1 /*
2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/classLoaderDataGraph.hpp"
27 #include "classfile/javaClasses.inline.hpp"
28 #include "classfile/stringTable.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "code/codeCache.hpp"
32 #include "compiler/oopMap.hpp"
33 #include "gc/parallel/parallelArguments.hpp"
34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
35 #include "gc/parallel/parMarkBitMap.inline.hpp"
36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
37 #include "gc/parallel/psCompactionManager.inline.hpp"
38 #include "gc/parallel/psOldGen.hpp"
39 #include "gc/parallel/psParallelCompact.inline.hpp"
40 #include "gc/parallel/psPromotionManager.inline.hpp"
41 #include "gc/parallel/psRootType.hpp"
42 #include "gc/parallel/psScavenge.hpp"
43 #include "gc/parallel/psYoungGen.hpp"
44 #include "gc/shared/gcCause.hpp"
45 #include "gc/shared/gcHeapSummary.hpp"
46 #include "gc/shared/gcId.hpp"
47 #include "gc/shared/gcLocker.hpp"
48 #include "gc/shared/gcTimer.hpp"
49 #include "gc/shared/gcTrace.hpp"
50 #include "gc/shared/gcTraceTime.inline.hpp"
51 #include "gc/shared/isGCActiveMark.hpp"
52 #include "gc/shared/oopStorage.inline.hpp"
53 #include "gc/shared/oopStorageSet.inline.hpp"
54 #include "gc/shared/oopStorageSetParState.inline.hpp"
55 #include "gc/shared/referencePolicy.hpp"
56 #include "gc/shared/referenceProcessor.hpp"
57 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
58 #include "gc/shared/spaceDecorator.inline.hpp"
59 #include "gc/shared/taskTerminator.hpp"
60 #include "gc/shared/weakProcessor.inline.hpp"
61 #include "gc/shared/workerPolicy.hpp"
62 #include "gc/shared/workgroup.hpp"
63 #include "logging/log.hpp"
64 #include "memory/iterator.inline.hpp"
65 #include "memory/metaspaceUtils.hpp"
66 #include "memory/resourceArea.hpp"
67 #include "memory/universe.hpp"
68 #include "oops/access.inline.hpp"
69 #include "oops/instanceClassLoaderKlass.inline.hpp"
70 #include "oops/instanceKlass.inline.hpp"
71 #include "oops/instanceMirrorKlass.inline.hpp"
72 #include "oops/methodData.hpp"
73 #include "oops/objArrayKlass.inline.hpp"
74 #include "oops/oop.inline.hpp"
75 #include "runtime/atomic.hpp"
76 #include "runtime/handles.inline.hpp"
77 #include "runtime/java.hpp"
78 #include "runtime/safepoint.hpp"
79 #include "runtime/vmThread.hpp"
80 #include "services/memTracker.hpp"
81 #include "services/memoryService.hpp"
82 #include "utilities/align.hpp"
83 #include "utilities/debug.hpp"
84 #include "utilities/events.hpp"
85 #include "utilities/formatBuffer.hpp"
86 #include "utilities/macros.hpp"
87 #include "utilities/stack.inline.hpp"
88 #if INCLUDE_JVMCI
89 #include "jvmci/jvmci.hpp"
90 #endif
91 
92 #include <math.h>
93 
94 // All sizes are in HeapWords.
95 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
96 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
97 const size_t ParallelCompactData::RegionSizeBytes =
98   RegionSize << LogHeapWordSize;
99 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
100 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
101 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
102 
103 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
104 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
105 const size_t ParallelCompactData::BlockSizeBytes  =
106   BlockSize << LogHeapWordSize;
107 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
108 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
109 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
110 
111 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
112 const size_t ParallelCompactData::Log2BlocksPerRegion =
113   Log2RegionSize - Log2BlockSize;
114 
115 const ParallelCompactData::RegionData::region_sz_t
116 ParallelCompactData::RegionData::dc_shift = 27;
117 
118 const ParallelCompactData::RegionData::region_sz_t
119 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
120 
121 const ParallelCompactData::RegionData::region_sz_t
122 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
123 
124 const ParallelCompactData::RegionData::region_sz_t
125 ParallelCompactData::RegionData::los_mask = ~dc_mask;
126 
127 const ParallelCompactData::RegionData::region_sz_t
128 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
129 
130 const ParallelCompactData::RegionData::region_sz_t
131 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
132 
133 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
134 
135 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
136 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
137 
138 double PSParallelCompact::_dwl_mean;
139 double PSParallelCompact::_dwl_std_dev;
140 double PSParallelCompact::_dwl_first_term;
141 double PSParallelCompact::_dwl_adjustment;
142 #ifdef  ASSERT
143 bool   PSParallelCompact::_dwl_initialized = false;
144 #endif  // #ifdef ASSERT
145 
record(size_t src_region_idx,size_t partial_obj_size,HeapWord * destination)146 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
147                        HeapWord* destination)
148 {
149   assert(src_region_idx != 0, "invalid src_region_idx");
150   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
151   assert(destination != NULL, "invalid destination argument");
152 
153   _src_region_idx = src_region_idx;
154   _partial_obj_size = partial_obj_size;
155   _destination = destination;
156 
157   // These fields may not be updated below, so make sure they're clear.
158   assert(_dest_region_addr == NULL, "should have been cleared");
159   assert(_first_src_addr == NULL, "should have been cleared");
160 
161   // Determine the number of destination regions for the partial object.
162   HeapWord* const last_word = destination + partial_obj_size - 1;
163   const ParallelCompactData& sd = PSParallelCompact::summary_data();
164   HeapWord* const beg_region_addr = sd.region_align_down(destination);
165   HeapWord* const end_region_addr = sd.region_align_down(last_word);
166 
167   if (beg_region_addr == end_region_addr) {
168     // One destination region.
169     _destination_count = 1;
170     if (end_region_addr == destination) {
171       // The destination falls on a region boundary, thus the first word of the
172       // partial object will be the first word copied to the destination region.
173       _dest_region_addr = end_region_addr;
174       _first_src_addr = sd.region_to_addr(src_region_idx);
175     }
176   } else {
177     // Two destination regions.  When copied, the partial object will cross a
178     // destination region boundary, so a word somewhere within the partial
179     // object will be the first word copied to the second destination region.
180     _destination_count = 2;
181     _dest_region_addr = end_region_addr;
182     const size_t ofs = pointer_delta(end_region_addr, destination);
183     assert(ofs < _partial_obj_size, "sanity");
184     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
185   }
186 }
187 
clear()188 void SplitInfo::clear()
189 {
190   _src_region_idx = 0;
191   _partial_obj_size = 0;
192   _destination = NULL;
193   _destination_count = 0;
194   _dest_region_addr = NULL;
195   _first_src_addr = NULL;
196   assert(!is_valid(), "sanity");
197 }
198 
199 #ifdef  ASSERT
verify_clear()200 void SplitInfo::verify_clear()
201 {
202   assert(_src_region_idx == 0, "not clear");
203   assert(_partial_obj_size == 0, "not clear");
204   assert(_destination == NULL, "not clear");
205   assert(_destination_count == 0, "not clear");
206   assert(_dest_region_addr == NULL, "not clear");
207   assert(_first_src_addr == NULL, "not clear");
208 }
209 #endif  // #ifdef ASSERT
210 
211 
print_on_error(outputStream * st)212 void PSParallelCompact::print_on_error(outputStream* st) {
213   _mark_bitmap.print_on_error(st);
214 }
215 
216 #ifndef PRODUCT
217 const char* PSParallelCompact::space_names[] = {
218   "old ", "eden", "from", "to  "
219 };
220 
print_region_ranges()221 void PSParallelCompact::print_region_ranges() {
222   if (!log_develop_is_enabled(Trace, gc, compaction)) {
223     return;
224   }
225   Log(gc, compaction) log;
226   ResourceMark rm;
227   LogStream ls(log.trace());
228   Universe::print_on(&ls);
229   log.trace("space  bottom     top        end        new_top");
230   log.trace("------ ---------- ---------- ---------- ----------");
231 
232   for (unsigned int id = 0; id < last_space_id; ++id) {
233     const MutableSpace* space = _space_info[id].space();
234     log.trace("%u %s "
235               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
236               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
237               id, space_names[id],
238               summary_data().addr_to_region_idx(space->bottom()),
239               summary_data().addr_to_region_idx(space->top()),
240               summary_data().addr_to_region_idx(space->end()),
241               summary_data().addr_to_region_idx(_space_info[id].new_top()));
242   }
243 }
244 
245 void
print_generic_summary_region(size_t i,const ParallelCompactData::RegionData * c)246 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
247 {
248 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
249 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
250 
251   ParallelCompactData& sd = PSParallelCompact::summary_data();
252   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
253   log_develop_trace(gc, compaction)(
254       REGION_IDX_FORMAT " " PTR_FORMAT " "
255       REGION_IDX_FORMAT " " PTR_FORMAT " "
256       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
257       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
258       i, p2i(c->data_location()), dci, p2i(c->destination()),
259       c->partial_obj_size(), c->live_obj_size(),
260       c->data_size(), c->source_region(), c->destination_count());
261 
262 #undef  REGION_IDX_FORMAT
263 #undef  REGION_DATA_FORMAT
264 }
265 
266 void
print_generic_summary_data(ParallelCompactData & summary_data,HeapWord * const beg_addr,HeapWord * const end_addr)267 print_generic_summary_data(ParallelCompactData& summary_data,
268                            HeapWord* const beg_addr,
269                            HeapWord* const end_addr)
270 {
271   size_t total_words = 0;
272   size_t i = summary_data.addr_to_region_idx(beg_addr);
273   const size_t last = summary_data.addr_to_region_idx(end_addr);
274   HeapWord* pdest = 0;
275 
276   while (i < last) {
277     ParallelCompactData::RegionData* c = summary_data.region(i);
278     if (c->data_size() != 0 || c->destination() != pdest) {
279       print_generic_summary_region(i, c);
280       total_words += c->data_size();
281       pdest = c->destination();
282     }
283     ++i;
284   }
285 
286   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
287 }
288 
289 void
print_generic_summary_data(ParallelCompactData & summary_data,HeapWord * const beg_addr,HeapWord * const end_addr)290 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
291                                               HeapWord* const beg_addr,
292                                               HeapWord* const end_addr) {
293   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
294 }
295 
296 void
print_generic_summary_data(ParallelCompactData & summary_data,SpaceInfo * space_info)297 print_generic_summary_data(ParallelCompactData& summary_data,
298                            SpaceInfo* space_info)
299 {
300   if (!log_develop_is_enabled(Trace, gc, compaction)) {
301     return;
302   }
303 
304   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
305     const MutableSpace* space = space_info[id].space();
306     print_generic_summary_data(summary_data, space->bottom(),
307                                MAX2(space->top(), space_info[id].new_top()));
308   }
309 }
310 
311 void
print_initial_summary_data(ParallelCompactData & summary_data,const MutableSpace * space)312 print_initial_summary_data(ParallelCompactData& summary_data,
313                            const MutableSpace* space) {
314   if (space->top() == space->bottom()) {
315     return;
316   }
317 
318   const size_t region_size = ParallelCompactData::RegionSize;
319   typedef ParallelCompactData::RegionData RegionData;
320   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
321   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
322   const RegionData* c = summary_data.region(end_region - 1);
323   HeapWord* end_addr = c->destination() + c->data_size();
324   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
325 
326   // Print (and count) the full regions at the beginning of the space.
327   size_t full_region_count = 0;
328   size_t i = summary_data.addr_to_region_idx(space->bottom());
329   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
330     ParallelCompactData::RegionData* c = summary_data.region(i);
331     log_develop_trace(gc, compaction)(
332         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
333         i, p2i(c->destination()),
334         c->partial_obj_size(), c->live_obj_size(),
335         c->data_size(), c->source_region(), c->destination_count());
336     ++full_region_count;
337     ++i;
338   }
339 
340   size_t live_to_right = live_in_space - full_region_count * region_size;
341 
342   double max_reclaimed_ratio = 0.0;
343   size_t max_reclaimed_ratio_region = 0;
344   size_t max_dead_to_right = 0;
345   size_t max_live_to_right = 0;
346 
347   // Print the 'reclaimed ratio' for regions while there is something live in
348   // the region or to the right of it.  The remaining regions are empty (and
349   // uninteresting), and computing the ratio will result in division by 0.
350   while (i < end_region && live_to_right > 0) {
351     c = summary_data.region(i);
352     HeapWord* const region_addr = summary_data.region_to_addr(i);
353     const size_t used_to_right = pointer_delta(space->top(), region_addr);
354     const size_t dead_to_right = used_to_right - live_to_right;
355     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
356 
357     if (reclaimed_ratio > max_reclaimed_ratio) {
358             max_reclaimed_ratio = reclaimed_ratio;
359             max_reclaimed_ratio_region = i;
360             max_dead_to_right = dead_to_right;
361             max_live_to_right = live_to_right;
362     }
363 
364     ParallelCompactData::RegionData* c = summary_data.region(i);
365     log_develop_trace(gc, compaction)(
366         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
367         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
368         i, p2i(c->destination()),
369         c->partial_obj_size(), c->live_obj_size(),
370         c->data_size(), c->source_region(), c->destination_count(),
371         reclaimed_ratio, dead_to_right, live_to_right);
372 
373 
374     live_to_right -= c->data_size();
375     ++i;
376   }
377 
378   // Any remaining regions are empty.  Print one more if there is one.
