1 /*
2  * Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.awt;
27 
28 import java.awt.MultipleGradientPaint.CycleMethod;
29 import java.awt.MultipleGradientPaint.ColorSpaceType;
30 import java.awt.color.ColorSpace;
31 import java.awt.geom.AffineTransform;
32 import java.awt.geom.NoninvertibleTransformException;
33 import java.awt.geom.Rectangle2D;
34 import java.awt.image.ColorModel;
35 import java.awt.image.DataBuffer;
36 import java.awt.image.DataBufferInt;
37 import java.awt.image.DirectColorModel;
38 import java.awt.image.Raster;
39 import java.awt.image.SinglePixelPackedSampleModel;
40 import java.awt.image.WritableRaster;
41 import java.lang.ref.SoftReference;
42 import java.lang.ref.WeakReference;
43 import java.util.Arrays;
44 
45 /**
46  * This is the superclass for all PaintContexts which use a multiple color
47  * gradient to fill in their raster.  It provides the actual color
48  * interpolation functionality.  Subclasses only have to deal with using
49  * the gradient to fill pixels in a raster.
50  *
51  * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
52  */
53 abstract class MultipleGradientPaintContext implements PaintContext {
54 
55     /**
56      * The PaintContext's ColorModel.  This is ARGB if colors are not all
57      * opaque, otherwise it is RGB.
58      */
59     protected ColorModel model;
60 
61     /** Color model used if gradient colors are all opaque. */
62     private static ColorModel xrgbmodel =
63         new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
64 
65     /** The cached ColorModel. */
66     protected static ColorModel cachedModel;
67 
68     /** The cached raster, which is reusable among instances. */
69     protected static WeakReference<Raster> cached;
70 
71     /** Raster is reused whenever possible. */
72     protected Raster saved;
73 
74     /** The method to use when painting out of the gradient bounds. */
75     protected CycleMethod cycleMethod;
76 
77     /** The ColorSpace in which to perform the interpolation */
78     protected ColorSpaceType colorSpace;
79 
80     /** Elements of the inverse transform matrix. */
81     protected float a00, a01, a10, a11, a02, a12;
82 
83     /**
84      * This boolean specifies whether we are in simple lookup mode, where an
85      * input value between 0 and 1 may be used to directly index into a single
86      * array of gradient colors.  If this boolean value is false, then we have
87      * to use a 2-step process where we have to determine which gradient array
88      * we fall into, then determine the index into that array.
89      */
90     protected boolean isSimpleLookup;
91 
92     /**
93      * Size of gradients array for scaling the 0-1 index when looking up
94      * colors the fast way.
95      */
96     protected int fastGradientArraySize;
97 
98     /**
99      * Array which contains the interpolated color values for each interval,
100      * used by calculateSingleArrayGradient().  It is protected for possible
101      * direct access by subclasses.
102      */
103     protected int[] gradient;
104 
105     /**
106      * Array of gradient arrays, one array for each interval.  Used by
107      * calculateMultipleArrayGradient().
108      */
109     private int[][] gradients;
110 
111     /** Normalized intervals array. */
112     private float[] normalizedIntervals;
113 
114     /** Fractions array. */
115     private float[] fractions;
116 
117     /** Used to determine if gradient colors are all opaque. */
118     private int transparencyTest;
119 
120     /** Color space conversion lookup tables. */
121     private static final int[] SRGBtoLinearRGB = new int[256];
122     private static final int[] LinearRGBtoSRGB = new int[256];
123 
124     static {
125         // build the tables
126         for (int k = 0; k < 256; k++) {
127             SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
128             LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
129         }
130     }
131 
132     /**
133      * Constant number of max colors between any 2 arbitrary colors.
134      * Used for creating and indexing gradients arrays.
135      */
136     protected static final int GRADIENT_SIZE = 256;
137     protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
138 
139     /**
140      * Maximum length of the fast single-array.  If the estimated array size
141      * is greater than this, switch over to the slow lookup method.
142      * No particular reason for choosing this number, but it seems to provide
143      * satisfactory performance for the common case (fast lookup).
