4071   if (_instance_id == InstanceTop)
4072     st->print(",iid=top");
4073   else if (_instance_id != InstanceBot)
4074     st->print(",iid=%d",_instance_id);
4075 
4076   dump_inline_depth(st);
4077   dump_speculative(st);
4078 }
4079 #endif
4080 
4081 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const4082 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4083   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4084               _instance_id, add_offset_speculative(offset), _inline_depth);
4085 }
4086 
remove_speculative() const4087 const Type *TypeInstPtr::remove_speculative() const {
4088   if (_speculative == NULL) {
4089     return this;
4090   }
4091   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4092   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4093               _instance_id, NULL, _inline_depth);
4094 }
4095 
with_inline_depth(int depth) const4096 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4097   if (!UseInlineDepthForSpeculativeTypes) {
4098     return this;
4099   }
4100   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4101 }
4102 
with_instance_id(int instance_id) const4103 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4104   assert(is_known_instance(), "should be known");
4105   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4106 }
4107 
4108 //=============================================================================
4109 // Convenience common pre-built types.
4110 const TypeAryPtr *TypeAryPtr::RANGE;
4111 const TypeAryPtr *TypeAryPtr::OOPS;
4112 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4113 const TypeAryPtr *TypeAryPtr::BYTES;
4114 const TypeAryPtr *TypeAryPtr::SHORTS;
4115 const TypeAryPtr *TypeAryPtr::CHARS;
4116 const TypeAryPtr *TypeAryPtr::INTS;
4117 const TypeAryPtr *TypeAryPtr::LONGS;
4118 const TypeAryPtr *TypeAryPtr::FLOATS;
4119 const TypeAryPtr *TypeAryPtr::DOUBLES;
4120 
4121 //------------------------------make-------------------------------------------
make(PTR ptr,const TypeAry * ary,ciKlass * k,bool xk,int offset,int instance_id,const TypePtr * speculative,int inline_depth)4122 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4123                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4124   assert(!(k == NULL && ary->_elem->isa_int()),
4125          "integral arrays must be pre-equipped with a class");
4126   if (!xk)  xk = ary->ary_must_be_exact();
4127   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4128   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4129 }
4130 
4131 //------------------------------make-------------------------------------------
make(PTR ptr,ciObject * o,const TypeAry * ary,ciKlass * k,bool xk,int offset,int instance_id,const TypePtr * speculative,int inline_depth,bool is_autobox_cache)4132 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4133                                    int instance_id, const TypePtr* speculative, int inline_depth,
4134                                    bool is_autobox_cache) {
4135   assert(!(k == NULL && ary->_elem->isa_int()),
4136          "integral arrays must be pre-equipped with a class");
4137   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4138   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4139   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4140   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4141 }
4142 
4143 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const4144 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4145   if( ptr == _ptr ) return this;
4146   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4147 }
4148 
4149 
4150 //-----------------------------cast_to_exactness-------------------------------
cast_to_exactness(bool klass_is_exact) const4151 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4152   if( klass_is_exact == _klass_is_exact ) return this;
4153   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4154   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4155 }
4156 
4157 //-----------------------------cast_to_instance_id----------------------------
cast_to_instance_id(int instance_id) const4158 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4159   if( instance_id == _instance_id ) return this;
4160   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4161 }
4162 
4163 
4164 //-----------------------------max_array_length-------------------------------
4165 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
max_array_length(BasicType etype)4166 jint TypeAryPtr::max_array_length(BasicType etype) {
4167   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4168     if (etype == T_NARROWOOP) {
4169       etype = T_OBJECT;
4170     } else if (etype == T_ILLEGAL) { // bottom[]
4171       etype = T_BYTE; // will produce conservatively high value
4172     } else {
4173       fatal("not an element type: %s", type2name(etype));
4174     }
4175   }
4176   return arrayOopDesc::max_array_length(etype);
4177 }
4178 
4179 //-----------------------------narrow_size_type-------------------------------
4180 // Narrow the given size type to the index range for the given array base type.
4181 // Return NULL if the resulting int type becomes empty.
narrow_size_type(const TypeInt * size) const4182 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4183   jint hi = size->_hi;
4184   jint lo = size->_lo;
4185   jint min_lo = 0;
4186   jint max_hi = max_array_length(elem()->basic_type());
4187   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4188   bool chg = false;
4189   if (lo < min_lo) {
4190     lo = min_lo;
4191     if (size->is_con()) {
4192       hi = lo;
4193     }
4194     chg = true;
4195   }
4196   if (hi > max_hi) {
4197     hi = max_hi;
4198     if (size->is_con()) {
4199       lo = hi;
4200     }
4201     chg = true;
4202   }
4203   // Negative length arrays will produce weird intermediate dead fast-path code
4204   if (lo > hi)
4205     return TypeInt::ZERO;
4206   if (!chg)
4207     return size;
4208   return TypeInt::make(lo, hi, Type::WidenMin);
4209 }
4210 
4211 //-------------------------------cast_to_size----------------------------------
cast_to_size(const TypeInt * new_size) const4212 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4213   assert(new_size != NULL, "");
4214   new_size = narrow_size_type(new_size);
4215   if (new_size == size())  return this;
4216   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4217   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4218 }
4219 
4220 //------------------------------cast_to_stable---------------------------------
cast_to_stable(bool stable,int stable_dimension) const4221 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4222   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4223     return this;
4224 
4225   const Type* elem = this->elem();
4226   const TypePtr* elem_ptr = elem->make_ptr();
4227 
4228   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4229     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4230     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4231   }
4232 
4233   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4234 
4235   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4236 }
4237 
4238 //-----------------------------stable_dimension--------------------------------
stable_dimension() const4239 int TypeAryPtr::stable_dimension() const {
4240   if (!is_stable())  return 0;
4241   int dim = 1;
4242   const TypePtr* elem_ptr = elem()->make_ptr();
4243   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4244     dim += elem_ptr->is_aryptr()->stable_dimension();
4245   return dim;
4246 }
4247 
4248 //----------------------cast_to_autobox_cache-----------------------------------
cast_to_autobox_cache() const4249 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4250   if (is_autobox_cache())  return this;
4251   const TypeOopPtr* etype = elem()->make_oopptr();
4252   if (etype == NULL)  return this;
4253   // The pointers in the autobox arrays are always non-null.