379   if (i < end_region) {
380     ParallelCompactData::RegionData* c = summary_data.region(i);
381     log_develop_trace(gc, compaction)(
382         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
383          i, p2i(c->destination()),
384          c->partial_obj_size(), c->live_obj_size(),
385          c->data_size(), c->source_region(), c->destination_count());
386   }
387 
388   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
389                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
390 }
391 
392 void
print_initial_summary_data(ParallelCompactData & summary_data,SpaceInfo * space_info)393 print_initial_summary_data(ParallelCompactData& summary_data,
394                            SpaceInfo* space_info) {
395   if (!log_develop_is_enabled(Trace, gc, compaction)) {
396     return;
397   }
398 
399   unsigned int id = PSParallelCompact::old_space_id;
400   const MutableSpace* space;
401   do {
402     space = space_info[id].space();
403     print_initial_summary_data(summary_data, space);
404   } while (++id < PSParallelCompact::eden_space_id);
405 
406   do {
407     space = space_info[id].space();
408     print_generic_summary_data(summary_data, space->bottom(), space->top());
409   } while (++id < PSParallelCompact::last_space_id);
410 }
411 #endif  // #ifndef PRODUCT
412 
ParallelCompactData()413 ParallelCompactData::ParallelCompactData() :
414   _region_start(NULL),
415   DEBUG_ONLY(_region_end(NULL) COMMA)
416   _region_vspace(NULL),
417   _reserved_byte_size(0),
418   _region_data(NULL),
419   _region_count(0),
420   _block_vspace(NULL),
421   _block_data(NULL),
422   _block_count(0) {}
423 
initialize(MemRegion covered_region)424 bool ParallelCompactData::initialize(MemRegion covered_region)
425 {
426   _region_start = covered_region.start();
427   const size_t region_size = covered_region.word_size();
428   DEBUG_ONLY(_region_end = _region_start + region_size;)
429 
430   assert(region_align_down(_region_start) == _region_start,
431          "region start not aligned");
432   assert((region_size & RegionSizeOffsetMask) == 0,
433          "region size not a multiple of RegionSize");
434 
435   bool result = initialize_region_data(region_size) && initialize_block_data();
436   return result;
437 }
438 
439 PSVirtualSpace*
create_vspace(size_t count,size_t element_size)440 ParallelCompactData::create_vspace(size_t count, size_t element_size)
441 {
442   const size_t raw_bytes = count * element_size;
443   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
444   const size_t granularity = os::vm_allocation_granularity();
445   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
446 
447   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
448     MAX2(page_sz, granularity);
449   ReservedSpace rs(_reserved_byte_size, rs_align, page_sz);
450   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
451                        rs.size());
452 
453   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
454 
455   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
456   if (vspace != 0) {
457     if (vspace->expand_by(_reserved_byte_size)) {
458       return vspace;
459     }
460     delete vspace;
461     // Release memory reserved in the space.
462     rs.release();
463   }
464 
465   return 0;
466 }
467 
initialize_region_data(size_t region_size)468 bool ParallelCompactData::initialize_region_data(size_t region_size)
469 {
470   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
471   _region_vspace = create_vspace(count, sizeof(RegionData));
472   if (_region_vspace != 0) {
473     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
474     _region_count = count;
475     return true;
476   }
477   return false;
478 }
479 
initialize_block_data()480 bool ParallelCompactData::initialize_block_data()
481 {
482   assert(_region_count != 0, "region data must be initialized first");
483   const size_t count = _region_count << Log2BlocksPerRegion;
484   _block_vspace = create_vspace(count, sizeof(BlockData));
485   if (_block_vspace != 0) {
486     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
487     _block_count = count;
488     return true;
489   }
490   return false;
491 }
492 
clear()493 void ParallelCompactData::clear()
494 {
495   memset(_region_data, 0, _region_vspace->committed_size());
496   memset(_block_data, 0, _block_vspace->committed_size());
497 }
498 
clear_range(size_t beg_region,size_t end_region)499 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
500   assert(beg_region <= _region_count, "beg_region out of range");
501   assert(end_region <= _region_count, "end_region out of range");
502   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
503 
504   const size_t region_cnt = end_region - beg_region;
505   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
506 
507   const size_t beg_block = beg_region * BlocksPerRegion;
508   const size_t block_cnt = region_cnt * BlocksPerRegion;
509   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
510 }
511 
partial_obj_end(size_t region_idx) const512 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
513 {
514   const RegionData* cur_cp = region(region_idx);
515   const RegionData* const end_cp = region(region_count() - 1);
516 
517   HeapWord* result = region_to_addr(region_idx);
518   if (cur_cp < end_cp) {
519     do {
520       result += cur_cp->partial_obj_size();
521     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
522   }
523   return result;
524 }
525 
add_obj(HeapWord * addr,size_t len)526 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
527 {
528   const size_t obj_ofs = pointer_delta(addr, _region_start);
529   const size_t beg_region = obj_ofs >> Log2RegionSize;
530   // end_region is inclusive
531   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
532 
533   if (beg_region == end_region) {
534     // All in one region.
535     _region_data[beg_region].add_live_obj(len);
536     return;
537   }
538 
539   // First region.
540   const size_t beg_ofs = region_offset(addr);
541   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
542 
543   // Middle regions--completely spanned by this object.
544   for (size_t region = beg_region + 1; region < end_region; ++region) {
545     _region_data[region].set_partial_obj_size(RegionSize);
546     _region_data[region].set_partial_obj_addr(addr);
547   }
548 
549   // Last region.
550   const size_t end_ofs = region_offset(addr + len - 1);
551   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
552   _region_data[end_region].set_partial_obj_addr(addr);
553 }
554 
555 void
summarize_dense_prefix(HeapWord * beg,HeapWord * end)556 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
557 {
558   assert(is_region_aligned(beg), "not RegionSize aligned");
559   assert(is_region_aligned(end), "not RegionSize aligned");
560 
561   size_t cur_region = addr_to_region_idx(beg);
562   const size_t end_region = addr_to_region_idx(end);
563   HeapWord* addr = beg;
564   while (cur_region < end_region) {
565     _region_data[cur_region].set_destination(addr);
566     _region_data[cur_region].set_destination_count(0);
567     _region_data[cur_region].set_source_region(cur_region);
568     _region_data[cur_region].set_data_location(addr);
569 
570     // Update live_obj_size so the region appears completely full.
571     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
572     _region_data[cur_region].set_live_obj_size(live_size);
573 
574     ++cur_region;
575     addr += RegionSize;
576   }
577 }
578 
579 // Find the point at which a space can be split and, if necessary, record the
580 // split point.
581 //
582 // If the current src region (which overflowed the destination space) doesn't
583 // have a partial object, the split point is at the beginning of the current src
584 // region (an "easy" split, no extra bookkeeping required).
585 //
586 // If the current src region has a partial object, the split point is in the
587 // region where that partial object starts (call it the split_region).  If
588 // split_region has a partial object, then the split point is just after that
589 // partial object (a "hard" split where we have to record the split data and
590 // zero the partial_obj_size field).  With a "hard" split, we know that the
591 // partial_obj ends within split_region because the partial object that caused
592 // the overflow starts in split_region.  If split_region doesn't have a partial
593 // obj, then the split is at the beginning of split_region (another "easy"
594 // split).
595 HeapWord*
summarize_split_space(size_t src_region,SplitInfo & split_info,HeapWord * destination,HeapWord * target_end,HeapWord ** target_next)596 ParallelCompactData::summarize_split_space(size_t src_region,
597                                            SplitInfo& split_info,
598                                            HeapWord* destination,
599                                            HeapWord* target_end,
600                                            HeapWord** target_next)
601 {
602   assert(destination <= target_end, "sanity");
603   assert(destination + _region_data[src_region].data_size() > target_end,
604     "region should not fit into target space");
605   assert(is_region_aligned(target_end), "sanity");
606 
607   size_t split_region = src_region;
608   HeapWord* split_destination = destination;
609   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
610 
611   if (destination + partial_obj_size > target_end) {
612     // The split point is just after the partial object (if any) in the
613     // src_region that contains the start of the object that overflowed the
614     // destination space.
615     //
616     // Find the start of the "overflow" object and set split_region to the
617     // region containing it.
618     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
619     split_region = addr_to_region_idx(overflow_obj);
620 
621     // Clear the source_region field of all destination regions whose first word
622     // came from data after the split point (a non-null source_region field
623     // implies a region must be filled).
624     //
625     // An alternative to the simple loop below:  clear during post_compact(),
626     // which uses memcpy instead of individual stores, and is easy to
627     // parallelize.  (The downside is that it clears the entire RegionData
628     // object as opposed to just one field.)
629     //
630     // post_compact() would have to clear the summary data up to the highest
631     // address that was written during the summary phase, which would be
632     //
633     //         max(top, max(new_top, clear_top))
634     //
635     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
636     // to target_end.
637     const RegionData* const sr = region(split_region);
638     const size_t beg_idx =
639       addr_to_region_idx(region_align_up(sr->destination() +
640                                          sr->partial_obj_size()));
641     const size_t end_idx = addr_to_region_idx(target_end);
642 
643     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
644     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
645       _region_data[idx].set_source_region(0);
646     }
647 
648     // Set split_destination and partial_obj_size to reflect the split region.
649     split_destination = sr->destination();
650     partial_obj_size = sr->partial_obj_size();
651   }
652 
653   // The split is recorded only if a partial object extends onto the region.
654   if (partial_obj_size != 0) {
655     _region_data[split_region].set_partial_obj_size(0);
656     split_info.record(split_region, partial_obj_size, split_destination);
657   }
658 
659   // Setup the continuation addresses.
660   *target_next = split_destination + partial_obj_size;
661   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
662 
663   if (log_develop_is_enabled(Trace, gc, compaction)) {
664     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
665     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
666                                       split_type, p2i(source_next), split_region, partial_obj_size);
667     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
668                                       split_type, p2i(split_destination),
669                                       addr_to_region_idx(split_destination),
670                                       p2i(*target_next));
671 
672     if (partial_obj_size != 0) {
673       HeapWord* const po_beg = split_info.destination();
674       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
675       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
676                                         split_type,
677                                         p2i(po_beg), addr_to_region_idx(po_beg),
678                                         p2i(po_end), addr_to_region_idx(po_end));
679     }
680   }
681 
682   return source_next;
683 }
684 
summarize(SplitInfo & split_info,HeapWord * source_beg,HeapWord * source_end,HeapWord ** source_next,HeapWord * target_beg,HeapWord * target_end,HeapWord ** target_next)685 bool ParallelCompactData::summarize(SplitInfo& split_info,
686                                     HeapWord* source_beg, HeapWord* source_end,
687                                     HeapWord** source_next,
688                                     HeapWord* target_beg, HeapWord* target_end,
689                                     HeapWord** target_next)
690 {
691   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
692   log_develop_trace(gc, compaction)(
693       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
694       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
695       p2i(source_beg), p2i(source_end), p2i(source_next_val),
696       p2i(target_beg), p2i(target_end), p2i(*target_next));
697 
698   size_t cur_region = addr_to_region_idx(source_beg);
699   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
700 
701   HeapWord *dest_addr = target_beg;
702   while (cur_region < end_region) {
703     // The destination must be set even if the region has no data.
704     _region_data[cur_region].set_destination(dest_addr);
705 
706     size_t words = _region_data[cur_region].data_size();
707     if (words > 0) {
708       // If cur_region does not fit entirely into the target space, find a point
709       // at which the source space can be 'split' so that part is copied to the
710       // target space and the rest is copied elsewhere.
711       if (dest_addr + words > target_end) {
712         assert(source_next != NULL, "source_next is NULL when splitting");
713         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
714                                              target_end, target_next);
715         return false;
716       }
717 
718       // Compute the destination_count for cur_region, and if necessary, update
719       // source_region for a destination region.  The source_region field is
720       // updated if cur_region is the first (left-most) region to be copied to a
721       // destination region.
722       //
723       // The destination_count calculation is a bit subtle.  A region that has
724       // data that compacts into itself does not count itself as a destination.
725       // This maintains the invariant that a zero count means the region is
726       // available and can be claimed and then filled.
727       uint destination_count = 0;
728       if (split_info.is_split(cur_region)) {
729         // The current region has been split:  the partial object will be copied
730         // to one destination space and the remaining data will be copied to
731         // another destination space.  Adjust the initial destination_count and,
732         // if necessary, set the source_region field if the partial object will
733         // cross a destination region boundary.
734         destination_count = split_info.destination_count();
735         if (destination_count == 2) {
736           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
737           _region_data[dest_idx].set_source_region(cur_region);
738         }
739       }
740 
741       HeapWord* const last_addr = dest_addr + words - 1;
742       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
743       const size_t dest_region_2 = addr_to_region_idx(last_addr);
744 
745       // Initially assume that the destination regions will be the same and
746       // adjust the value below if necessary.  Under this assumption, if
747       // cur_region == dest_region_2, then cur_region will be compacted
748       // completely into itself.
749       destination_count += cur_region == dest_region_2 ? 0 : 1;
750       if (dest_region_1 != dest_region_2) {
751         // Destination regions differ; adjust destination_count.
752         destination_count += 1;
753         // Data from cur_region will be copied to the start of dest_region_2.
754         _region_data[dest_region_2].set_source_region(cur_region);
755       } else if (is_region_aligned(dest_addr)) {
756         // Data from cur_region will be copied to the start of the destination
757         // region.
758         _region_data[dest_region_1].set_source_region(cur_region);
759       }
760 
761       _region_data[cur_region].set_destination_count(destination_count);
762       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
763       dest_addr += words;
764     }
765 
766     ++cur_region;
767   }
768 
769   *target_next = dest_addr;
770   return true;
771 }
772 
calc_new_pointer(HeapWord * addr,ParCompactionManager * cm) const773 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) const {
774   assert(addr != NULL, "Should detect NULL oop earlier");
775   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
776   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
777 
778   // Region covering the object.
779   RegionData* const region_ptr = addr_to_region_ptr(addr);
780   HeapWord* result = region_ptr->destination();
781 
782   // If the entire Region is live, the new location is region->destination + the
783   // offset of the object within in the Region.
784 
785   // Run some performance tests to determine if this special case pays off.  It
786   // is worth it for pointers into the dense prefix.  If the optimization to
787   // avoid pointer updates in regions that only point to the dense prefix is
788   // ever implemented, this should be revisited.
789   if (region_ptr->data_size() == RegionSize) {
790     result += region_offset(addr);
791     return result;
792   }
793 
794   // Otherwise, the new location is region->destination + block offset + the
795   // number of live words in the Block that are (a) to the left of addr and (b)
796   // due to objects that start in the Block.
797 
798   // Fill in the block table if necessary.  This is unsynchronized, so multiple
799   // threads may fill the block table for a region (harmless, since it is
800   // idempotent).