144      */
145     private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
146 
147     /**
148      * Constructor for MultipleGradientPaintContext superclass.
149      */
MultipleGradientPaintContext(MultipleGradientPaint mgp, ColorModel cm, Rectangle deviceBounds, Rectangle2D userBounds, AffineTransform t, RenderingHints hints, float[] fractions, Color[] colors, CycleMethod cycleMethod, ColorSpaceType colorSpace)150     protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
151                                            ColorModel cm,
152                                            Rectangle deviceBounds,
153                                            Rectangle2D userBounds,
154                                            AffineTransform t,
155                                            RenderingHints hints,
156                                            float[] fractions,
157                                            Color[] colors,
158                                            CycleMethod cycleMethod,
159                                            ColorSpaceType colorSpace)
160     {
161         if (deviceBounds == null) {
162             throw new NullPointerException("Device bounds cannot be null");
163         }
164 
165         if (userBounds == null) {
166             throw new NullPointerException("User bounds cannot be null");
167         }
168 
169         if (t == null) {
170             throw new NullPointerException("Transform cannot be null");
171         }
172 
173         if (hints == null) {
174             throw new NullPointerException("RenderingHints cannot be null");
175         }
176 
177         // The inverse transform is needed to go from device to user space.
178         // Get all the components of the inverse transform matrix.
179         AffineTransform tInv;
180         try {
181             // the following assumes that the caller has copied the incoming
182             // transform and is not concerned about it being modified
183             t.invert();
184             tInv = t;
185         } catch (NoninvertibleTransformException e) {
186             // just use identity transform in this case; better to show
187             // (incorrect) results than to throw an exception and/or no-op
188             tInv = new AffineTransform();
189         }
190         double[] m = new double[6];
191         tInv.getMatrix(m);
192         a00 = (float)m[0];
193         a10 = (float)m[1];
194         a01 = (float)m[2];
195         a11 = (float)m[3];
196         a02 = (float)m[4];
197         a12 = (float)m[5];
198 
199         // copy some flags
200         this.cycleMethod = cycleMethod;
201         this.colorSpace = colorSpace;
202 
203         // we can avoid copying this array since we do not modify its values
204         this.fractions = fractions;
205 
206         // note that only one of these values can ever be non-null (we either
207         // store the fast gradient array or the slow one, but never both
208         // at the same time)
209         int[] gradient =
210             (mgp.gradient != null) ? mgp.gradient.get() : null;
211         int[][] gradients =
212             (mgp.gradients != null) ? mgp.gradients.get() : null;
213 
214         if (gradient == null && gradients == null) {
215             // we need to (re)create the appropriate values
216             calculateLookupData(colors);
217 
218             // now cache the calculated values in the
219             // MultipleGradientPaint instance for future use
220             mgp.model               = this.model;
221             mgp.normalizedIntervals = this.normalizedIntervals;
222             mgp.isSimpleLookup      = this.isSimpleLookup;
223             if (isSimpleLookup) {
224                 // only cache the fast array
225                 mgp.fastGradientArraySize = this.fastGradientArraySize;
226                 mgp.gradient = new SoftReference<int[]>(this.gradient);
227             } else {
228                 // only cache the slow array
229                 mgp.gradients = new SoftReference<int[][]>(this.gradients);
230             }
231         } else {
232             // use the values cached in the MultipleGradientPaint instance
233             this.model                 = mgp.model;
234             this.normalizedIntervals   = mgp.normalizedIntervals;
235             this.isSimpleLookup        = mgp.isSimpleLookup;
236             this.gradient              = gradient;
237             this.fastGradientArraySize = mgp.fastGradientArraySize;
238             this.gradients             = gradients;
239         }
240     }
241 
242     /**
243      * This function is the meat of this class.  It calculates an array of
244      * gradient colors based on an array of fractions and color values at
245      * those fractions.