4254   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4255   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4256   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4257 }
4258 
4259 //------------------------------eq---------------------------------------------
4260 // Structural equality check for Type representations
eq(const Type * t) const4261 bool TypeAryPtr::eq( const Type *t ) const {
4262   const TypeAryPtr *p = t->is_aryptr();
4263   return
4264     _ary == p->_ary &&  // Check array
4265     TypeOopPtr::eq(p);  // Check sub-parts
4266 }
4267 
4268 //------------------------------hash-------------------------------------------
4269 // Type-specific hashing function.
hash(void) const4270 int TypeAryPtr::hash(void) const {
4271   return (intptr_t)_ary + TypeOopPtr::hash();
4272 }
4273 
4274 //------------------------------meet-------------------------------------------
4275 // Compute the MEET of two types.  It returns a new Type object.
xmeet_helper(const Type * t) const4276 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4277   // Perform a fast test for common case; meeting the same types together.
4278   if( this == t ) return this;  // Meeting same type-rep?
4279   // Current "this->_base" is Pointer
4280   switch (t->base()) {          // switch on original type
4281 
4282   // Mixing ints & oops happens when javac reuses local variables
4283   case Int:
4284   case Long:
4285   case FloatTop:
4286   case FloatCon:
4287   case FloatBot:
4288   case DoubleTop:
4289   case DoubleCon:
4290   case DoubleBot:
4291   case NarrowOop:
4292   case NarrowKlass:
4293   case Bottom:                  // Ye Olde Default
4294     return Type::BOTTOM;
4295   case Top:
4296     return this;
4297 
4298   default:                      // All else is a mistake
4299     typerr(t);
4300 
4301   case OopPtr: {                // Meeting to OopPtrs
4302     // Found a OopPtr type vs self-AryPtr type
4303     const TypeOopPtr *tp = t->is_oopptr();
4304     int offset = meet_offset(tp->offset());
4305     PTR ptr = meet_ptr(tp->ptr());
4306     int depth = meet_inline_depth(tp->inline_depth());
4307     const TypePtr* speculative = xmeet_speculative(tp);
4308     switch (tp->ptr()) {
4309     case TopPTR:
4310     case AnyNull: {
4311       int instance_id = meet_instance_id(InstanceTop);
4312       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4313                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4314     }
4315     case BotPTR:
4316     case NotNull: {
4317       int instance_id = meet_instance_id(tp->instance_id());
4318       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4319     }
4320     default: ShouldNotReachHere();
4321     }
4322   }
4323 
4324   case AnyPtr: {                // Meeting two AnyPtrs
4325     // Found an AnyPtr type vs self-AryPtr type
4326     const TypePtr *tp = t->is_ptr();
4327     int offset = meet_offset(tp->offset());
4328     PTR ptr = meet_ptr(tp->ptr());
4329     const TypePtr* speculative = xmeet_speculative(tp);
4330     int depth = meet_inline_depth(tp->inline_depth());
4331     switch (tp->ptr()) {
4332     case TopPTR:
4333       return this;
4334     case BotPTR:
4335     case NotNull:
4336       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4337     case Null:
4338       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4339       // else fall through to AnyNull
4340     case AnyNull: {
4341       int instance_id = meet_instance_id(InstanceTop);
4342       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4343                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4344     }
4345     default: ShouldNotReachHere();
4346     }
4347   }
4348 
4349   case MetadataPtr:
4350   case KlassPtr:
4351   case RawPtr: return TypePtr::BOTTOM;
4352 
4353   case AryPtr: {                // Meeting 2 references?
4354     const TypeAryPtr *tap = t->is_aryptr();
4355     int off = meet_offset(tap->offset());
4356     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4357     PTR ptr = meet_ptr(tap->ptr());
4358     int instance_id = meet_instance_id(tap->instance_id());
4359     const TypePtr* speculative = xmeet_speculative(tap);
4360     int depth = meet_inline_depth(tap->inline_depth());
4361     ciKlass* lazy_klass = NULL;
4362     if (tary->_elem->isa_int()) {
4363       // Integral array element types have irrelevant lattice relations.
4364       // It is the klass that determines array layout, not the element type.
4365       if (_klass == NULL)
4366         lazy_klass = tap->_klass;
4367       else if (tap->_klass == NULL || tap->_klass == _klass) {
4368         lazy_klass = _klass;
4369       } else {
4370         // Something like byte[int+] meets char[int+].
4371         // This must fall to bottom, not (int[-128..65535])[int+].
4372         instance_id = InstanceBot;
4373         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4374       }
4375     } else // Non integral arrays.
4376       // Must fall to bottom if exact klasses in upper lattice
4377       // are not equal or super klass is exact.