801   if (!region_ptr->blocks_filled()) {
802     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
803     region_ptr->set_blocks_filled();
804   }
805 
806   HeapWord* const search_start = block_align_down(addr);
807   const size_t block_offset = addr_to_block_ptr(addr)->offset();
808 
809   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
810   const size_t live = bitmap->live_words_in_range(cm, search_start, cast_to_oop(addr));
811   result += block_offset + live;
812   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
813   return result;
814 }
815 
816 #ifdef ASSERT
verify_clear(const PSVirtualSpace * vspace)817 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
818 {
819   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
820   const size_t* const end = (const size_t*)vspace->committed_high_addr();
821   for (const size_t* p = beg; p < end; ++p) {
822     assert(*p == 0, "not zero");
823   }
824 }
825 
verify_clear()826 void ParallelCompactData::verify_clear()
827 {
828   verify_clear(_region_vspace);
829   verify_clear(_block_vspace);
830 }
831 #endif  // #ifdef ASSERT
832 
833 STWGCTimer          PSParallelCompact::_gc_timer;
834 ParallelOldTracer   PSParallelCompact::_gc_tracer;
835 elapsedTimer        PSParallelCompact::_accumulated_time;
836 unsigned int        PSParallelCompact::_total_invocations = 0;
837 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
838 CollectorCounters*  PSParallelCompact::_counters = NULL;
839 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
840 ParallelCompactData PSParallelCompact::_summary_data;
841 
842 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
843 
do_object_b(oop p)844 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
845 
846 class PCReferenceProcessor: public ReferenceProcessor {
847 public:
PCReferenceProcessor(BoolObjectClosure * is_subject_to_discovery,BoolObjectClosure * is_alive_non_header)848   PCReferenceProcessor(
849     BoolObjectClosure* is_subject_to_discovery,
850     BoolObjectClosure* is_alive_non_header) :
851       ReferenceProcessor(is_subject_to_discovery,
852       ParallelGCThreads,   // mt processing degree
853       true,                // mt discovery
854       ParallelGCThreads,   // mt discovery degree
855       true,                // atomic_discovery
856       is_alive_non_header) {
857   }
858 
discover(oop obj,ReferenceType type)859   template<typename T> bool discover(oop obj, ReferenceType type) {
860     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
861     T heap_oop = RawAccess<>::oop_load(referent_addr);
862     oop referent = CompressedOops::decode_not_null(heap_oop);
863     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
864         && ReferenceProcessor::discover_reference(obj, type);
865   }
discover_reference(oop obj,ReferenceType type)866   virtual bool discover_reference(oop obj, ReferenceType type) {
867     if (UseCompressedOops) {
868       return discover<narrowOop>(obj, type);
869     } else {
870       return discover<oop>(obj, type);
871     }
872   }
873 };
874 
post_initialize()875 void PSParallelCompact::post_initialize() {
876   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
877   _span_based_discoverer.set_span(heap->reserved_region());
878   _ref_processor =
879     new PCReferenceProcessor(&_span_based_discoverer,
880                              &_is_alive_closure); // non-header is alive closure
881 
882   _counters = new CollectorCounters("Parallel full collection pauses", 1);
883 
884   // Initialize static fields in ParCompactionManager.
885   ParCompactionManager::initialize(mark_bitmap());
886 }
887 
initialize()888 bool PSParallelCompact::initialize() {
889   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
890   MemRegion mr = heap->reserved_region();
891 
892   // Was the old gen get allocated successfully?
893   if (!heap->old_gen()->is_allocated()) {
894     return false;
895   }
896 
897   initialize_space_info();
898   initialize_dead_wood_limiter();
899 
900   if (!_mark_bitmap.initialize(mr)) {
901     vm_shutdown_during_initialization(
902       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
903       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
904       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
905     return false;
906   }
907 
908   if (!_summary_data.initialize(mr)) {
909     vm_shutdown_during_initialization(
910       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
911       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
912       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
913     return false;
914   }
915 
916   return true;
917 }
918 
initialize_space_info()919 void PSParallelCompact::initialize_space_info()
920 {
921   memset(&_space_info, 0, sizeof(_space_info));
922 
923   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
924   PSYoungGen* young_gen = heap->young_gen();
925 
926   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
927   _space_info[eden_space_id].set_space(young_gen->eden_space());
928   _space_info[from_space_id].set_space(young_gen->from_space());
929   _space_info[to_space_id].set_space(young_gen->to_space());
930 
931   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
932 }
933 
initialize_dead_wood_limiter()934 void PSParallelCompact::initialize_dead_wood_limiter()
935 {
936   const size_t max = 100;
937   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
938   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
939   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
940   DEBUG_ONLY(_dwl_initialized = true;)
941   _dwl_adjustment = normal_distribution(1.0);
942 }
943 
944 void
clear_data_covering_space(SpaceId id)945 PSParallelCompact::clear_data_covering_space(SpaceId id)
946 {
947   // At this point, top is the value before GC, new_top() is the value that will
948   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
949   // should be marked above top.  The summary data is cleared to the larger of
950   // top & new_top.
951   MutableSpace* const space = _space_info[id].space();
952   HeapWord* const bot = space->bottom();
953   HeapWord* const top = space->top();
954   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
955 
956   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
957   const idx_t end_bit = _mark_bitmap.align_range_end(_mark_bitmap.addr_to_bit(top));
958   _mark_bitmap.clear_range(beg_bit, end_bit);
959 
960   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
961   const size_t end_region =
962     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
963   _summary_data.clear_range(beg_region, end_region);
964 
965   // Clear the data used to 'split' regions.
966   SplitInfo& split_info = _space_info[id].split_info();
967   if (split_info.is_valid()) {
968     split_info.clear();
969   }
970   DEBUG_ONLY(split_info.verify_clear();)
971 }
972 
pre_compact()973 void PSParallelCompact::pre_compact()
974 {
975   // Update the from & to space pointers in space_info, since they are swapped
976   // at each young gen gc.  Do the update unconditionally (even though a
977   // promotion failure does not swap spaces) because an unknown number of young
978   // collections will have swapped the spaces an unknown number of times.
979   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
980   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
981   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
982   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
983 
984   // Increment the invocation count
985   heap->increment_total_collections(true);
986 
987   // We need to track unique mark sweep invocations as well.
988   _total_invocations++;
989 
990   heap->print_heap_before_gc();
991   heap->trace_heap_before_gc(&_gc_tracer);
992 
993   // Fill in TLABs
994   heap->ensure_parsability(true);  // retire TLABs
995 
996   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
997     Universe::verify("Before GC");
998   }
999 
1000   // Verify object start arrays
1001   if (VerifyObjectStartArray &&
1002       VerifyBeforeGC) {
1003     heap->old_gen()->verify_object_start_array();
1004   }
1005 
1006   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1007   DEBUG_ONLY(summary_data().verify_clear();)
1008 
1009   ParCompactionManager::reset_all_bitmap_query_caches();
1010 }
1011 
post_compact()1012 void PSParallelCompact::post_compact()
1013 {
1014   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1015   ParCompactionManager::remove_all_shadow_regions();
1016 
1017   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1018     // Clear the marking bitmap, summary data and split info.
1019     clear_data_covering_space(SpaceId(id));
1020     // Update top().  Must be done after clearing the bitmap and summary data.
1021     _space_info[id].publish_new_top();
1022   }
1023 
1024   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1025   MutableSpace* const from_space = _space_info[from_space_id].space();
1026   MutableSpace* const to_space   = _space_info[to_space_id].space();
1027 
1028   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1029   bool eden_empty = eden_space->is_empty();
1030 
1031   // Update heap occupancy information which is used as input to the soft ref
1032   // clearing policy at the next gc.
1033   Universe::heap()->update_capacity_and_used_at_gc();
1034 
1035   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1036     to_space->is_empty();
1037 
1038   PSCardTable* ct = heap->card_table();
1039   MemRegion old_mr = heap->old_gen()->reserved();
1040   if (young_gen_empty) {
1041     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1042   } else {
1043     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1044   }
1045 
1046   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1047   ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1048   DEBUG_ONLY(MetaspaceUtils::verify();)
1049 
1050   heap->prune_scavengable_nmethods();
1051 
1052 #if COMPILER2_OR_JVMCI
1053   DerivedPointerTable::update_pointers();
1054 #endif
1055 
1056   if (ZapUnusedHeapArea) {
1057     heap->gen_mangle_unused_area();
1058   }
1059 
1060   // Signal that we have completed a visit to all live objects.
1061   Universe::heap()->record_whole_heap_examined_timestamp();
1062 }
1063 
1064 HeapWord*
compute_dense_prefix_via_density(const SpaceId id,bool maximum_compaction)1065 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1066                                                     bool maximum_compaction)
1067 {
1068   const size_t region_size = ParallelCompactData::RegionSize;
1069   const ParallelCompactData& sd = summary_data();
1070 
1071   const MutableSpace* const space = _space_info[id].space();
1072   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1073   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1074   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1075 
1076   // Skip full regions at the beginning of the space--they are necessarily part
1077   // of the dense prefix.
1078   size_t full_count = 0;
1079   const RegionData* cp;
1080   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1081     ++full_count;
1082   }
1083 
1084   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1085   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1086   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1087   if (maximum_compaction || cp == end_cp || interval_ended) {
1088     _maximum_compaction_gc_num = total_invocations();
1089     return sd.region_to_addr(cp);
1090   }
1091 
1092   HeapWord* const new_top = _space_info[id].new_top();
1093   const size_t space_live = pointer_delta(new_top, space->bottom());
1094   const size_t space_used = space->used_in_words();
1095   const size_t space_capacity = space->capacity_in_words();
1096 
1097   const double cur_density = double(space_live) / space_capacity;
1098   const double deadwood_density =
1099     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1100   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1101 
1102   log_develop_debug(gc, compaction)(
1103       "cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1104       cur_density, deadwood_density, deadwood_goal);
1105   log_develop_debug(gc, compaction)(
1106       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1107       "space_cap=" SIZE_FORMAT,
1108       space_live, space_used,
1109       space_capacity);
1110 
1111   // XXX - Use binary search?
1112   HeapWord* dense_prefix = sd.region_to_addr(cp);
1113   const RegionData* full_cp = cp;
1114   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1115   while (cp < end_cp) {
1116     HeapWord* region_destination = cp->destination();
1117     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1118 
1119     log_develop_trace(gc, compaction)(
1120         "c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1121         "dp=" PTR_FORMAT " cdw=" SIZE_FORMAT_W(8),
1122         sd.region(cp), p2i(region_destination),
1123         p2i(dense_prefix), cur_deadwood);
1124 
1125     if (cur_deadwood >= deadwood_goal) {
1126       // Found the region that has the correct amount of deadwood to the left.
1127       // This typically occurs after crossing a fairly sparse set of regions, so
1128       // iterate backwards over those sparse regions, looking for the region
1129       // that has the lowest density of live objects 'to the right.'
1130       size_t space_to_left = sd.region(cp) * region_size;
1131       size_t live_to_left = space_to_left - cur_deadwood;
1132       size_t space_to_right = space_capacity - space_to_left;
1133       size_t live_to_right = space_live - live_to_left;
1134       double density_to_right = double(live_to_right) / space_to_right;
1135       while (cp > full_cp) {
1136         --cp;
1137         const size_t prev_region_live_to_right = live_to_right -
1138           cp->data_size();
1139         const size_t prev_region_space_to_right = space_to_right + region_size;
1140         double prev_region_density_to_right =
1141           double(prev_region_live_to_right) / prev_region_space_to_right;
1142         if (density_to_right <= prev_region_density_to_right) {
1143           return dense_prefix;
1144         }
1145 
1146         log_develop_trace(gc, compaction)(
1147             "backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1148             "pc_d2r=%10.8f",
1149             sd.region(cp), density_to_right,
1150             prev_region_density_to_right);
1151 
1152         dense_prefix -= region_size;
1153         live_to_right = prev_region_live_to_right;
1154         space_to_right = prev_region_space_to_right;
1155         density_to_right = prev_region_density_to_right;
1156       }
1157       return dense_prefix;
1158     }
1159 
1160     dense_prefix += region_size;
1161     ++cp;
1162   }
1163 
1164   return dense_prefix;
1165 }
1166 
1167 #ifndef PRODUCT
print_dense_prefix_stats(const char * const algorithm,const SpaceId id,const bool maximum_compaction,HeapWord * const addr)1168 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1169                                                  const SpaceId id,
1170                                                  const bool maximum_compaction,
1171                                                  HeapWord* const addr)
1172 {
1173   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1174   RegionData* const cp = summary_data().region(region_idx);
1175   const MutableSpace* const space = _space_info[id].space();
1176   HeapWord* const new_top = _space_info[id].new_top();
1177 
1178   const size_t space_live = pointer_delta(new_top, space->bottom());
1179   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1180   const size_t space_cap = space->capacity_in_words();
1181   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1182   const size_t live_to_right = new_top - cp->destination();
1183   const size_t dead_to_right = space->top() - addr - live_to_right;
1184 
1185   log_develop_debug(gc, compaction)(
1186       "%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1187       "spl=" SIZE_FORMAT " "
1188       "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1189       "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT " "
1190       "ratio=%10.8f",
1191       algorithm, p2i(addr), region_idx,
1192       space_live,
1193       dead_to_left, dead_to_left_pct,
1194       dead_to_right, live_to_right,
1195       double(dead_to_right) / live_to_right);
1196 }
1197 #endif  // #ifndef PRODUCT
1198 
1199 // Return a fraction indicating how much of the generation can be treated as
1200 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1201 // based on the density of live objects in the generation to determine a limit,
1202 // which is then adjusted so the return value is min_percent when the density is
1203 // 1.
1204 //
1205 // The following table shows some return values for a different values of the
1206 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1207 // min_percent is 1.
1208 //
1209 //                          fraction allowed as dead wood
1210 //         -----------------------------------------------------------------
1211 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1212 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1213 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1214 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1215 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1216 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1217 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1218 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1219 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1220 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1221 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1222 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1223 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1224 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1225 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1226 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1227 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1228 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1229 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1230 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1231 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1232 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1233 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1234 
dead_wood_limiter(double density,size_t min_percent)1235 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1236 {
1237   assert(_dwl_initialized, "uninitialized");
1238 
1239   // The raw limit is the value of the normal distribution at x = density.
1240   const double raw_limit = normal_distribution(density);
1241 
1242   // Adjust the raw limit so it becomes the minimum when the density is 1.
1243   //
1244   // First subtract the adjustment value (which is simply the precomputed value
1245   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1246   // Then add the minimum value, so the minimum is returned when the density is
1247   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1248   const double min = double(min_percent) / 100.0;
1249   const double limit = raw_limit - _dwl_adjustment + min;
1250   return MAX2(limit, 0.0);
1251 }
1252 
1253 ParallelCompactData::RegionData*
first_dead_space_region(const RegionData * beg,const RegionData * end)1254 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1255                                            const RegionData* end)
1256 {
1257   const size_t region_size = ParallelCompactData::RegionSize;
1258   ParallelCompactData& sd = summary_data();
1259   size_t left = sd.region(beg);
1260   size_t right = end > beg ? sd.region(end) - 1 : left;
1261 
1262   // Binary search.