246      */
calculateLookupData(Color[] colors)247     private void calculateLookupData(Color[] colors) {
248         Color[] normalizedColors;
249         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
250             // create a new colors array
251             normalizedColors = new Color[colors.length];
252             // convert the colors using the lookup table
253             for (int i = 0; i < colors.length; i++) {
254                 int argb = colors[i].getRGB();
255                 int a = argb >>> 24;
256                 int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
257                 int g = SRGBtoLinearRGB[(argb >>  8) & 0xff];
258                 int b = SRGBtoLinearRGB[(argb      ) & 0xff];
259                 normalizedColors[i] = new Color(r, g, b, a);
260             }
261         } else {
262             // we can just use this array by reference since we do not
263             // modify its values in the case of SRGB
264             normalizedColors = colors;
265         }
266 
267         // this will store the intervals (distances) between gradient stops
268         normalizedIntervals = new float[fractions.length-1];
269 
270         // convert from fractions into intervals
271         for (int i = 0; i < normalizedIntervals.length; i++) {
272             // interval distance is equal to the difference in positions
273             normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
274         }
275 
276         // initialize to be fully opaque for ANDing with colors
277         transparencyTest = 0xff000000;
278 
279         // array of interpolation arrays
280         gradients = new int[normalizedIntervals.length][];
281 
282         // find smallest interval
283         float Imin = 1;
284         for (int i = 0; i < normalizedIntervals.length; i++) {
285             Imin = (Imin > normalizedIntervals[i]) ?
286                 normalizedIntervals[i] : Imin;
287         }
288 
289         // Estimate the size of the entire gradients array.
290         // This is to prevent a tiny interval from causing the size of array
291         // to explode.  If the estimated size is too large, break to using
292         // separate arrays for each interval, and using an indexing scheme at
293         // look-up time.
294         int estimatedSize = 0;
295         for (int i = 0; i < normalizedIntervals.length; i++) {
296             estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
297         }
298 
299         if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
300             // slow method
301             calculateMultipleArrayGradient(normalizedColors);
302         } else {
303             // fast method
304             calculateSingleArrayGradient(normalizedColors, Imin);
305         }
306 
307         // use the most "economical" model
308         if ((transparencyTest >>> 24) == 0xff) {
309             model = xrgbmodel;
310         } else {
311             model = ColorModel.getRGBdefault();
312         }
313     }
314 
315     /**
316      * FAST LOOKUP METHOD
317      *
318      * This method calculates the gradient color values and places them in a
319      * single int array, gradient[].  It does this by allocating space for
320      * each interval based on its size relative to the smallest interval in
321      * the array.  The smallest interval is allocated 255 interpolated values
322      * (the maximum number of unique in-between colors in a 24 bit color
323      * system), and all other intervals are allocated
324      * size = (255 * the ratio of their size to the smallest interval).
325      *
326      * This scheme expedites a speedy retrieval because the colors are
327      * distributed along the array according to their user-specified
328      * distribution.  All that is needed is a relative index from 0 to 1.
329      *
330      * The only problem with this method is that the possibility exists for
331      * the array size to balloon in the case where there is a
332      * disproportionately small gradient interval.  In this case the other
333      * intervals will be allocated huge space, but much of that data is
334      * redundant.  We thus need to use the space conserving scheme below.