4378       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4379           // meet with top[] and bottom[] are processed further down:
4380           tap->_klass != NULL  && this->_klass != NULL   &&
4381           // both are exact and not equal:
4382           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4383            // 'tap'  is exact and super or unrelated:
4384            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4385            // 'this' is exact and super or unrelated:
4386            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4387       if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4388         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4389       }
4390       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4391     }
4392 
4393     bool xk = false;
4394     switch (tap->ptr()) {
4395     case AnyNull:
4396     case TopPTR:
4397       // Compute new klass on demand, do not use tap->_klass
4398       if (below_centerline(this->_ptr)) {
4399         xk = this->_klass_is_exact;
4400       } else {
4401         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4402       }
4403       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4404     case Constant: {
4405       ciObject* o = const_oop();
4406       if( _ptr == Constant ) {
4407         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4408           xk = (klass() == tap->klass());
4409           ptr = NotNull;
4410           o = NULL;
4411           instance_id = InstanceBot;
4412         } else {
4413           xk = true;
4414         }
4415       } else if(above_centerline(_ptr)) {
4416         o = tap->const_oop();
4417         xk = true;
4418       } else {
4419         // Only precise for identical arrays
4420         xk = this->_klass_is_exact && (klass() == tap->klass());
4421       }
4422       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4423     }
4424     case NotNull:
4425     case BotPTR:
4426       // Compute new klass on demand, do not use tap->_klass
4427       if (above_centerline(this->_ptr))
4428             xk = tap->_klass_is_exact;
4429       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4430               (klass() == tap->klass()); // Only precise for identical arrays
4431       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4432     default: ShouldNotReachHere();
4433     }
4434   }
4435 
4436   // All arrays inherit from Object class
4437   case InstPtr: {
4438     const TypeInstPtr *tp = t->is_instptr();
4439     int offset = meet_offset(tp->offset());
4440     PTR ptr = meet_ptr(tp->ptr());
4441     int instance_id = meet_instance_id(tp->instance_id());
4442     const TypePtr* speculative = xmeet_speculative(tp);
4443     int depth = meet_inline_depth(tp->inline_depth());
4444     switch (ptr) {
4445     case TopPTR:
4446     case AnyNull:                // Fall 'down' to dual of object klass
4447       // For instances when a subclass meets a superclass we fall
4448       // below the centerline when the superclass is exact. We need to
4449       // do the same here.
4450       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4451         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4452       } else {
4453         // cannot subclass, so the meet has to fall badly below the centerline
4454         ptr = NotNull;
4455         instance_id = InstanceBot;
4456         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4457       }
4458     case Constant:
4459     case NotNull:
4460     case BotPTR:                // Fall down to object klass
4461       // LCA is object_klass, but if we subclass from the top we can do better
4462       if (above_centerline(tp->ptr())) {
4463         // If 'tp'  is above the centerline and it is Object class
4464         // then we can subclass in the Java class hierarchy.
4465         // For instances when a subclass meets a superclass we fall
4466         // below the centerline when the superclass is exact. We need
4467         // to do the same here.
4468         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4469           // that is, my array type is a subtype of 'tp' klass
4470           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4471                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4472         }
4473       }
4474       // The other case cannot happen, since t cannot be a subtype of an array.
4475       // The meet falls down to Object class below centerline.
4476       if( ptr == Constant )
4477          ptr = NotNull;
4478       instance_id = InstanceBot;
4479       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4480     default: typerr(t);
4481     }
4482   }
4483   }
4484   return this;                  // Lint noise
4485 }
4486 
4487 //------------------------------xdual------------------------------------------
4488 // Dual: compute field-by-field dual
xdual() const4489 const Type *TypeAryPtr::xdual() const {
4490   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4491 }
4492 
4493 //----------------------interface_vs_oop---------------------------------------
4494 #ifdef ASSERT
interface_vs_oop(const Type * t) const4495 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4496   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4497   if (t_aryptr) {
4498     return _ary->interface_vs_oop(t_aryptr->_ary);
4499   }
4500   return false;
4501 }
4502 #endif
4503 
4504 //------------------------------dump2------------------------------------------
4505 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4506 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4507   _ary->dump2(d,depth,st);
4508   switch( _ptr ) {
4509   case Constant:
4510     const_oop()->print(st);
4511     break;
4512   case BotPTR:
4513     if (!WizardMode && !Verbose) {
4514       if( _klass_is_exact ) st->print(":exact");
4515       break;
4516     }
4517   case TopPTR:
4518   case AnyNull:
4519   case NotNull:
4520     st->print(":%s", ptr_msg[_ptr]);
4521     if( _klass_is_exact ) st->print(":exact");
4522     break;
4523   default:
4524     break;
4525   }
4526 
4527   if( _offset != 0 ) {
4528     int header_size = objArrayOopDesc::header_size() * wordSize;
4529     if( _offset == OffsetTop )       st->print("+undefined");
4530     else if( _offset == OffsetBot )  st->print("+any");
4531     else if( _offset < header_size ) st->print("+%d", _offset);
4532     else {
4533       BasicType basic_elem_type = elem()->basic_type();
4534       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4535       int elem_size = type2aelembytes(basic_elem_type);
4536       st->print("[%d]", (_offset - array_base)/elem_size);
4537     }
4538   }
4539   st->print(" *");
4540   if (_instance_id == InstanceTop)
4541     st->print(",iid=top");
4542   else if (_instance_id != InstanceBot)
4543     st->print(",iid=%d",_instance_id);
4544 
4545   dump_inline_depth(st);
4546   dump_speculative(st);
4547 }
4548 #endif
4549 
empty(void) const4550 bool TypeAryPtr::empty(void) const {
4551   if (_ary->empty())       return true;
4552   return TypeOopPtr::empty();
4553 }
4554 
4555 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const4556 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4557   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4558 }
4559 
remove_speculative() const4560 const Type *TypeAryPtr::remove_speculative() const {
4561   if (_speculative == NULL) {
4562     return this;
4563   }
4564   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4565   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4566 }
4567 
with_inline_depth(int depth) const4568 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4569   if (!UseInlineDepthForSpeculativeTypes) {
4570     return this;
4571   }
4572   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4573 }
4574 
with_instance_id(int instance_id) const4575 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4576   assert(is_known_instance(), "should be known");
4577   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4578 }
4579 
4580 //=============================================================================
4581 
4582 //------------------------------hash-------------------------------------------
4583 // Type-specific hashing function.