1263   while (left < right) {
1264     // Equivalent to (left + right) / 2, but does not overflow.
1265     const size_t middle = left + (right - left) / 2;
1266     RegionData* const middle_ptr = sd.region(middle);
1267     HeapWord* const dest = middle_ptr->destination();
1268     HeapWord* const addr = sd.region_to_addr(middle);
1269     assert(dest != NULL, "sanity");
1270     assert(dest <= addr, "must move left");
1271 
1272     if (middle > left && dest < addr) {
1273       right = middle - 1;
1274     } else if (middle < right && middle_ptr->data_size() == region_size) {
1275       left = middle + 1;
1276     } else {
1277       return middle_ptr;
1278     }
1279   }
1280   return sd.region(left);
1281 }
1282 
1283 ParallelCompactData::RegionData*
dead_wood_limit_region(const RegionData * beg,const RegionData * end,size_t dead_words)1284 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1285                                           const RegionData* end,
1286                                           size_t dead_words)
1287 {
1288   ParallelCompactData& sd = summary_data();
1289   size_t left = sd.region(beg);
1290   size_t right = end > beg ? sd.region(end) - 1 : left;
1291 
1292   // Binary search.
1293   while (left < right) {
1294     // Equivalent to (left + right) / 2, but does not overflow.
1295     const size_t middle = left + (right - left) / 2;
1296     RegionData* const middle_ptr = sd.region(middle);
1297     HeapWord* const dest = middle_ptr->destination();
1298     HeapWord* const addr = sd.region_to_addr(middle);
1299     assert(dest != NULL, "sanity");
1300     assert(dest <= addr, "must move left");
1301 
1302     const size_t dead_to_left = pointer_delta(addr, dest);
1303     if (middle > left && dead_to_left > dead_words) {
1304       right = middle - 1;
1305     } else if (middle < right && dead_to_left < dead_words) {
1306       left = middle + 1;
1307     } else {
1308       return middle_ptr;
1309     }
1310   }
1311   return sd.region(left);
1312 }
1313 
1314 // The result is valid during the summary phase, after the initial summarization
1315 // of each space into itself, and before final summarization.
1316 inline double
reclaimed_ratio(const RegionData * const cp,HeapWord * const bottom,HeapWord * const top,HeapWord * const new_top)1317 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1318                                    HeapWord* const bottom,
1319                                    HeapWord* const top,
1320                                    HeapWord* const new_top)
1321 {
1322   ParallelCompactData& sd = summary_data();
1323 
1324   assert(cp != NULL, "sanity");
1325   assert(bottom != NULL, "sanity");
1326   assert(top != NULL, "sanity");
1327   assert(new_top != NULL, "sanity");
1328   assert(top >= new_top, "summary data problem?");
1329   assert(new_top > bottom, "space is empty; should not be here");
1330   assert(new_top >= cp->destination(), "sanity");
1331   assert(top >= sd.region_to_addr(cp), "sanity");
1332 
1333   HeapWord* const destination = cp->destination();
1334   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1335   const size_t compacted_region_live = pointer_delta(new_top, destination);
1336   const size_t compacted_region_used = pointer_delta(top,
1337                                                      sd.region_to_addr(cp));
1338   const size_t reclaimable = compacted_region_used - compacted_region_live;
1339 
1340   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1341   return double(reclaimable) / divisor;
1342 }
1343 
1344 // Return the address of the end of the dense prefix, a.k.a. the start of the
1345 // compacted region.  The address is always on a region boundary.
1346 //
1347 // Completely full regions at the left are skipped, since no compaction can
1348 // occur in those regions.  Then the maximum amount of dead wood to allow is
1349 // computed, based on the density (amount live / capacity) of the generation;
1350 // the region with approximately that amount of dead space to the left is
1351 // identified as the limit region.  Regions between the last completely full
1352 // region and the limit region are scanned and the one that has the best
1353 // (maximum) reclaimed_ratio() is selected.
1354 HeapWord*
compute_dense_prefix(const SpaceId id,bool maximum_compaction)1355 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1356                                         bool maximum_compaction)
1357 {
1358   const size_t region_size = ParallelCompactData::RegionSize;
1359   const ParallelCompactData& sd = summary_data();
1360 
1361   const MutableSpace* const space = _space_info[id].space();
1362   HeapWord* const top = space->top();
1363   HeapWord* const top_aligned_up = sd.region_align_up(top);
1364   HeapWord* const new_top = _space_info[id].new_top();
1365   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1366   HeapWord* const bottom = space->bottom();
1367   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1368   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1369   const RegionData* const new_top_cp =
1370     sd.addr_to_region_ptr(new_top_aligned_up);
1371 
1372   // Skip full regions at the beginning of the space--they are necessarily part
1373   // of the dense prefix.
1374   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1375   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1376          space->is_empty(), "no dead space allowed to the left");
1377   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1378          "region must have dead space");
1379 
1380   // The gc number is saved whenever a maximum compaction is done, and used to
1381   // determine when the maximum compaction interval has expired.  This avoids
1382   // successive max compactions for different reasons.
1383   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1384   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1385   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1386     total_invocations() == HeapFirstMaximumCompactionCount;
1387   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1388     _maximum_compaction_gc_num = total_invocations();
1389     return sd.region_to_addr(full_cp);
1390   }
1391 
1392   const size_t space_live = pointer_delta(new_top, bottom);
1393   const size_t space_used = space->used_in_words();
1394   const size_t space_capacity = space->capacity_in_words();
1395 
1396   const double density = double(space_live) / double(space_capacity);
1397   const size_t min_percent_free = MarkSweepDeadRatio;
1398   const double limiter = dead_wood_limiter(density, min_percent_free);
1399   const size_t dead_wood_max = space_used - space_live;
1400   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1401                                       dead_wood_max);
1402 
1403   log_develop_debug(gc, compaction)(
1404       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1405       "space_cap=" SIZE_FORMAT,
1406       space_live, space_used,
1407       space_capacity);
1408   log_develop_debug(gc, compaction)(
1409       "dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1410       "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1411       density, min_percent_free, limiter,
1412       dead_wood_max, dead_wood_limit);
1413 
1414   // Locate the region with the desired amount of dead space to the left.
1415   const RegionData* const limit_cp =
1416     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1417 
1418   // Scan from the first region with dead space to the limit region and find the
1419   // one with the best (largest) reclaimed ratio.
1420   double best_ratio = 0.0;
1421   const RegionData* best_cp = full_cp;
1422   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1423     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1424     if (tmp_ratio > best_ratio) {
1425       best_cp = cp;
1426       best_ratio = tmp_ratio;
1427     }
1428   }
1429 
1430   return sd.region_to_addr(best_cp);
1431 }
1432 
summarize_spaces_quick()1433 void PSParallelCompact::summarize_spaces_quick()
1434 {
1435   for (unsigned int i = 0; i < last_space_id; ++i) {
1436     const MutableSpace* space = _space_info[i].space();
1437     HeapWord** nta = _space_info[i].new_top_addr();
1438     bool result = _summary_data.summarize(_space_info[i].split_info(),
1439                                           space->bottom(), space->top(), NULL,
1440                                           space->bottom(), space->end(), nta);
1441     assert(result, "space must fit into itself");
1442     _space_info[i].set_dense_prefix(space->bottom());
1443   }
1444 }
1445 
fill_dense_prefix_end(SpaceId id)1446 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1447 {
1448   HeapWord* const dense_prefix_end = dense_prefix(id);
1449   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1450   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1451   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1452     // Only enough dead space is filled so that any remaining dead space to the
1453     // left is larger than the minimum filler object.  (The remainder is filled
1454     // during the copy/update phase.)
1455     //
1456     // The size of the dead space to the right of the boundary is not a
1457     // concern, since compaction will be able to use whatever space is
1458     // available.
1459     //
1460     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1461     // surrounds the space to be filled with an object.
1462     //
1463     // In the 32-bit VM, each bit represents two 32-bit words:
1464     //                              +---+
1465     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1466     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1467     //                              +---+
1468     //
1469     // In the 64-bit VM, each bit represents one 64-bit word:
1470     //                              +------------+
1471     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1472     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1473     //                              +------------+
1474     //                          +-------+
1475     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1476     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1477     //                          +-------+
1478     //                      +-----------+
1479     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1480     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1481     //                      +-----------+
1482     //                          +-------+
1483     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1484     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1485     //                          +-------+
1486 
1487     // Initially assume case a, c or e will apply.
1488     size_t obj_len = CollectedHeap::min_fill_size();
1489     HeapWord* obj_beg = dense_prefix_end - obj_len;
1490 
1491 #ifdef  _LP64
1492     if (MinObjAlignment > 1) { // object alignment > heap word size
1493       // Cases a, c or e.
1494     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1495       // Case b above.
1496       obj_beg = dense_prefix_end - 1;
1497     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1498                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1499       // Case d above.
1500       obj_beg = dense_prefix_end - 3;
1501       obj_len = 3;
1502     }
1503 #endif  // #ifdef _LP64
1504 
1505     CollectedHeap::fill_with_object(obj_beg, obj_len);
1506     _mark_bitmap.mark_obj(obj_beg, obj_len);
1507     _summary_data.add_obj(obj_beg, obj_len);
1508     assert(start_array(id) != NULL, "sanity");
1509     start_array(id)->allocate_block(obj_beg);
1510   }
1511 }
1512 
1513 void
summarize_space(SpaceId id,bool maximum_compaction)1514 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1515 {
1516   assert(id < last_space_id, "id out of range");
1517   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1518          "should have been reset in summarize_spaces_quick()");
1519 
1520   const MutableSpace* space = _space_info[id].space();
1521   if (_space_info[id].new_top() != space->bottom()) {
1522     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1523     _space_info[id].set_dense_prefix(dense_prefix_end);
1524 
1525 #ifndef PRODUCT
1526     if (log_is_enabled(Debug, gc, compaction)) {
1527       print_dense_prefix_stats("ratio", id, maximum_compaction,
1528                                dense_prefix_end);
1529       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1530       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1531     }
1532 #endif  // #ifndef PRODUCT
1533 
1534     // Recompute the summary data, taking into account the dense prefix.  If
1535     // every last byte will be reclaimed, then the existing summary data which
1536     // compacts everything can be left in place.
1537     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1538       // If dead space crosses the dense prefix boundary, it is (at least
1539       // partially) filled with a dummy object, marked live and added to the
1540       // summary data.  This simplifies the copy/update phase and must be done
1541       // before the final locations of objects are determined, to prevent
1542       // leaving a fragment of dead space that is too small to fill.
1543       fill_dense_prefix_end(id);
1544 
1545       // Compute the destination of each Region, and thus each object.
1546       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1547       _summary_data.summarize(_space_info[id].split_info(),
1548                               dense_prefix_end, space->top(), NULL,
1549                               dense_prefix_end, space->end(),
1550                               _space_info[id].new_top_addr());
1551     }
1552   }
1553 
1554   if (log_develop_is_enabled(Trace, gc, compaction)) {
1555     const size_t region_size = ParallelCompactData::RegionSize;
1556     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1557     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1558     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1559     HeapWord* const new_top = _space_info[id].new_top();
1560     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1561     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1562     log_develop_trace(gc, compaction)(
1563         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1564         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1565         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1566         id, space->capacity_in_words(), p2i(dense_prefix_end),
1567         dp_region, dp_words / region_size,
1568         cr_words / region_size, p2i(new_top));
1569   }
1570 }
1571 
1572 #ifndef PRODUCT
summary_phase_msg(SpaceId dst_space_id,HeapWord * dst_beg,HeapWord * dst_end,SpaceId src_space_id,HeapWord * src_beg,HeapWord * src_end)1573 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1574                                           HeapWord* dst_beg, HeapWord* dst_end,
1575                                           SpaceId src_space_id,
1576                                           HeapWord* src_beg, HeapWord* src_end)
1577 {
1578   log_develop_trace(gc, compaction)(
1579       "Summarizing %d [%s] into %d [%s]:  "
1580       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1581       SIZE_FORMAT "-" SIZE_FORMAT " "
1582       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1583       SIZE_FORMAT "-" SIZE_FORMAT,
1584       src_space_id, space_names[src_space_id],
1585       dst_space_id, space_names[dst_space_id],
1586       p2i(src_beg), p2i(src_end),
1587       _summary_data.addr_to_region_idx(src_beg),
1588       _summary_data.addr_to_region_idx(src_end),
1589       p2i(dst_beg), p2i(dst_end),
1590       _summary_data.addr_to_region_idx(dst_beg),
1591       _summary_data.addr_to_region_idx(dst_end));
1592 }
1593 #endif  // #ifndef PRODUCT
1594 
summary_phase(ParCompactionManager * cm,bool maximum_compaction)1595 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1596                                       bool maximum_compaction)
1597 {
1598   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1599 
1600   // Quick summarization of each space into itself, to see how much is live.
1601   summarize_spaces_quick();
1602 
1603   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1604   NOT_PRODUCT(print_region_ranges());
1605   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1606 
1607   // The amount of live data that will end up in old space (assuming it fits).
1608   size_t old_space_total_live = 0;
1609   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1610     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1611                                           _space_info[id].space()->bottom());
1612   }
1613 
1614   MutableSpace* const old_space = _space_info[old_space_id].space();
1615   const size_t old_capacity = old_space->capacity_in_words();
1616   if (old_space_total_live > old_capacity) {
1617     // XXX - should also try to expand
1618     maximum_compaction = true;
1619   }
1620 
1621   // Old generations.
1622   summarize_space(old_space_id, maximum_compaction);
1623 
1624   // Summarize the remaining spaces in the young gen.  The initial target space
1625   // is the old gen.  If a space does not fit entirely into the target, then the
1626   // remainder is compacted into the space itself and that space becomes the new
1627   // target.
1628   SpaceId dst_space_id = old_space_id;
1629   HeapWord* dst_space_end = old_space->end();
1630   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1631   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1632     const MutableSpace* space = _space_info[id].space();
1633     const size_t live = pointer_delta(_space_info[id].new_top(),
1634                                       space->bottom());
1635     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1636 
1637     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1638                                   SpaceId(id), space->bottom(), space->top());)
1639     if (live > 0 && live <= available) {
1640       // All the live data will fit.
1641       bool done = _summary_data.summarize(_space_info[id].split_info(),
1642                                           space->bottom(), space->top(),
1643                                           NULL,
1644                                           *new_top_addr, dst_space_end,
1645                                           new_top_addr);
1646       assert(done, "space must fit into old gen");
1647 
1648       // Reset the new_top value for the space.