335      *
336      * @param Imin the size of the smallest interval
337      */
calculateSingleArrayGradient(Color[] colors, float Imin)338     private void calculateSingleArrayGradient(Color[] colors, float Imin) {
339         // set the flag so we know later it is a simple (fast) lookup
340         isSimpleLookup = true;
341 
342         // 2 colors to interpolate
343         int rgb1, rgb2;
344 
345         //the eventual size of the single array
346         int gradientsTot = 1;
347 
348         // for every interval (transition between 2 colors)
349         for (int i = 0; i < gradients.length; i++) {
350             // create an array whose size is based on the ratio to the
351             // smallest interval
352             int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
353             gradientsTot += nGradients;
354             gradients[i] = new int[nGradients];
355 
356             // the 2 colors (keyframes) to interpolate between
357             rgb1 = colors[i].getRGB();
358             rgb2 = colors[i+1].getRGB();
359 
360             // fill this array with the colors in between rgb1 and rgb2
361             interpolate(rgb1, rgb2, gradients[i]);
362 
363             // if the colors are opaque, transparency should still
364             // be 0xff000000
365             transparencyTest &= rgb1;
366             transparencyTest &= rgb2;
367         }
368 
369         // put all gradients in a single array
370         gradient = new int[gradientsTot];
371         int curOffset = 0;
372         for (int i = 0; i < gradients.length; i++){
373             System.arraycopy(gradients[i], 0, gradient,
374                              curOffset, gradients[i].length);
375             curOffset += gradients[i].length;
376         }
377         gradient[gradient.length-1] = colors[colors.length-1].getRGB();
378 
379         // if interpolation occurred in Linear RGB space, convert the
380         // gradients back to sRGB using the lookup table
381         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
382             for (int i = 0; i < gradient.length; i++) {
383                 gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
384             }
385         }
386 
387         fastGradientArraySize = gradient.length - 1;
388     }
389 
390     /**
391      * SLOW LOOKUP METHOD
392      *
393      * This method calculates the gradient color values for each interval and
394      * places each into its own 255 size array.  The arrays are stored in
395      * gradients[][].  (255 is used because this is the maximum number of
396      * unique colors between 2 arbitrary colors in a 24 bit color system.)
397      *
398      * This method uses the minimum amount of space (only 255 * number of
399      * intervals), but it aggravates the lookup procedure, because now we
400      * have to find out which interval to select, then calculate the index
401      * within that interval.  This causes a significant performance hit,
402      * because it requires this calculation be done for every point in
403      * the rendering loop.
404      *
405      * For those of you who are interested, this is a classic example of the
406      * time-space tradeoff.
407      */
calculateMultipleArrayGradient(Color[] colors)408     private void calculateMultipleArrayGradient(Color[] colors) {
409         // set the flag so we know later it is a non-simple lookup
410         isSimpleLookup = false;
411 
412         // 2 colors to interpolate
413         int rgb1, rgb2;
414 
415         // for every interval (transition between 2 colors)
416         for (int i = 0; i < gradients.length; i++){
417             // create an array of the maximum theoretical size for
418             // each interval
419             gradients[i] = new int[GRADIENT_SIZE];
420 
421             // get the 2 colors
422             rgb1 = colors[i].getRGB();
423             rgb2 = colors[i+1].getRGB();
424 
425             // fill this array with the colors in between rgb1 and rgb2
426             interpolate(rgb1, rgb2, gradients[i]);
427 
428             // if the colors are opaque, transparency should still
429             // be 0xff000000
430             transparencyTest &= rgb1;
431             transparencyTest &= rgb2;
432         }
433 
434         // if interpolation occurred in Linear RGB space, convert the
435         // gradients back to SRGB using the lookup table
436         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
437             for (int j = 0; j < gradients.length; j++) {
438                 for (int i = 0; i < gradients[j].length; i++) {
439                     gradients[j][i] =
440                         convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
441                 }
442             }
443         }
444     }
445 
446     /**
447      * Yet another helper function.  This one linearly interpolates between
448      * 2 colors, filling up the output array.
449      *
450      * @param rgb1 the start color
451      * @param rgb2 the end color
452      * @param output the output array of colors; must not be null
453      */
interpolate(int rgb1, int rgb2, int[] output)454     private void interpolate(int rgb1, int rgb2, int[] output) {
455         // color components
456         int a1, r1, g1, b1, da, dr, dg, db;
457 
458         // step between interpolated values
459         float stepSize = 1.0f / output.length;
460 
461         // extract color components from packed integer
462         a1 = (rgb1 >> 24) & 0xff;
463         r1 = (rgb1 >> 16) & 0xff;
464         g1 = (rgb1 >>  8) & 0xff;
465         b1 = (rgb1      ) & 0xff;
466 
467         // calculate the total change in alpha, red, green, blue
468         da = ((rgb2 >> 24) & 0xff) - a1;
469         dr = ((rgb2 >> 16) & 0xff) - r1;
470         dg = ((rgb2 >>  8) & 0xff) - g1;
471         db = ((rgb2      ) & 0xff) - b1;
472 
473         // for each step in the interval calculate the in-between color by
474         // multiplying the normalized current position by the total color
475         // change (0.5 is added to prevent truncation round-off error)
476         for (int i = 0; i < output.length; i++) {
477             output[i] =
478                 (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
479                 (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
480                 (((int) ((g1 + i * dg * stepSize) + 0.5) <<  8)) |
481                 (((int) ((b1 + i * db * stepSize) + 0.5)      ));
482         }
483     }
484 
485     /**
486      * Yet another helper function.  This one extracts the color components
487      * of an integer RGB triple, converts them from LinearRGB to SRGB, then
488      * recompacts them into an int.