hash(void) const4584 int TypeNarrowPtr::hash(void) const {
4585   return _ptrtype->hash() + 7;
4586 }
4587 
singleton(void) const4588 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4589   return _ptrtype->singleton();
4590 }
4591 
empty(void) const4592 bool TypeNarrowPtr::empty(void) const {
4593   return _ptrtype->empty();
4594 }
4595 
get_con() const4596 intptr_t TypeNarrowPtr::get_con() const {
4597   return _ptrtype->get_con();
4598 }
4599 
eq(const Type * t) const4600 bool TypeNarrowPtr::eq( const Type *t ) const {
4601   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4602   if (tc != NULL) {
4603     if (_ptrtype->base() != tc->_ptrtype->base()) {
4604       return false;
4605     }
4606     return tc->_ptrtype->eq(_ptrtype);
4607   }
4608   return false;
4609 }
4610 
xdual() const4611 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4612   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4613   return make_same_narrowptr(odual);
4614 }
4615 
4616 
filter_helper(const Type * kills,bool include_speculative) const4617 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4618   if (isa_same_narrowptr(kills)) {
4619     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4620     if (ft->empty())
4621       return Type::TOP;           // Canonical empty value
4622     if (ft->isa_ptr()) {
4623       return make_hash_same_narrowptr(ft->isa_ptr());
4624     }
4625     return ft;
4626   } else if (kills->isa_ptr()) {
4627     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4628     if (ft->empty())
4629       return Type::TOP;           // Canonical empty value
4630     return ft;
4631   } else {
4632     return Type::TOP;
4633   }
4634 }
4635 
4636 //------------------------------xmeet------------------------------------------
4637 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const4638 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4639   // Perform a fast test for common case; meeting the same types together.
4640   if( this == t ) return this;  // Meeting same type-rep?
4641 
4642   if (t->base() == base()) {
4643     const Type* result = _ptrtype->xmeet(t->make_ptr());
4644     if (result->isa_ptr()) {
4645       return make_hash_same_narrowptr(result->is_ptr());
4646     }
4647     return result;
4648   }
4649 
4650   // Current "this->_base" is NarrowKlass or NarrowOop
4651   switch (t->base()) {          // switch on original type
4652 
4653   case Int:                     // Mixing ints & oops happens when javac
4654   case Long:                    // reuses local variables
4655   case FloatTop:
4656   case FloatCon:
4657   case FloatBot:
4658   case DoubleTop:
4659   case DoubleCon:
4660   case DoubleBot:
4661   case AnyPtr:
4662   case RawPtr:
4663   case OopPtr:
4664   case InstPtr:
4665   case AryPtr:
4666   case MetadataPtr:
4667   case KlassPtr:
4668   case NarrowOop:
4669   case NarrowKlass:
4670 
4671   case Bottom:                  // Ye Olde Default
4672     return Type::BOTTOM;
4673   case Top:
4674     return this;
4675 
4676   default:                      // All else is a mistake
4677     typerr(t);
4678 
4679   } // End of switch
4680 
4681   return this;
4682 }
4683 
4684 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4685 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4686   _ptrtype->dump2(d, depth, st);
4687 }
4688 #endif
4689 
4690 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4691 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4692 
4693 
make(const TypePtr * type)4694 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4695   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4696 }
4697 
remove_speculative() const4698 const Type* TypeNarrowOop::remove_speculative() const {
4699   return make(_ptrtype->remove_speculative()->is_ptr());
4700 }
4701 
cleanup_speculative() const4702 const Type* TypeNarrowOop::cleanup_speculative() const {
4703   return make(_ptrtype->cleanup_speculative()->is_ptr());
4704 }
4705 
4706 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4707 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4708   st->print("narrowoop: ");
4709   TypeNarrowPtr::dump2(d, depth, st);
4710 }
4711 #endif
4712 
4713 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4714 
make(const TypePtr * type)4715 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4716   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4717 }
4718 
4719 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4720 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4721   st->print("narrowklass: ");
4722   TypeNarrowPtr::dump2(d, depth, st);
4723 }
4724 #endif
4725 
4726 
4727 //------------------------------eq---------------------------------------------
4728 // Structural equality check for Type representations
eq(const Type * t) const4729 bool TypeMetadataPtr::eq( const Type *t ) const {
4730   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4731   ciMetadata* one = metadata();
4732   ciMetadata* two = a->metadata();
4733   if (one == NULL || two == NULL) {
4734     return (one == two) && TypePtr::eq(t);
4735   } else {
4736     return one->equals(two) && TypePtr::eq(t);
4737   }
4738 }
4739 
4740 //------------------------------hash-------------------------------------------
4741 // Type-specific hashing function.
hash(void) const4742 int TypeMetadataPtr::hash(void) const {
4743   return
4744     (metadata() ? metadata()->hash() : 0) +
4745     TypePtr::hash();
4746 }
4747 
4748 //------------------------------singleton--------------------------------------
4749 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4750 // constants
singleton(void) const4751 bool TypeMetadataPtr::singleton(void) const {
4752   // detune optimizer to not generate constant metadata + constant offset as a constant!