1649       _space_info[id].set_new_top(space->bottom());
1650     } else if (live > 0) {
1651       // Attempt to fit part of the source space into the target space.
1652       HeapWord* next_src_addr = NULL;
1653       bool done = _summary_data.summarize(_space_info[id].split_info(),
1654                                           space->bottom(), space->top(),
1655                                           &next_src_addr,
1656                                           *new_top_addr, dst_space_end,
1657                                           new_top_addr);
1658       assert(!done, "space should not fit into old gen");
1659       assert(next_src_addr != NULL, "sanity");
1660 
1661       // The source space becomes the new target, so the remainder is compacted
1662       // within the space itself.
1663       dst_space_id = SpaceId(id);
1664       dst_space_end = space->end();
1665       new_top_addr = _space_info[id].new_top_addr();
1666       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1667                                     space->bottom(), dst_space_end,
1668                                     SpaceId(id), next_src_addr, space->top());)
1669       done = _summary_data.summarize(_space_info[id].split_info(),
1670                                      next_src_addr, space->top(),
1671                                      NULL,
1672                                      space->bottom(), dst_space_end,
1673                                      new_top_addr);
1674       assert(done, "space must fit when compacted into itself");
1675       assert(*new_top_addr <= space->top(), "usage should not grow");
1676     }
1677   }
1678 
1679   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1680   NOT_PRODUCT(print_region_ranges());
1681   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1682 }
1683 
1684 // This method should contain all heap-specific policy for invoking a full
1685 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1686 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1687 // before full gc, or any other specialized behavior, it needs to be added here.
1688 //
1689 // Note that this method should only be called from the vm_thread while at a
1690 // safepoint.
1691 //
1692 // Note that the all_soft_refs_clear flag in the soft ref policy
1693 // may be true because this method can be called without intervening
1694 // activity.  For example when the heap space is tight and full measure
1695 // are being taken to free space.
invoke(bool maximum_heap_compaction)1696 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1697   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1698   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1699          "should be in vm thread");
1700 
1701   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1702   GCCause::Cause gc_cause = heap->gc_cause();
1703   assert(!heap->is_gc_active(), "not reentrant");
1704 
1705   PSAdaptiveSizePolicy* policy = heap->size_policy();
1706   IsGCActiveMark mark;
1707 
1708   if (ScavengeBeforeFullGC) {
1709     PSScavenge::invoke_no_policy();
1710   }
1711 
1712   const bool clear_all_soft_refs =
1713     heap->soft_ref_policy()->should_clear_all_soft_refs();
1714 
1715   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1716                                       maximum_heap_compaction);
1717 }
1718 
1719 // This method contains no policy. You should probably
1720 // be calling invoke() instead.
invoke_no_policy(bool maximum_heap_compaction)1721 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1722   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1723   assert(ref_processor() != NULL, "Sanity");
1724 
1725   if (GCLocker::check_active_before_gc()) {
1726     return false;
1727   }
1728 
1729   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1730 
1731   GCIdMark gc_id_mark;
1732   _gc_timer.register_gc_start();
1733   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1734 
1735   TimeStamp marking_start;
1736   TimeStamp compaction_start;
1737   TimeStamp collection_exit;
1738 
1739   GCCause::Cause gc_cause = heap->gc_cause();
1740   PSYoungGen* young_gen = heap->young_gen();
1741   PSOldGen* old_gen = heap->old_gen();
1742   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1743 
1744   // The scope of casr should end after code that can change
1745   // SoftRefPolicy::_should_clear_all_soft_refs.
1746   ClearedAllSoftRefs casr(maximum_heap_compaction,
1747                           heap->soft_ref_policy());
1748 
1749   if (ZapUnusedHeapArea) {
1750     // Save information needed to minimize mangling
1751     heap->record_gen_tops_before_GC();
1752   }
1753 
1754   // Make sure data structures are sane, make the heap parsable, and do other
1755   // miscellaneous bookkeeping.
1756   pre_compact();
1757 
1758   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1759 
1760   // Get the compaction manager reserved for the VM thread.
1761   ParCompactionManager* const vmthread_cm = ParCompactionManager::get_vmthread_cm();
1762 
1763   {
1764     const uint active_workers =
1765       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().total_workers(),
1766                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1767                                         Threads::number_of_non_daemon_threads());
1768     ParallelScavengeHeap::heap()->workers().update_active_workers(active_workers);
1769 
1770     GCTraceCPUTime tcpu;
1771     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1772 
1773     heap->pre_full_gc_dump(&_gc_timer);
1774 
1775     TraceCollectorStats tcs(counters());
1776     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1777 
1778     if (log_is_enabled(Debug, gc, heap, exit)) {
1779       accumulated_time()->start();
1780     }
1781 
1782     // Let the size policy know we're starting
1783     size_policy->major_collection_begin();
1784 
1785 #if COMPILER2_OR_JVMCI
1786     DerivedPointerTable::clear();
1787 #endif
1788 
1789     ref_processor()->enable_discovery();
1790     ref_processor()->setup_policy(maximum_heap_compaction);
1791 
1792     bool marked_for_unloading = false;
1793 
1794     marking_start.update();
1795     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1796 
1797     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1798       && GCCause::is_user_requested_gc(gc_cause);
1799     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1800 
1801 #if COMPILER2_OR_JVMCI
1802     assert(DerivedPointerTable::is_active(), "Sanity");
1803     DerivedPointerTable::set_active(false);
1804 #endif
1805 
1806     // adjust_roots() updates Universe::_intArrayKlassObj which is
1807     // needed by the compaction for filling holes in the dense prefix.
1808     adjust_roots();
1809 
1810     compaction_start.update();
1811     compact();
1812 
1813     ParCompactionManager::verify_all_region_stack_empty();
1814 
1815     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1816     // done before resizing.
1817     post_compact();
1818 
1819     // Let the size policy know we're done
1820     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1821 
1822     if (UseAdaptiveSizePolicy) {
1823       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1824       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1825                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1826 
1827       // Don't check if the size_policy is ready here.  Let
1828       // the size_policy check that internally.
1829       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1830           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1831         // Swap the survivor spaces if from_space is empty. The
1832         // resize_young_gen() called below is normally used after
1833         // a successful young GC and swapping of survivor spaces;
1834         // otherwise, it will fail to resize the young gen with
1835         // the current implementation.
1836         if (young_gen->from_space()->is_empty()) {
1837           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1838           young_gen->swap_spaces();
1839         }
1840 
1841         // Calculate optimal free space amounts
1842         assert(young_gen->max_gen_size() >
1843           young_gen->from_space()->capacity_in_bytes() +
1844           young_gen->to_space()->capacity_in_bytes(),
1845           "Sizes of space in young gen are out-of-bounds");
1846 
1847         size_t young_live = young_gen->used_in_bytes();
1848         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1849         size_t old_live = old_gen->used_in_bytes();
1850         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1851         size_t max_old_gen_size = old_gen->max_gen_size();
1852         size_t max_eden_size = young_gen->max_gen_size() -
1853           young_gen->from_space()->capacity_in_bytes() -
1854           young_gen->to_space()->capacity_in_bytes();
1855 
1856         // Used for diagnostics
1857         size_policy->clear_generation_free_space_flags();
1858 
1859         size_policy->compute_generations_free_space(young_live,
1860                                                     eden_live,
1861                                                     old_live,
1862                                                     cur_eden,
1863                                                     max_old_gen_size,
1864                                                     max_eden_size,
1865                                                     true /* full gc*/);
1866 
1867         size_policy->check_gc_overhead_limit(eden_live,
1868                                              max_old_gen_size,
1869                                              max_eden_size,
1870                                              true /* full gc*/,
1871                                              gc_cause,
1872                                              heap->soft_ref_policy());
1873 
1874         size_policy->decay_supplemental_growth(true /* full gc*/);
1875 
1876         heap->resize_old_gen(
1877           size_policy->calculated_old_free_size_in_bytes());
1878 
1879         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1880                                size_policy->calculated_survivor_size_in_bytes());
1881       }
1882 
1883       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1884     }
1885 
1886     if (UsePerfData) {
1887       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1888       counters->update_counters();
1889       counters->update_old_capacity(old_gen->capacity_in_bytes());
1890       counters->update_young_capacity(young_gen->capacity_in_bytes());
1891     }
1892 
1893     heap->resize_all_tlabs();
1894 
1895     // Resize the metaspace capacity after a collection
1896     MetaspaceGC::compute_new_size();
1897 
1898     if (log_is_enabled(Debug, gc, heap, exit)) {
1899       accumulated_time()->stop();
1900     }
1901 
1902     heap->print_heap_change(pre_gc_values);
1903 
1904     // Track memory usage and detect low memory
1905     MemoryService::track_memory_usage();
1906     heap->update_counters();
1907 
1908     heap->post_full_gc_dump(&_gc_timer);
1909   }
1910 
1911   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1912     Universe::verify("After GC");
1913   }
1914 
1915   // Re-verify object start arrays
1916   if (VerifyObjectStartArray &&
1917       VerifyAfterGC) {
1918     old_gen->verify_object_start_array();
1919   }
1920 
1921   if (ZapUnusedHeapArea) {
1922     old_gen->object_space()->check_mangled_unused_area_complete();
1923   }
1924 
1925   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1926 
1927   collection_exit.update();
1928 
1929   heap->print_heap_after_gc();
1930   heap->trace_heap_after_gc(&_gc_tracer);
1931 
1932   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1933                          marking_start.ticks(), compaction_start.ticks(),
1934                          collection_exit.ticks());
1935 
1936   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1937 
1938   _gc_timer.register_gc_end();
1939 
1940   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1941   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1942 
1943   return true;
1944 }
1945 
1946 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1947 private:
1948   uint _worker_id;
1949 
1950 public:
PCAddThreadRootsMarkingTaskClosure(uint worker_id)1951   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
do_thread(Thread * thread)1952   void do_thread(Thread* thread) {
1953     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1954 
1955     ResourceMark rm;
1956 
1957     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1958 
1959     PCMarkAndPushClosure mark_and_push_closure(cm);
1960     MarkingCodeBlobClosure mark_and_push_in_blobs(&mark_and_push_closure, !CodeBlobToOopClosure::FixRelocations);
1961 
1962     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
1963 
1964     // Do the real work
1965     cm->follow_marking_stacks();
1966   }
1967 };
1968 
mark_from_roots_work(ParallelRootType::Value root_type,uint worker_id)1969 static void mark_from_roots_work(ParallelRootType::Value root_type, uint worker_id) {
1970   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1971 
1972   ParCompactionManager* cm =
1973     ParCompactionManager::gc_thread_compaction_manager(worker_id);
1974   PCMarkAndPushClosure mark_and_push_closure(cm);
1975 
1976   switch (root_type) {
1977     case ParallelRootType::class_loader_data:
1978       {
1979         CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_strong);
1980         ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
1981       }
1982       break;
1983 
1984     case ParallelRootType::code_cache:
1985       // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
1986       //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(&mark_and_push_closure));
1987       break;
1988 
1989     case ParallelRootType::sentinel:
1990     DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
1991       fatal("Bad enumeration value: %u", root_type);
1992       break;
1993   }
1994 
1995   // Do the real work
1996   cm->follow_marking_stacks();
1997 }
1998 
steal_marking_work(TaskTerminator & terminator,uint worker_id)1999 void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
2000   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2001 
2002   ParCompactionManager* cm =
2003     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2004 
2005   oop obj = NULL;
2006   ObjArrayTask task;
2007   do {
2008     while (ParCompactionManager::steal_objarray(worker_id,  task)) {
2009       cm->follow_array((objArrayOop)task.obj(), task.index());
2010       cm->follow_marking_stacks();
2011     }
2012     while (ParCompactionManager::steal(worker_id, obj)) {
2013       cm->follow_contents(obj);
2014       cm->follow_marking_stacks();
2015     }
2016   } while (!terminator.offer_termination());
2017 }
2018 
2019 class MarkFromRootsTask : public AbstractGangTask {
2020   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
2021   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
2022   SequentialSubTasksDone _subtasks;
2023   TaskTerminator _terminator;
2024   uint _active_workers;
2025 
2026 public:
MarkFromRootsTask(uint active_workers)2027   MarkFromRootsTask(uint active_workers) :
2028       AbstractGangTask("MarkFromRootsTask"),
2029       _strong_roots_scope(active_workers),
2030       _subtasks(ParallelRootType::sentinel),
2031       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
2032       _active_workers(active_workers) {
2033   }
2034 
work(uint worker_id)2035   virtual void work(uint worker_id) {
2036     for (uint task = 0; _subtasks.try_claim_task(task); /*empty*/ ) {
2037       mark_from_roots_work(static_cast<ParallelRootType::Value>(task), worker_id);
2038     }
2039 
2040     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
2041     Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
2042 
2043     // Mark from OopStorages
2044     {
2045       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2046       PCMarkAndPushClosure closure(cm);
2047       _oop_storage_set_par_state.oops_do(&closure);
2048       // Do the real work
2049       cm->follow_marking_stacks();
2050     }
2051 
2052     if (_active_workers > 1) {
2053       steal_marking_work(_terminator, worker_id);
2054     }
2055   }
2056 };
2057 
2058 class ParallelCompactRefProcProxyTask : public RefProcProxyTask {
2059   TaskTerminator _terminator;
2060 
2061 public:
ParallelCompactRefProcProxyTask(uint max_workers)2062   ParallelCompactRefProcProxyTask(uint max_workers)
2063     : RefProcProxyTask("ParallelCompactRefProcProxyTask", max_workers),
2064       _terminator(_max_workers, ParCompactionManager::oop_task_queues()) {}
2065 
work(uint worker_id)2066   void work(uint worker_id) override {
2067     assert(worker_id < _max_workers, "sanity");
2068     ParCompactionManager* cm = (_tm == RefProcThreadModel::Single) ? ParCompactionManager::get_vmthread_cm() : ParCompactionManager::gc_thread_compaction_manager(worker_id);
2069     PCMarkAndPushClosure keep_alive(cm);
2070     ParCompactionManager::FollowStackClosure complete_gc(cm, (_tm == RefProcThreadModel::Single) ? nullptr : &_terminator, worker_id);
2071     _rp_task->rp_work(worker_id, PSParallelCompact::is_alive_closure(), &keep_alive, &complete_gc);
2072   }
2073 
prepare_run_task_hook()2074   void prepare_run_task_hook() override {
2075     _terminator.reset_for_reuse(_queue_count);
2076   }
2077 };
2078 
marking_phase(ParCompactionManager * cm,bool maximum_heap_compaction,ParallelOldTracer * gc_tracer)2079 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2080                                       bool maximum_heap_compaction,
2081                                       ParallelOldTracer *gc_tracer) {
2082   // Recursively traverse all live objects and mark them
2083   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2084 
2085   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2086 
2087   // Need new claim bits before marking starts.