489      */
convertEntireColorLinearRGBtoSRGB(int rgb)490     private int convertEntireColorLinearRGBtoSRGB(int rgb) {
491         // color components
492         int a1, r1, g1, b1;
493 
494         // extract red, green, blue components
495         a1 = (rgb >> 24) & 0xff;
496         r1 = (rgb >> 16) & 0xff;
497         g1 = (rgb >>  8) & 0xff;
498         b1 = (rgb      ) & 0xff;
499 
500         // use the lookup table
501         r1 = LinearRGBtoSRGB[r1];
502         g1 = LinearRGBtoSRGB[g1];
503         b1 = LinearRGBtoSRGB[b1];
504 
505         // re-compact the components
506         return ((a1 << 24) |
507                 (r1 << 16) |
508                 (g1 <<  8) |
509                 (b1      ));
510     }
511 
512     /**
513      * Helper function to index into the gradients array.  This is necessary
514      * because each interval has an array of colors with uniform size 255.
515      * However, the color intervals are not necessarily of uniform length, so
516      * a conversion is required.
517      *
518      * @param position the unmanipulated position, which will be mapped
519      *                 into the range 0 to 1
520      * @return integer color to display
521      */
indexIntoGradientsArrays(float position)522     protected final int indexIntoGradientsArrays(float position) {
523         // first, manipulate position value depending on the cycle method
524         if (cycleMethod == CycleMethod.NO_CYCLE) {
525             if (position > 1) {
526                 // upper bound is 1
527                 position = 1;
528             } else if (position < 0) {
529                 // lower bound is 0
530                 position = 0;
531             }
532         } else if (cycleMethod == CycleMethod.REPEAT) {
533             // get the fractional part
534             // (modulo behavior discards integer component)
535             position = position - (int)position;
536 
537             //position should now be between -1 and 1
538             if (position < 0) {
539                 // force it to be in the range 0-1
540                 position = position + 1;
541             }
542         } else { // cycleMethod == CycleMethod.REFLECT
543             if (position < 0) {
544                 // take absolute value
545                 position = -position;
546             }
547 
548             // get the integer part
549             int part = (int)position;
550 
551             // get the fractional part
552             position = position - part;
553 
554             if ((part & 1) == 1) {
555                 // integer part is odd, get reflected color instead
556                 position = 1 - position;
557             }
558         }
559 
560         // now, get the color based on this 0-1 position...
561 
562         if (isSimpleLookup) {
563             // easy to compute: just scale index by array size
564             return gradient[(int)(position * fastGradientArraySize)];
565         } else {
566             // more complicated computation, to save space
567 
568             // for all the gradient interval arrays
569             for (int i = 0; i < gradients.length; i++) {
570                 if (position < fractions[i+1]) {
571                     // this is the array we want
572                     float delta = position - fractions[i];
573 
574                     // this is the interval we want
575                     int index = (int)((delta / normalizedIntervals[i])
576                                       * (GRADIENT_SIZE_INDEX));
577 
578                     return gradients[i][index];
579                 }
580             }
581         }
582 
583         return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
584     }
585 
586     /**
587      * Helper function to convert a color component in sRGB space to linear
588      * RGB space.  Used to build a static lookup table.