4753   // TopPTR, Null, AnyNull, Constant are all singletons
4754   return (_offset == 0) && !below_centerline(_ptr);
4755 }
4756 
4757 //------------------------------add_offset-------------------------------------
add_offset(intptr_t offset) const4758 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4759   return make( _ptr, _metadata, xadd_offset(offset));
4760 }
4761 
4762 //-----------------------------filter------------------------------------------
4763 // Do not allow interface-vs.-noninterface joins to collapse to top.
filter_helper(const Type * kills,bool include_speculative) const4764 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4765   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4766   if (ft == NULL || ft->empty())
4767     return Type::TOP;           // Canonical empty value
4768   return ft;
4769 }
4770 
4771  //------------------------------get_con----------------------------------------
get_con() const4772 intptr_t TypeMetadataPtr::get_con() const {
4773   assert( _ptr == Null || _ptr == Constant, "" );
4774   assert( _offset >= 0, "" );
4775 
4776   if (_offset != 0) {
4777     // After being ported to the compiler interface, the compiler no longer
4778     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4779     // to a handle at compile time.  This handle is embedded in the generated
4780     // code and dereferenced at the time the nmethod is made.  Until that time,
4781     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4782     // have access to the addresses!).  This does not seem to currently happen,
4783     // but this assertion here is to help prevent its occurence.
4784     tty->print_cr("Found oop constant with non-zero offset");
4785     ShouldNotReachHere();
4786   }
4787 
4788   return (intptr_t)metadata()->constant_encoding();
4789 }
4790 
4791 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const4792 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4793   if( ptr == _ptr ) return this;
4794   return make(ptr, metadata(), _offset);
4795 }
4796 
4797 //------------------------------meet-------------------------------------------
4798 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const4799 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4800   // Perform a fast test for common case; meeting the same types together.
4801   if( this == t ) return this;  // Meeting same type-rep?
4802 
4803   // Current "this->_base" is OopPtr
4804   switch (t->base()) {          // switch on original type
4805 
4806   case Int:                     // Mixing ints & oops happens when javac
4807   case Long:                    // reuses local variables
4808   case FloatTop:
4809   case FloatCon:
4810   case FloatBot:
4811   case DoubleTop:
4812   case DoubleCon:
4813   case DoubleBot:
4814   case NarrowOop:
4815   case NarrowKlass:
4816   case Bottom:                  // Ye Olde Default
4817     return Type::BOTTOM;
4818   case Top:
4819     return this;
4820 
4821   default:                      // All else is a mistake
4822     typerr(t);
4823 
4824   case AnyPtr: {
4825     // Found an AnyPtr type vs self-OopPtr type
4826     const TypePtr *tp = t->is_ptr();
4827     int offset = meet_offset(tp->offset());
4828     PTR ptr = meet_ptr(tp->ptr());
4829     switch (tp->ptr()) {
4830     case Null:
4831       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4832       // else fall through:
4833     case TopPTR:
4834     case AnyNull: {
4835       return make(ptr, _metadata, offset);
4836     }
4837     case BotPTR:
4838     case NotNull:
4839       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4840     default: typerr(t);
4841     }
4842   }
4843 
4844   case RawPtr:
4845   case KlassPtr:
4846   case OopPtr:
4847   case InstPtr:
4848   case AryPtr:
4849     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4850 
4851   case MetadataPtr: {
4852     const TypeMetadataPtr *tp = t->is_metadataptr();
4853     int offset = meet_offset(tp->offset());
4854     PTR tptr = tp->ptr();
4855     PTR ptr = meet_ptr(tptr);
4856     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4857     if (tptr == TopPTR || _ptr == TopPTR ||
4858         metadata()->equals(tp->metadata())) {
4859       return make(ptr, md, offset);
4860     }
4861     // metadata is different
4862     if( ptr == Constant ) {  // Cannot be equal constants, so...
4863       if( tptr == Constant && _ptr != Constant)  return t;
4864       if( _ptr == Constant && tptr != Constant)  return this;
4865       ptr = NotNull;            // Fall down in lattice
4866     }
4867     return make(ptr, NULL, offset);
4868     break;
4869   }
4870   } // End of switch
4871   return this;                  // Return the double constant
4872 }
4873 
4874 
4875 //------------------------------xdual------------------------------------------
4876 // Dual of a pure metadata pointer.
xdual() const4877 const Type *TypeMetadataPtr::xdual() const {
4878   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4879 }
4880 
4881 //------------------------------dump2------------------------------------------
4882 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const4883 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4884   st->print("metadataptr:%s", ptr_msg[_ptr]);
4885   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4886   switch( _offset ) {
4887   case OffsetTop: st->print("+top"); break;
4888   case OffsetBot: st->print("+any"); break;
4889   case         0: break;
4890   default:        st->print("+%d",_offset); break;
4891   }
4892 }
4893 #endif
4894 
4895 
4896 //=============================================================================
4897 // Convenience common pre-built type.
4898 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4899 
TypeMetadataPtr(PTR ptr,ciMetadata * metadata,int offset)4900 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4901   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4902 }
4903 
make(ciMethod * m)4904 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4905   return make(Constant, m, 0);
4906 }
make(ciMethodData * m)4907 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4908   return make(Constant, m, 0);
4909 }
4910 
4911 //------------------------------make-------------------------------------------
4912 // Create a meta data constant
make(PTR ptr,ciMetadata * m,int offset)4913 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4914   assert(m == NULL || !m->is_klass(), "wrong type");
4915   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4916 }
4917 
4918 
4919 //=============================================================================
4920 // Convenience common pre-built types.
4921 
4922 // Not-null object klass or below
4923 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4924 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4925 
4926 //------------------------------TypeKlassPtr-----------------------------------
TypeKlassPtr(PTR ptr,ciKlass * klass,int offset)4927 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4928   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4929 }
4930 
4931 //------------------------------make-------------------------------------------
4932 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
make(PTR ptr,ciKlass * k,int offset)4933 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4934   assert( k != NULL, "Expect a non-NULL klass");
4935   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4936   TypeKlassPtr *r =
4937     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4938 
4939   return r;
4940 }
4941 
4942 //------------------------------eq---------------------------------------------
4943 // Structural equality check for Type representations
eq(const Type * t) const4944 bool TypeKlassPtr::eq( const Type *t ) const {
4945   const TypeKlassPtr *p = t->is_klassptr();
4946   return
4947     klass()->equals(p->klass()) &&
4948     TypePtr::eq(p);
4949 }
4950 
4951 //------------------------------hash-------------------------------------------
4952 // Type-specific hashing function.
hash(void) const4953 int TypeKlassPtr::hash(void) const {
4954   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4955 }
4956 
4957 //------------------------------singleton--------------------------------------
4958 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4959 // constants
singleton(void) const4960 bool TypeKlassPtr::singleton(void) const {
4961   // detune optimizer to not generate constant klass + constant offset as a constant!