2088   ClassLoaderDataGraph::clear_claimed_marks();
2089 
2090   {
2091     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2092 
2093     MarkFromRootsTask task(active_gc_threads);
2094     ParallelScavengeHeap::heap()->workers().run_task(&task);
2095   }
2096 
2097   // Process reference objects found during marking
2098   {
2099     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2100 
2101     ReferenceProcessorStats stats;
2102     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2103 
2104     ref_processor()->set_active_mt_degree(active_gc_threads);
2105     ParallelCompactRefProcProxyTask task(ref_processor()->max_num_queues());
2106     stats = ref_processor()->process_discovered_references(task, pt);
2107 
2108     gc_tracer->report_gc_reference_stats(stats);
2109     pt.print_all_references();
2110   }
2111 
2112   // This is the point where the entire marking should have completed.
2113   ParCompactionManager::verify_all_marking_stack_empty();
2114 
2115   {
2116     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2117     WeakProcessor::weak_oops_do(&ParallelScavengeHeap::heap()->workers(),
2118                                 is_alive_closure(),
2119                                 &do_nothing_cl,
2120                                 1);
2121   }
2122 
2123   {
2124     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2125 
2126     // Follow system dictionary roots and unload classes.
2127     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2128 
2129     // Unload nmethods.
2130     CodeCache::do_unloading(is_alive_closure(), purged_class);
2131 
2132     // Prune dead klasses from subklass/sibling/implementor lists.
2133     Klass::clean_weak_klass_links(purged_class);
2134 
2135     // Clean JVMCI metadata handles.
2136     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
2137   }
2138 
2139   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2140 }
2141 
2142 #ifdef ASSERT
verify_cm(ParCompactionManager * cm)2143 void PCAdjustPointerClosure::verify_cm(ParCompactionManager* cm) {
2144   assert(cm != NULL, "associate ParCompactionManage should not be NULL");
2145   auto vmthread_cm = ParCompactionManager::get_vmthread_cm();
2146   if (Thread::current()->is_VM_thread()) {
2147     assert(cm == vmthread_cm, "VM threads should use ParCompactionManager from get_vmthread_cm()");
2148   } else {
2149     assert(Thread::current()->is_GC_task_thread(), "Must be a GC thread");
2150     assert(cm != vmthread_cm, "GC threads should use ParCompactionManager from gc_thread_compaction_manager()");
2151   }
2152 }
2153 #endif
2154 
2155 class PSAdjustTask final : public AbstractGangTask {
2156   SubTasksDone                               _sub_tasks;
2157   WeakProcessor::Task                        _weak_proc_task;
2158   OopStorageSetStrongParState<false, false>  _oop_storage_iter;
2159   uint                                       _nworkers;
2160 
2161   enum PSAdjustSubTask {
2162     PSAdjustSubTask_code_cache,
2163     PSAdjustSubTask_old_ref_process,
2164     PSAdjustSubTask_young_ref_process,
2165 
2166     PSAdjustSubTask_num_elements
2167   };
2168 
2169 public:
PSAdjustTask(uint nworkers)2170   PSAdjustTask(uint nworkers) :
2171     AbstractGangTask("PSAdjust task"),
2172     _sub_tasks(PSAdjustSubTask_num_elements),
2173     _weak_proc_task(nworkers),
2174     _nworkers(nworkers) {
2175     // Need new claim bits when tracing through and adjusting pointers.
2176     ClassLoaderDataGraph::clear_claimed_marks();
2177     if (nworkers > 1) {
2178       Threads::change_thread_claim_token();
2179     }
2180   }
2181 
~PSAdjustTask()2182   ~PSAdjustTask() {
2183     Threads::assert_all_threads_claimed();
2184   }
2185 
work(uint worker_id)2186   void work(uint worker_id) {
2187     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2188     PCAdjustPointerClosure adjust(cm);
2189     {
2190       ResourceMark rm;
2191       Threads::possibly_parallel_oops_do(_nworkers > 1, &adjust, nullptr);
2192     }
2193     _oop_storage_iter.oops_do(&adjust);
2194     {
2195       CLDToOopClosure cld_closure(&adjust, ClassLoaderData::_claim_strong);
2196       ClassLoaderDataGraph::cld_do(&cld_closure);
2197     }
2198     {
2199       AlwaysTrueClosure always_alive;
2200       _weak_proc_task.work(worker_id, &always_alive, &adjust);
2201     }
2202     if (_sub_tasks.try_claim_task(PSAdjustSubTask_code_cache)) {
2203       CodeBlobToOopClosure adjust_code(&adjust, CodeBlobToOopClosure::FixRelocations);
2204       CodeCache::blobs_do(&adjust_code);
2205     }
2206     if (_sub_tasks.try_claim_task(PSAdjustSubTask_old_ref_process)) {
2207       PSParallelCompact::ref_processor()->weak_oops_do(&adjust);
2208     }
2209     if (_sub_tasks.try_claim_task(PSAdjustSubTask_young_ref_process)) {
2210       // Roots were visited so references into the young gen in roots
2211       // may have been scanned.  Process them also.
2212       // Should the reference processor have a span that excludes
2213       // young gen objects?
2214       PSScavenge::reference_processor()->weak_oops_do(&adjust);
2215     }
2216     _sub_tasks.all_tasks_claimed();
2217   }
2218 };
2219 
adjust_roots()2220 void PSParallelCompact::adjust_roots() {
2221   // Adjust the pointers to reflect the new locations
2222   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2223   uint nworkers = ParallelScavengeHeap::heap()->workers().active_workers();
2224   PSAdjustTask task(nworkers);
2225   ParallelScavengeHeap::heap()->workers().run_task(&task);
2226 }
2227 
2228 // Helper class to print 8 region numbers per line and then print the total at the end.
2229 class FillableRegionLogger : public StackObj {
2230 private:
2231   Log(gc, compaction) log;
2232   static const int LineLength = 8;
2233   size_t _regions[LineLength];
2234   int _next_index;
2235   bool _enabled;
2236   size_t _total_regions;
2237 public:
FillableRegionLogger()2238   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
~FillableRegionLogger()2239   ~FillableRegionLogger() {
2240     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2241   }
2242 
print_line()2243   void print_line() {
2244     if (!_enabled || _next_index == 0) {
2245       return;
2246     }
2247     FormatBuffer<> line("Fillable: ");
2248     for (int i = 0; i < _next_index; i++) {
2249       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2250     }
2251     log.trace("%s", line.buffer());
2252     _next_index = 0;
2253   }
2254 
handle(size_t region)2255   void handle(size_t region) {
2256     if (!_enabled) {
2257       return;
2258     }
2259     _regions[_next_index++] = region;
2260     if (_next_index == LineLength) {
2261       print_line();
2262     }
2263     _total_regions++;
2264   }
2265 };
2266 
prepare_region_draining_tasks(uint parallel_gc_threads)2267 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
2268 {
2269   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2270 
2271   // Find the threads that are active
2272   uint worker_id = 0;
2273 
2274   // Find all regions that are available (can be filled immediately) and
2275   // distribute them to the thread stacks.  The iteration is done in reverse
2276   // order (high to low) so the regions will be removed in ascending order.
2277 
2278   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2279 
2280   // id + 1 is used to test termination so unsigned  can
2281   // be used with an old_space_id == 0.
2282   FillableRegionLogger region_logger;
2283   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2284     SpaceInfo* const space_info = _space_info + id;
2285     MutableSpace* const space = space_info->space();
2286     HeapWord* const new_top = space_info->new_top();
2287 
2288     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2289     const size_t end_region =
2290       sd.addr_to_region_idx(sd.region_align_up(new_top));
2291 
2292     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2293       if (sd.region(cur)->claim_unsafe()) {
2294         ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2295         bool result = sd.region(cur)->mark_normal();
2296         assert(result, "Must succeed at this point.");
2297         cm->region_stack()->push(cur);
2298         region_logger.handle(cur);
2299         // Assign regions to tasks in round-robin fashion.
2300         if (++worker_id == parallel_gc_threads) {
2301           worker_id = 0;
2302         }
2303       }
2304     }
2305     region_logger.print_line();
2306   }
2307 }
2308 
2309 class TaskQueue : StackObj {
2310   volatile uint _counter;
2311   uint _size;
2312   uint _insert_index;
2313   PSParallelCompact::UpdateDensePrefixTask* _backing_array;
2314 public:
TaskQueue(uint size)2315   explicit TaskQueue(uint size) : _counter(0), _size(size), _insert_index(0), _backing_array(NULL) {
2316     _backing_array = NEW_C_HEAP_ARRAY(PSParallelCompact::UpdateDensePrefixTask, _size, mtGC);
2317   }
~TaskQueue()2318   ~TaskQueue() {
2319     assert(_counter >= _insert_index, "not all queue elements were claimed");
2320     FREE_C_HEAP_ARRAY(T, _backing_array);
2321   }
2322 
push(const PSParallelCompact::UpdateDensePrefixTask & value)2323   void push(const PSParallelCompact::UpdateDensePrefixTask& value) {
2324     assert(_insert_index < _size, "too small backing array");
2325     _backing_array[_insert_index++] = value;
2326   }
2327 
try_claim(PSParallelCompact::UpdateDensePrefixTask & reference)2328   bool try_claim(PSParallelCompact::UpdateDensePrefixTask& reference) {
2329     uint claimed = Atomic::fetch_and_add(&_counter, 1u);
2330     if (claimed < _insert_index) {
2331       reference = _backing_array[claimed];
2332       return true;
2333     } else {
2334       return false;
2335     }
2336   }
2337 };
2338 
2339 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2340 
enqueue_dense_prefix_tasks(TaskQueue & task_queue,uint parallel_gc_threads)2341 void PSParallelCompact::enqueue_dense_prefix_tasks(TaskQueue& task_queue,
2342                                                    uint parallel_gc_threads) {
2343   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2344 
2345   ParallelCompactData& sd = PSParallelCompact::summary_data();
2346 
2347   // Iterate over all the spaces adding tasks for updating
2348   // regions in the dense prefix.  Assume that 1 gc thread
2349   // will work on opening the gaps and the remaining gc threads
2350   // will work on the dense prefix.
2351   unsigned int space_id;
2352   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2353     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2354     const MutableSpace* const space = _space_info[space_id].space();
2355 
2356     if (dense_prefix_end == space->bottom()) {
2357       // There is no dense prefix for this space.
2358       continue;
2359     }
2360 
2361     // The dense prefix is before this region.
2362     size_t region_index_end_dense_prefix =
2363         sd.addr_to_region_idx(dense_prefix_end);
2364     RegionData* const dense_prefix_cp =
2365       sd.region(region_index_end_dense_prefix);
2366     assert(dense_prefix_end == space->end() ||
2367            dense_prefix_cp->available() ||
2368            dense_prefix_cp->claimed(),
2369            "The region after the dense prefix should always be ready to fill");
2370 
2371     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2372 
2373     // Is there dense prefix work?
2374     size_t total_dense_prefix_regions =
2375       region_index_end_dense_prefix - region_index_start;
2376     // How many regions of the dense prefix should be given to
2377     // each thread?
2378     if (total_dense_prefix_regions > 0) {
2379       uint tasks_for_dense_prefix = 1;
2380       if (total_dense_prefix_regions <=
2381           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2382         // Don't over partition.  This assumes that
2383         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2384         // so there are not many regions to process.
2385         tasks_for_dense_prefix = parallel_gc_threads;
2386       } else {
2387         // Over partition
2388         tasks_for_dense_prefix = parallel_gc_threads *
2389           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2390       }
2391       size_t regions_per_thread = total_dense_prefix_regions /
2392         tasks_for_dense_prefix;
2393       // Give each thread at least 1 region.
2394       if (regions_per_thread == 0) {
2395         regions_per_thread = 1;
2396       }
2397 
2398       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2399         if (region_index_start >= region_index_end_dense_prefix) {
2400           break;
2401         }
2402         // region_index_end is not processed
2403         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2404                                        region_index_end_dense_prefix);
2405         task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2406                                               region_index_start,
2407                                               region_index_end));
2408         region_index_start = region_index_end;
2409       }
2410     }
2411     // This gets any part of the dense prefix that did not
2412     // fit evenly.
2413     if (region_index_start < region_index_end_dense_prefix) {
2414       task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2415                                             region_index_start,
2416                                             region_index_end_dense_prefix));
2417     }
2418   }
2419 }
2420 
2421 #ifdef ASSERT
2422 // Write a histogram of the number of times the block table was filled for a
2423 // region.
write_block_fill_histogram()2424 void PSParallelCompact::write_block_fill_histogram()
2425 {
2426   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2427     return;
2428   }
2429 
2430   Log(gc, compaction) log;
2431   ResourceMark rm;
2432   LogStream ls(log.trace());
2433   outputStream* out = &ls;
2434 
2435   typedef ParallelCompactData::RegionData rd_t;
2436   ParallelCompactData& sd = summary_data();
2437 
2438   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2439     MutableSpace* const spc = _space_info[id].space();
2440     if (spc->bottom() != spc->top()) {
2441       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2442       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2443       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2444 
2445       size_t histo[5] = { 0, 0, 0, 0, 0 };
2446       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2447       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2448 
2449       for (const rd_t* cur = beg; cur < end; ++cur) {
2450         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2451       }
2452       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2453       for (size_t i = 0; i < histo_len; ++i) {
2454         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2455                    histo[i], 100.0 * histo[i] / region_cnt);
2456       }
2457       out->cr();
2458     }
2459   }
2460 }
2461 #endif // #ifdef ASSERT
2462 
compaction_with_stealing_work(TaskTerminator * terminator,uint worker_id)2463 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
2464   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2465 
2466   ParCompactionManager* cm =
2467     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2468 
2469   // Drain the stacks that have been preloaded with regions
2470   // that are ready to fill.
2471 
2472   cm->drain_region_stacks();
2473 
2474   guarantee(cm->region_stack()->is_empty(), "Not empty");
2475 
2476   size_t region_index = 0;
2477 
2478   while (true) {
2479     if (ParCompactionManager::steal(worker_id, region_index)) {
2480       PSParallelCompact::fill_and_update_region(cm, region_index);
2481       cm->drain_region_stacks();
2482     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
2483       // Fill and update an unavailable region with the help of a shadow region
2484       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
2485       cm->drain_region_stacks();
2486     } else {
2487       if (terminator->offer_termination()) {
2488         break;
2489       }
2490       // Go around again.