589      */
convertSRGBtoLinearRGB(int color)590     private static int convertSRGBtoLinearRGB(int color) {
591         float input, output;
592 
593         input = color / 255.0f;
594         if (input <= 0.04045f) {
595             output = input / 12.92f;
596         } else {
597             output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
598         }
599 
600         return Math.round(output * 255.0f);
601     }
602 
603     /**
604      * Helper function to convert a color component in linear RGB space to
605      * SRGB space.  Used to build a static lookup table.
606      */
convertLinearRGBtoSRGB(int color)607     private static int convertLinearRGBtoSRGB(int color) {
608         float input, output;
609 
610         input = color/255.0f;
611         if (input <= 0.0031308) {
612             output = input * 12.92f;
613         } else {
614             output = (1.055f *
615                 ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
616         }
617 
618         return Math.round(output * 255.0f);
619     }
620 
621     /**
622      * {@inheritDoc}
623      */
getRaster(int x, int y, int w, int h)624     public final Raster getRaster(int x, int y, int w, int h) {
625         // If working raster is big enough, reuse it. Otherwise,
626         // build a large enough new one.
627         Raster raster = saved;
628         if (raster == null ||
629             raster.getWidth() < w || raster.getHeight() < h)
630         {
631             raster = getCachedRaster(model, w, h);
632             saved = raster;
633         }
634 
635         // Access raster internal int array. Because we use a DirectColorModel,
636         // we know the DataBuffer is of type DataBufferInt and the SampleModel
637         // is SinglePixelPackedSampleModel.
638         // Adjust for initial offset in DataBuffer and also for the scanline
639         // stride.
640         // These calls make the DataBuffer non-acceleratable, but the
641         // Raster is never Stable long enough to accelerate anyway...
642         DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
643         int[] pixels = rasterDB.getData(0);
644         int off = rasterDB.getOffset();
645         int scanlineStride = ((SinglePixelPackedSampleModel)
646                               raster.getSampleModel()).getScanlineStride();
647         int adjust = scanlineStride - w;
648 
649         fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
650 
651         return raster;
652     }
653 
fillRaster(int[] pixels, int off, int adjust, int x, int y, int w, int h)654     protected abstract void fillRaster(int[] pixels, int off, int adjust,
655                                        int x, int y, int w, int h);
656 
657 
658     /**
659      * Took this cacheRaster code from GradientPaint. It appears to recycle
660      * rasters for use by any other instance, as long as they are sufficiently
661      * large.
662      */
getCachedRaster(ColorModel cm, int w, int h)663     private static synchronized Raster getCachedRaster(ColorModel cm,
664                                                        int w, int h)
665     {
666         if (cm == cachedModel) {
667             if (cached != null) {
668                 Raster ras = cached.get();
669                 if (ras != null &&
670                     ras.getWidth() >= w &&
671                     ras.getHeight() >= h)
672                 {
673                     cached = null;
674                     return ras;
675                 }
676             }
677         }
678         return cm.createCompatibleWritableRaster(w, h);
679     }
680 
681     /**
682      * Took this cacheRaster code from GradientPaint. It appears to recycle
683      * rasters for use by any other instance, as long as they are sufficiently
684      * large.
685      */
putCachedRaster(ColorModel cm, Raster ras)686     private static synchronized void putCachedRaster(ColorModel cm,
687                                                      Raster ras)
688     {
689         if (cached != null) {
690             Raster cras = cached.get();
691             if (cras != null) {
692                 int cw = cras.getWidth();
693                 int ch = cras.getHeight();
694                 int iw = ras.getWidth();
695                 int ih = ras.getHeight();
696                 if (cw >= iw && ch >= ih) {
697                     return;
698                 }
699                 if (cw * ch >= iw * ih) {
700                     return;
701                 }
702             }
703         }
704         cachedModel = cm;
705         cached = new WeakReference<Raster>(ras);
706     }
707 
708     /**
709      * {@inheritDoc}
710      */
dispose()711     public final void dispose() {
712         if (saved != null) {
713             putCachedRaster(model, saved);
714             saved = null;
715         }
716     }
717 
718     /**
719      * {@inheritDoc}
720      */
getColorModel()721     public final ColorModel getColorModel() {
722         return model;
723     }
724 }
725