4962   // TopPTR, Null, AnyNull, Constant are all singletons
4963   return (_offset == 0) && !below_centerline(_ptr);
4964 }
4965 
4966 // Do not allow interface-vs.-noninterface joins to collapse to top.
filter_helper(const Type * kills,bool include_speculative) const4967 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4968   // logic here mirrors the one from TypeOopPtr::filter. See comments
4969   // there.
4970   const Type* ft = join_helper(kills, include_speculative);
4971   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4972   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4973 
4974   if (ft->empty()) {
4975     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4976       return kills;             // Uplift to interface
4977 
4978     return Type::TOP;           // Canonical empty value
4979   }
4980 
4981   // Interface klass type could be exact in opposite to interface type,
4982   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4983   if (ftkp != NULL && ktkp != NULL &&
4984       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4985       !ftkp->klass_is_exact() && // Keep exact interface klass
4986       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4987     return ktkp->cast_to_ptr_type(ftkp->ptr());
4988   }
4989 
4990   return ft;
4991 }
4992 
4993 //----------------------compute_klass------------------------------------------
4994 // Compute the defining klass for this class
compute_klass(DEBUG_ONLY (bool verify)) const4995 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4996   // Compute _klass based on element type.
4997   ciKlass* k_ary = NULL;
4998   const TypeInstPtr *tinst;
4999   const TypeAryPtr *tary;
5000   const Type* el = elem();
5001   if (el->isa_narrowoop()) {
5002     el = el->make_ptr();
5003   }
5004 
5005   // Get element klass
5006   if ((tinst = el->isa_instptr()) != NULL) {
5007     // Compute array klass from element klass
5008     k_ary = ciObjArrayKlass::make(tinst->klass());
5009   } else if ((tary = el->isa_aryptr()) != NULL) {
5010     // Compute array klass from element klass
5011     ciKlass* k_elem = tary->klass();
5012     // If element type is something like bottom[], k_elem will be null.
5013     if (k_elem != NULL)
5014       k_ary = ciObjArrayKlass::make(k_elem);
5015   } else if ((el->base() == Type::Top) ||
5016              (el->base() == Type::Bottom)) {
5017     // element type of Bottom occurs from meet of basic type
5018     // and object; Top occurs when doing join on Bottom.
5019     // Leave k_ary at NULL.
5020   } else {
5021     // Cannot compute array klass directly from basic type,
5022     // since subtypes of TypeInt all have basic type T_INT.
5023 #ifdef ASSERT
5024     if (verify && el->isa_int()) {
5025       // Check simple cases when verifying klass.
5026       BasicType bt = T_ILLEGAL;
5027       if (el == TypeInt::BYTE) {
5028         bt = T_BYTE;
5029       } else if (el == TypeInt::SHORT) {
5030         bt = T_SHORT;
5031       } else if (el == TypeInt::CHAR) {
5032         bt = T_CHAR;
5033       } else if (el == TypeInt::INT) {
5034         bt = T_INT;
5035       } else {
5036         return _klass; // just return specified klass
5037       }
5038       return ciTypeArrayKlass::make(bt);
5039     }
5040 #endif
5041     assert(!el->isa_int(),
5042            "integral arrays must be pre-equipped with a class");
5043     // Compute array klass directly from basic type
5044     k_ary = ciTypeArrayKlass::make(el->basic_type());
5045   }
5046   return k_ary;
5047 }
5048 
5049 //------------------------------klass------------------------------------------
5050 // Return the defining klass for this class
klass() const5051 ciKlass* TypeAryPtr::klass() const {
5052   if( _klass ) return _klass;   // Return cached value, if possible
5053 
5054   // Oops, need to compute _klass and cache it
5055   ciKlass* k_ary = compute_klass();
5056 
5057   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5058     // The _klass field acts as a cache of the underlying
5059     // ciKlass for this array type.  In order to set the field,
5060     // we need to cast away const-ness.
5061     //
5062     // IMPORTANT NOTE: we *never* set the _klass field for the
5063     // type TypeAryPtr::OOPS.  This Type is shared between all
5064     // active compilations.  However, the ciKlass which represents
5065     // this Type is *not* shared between compilations, so caching
5066     // this value would result in fetching a dangling pointer.
5067     //
5068     // Recomputing the underlying ciKlass for each request is
5069     // a bit less efficient than caching, but calls to
5070     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5071     ((TypeAryPtr*)this)->_klass = k_ary;
5072     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5073         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5074       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5075     }
5076   }
5077   return k_ary;
5078 }
5079 
5080 
5081 //------------------------------add_offset-------------------------------------
5082 // Access internals of klass object
add_offset(intptr_t offset) const5083 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5084   return make( _ptr, klass(), xadd_offset(offset) );
5085 }
5086 
5087 //------------------------------cast_to_ptr_type-------------------------------
cast_to_ptr_type(PTR ptr) const5088 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5089   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5090   if( ptr == _ptr ) return this;
5091   return make(ptr, _klass, _offset);
5092 }
5093 
5094 
5095 //-----------------------------cast_to_exactness-------------------------------
cast_to_exactness(bool klass_is_exact) const5096 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5097   if( klass_is_exact == _klass_is_exact ) return this;
5098   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5099 }
5100 
5101 
5102 //-----------------------------as_instance_type--------------------------------
5103 // Corresponding type for an instance of the given class.