2491     }
2492   }
2493 }
2494 
2495 class UpdateDensePrefixAndCompactionTask: public AbstractGangTask {
2496   TaskQueue& _tq;
2497   TaskTerminator _terminator;
2498   uint _active_workers;
2499 
2500 public:
UpdateDensePrefixAndCompactionTask(TaskQueue & tq,uint active_workers)2501   UpdateDensePrefixAndCompactionTask(TaskQueue& tq, uint active_workers) :
2502       AbstractGangTask("UpdateDensePrefixAndCompactionTask"),
2503       _tq(tq),
2504       _terminator(active_workers, ParCompactionManager::region_task_queues()),
2505       _active_workers(active_workers) {
2506   }
work(uint worker_id)2507   virtual void work(uint worker_id) {
2508     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2509 
2510     for (PSParallelCompact::UpdateDensePrefixTask task; _tq.try_claim(task); /* empty */) {
2511       PSParallelCompact::update_and_deadwood_in_dense_prefix(cm,
2512                                                              task._space_id,
2513                                                              task._region_index_start,
2514                                                              task._region_index_end);
2515     }
2516 
2517     // Once a thread has drained it's stack, it should try to steal regions from
2518     // other threads.
2519     compaction_with_stealing_work(&_terminator, worker_id);
2520   }
2521 };
2522 
compact()2523 void PSParallelCompact::compact() {
2524   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2525 
2526   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2527   PSOldGen* old_gen = heap->old_gen();
2528   old_gen->start_array()->reset();
2529   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2530 
2531   // for [0..last_space_id)
2532   //     for [0..active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)
2533   //         push
2534   //     push
2535   //
2536   // max push count is thus: last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1)
2537   TaskQueue task_queue(last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1));
2538   initialize_shadow_regions(active_gc_threads);
2539   prepare_region_draining_tasks(active_gc_threads);
2540   enqueue_dense_prefix_tasks(task_queue, active_gc_threads);
2541 
2542   {
2543     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2544 
2545     UpdateDensePrefixAndCompactionTask task(task_queue, active_gc_threads);
2546     ParallelScavengeHeap::heap()->workers().run_task(&task);
2547 
2548 #ifdef  ASSERT
2549     // Verify that all regions have been processed before the deferred updates.
2550     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2551       verify_complete(SpaceId(id));
2552     }
2553 #endif
2554   }
2555 
2556   {
2557     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2558     // Update the deferred objects, if any. In principle, any compaction
2559     // manager can be used. However, since the current thread is VM thread, we
2560     // use the rightful one to keep the verification logic happy.
2561     ParCompactionManager* cm = ParCompactionManager::get_vmthread_cm();
2562     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2563       update_deferred_objects(cm, SpaceId(id));
2564     }
2565   }
2566 
2567   DEBUG_ONLY(write_block_fill_histogram());
2568 }
2569 
2570 #ifdef  ASSERT
verify_complete(SpaceId space_id)2571 void PSParallelCompact::verify_complete(SpaceId space_id) {
2572   // All Regions between space bottom() to new_top() should be marked as filled
2573   // and all Regions between new_top() and top() should be available (i.e.,
2574   // should have been emptied).
2575   ParallelCompactData& sd = summary_data();
2576   SpaceInfo si = _space_info[space_id];
2577   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2578   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2579   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2580   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2581   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2582 
2583   bool issued_a_warning = false;
2584 
2585   size_t cur_region;
2586   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2587     const RegionData* const c = sd.region(cur_region);
2588     if (!c->completed()) {
2589       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2590                       cur_region, c->destination_count());
2591       issued_a_warning = true;
2592     }
2593   }
2594 
2595   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2596     const RegionData* const c = sd.region(cur_region);
2597     if (!c->available()) {
2598       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2599                       cur_region, c->destination_count());
2600       issued_a_warning = true;
2601     }
2602   }
2603 
2604   if (issued_a_warning) {
2605     print_region_ranges();
2606   }
2607 }
2608 #endif  // #ifdef ASSERT
2609 
do_addr(HeapWord * addr)2610 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2611   _start_array->allocate_block(addr);
2612   compaction_manager()->update_contents(cast_to_oop(addr));
2613 }
2614 
2615 // Update interior oops in the ranges of regions [beg_region, end_region).
2616 void
update_and_deadwood_in_dense_prefix(ParCompactionManager * cm,SpaceId space_id,size_t beg_region,size_t end_region)2617 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2618                                                        SpaceId space_id,
2619                                                        size_t beg_region,
2620                                                        size_t end_region) {
2621   ParallelCompactData& sd = summary_data();
2622   ParMarkBitMap* const mbm = mark_bitmap();
2623 
2624   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2625   HeapWord* const end_addr = sd.region_to_addr(end_region);
2626   assert(beg_region <= end_region, "bad region range");
2627   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2628 
2629 #ifdef  ASSERT
2630   // Claim the regions to avoid triggering an assert when they are marked as
2631   // filled.
2632   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2633     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2634   }
2635 #endif  // #ifdef ASSERT
2636 
2637   if (beg_addr != space(space_id)->bottom()) {
2638     // Find the first live object or block of dead space that *starts* in this
2639     // range of regions.  If a partial object crosses onto the region, skip it;
2640     // it will be marked for 'deferred update' when the object head is
2641     // processed.  If dead space crosses onto the region, it is also skipped; it
2642     // will be filled when the prior region is processed.  If neither of those
2643     // apply, the first word in the region is the start of a live object or dead
2644     // space.
2645     assert(beg_addr > space(space_id)->bottom(), "sanity");
2646     const RegionData* const cp = sd.region(beg_region);
2647     if (cp->partial_obj_size() != 0) {
2648       beg_addr = sd.partial_obj_end(beg_region);
2649     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2650       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2651     }
2652   }
2653 
2654   if (beg_addr < end_addr) {
2655     // A live object or block of dead space starts in this range of Regions.
2656      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2657 
2658     // Create closures and iterate.
2659     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2660     FillClosure fill_closure(cm, space_id);
2661     ParMarkBitMap::IterationStatus status;
2662     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2663                           dense_prefix_end);
2664     if (status == ParMarkBitMap::incomplete) {
2665       update_closure.do_addr(update_closure.source());
2666     }
2667   }
2668 
2669   // Mark the regions as filled.
2670   RegionData* const beg_cp = sd.region(beg_region);
2671   RegionData* const end_cp = sd.region(end_region);
2672   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2673     cp->set_completed();
2674   }
2675 }
2676 
2677 // Return the SpaceId for the space containing addr.  If addr is not in the
2678 // heap, last_space_id is returned.  In debug mode it expects the address to be
2679 // in the heap and asserts such.
space_id(HeapWord * addr)2680 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2681   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2682 
2683   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2684     if (_space_info[id].space()->contains(addr)) {
2685       return SpaceId(id);
2686     }
2687   }
2688 
2689   assert(false, "no space contains the addr");
2690   return last_space_id;
2691 }
2692 
update_deferred_objects(ParCompactionManager * cm,SpaceId id)2693 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2694                                                 SpaceId id) {
2695   assert(id < last_space_id, "bad space id");
2696 
2697   ParallelCompactData& sd = summary_data();
2698   const SpaceInfo* const space_info = _space_info + id;
2699   ObjectStartArray* const start_array = space_info->start_array();
2700 
2701   const MutableSpace* const space = space_info->space();
2702   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2703   HeapWord* const beg_addr = space_info->dense_prefix();
2704   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2705 
2706   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2707   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2708   const RegionData* cur_region;
2709   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2710     HeapWord* const addr = cur_region->deferred_obj_addr();
2711     if (addr != NULL) {
2712       if (start_array != NULL) {
2713         start_array->allocate_block(addr);
2714       }
2715       cm->update_contents(cast_to_oop(addr));
2716       assert(oopDesc::is_oop_or_null(cast_to_oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(cast_to_oop(addr)));
2717     }
2718   }
2719 }
2720 
2721 // Skip over count live words starting from beg, and return the address of the
2722 // next live word.  Unless marked, the word corresponding to beg is assumed to
2723 // be dead.  Callers must either ensure beg does not correspond to the middle of
2724 // an object, or account for those live words in some other way.  Callers must
2725 // also ensure that there are enough live words in the range [beg, end) to skip.
2726 HeapWord*
skip_live_words(HeapWord * beg,HeapWord * end,size_t count)2727 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2728 {
2729   assert(count > 0, "sanity");
2730 
2731   ParMarkBitMap* m = mark_bitmap();
2732   idx_t bits_to_skip = m->words_to_bits(count);
2733   idx_t cur_beg = m->addr_to_bit(beg);
2734   const idx_t search_end = m->align_range_end(m->addr_to_bit(end));
2735 
2736   do {
2737     cur_beg = m->find_obj_beg(cur_beg, search_end);
2738     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2739     const size_t obj_bits = cur_end - cur_beg + 1;
2740     if (obj_bits > bits_to_skip) {
2741       return m->bit_to_addr(cur_beg + bits_to_skip);
2742     }
2743     bits_to_skip -= obj_bits;
2744     cur_beg = cur_end + 1;
2745   } while (bits_to_skip > 0);
2746 
2747   // Skipping the desired number of words landed just past the end of an object.
2748   // Find the start of the next object.
2749   cur_beg = m->find_obj_beg(cur_beg, search_end);
2750   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2751   return m->bit_to_addr(cur_beg);
2752 }
2753 
first_src_addr(HeapWord * const dest_addr,SpaceId src_space_id,size_t src_region_idx)2754 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2755                                             SpaceId src_space_id,
2756                                             size_t src_region_idx)
2757 {
2758   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2759 
2760   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2761   if (split_info.dest_region_addr() == dest_addr) {
2762     // The partial object ending at the split point contains the first word to
2763     // be copied to dest_addr.
2764     return split_info.first_src_addr();
2765   }
2766 
2767   const ParallelCompactData& sd = summary_data();
2768   ParMarkBitMap* const bitmap = mark_bitmap();
2769   const size_t RegionSize = ParallelCompactData::RegionSize;
2770 
2771   assert(sd.is_region_aligned(dest_addr), "not aligned");
2772   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2773   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2774   HeapWord* const src_region_destination = src_region_ptr->destination();
2775 
2776   assert(dest_addr >= src_region_destination, "wrong src region");
2777   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2778 
2779   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2780   HeapWord* const src_region_end = src_region_beg + RegionSize;
2781 
2782   HeapWord* addr = src_region_beg;
2783   if (dest_addr == src_region_destination) {
2784     // Return the first live word in the source region.
2785     if (partial_obj_size == 0) {
2786       addr = bitmap->find_obj_beg(addr, src_region_end);
2787       assert(addr < src_region_end, "no objects start in src region");
2788     }
2789     return addr;
2790   }
2791 
2792   // Must skip some live data.
2793   size_t words_to_skip = dest_addr - src_region_destination;
2794   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2795 
2796   if (partial_obj_size >= words_to_skip) {
2797     // All the live words to skip are part of the partial object.
2798     addr += words_to_skip;
2799     if (partial_obj_size == words_to_skip) {
2800       // Find the first live word past the partial object.
2801       addr = bitmap->find_obj_beg(addr, src_region_end);
2802       assert(addr < src_region_end, "wrong src region");
2803     }
2804     return addr;
2805   }
2806 
2807   // Skip over the partial object (if any).
2808   if (partial_obj_size != 0) {
2809     words_to_skip -= partial_obj_size;
2810     addr += partial_obj_size;
2811   }
2812 
2813   // Skip over live words due to objects that start in the region.
2814   addr = skip_live_words(addr, src_region_end, words_to_skip);
2815   assert(addr < src_region_end, "wrong src region");
2816   return addr;
2817 }
2818 
decrement_destination_counts(ParCompactionManager * cm,SpaceId src_space_id,size_t beg_region,HeapWord * end_addr)2819 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2820                                                      SpaceId src_space_id,
2821                                                      size_t beg_region,
2822                                                      HeapWord* end_addr)
2823 {
2824   ParallelCompactData& sd = summary_data();
2825 
2826 #ifdef ASSERT
2827   MutableSpace* const src_space = _space_info[src_space_id].space();
2828   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2829   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2830          "src_space_id does not match beg_addr");
2831   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2832          "src_space_id does not match end_addr");
2833 #endif // #ifdef ASSERT
2834 
2835   RegionData* const beg = sd.region(beg_region);
2836   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2837 
2838   // Regions up to new_top() are enqueued if they become available.
2839   HeapWord* const new_top = _space_info[src_space_id].new_top();
2840   RegionData* const enqueue_end =
2841     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2842 
2843   for (RegionData* cur = beg; cur < end; ++cur) {
2844     assert(cur->data_size() > 0, "region must have live data");
2845     cur->decrement_destination_count();
2846     if (cur < enqueue_end && cur->available() && cur->claim()) {
2847       if (cur->mark_normal()) {
2848         cm->push_region(sd.region(cur));
2849       } else if (cur->mark_copied()) {
2850         // Try to copy the content of the shadow region back to its corresponding
2851         // heap region if the shadow region is filled. Otherwise, the GC thread
2852         // fills the shadow region will copy the data back (see
2853         // MoveAndUpdateShadowClosure::complete_region).
2854         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2855         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2856         cur->set_completed();
2857       }
2858     }
2859   }
2860 }
2861 
next_src_region(MoveAndUpdateClosure & closure,SpaceId & src_space_id,HeapWord * & src_space_top,HeapWord * end_addr)2862 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2863                                           SpaceId& src_space_id,
2864                                           HeapWord*& src_space_top,
2865                                           HeapWord* end_addr)
2866 {
2867   typedef ParallelCompactData::RegionData RegionData;
2868 
2869   ParallelCompactData& sd = PSParallelCompact::summary_data();
2870   const size_t region_size = ParallelCompactData::RegionSize;
2871 
2872   size_t src_region_idx = 0;
2873 
2874   // Skip empty regions (if any) up to the top of the space.
2875   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2876   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2877   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2878   const RegionData* const top_region_ptr =
2879     sd.addr_to_region_ptr(top_aligned_up);
2880   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2881     ++src_region_ptr;
2882   }
2883 
2884   if (src_region_ptr < top_region_ptr) {
2885     // The next source region is in the current space.  Update src_region_idx
2886     // and the source address to match src_region_ptr.