5104 // It will be NotNull, and exact if and only if the klass type is exact.
as_instance_type() const5105 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5106   ciKlass* k = klass();
5107   bool    xk = klass_is_exact();
5108   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5109   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5110   guarantee(toop != NULL, "need type for given klass");
5111   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5112   return toop->cast_to_exactness(xk)->is_oopptr();
5113 }
5114 
5115 
5116 //------------------------------xmeet------------------------------------------
5117 // Compute the MEET of two types, return a new Type object.
xmeet(const Type * t) const5118 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5119   // Perform a fast test for common case; meeting the same types together.
5120   if( this == t ) return this;  // Meeting same type-rep?
5121 
5122   // Current "this->_base" is Pointer
5123   switch (t->base()) {          // switch on original type
5124 
5125   case Int:                     // Mixing ints & oops happens when javac
5126   case Long:                    // reuses local variables
5127   case FloatTop:
5128   case FloatCon:
5129   case FloatBot:
5130   case DoubleTop:
5131   case DoubleCon:
5132   case DoubleBot:
5133   case NarrowOop:
5134   case NarrowKlass:
5135   case Bottom:                  // Ye Olde Default
5136     return Type::BOTTOM;
5137   case Top:
5138     return this;
5139 
5140   default:                      // All else is a mistake
5141     typerr(t);
5142 
5143   case AnyPtr: {                // Meeting to AnyPtrs
5144     // Found an AnyPtr type vs self-KlassPtr type
5145     const TypePtr *tp = t->is_ptr();
5146     int offset = meet_offset(tp->offset());
5147     PTR ptr = meet_ptr(tp->ptr());
5148     switch (tp->ptr()) {
5149     case TopPTR:
5150       return this;
5151     case Null:
5152       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5153     case AnyNull:
5154       return make( ptr, klass(), offset );
5155     case BotPTR:
5156     case NotNull:
5157       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5158     default: typerr(t);
5159     }
5160   }
5161 
5162   case RawPtr:
5163   case MetadataPtr:
5164   case OopPtr:
5165   case AryPtr:                  // Meet with AryPtr
5166   case InstPtr:                 // Meet with InstPtr
5167     return TypePtr::BOTTOM;
5168 
5169   //
5170   //             A-top         }
5171   //           /   |   \       }  Tops
5172   //       B-top A-any C-top   }
5173   //          | /  |  \ |      }  Any-nulls
5174   //       B-any   |   C-any   }
5175   //          |    |    |
5176   //       B-con A-con C-con   } constants; not comparable across classes
5177   //          |    |    |
5178   //       B-not   |   C-not   }
5179   //          | \  |  / |      }  not-nulls
5180   //       B-bot A-not C-bot   }
5181   //           \   |   /       }  Bottoms
5182   //             A-bot         }
5183   //
5184 
5185   case KlassPtr: {  // Meet two KlassPtr types
5186     const TypeKlassPtr *tkls = t->is_klassptr();
5187     int  off     = meet_offset(tkls->offset());
5188     PTR  ptr     = meet_ptr(tkls->ptr());
5189 
5190     // Check for easy case; klasses are equal (and perhaps not loaded!)
5191     // If we have constants, then we created oops so classes are loaded
5192     // and we can handle the constants further down.  This case handles
5193     // not-loaded classes
5194     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5195       return make( ptr, klass(), off );
5196     }
5197 
5198     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5199     ciKlass* tkls_klass = tkls->klass();
5200     ciKlass* this_klass = this->klass();
5201     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5202     assert( this_klass->is_loaded(), "This class should have been loaded.");
5203 
5204     // If 'this' type is above the centerline and is a superclass of the
5205     // other, we can treat 'this' as having the same type as the other.
5206     if ((above_centerline(this->ptr())) &&
5207         tkls_klass->is_subtype_of(this_klass)) {
5208       this_klass = tkls_klass;
5209     }
5210     // If 'tinst' type is above the centerline and is a superclass of the
5211     // other, we can treat 'tinst' as having the same type as the other.
5212     if ((above_centerline(tkls->ptr())) &&
5213         this_klass->is_subtype_of(tkls_klass)) {
5214       tkls_klass = this_klass;
5215     }
5216 
5217     // Check for classes now being equal
5218     if (tkls_klass->equals(this_klass)) {
5219       // If the klasses are equal, the constants may still differ.  Fall to
5220       // NotNull if they do (neither constant is NULL; that is a special case
5221       // handled elsewhere).
5222       if( ptr == Constant ) {
5223         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5224             this->klass()->equals(tkls->klass()));
5225         else if (above_centerline(this->ptr()));
5226         else if (above_centerline(tkls->ptr()));
5227         else
5228           ptr = NotNull;
5229       }
5230       return make( ptr, this_klass, off );
5231     } // Else classes are not equal
5232 
5233     // Since klasses are different, we require the LCA in the Java
5234     // class hierarchy - which means we have to fall to at least NotNull.
5235     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5236       ptr = NotNull;
5237     // Now we find the LCA of Java classes
5238     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5239     return   make( ptr, k, off );
5240   } // End of case KlassPtr
5241 
5242   } // End of switch
5243   return this;                  // Return the double constant
5244 }
5245 
5246 //------------------------------xdual------------------------------------------
5247 // Dual: compute field-by-field dual
xdual() const5248 const Type    *TypeKlassPtr::xdual() const {
5249   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5250 }
5251 
5252 //------------------------------get_con----------------------------------------
get_con() const5253 intptr_t TypeKlassPtr::get_con() const {
5254   assert( _ptr == Null || _ptr == Constant, "" );
5255   assert( _offset >= 0, "" );
5256 
5257   if (_offset != 0) {
5258     // After being ported to the compiler interface, the compiler no longer
5259     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5260     // to a handle at compile time.  This handle is embedded in the generated
5261     // code and dereferenced at the time the nmethod is made.  Until that time,
5262     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5263     // have access to the addresses!).  This does not seem to currently happen,
5264     // but this assertion here is to help prevent its occurence.
5265     tty->print_cr("Found oop constant with non-zero offset");
5266     ShouldNotReachHere();
5267   }
5268 
5269   return (intptr_t)klass()->constant_encoding();
5270 }
5271 //------------------------------dump2------------------------------------------
5272 // Dump Klass Type
5273 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const5274 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5275   switch( _ptr ) {
5276   case Constant:
5277     st->print("precise ");
5278   case NotNull:
5279     {
5280       const char *name = klass()->name()->as_utf8();
5281       if( name ) {
5282         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5283       } else {
5284         ShouldNotReachHere();
5285       }
5286     }
5287   case BotPTR:
5288     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5289   case TopPTR:
5290   case AnyNull:
5291     st->print(":%s", ptr_msg[_ptr]);
5292     if( _klass_is_exact ) st->print(":exact");
5293     break;
5294   default:
5295     break;
5296   }
5297 
5298   if( _offset ) {               // Dump offset, if any
5299     if( _offset == OffsetBot )      { st->print("+any"); }
5300     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5301     else                            { st->print("+%d", _offset); }
5302   }
5303 
5304   st->print(" *");
5305 }
5306 #endif
5307 
5308 
5309 
5310 //=============================================================================
5311 // Convenience common pre-built types.
5312 
5313 //------------------------------make-------------------------------------------
make(const TypeTuple * domain,const TypeTuple * range)5314 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5315   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5316 }
5317 
5318 //------------------------------make-------------------------------------------
make(ciMethod * method)5319 const TypeFunc *TypeFunc::make(ciMethod* method) {
5320   Compile* C = Compile::current();
5321   const TypeFunc* tf = C->last_tf(method); // check cache
5322   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5323   const TypeTuple *domain;
5324   if (method->is_static()) {
5325     domain = TypeTuple::make_domain(NULL, method->signature());
5326   } else {
5327     domain = TypeTuple::make_domain(method->holder(), method->signature());
5328   }
5329   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5330   tf = TypeFunc::make(domain, range);
5331   C->set_last_tf(method, tf);  // fill cache
5332   return tf;
5333 }
5334 
5335 //------------------------------meet-------------------------------------------
5336 // Compute the MEET of two types.  It returns a new Type object.
xmeet(const Type * t) const5337 const Type *TypeFunc::xmeet( const Type *t ) const {
5338   // Perform a fast test for common case; meeting the same types together.
5339   if( this == t ) return this;  // Meeting same type-rep?
5340 
5341   // Current "this->_base" is Func
5342   switch (t->base()) {          // switch on original type
5343 
5344   case Bottom:                  // Ye Olde Default
5345     return t;
5346 
5347   default:                      // All else is a mistake
5348     typerr(t);
5349 
5350   case Top:
5351     break;
5352   }
5353   return this;                  // Return the double constant
5354 }
5355 
5356 //------------------------------xdual------------------------------------------
5357 // Dual: compute field-by-field dual
xdual() const5358 const Type *TypeFunc::xdual() const {
5359   return this;
5360 }
5361 
5362 //------------------------------eq---------------------------------------------
5363 // Structural equality check for Type representations
eq(const Type * t) const5364 bool TypeFunc::eq( const Type *t ) const {
5365   const TypeFunc *a = (const TypeFunc*)t;
5366   return _domain == a->_domain &&
5367     _range == a->_range;
5368 }
5369 
5370 //------------------------------hash-------------------------------------------
5371 // Type-specific hashing function.
hash(void) const5372 int TypeFunc::hash(void) const {
5373   return (intptr_t)_domain + (intptr_t)_range;
5374 }
5375 
5376 //------------------------------dump2------------------------------------------
5377 // Dump Function Type
5378 #ifndef PRODUCT
dump2(Dict & d,uint depth,outputStream * st) const5379 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5380   if( _range->cnt() <= Parms )
5381     st->print("void");
5382   else {
5383     uint i;
5384     for (i = Parms; i < _range->cnt()-1; i++) {
5385       _range->field_at(i)->dump2(d,depth,st);
5386       st->print("/");
5387     }
5388     _range->field_at(i)->dump2(d,depth,st);
5389   }
5390   st->print(" ");
5391   st->print("( ");
5392   if( !depth || d[this] ) {     // Check for recursive dump
5393     st->print("...)");
5394     return;
5395   }
5396   d.Insert((void*)this,(void*)this);    // Stop recursion
5397   if (Parms < _domain->cnt())
5398     _domain->field_at(Parms)->dump2(d,depth-1,st);
5399   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5400     st->print(", ");
5401     _domain->field_at(i)->dump2(d,depth-1,st);
5402   }
5403   st->print(" )");
5404 }
5405 #endif
5406 
5407 //------------------------------singleton--------------------------------------
5408 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5409 // constants (Ldi nodes).  Singletons are integer, float or double constants
5410 // or a single symbol.
singleton(void) const5411 bool TypeFunc::singleton(void) const {
5412   return false;                 // Never a singleton
5413 }
5414 
empty(void) const5415 bool TypeFunc::empty(void) const {
5416   return false;                 // Never empty
5417 }
5418 
5419 
return_type() const5420 BasicType TypeFunc::return_type() const{
5421   if (range()->cnt() == TypeFunc::Parms) {
5422     return T_VOID;
5423   }
5424   return range()->field_at(TypeFunc::Parms)->basic_type();
5425 }
5426