2887     src_region_idx = sd.region(src_region_ptr);
2888     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2889     if (src_region_addr > closure.source()) {
2890       closure.set_source(src_region_addr);
2891     }
2892     return src_region_idx;
2893   }
2894 
2895   // Switch to a new source space and find the first non-empty region.
2896   unsigned int space_id = src_space_id + 1;
2897   assert(space_id < last_space_id, "not enough spaces");
2898 
2899   HeapWord* const destination = closure.destination();
2900 
2901   do {
2902     MutableSpace* space = _space_info[space_id].space();
2903     HeapWord* const bottom = space->bottom();
2904     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2905 
2906     // Iterate over the spaces that do not compact into themselves.
2907     if (bottom_cp->destination() != bottom) {
2908       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2909       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2910 
2911       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2912         if (src_cp->live_obj_size() > 0) {
2913           // Found it.
2914           assert(src_cp->destination() == destination,
2915                  "first live obj in the space must match the destination");
2916           assert(src_cp->partial_obj_size() == 0,
2917                  "a space cannot begin with a partial obj");
2918 
2919           src_space_id = SpaceId(space_id);
2920           src_space_top = space->top();
2921           const size_t src_region_idx = sd.region(src_cp);
2922           closure.set_source(sd.region_to_addr(src_region_idx));
2923           return src_region_idx;
2924         } else {
2925           assert(src_cp->data_size() == 0, "sanity");
2926         }
2927       }
2928     }
2929   } while (++space_id < last_space_id);
2930 
2931   assert(false, "no source region was found");
2932   return 0;
2933 }
2934 
fill_region(ParCompactionManager * cm,MoveAndUpdateClosure & closure,size_t region_idx)2935 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2936 {
2937   typedef ParMarkBitMap::IterationStatus IterationStatus;
2938   ParMarkBitMap* const bitmap = mark_bitmap();
2939   ParallelCompactData& sd = summary_data();
2940   RegionData* const region_ptr = sd.region(region_idx);
2941 
2942   // Get the source region and related info.
2943   size_t src_region_idx = region_ptr->source_region();
2944   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2945   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2946   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2947 
2948   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2949 
2950   // Adjust src_region_idx to prepare for decrementing destination counts (the
2951   // destination count is not decremented when a region is copied to itself).
2952   if (src_region_idx == region_idx) {
2953     src_region_idx += 1;
2954   }
2955 
2956   if (bitmap->is_unmarked(closure.source())) {
2957     // The first source word is in the middle of an object; copy the remainder
2958     // of the object or as much as will fit.  The fact that pointer updates were
2959     // deferred will be noted when the object header is processed.
2960     HeapWord* const old_src_addr = closure.source();
2961     closure.copy_partial_obj();
2962     if (closure.is_full()) {
2963       decrement_destination_counts(cm, src_space_id, src_region_idx,
2964                                    closure.source());
2965       region_ptr->set_deferred_obj_addr(NULL);
2966       closure.complete_region(cm, dest_addr, region_ptr);
2967       return;
2968     }
2969 
2970     HeapWord* const end_addr = sd.region_align_down(closure.source());
2971     if (sd.region_align_down(old_src_addr) != end_addr) {
2972       // The partial object was copied from more than one source region.
2973       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2974 
2975       // Move to the next source region, possibly switching spaces as well.  All
2976       // args except end_addr may be modified.
2977       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2978                                        end_addr);
2979     }
2980   }
2981 
2982   do {
2983     HeapWord* const cur_addr = closure.source();
2984     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2985                                     src_space_top);
2986     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2987 
2988     if (status == ParMarkBitMap::incomplete) {
2989       // The last obj that starts in the source region does not end in the
2990       // region.
2991       assert(closure.source() < end_addr, "sanity");
2992       HeapWord* const obj_beg = closure.source();
2993       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2994                                        src_space_top);
2995       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2996       if (obj_end < range_end) {
2997         // The end was found; the entire object will fit.
2998         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2999         assert(status != ParMarkBitMap::would_overflow, "sanity");
3000       } else {
3001         // The end was not found; the object will not fit.
3002         assert(range_end < src_space_top, "obj cannot cross space boundary");
3003         status = ParMarkBitMap::would_overflow;
3004       }
3005     }
3006 
3007     if (status == ParMarkBitMap::would_overflow) {
3008       // The last object did not fit.  Note that interior oop updates were
3009       // deferred, then copy enough of the object to fill the region.
3010       region_ptr->set_deferred_obj_addr(closure.destination());
3011       status = closure.copy_until_full(); // copies from closure.source()
3012 
3013       decrement_destination_counts(cm, src_space_id, src_region_idx,
3014                                    closure.source());
3015       closure.complete_region(cm, dest_addr, region_ptr);
3016       return;
3017     }
3018 
3019     if (status == ParMarkBitMap::full) {
3020       decrement_destination_counts(cm, src_space_id, src_region_idx,
3021                                    closure.source());
3022       region_ptr->set_deferred_obj_addr(NULL);
3023       closure.complete_region(cm, dest_addr, region_ptr);
3024       return;
3025     }
3026 
3027     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3028 
3029     // Move to the next source region, possibly switching spaces as well.  All
3030     // args except end_addr may be modified.
3031     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3032                                      end_addr);
3033   } while (true);
3034 }
3035 
fill_and_update_region(ParCompactionManager * cm,size_t region_idx)3036 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
3037 {
3038   MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3039   fill_region(cm, cl, region_idx);
3040 }
3041 
fill_and_update_shadow_region(ParCompactionManager * cm,size_t region_idx)3042 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
3043 {
3044   // Get a shadow region first
3045   ParallelCompactData& sd = summary_data();
3046   RegionData* const region_ptr = sd.region(region_idx);
3047   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
3048   // The InvalidShadow return value indicates the corresponding heap region is available,
3049   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
3050   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
3051   if (shadow_region == ParCompactionManager::InvalidShadow) {
3052     MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3053     region_ptr->shadow_to_normal();
3054     return fill_region(cm, cl, region_idx);
3055   } else {
3056     MoveAndUpdateShadowClosure cl(mark_bitmap(), cm, region_idx, shadow_region);
3057     return fill_region(cm, cl, region_idx);
3058   }
3059 }
3060 
copy_back(HeapWord * shadow_addr,HeapWord * region_addr)3061 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
3062 {
3063   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
3064 }
3065 
steal_unavailable_region(ParCompactionManager * cm,size_t & region_idx)3066 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
3067 {
3068   size_t next = cm->next_shadow_region();
3069   ParallelCompactData& sd = summary_data();
3070   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
3071   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
3072 
3073   while (next < old_new_top) {
3074     if (sd.region(next)->mark_shadow()) {
3075       region_idx = next;
3076       return true;
3077     }
3078     next = cm->move_next_shadow_region_by(active_gc_threads);
3079   }
3080 
3081   return false;
3082 }
3083 
3084 // The shadow region is an optimization to address region dependencies in full GC. The basic
3085 // idea is making more regions available by temporally storing their live objects in empty
3086 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
3087 // GC threads need not wait destination regions to be available before processing sources.
3088 //
3089 // A typical workflow would be:
3090 // After draining its own stack and failing to steal from others, a GC worker would pick an
3091 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
3092 // the shadow region by copying live objects from source regions of the unavailable one. Once
3093 // the unavailable region becomes available, the data in the shadow region will be copied back.
3094 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
3095 //
3096 // For more details, please refer to §4.2 of the VEE'19 paper:
3097 // Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. 2019. ScissorGC: scalable and efficient
3098 // compaction for Java full garbage collection. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
3099 // International Conference on Virtual Execution Environments (VEE 2019). ACM, New York, NY, USA,
3100 // 108-121. DOI: https://doi.org/10.1145/3313808.3313820
initialize_shadow_regions(uint parallel_gc_threads)3101 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
3102 {
3103   const ParallelCompactData& sd = PSParallelCompact::summary_data();
3104 
3105   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
3106     SpaceInfo* const space_info = _space_info + id;
3107     MutableSpace* const space = space_info->space();
3108 
3109     const size_t beg_region =
3110       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
3111     const size_t end_region =
3112       sd.addr_to_region_idx(sd.region_align_down(space->end()));
3113 
3114     for (size_t cur = beg_region; cur < end_region; ++cur) {
3115       ParCompactionManager::push_shadow_region(cur);
3116     }
3117   }
3118 
3119   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
3120   for (uint i = 0; i < parallel_gc_threads; i++) {
3121     ParCompactionManager *cm = ParCompactionManager::gc_thread_compaction_manager(i);
3122     cm->set_next_shadow_region(beg_region + i);
3123   }
3124 }
3125 
fill_blocks(size_t region_idx)3126 void PSParallelCompact::fill_blocks(size_t region_idx)
3127 {
3128   // Fill in the block table elements for the specified region.  Each block
3129   // table element holds the number of live words in the region that are to the
3130   // left of the first object that starts in the block.  Thus only blocks in
3131   // which an object starts need to be filled.
3132   //
3133   // The algorithm scans the section of the bitmap that corresponds to the
3134   // region, keeping a running total of the live words.  When an object start is
3135   // found, if it's the first to start in the block that contains it, the
3136   // current total is written to the block table element.
3137   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3138   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3139   const size_t RegionSize = ParallelCompactData::RegionSize;
3140 
3141   ParallelCompactData& sd = summary_data();
3142   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3143   if (partial_obj_size >= RegionSize) {
3144     return; // No objects start in this region.
3145   }
3146 
3147   // Ensure the first loop iteration decides that the block has changed.
3148   size_t cur_block = sd.block_count();
3149 
3150   const ParMarkBitMap* const bitmap = mark_bitmap();
3151 
3152   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3153   assert((size_t)1 << Log2BitsPerBlock ==
3154          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3155 
3156   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3157   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3158   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3159   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3160   while (beg_bit < range_end) {
3161     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3162     if (new_block != cur_block) {
3163       cur_block = new_block;
3164       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3165     }
3166 
3167     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3168     if (end_bit < range_end - 1) {
3169       live_bits += end_bit - beg_bit + 1;
3170       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3171     } else {
3172       return;
3173     }
3174   }
3175 }
3176 
copy_until_full()3177 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3178 {
3179   if (source() != copy_destination()) {
3180     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3181     Copy::aligned_conjoint_words(source(), copy_destination(), words_remaining());
3182   }
3183   update_state(words_remaining());
3184   assert(is_full(), "sanity");
3185   return ParMarkBitMap::full;
3186 }
3187 
copy_partial_obj()3188 void MoveAndUpdateClosure::copy_partial_obj()
3189 {
3190   size_t words = words_remaining();
3191 
3192   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3193   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3194   if (end_addr < range_end) {
3195     words = bitmap()->obj_size(source(), end_addr);
3196   }
3197 
3198   // This test is necessary; if omitted, the pointer updates to a partial object
3199   // that crosses the dense prefix boundary could be overwritten.
3200   if (source() != copy_destination()) {
3201     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3202     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3203   }
3204   update_state(words);
3205 }
3206 
complete_region(ParCompactionManager * cm,HeapWord * dest_addr,PSParallelCompact::RegionData * region_ptr)3207 void MoveAndUpdateClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3208                                            PSParallelCompact::RegionData *region_ptr) {
3209   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
3210   region_ptr->set_completed();
3211 }
3212 
3213 ParMarkBitMapClosure::IterationStatus
do_addr(HeapWord * addr,size_t words)3214 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3215   assert(destination() != NULL, "sanity");
3216   assert(bitmap()->obj_size(addr) == words, "bad size");
3217 
3218   _source = addr;
3219   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3220          destination(), "wrong destination");
3221 
3222   if (words > words_remaining()) {
3223     return ParMarkBitMap::would_overflow;
3224   }
3225 
3226   // The start_array must be updated even if the object is not moving.
3227   if (_start_array != NULL) {
3228     _start_array->allocate_block(destination());
3229   }
3230 
3231   if (copy_destination() != source()) {
3232     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3233     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3234   }
3235 
3236   oop moved_oop = cast_to_oop(copy_destination());
3237   compaction_manager()->update_contents(moved_oop);
3238   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3239 
3240   update_state(words);
3241   assert(copy_destination() == cast_from_oop<HeapWord*>(moved_oop) + moved_oop->size(), "sanity");
3242   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3243 }
3244 
complete_region(ParCompactionManager * cm,HeapWord * dest_addr,PSParallelCompact::RegionData * region_ptr)3245 void MoveAndUpdateShadowClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3246                                                  PSParallelCompact::RegionData *region_ptr) {
3247   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
3248   // Record the shadow region index
3249   region_ptr->set_shadow_region(_shadow);
3250   // Mark the shadow region as filled to indicate the data is ready to be
3251   // copied back
3252   region_ptr->mark_filled();
3253   // Try to copy the content of the shadow region back to its corresponding
3254   // heap region if available; the GC thread that decreases the destination
3255   // count to zero will do the copying otherwise (see
3256   // PSParallelCompact::decrement_destination_counts).
3257   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
3258     region_ptr->set_completed();
3259     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
3260     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
3261   }
3262 }
3263 
UpdateOnlyClosure(ParMarkBitMap * mbm,ParCompactionManager * cm,PSParallelCompact::SpaceId space_id)3264 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3265                                      ParCompactionManager* cm,
3266                                      PSParallelCompact::SpaceId space_id) :
3267   ParMarkBitMapClosure(mbm, cm),
3268   _space_id(space_id),
3269   _start_array(PSParallelCompact::start_array(space_id))
3270 {
3271 }
3272 
3273 // Updates the references in the object to their new values.
3274 ParMarkBitMapClosure::IterationStatus
do_addr(HeapWord * addr,size_t words)3275 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3276   do_addr(addr);
3277   return ParMarkBitMap::incomplete;
3278 }
3279 
FillClosure(ParCompactionManager * cm,PSParallelCompact::SpaceId space_id)3280 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3281   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3282   _start_array(PSParallelCompact::start_array(space_id))
3283 {
3284   assert(space_id == PSParallelCompact::old_space_id,
3285          "cannot use FillClosure in the young gen");
3286 }
3287 
3288 ParMarkBitMapClosure::IterationStatus
do_addr(HeapWord * addr,size_t size)3289 FillClosure::do_addr(HeapWord* addr, size_t size) {
3290   CollectedHeap::fill_with_objects(addr, size);
3291   HeapWord* const end = addr + size;
3292   do {
3293     _start_array->allocate_block(addr);
3294     addr += cast_to_oop(addr)->size();
3295   } while (addr < end);
3296   return ParMarkBitMap::incomplete;
3297 }
3298