1 /*
2  * Copyright (c) 2013, Red Hat Inc.
3  * Copyright (c) 2005, 2019, Oracle and/or its affiliates.
4  * All rights reserved.
5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6  *
7  * This code is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 only, as
9  * published by the Free Software Foundation.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  *
25  */
26 
27 #include "precompiled.hpp"
28 #include "c1/c1_Compilation.hpp"
29 #include "c1/c1_FrameMap.hpp"
30 #include "c1/c1_Instruction.hpp"
31 #include "c1/c1_LIRAssembler.hpp"
32 #include "c1/c1_LIRGenerator.hpp"
33 #include "c1/c1_Runtime1.hpp"
34 #include "c1/c1_ValueStack.hpp"
35 #include "ci/ciArray.hpp"
36 #include "ci/ciObjArrayKlass.hpp"
37 #include "ci/ciTypeArrayKlass.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #include "vmreg_aarch64.inline.hpp"
41 
42 #ifdef ASSERT
43 #define __ gen()->lir(__FILE__, __LINE__)->
44 #else
45 #define __ gen()->lir()->
46 #endif
47 
48 // Item will be loaded into a byte register; Intel only
load_byte_item()49 void LIRItem::load_byte_item() {
50   load_item();
51 }
52 
53 
load_nonconstant()54 void LIRItem::load_nonconstant() {
55   LIR_Opr r = value()->operand();
56   if (r->is_constant()) {
57     _result = r;
58   } else {
59     load_item();
60   }
61 }
62 
63 //--------------------------------------------------------------
64 //               LIRGenerator
65 //--------------------------------------------------------------
66 
67 
exceptionOopOpr()68 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
exceptionPcOpr()69 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
divInOpr()70 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
divOutOpr()71 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
remOutOpr()72 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
shiftCountOpr()73 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
syncTempOpr()74 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
getThreadTemp()75 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
76 
77 
result_register_for(ValueType * type,bool callee)78 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
79   LIR_Opr opr;
80   switch (type->tag()) {
81     case intTag:     opr = FrameMap::r0_opr;          break;
82     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
83     case longTag:    opr = FrameMap::long0_opr;        break;
84     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
85     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
86 
87     case addressTag:
88     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
89   }
90 
91   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
92   return opr;
93 }
94 
95 
rlock_byte(BasicType type)96 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
97   LIR_Opr reg = new_register(T_INT);
98   set_vreg_flag(reg, LIRGenerator::byte_reg);
99   return reg;
100 }
101 
102 
103 //--------- loading items into registers --------------------------------
104 
105 
can_store_as_constant(Value v,BasicType type) const106 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
107   if (v->type()->as_IntConstant() != NULL) {
108     return v->type()->as_IntConstant()->value() == 0L;
109   } else if (v->type()->as_LongConstant() != NULL) {
110     return v->type()->as_LongConstant()->value() == 0L;
111   } else if (v->type()->as_ObjectConstant() != NULL) {
112     return v->type()->as_ObjectConstant()->value()->is_null_object();
113   } else {
114     return false;
115   }
116 }
117 
can_inline_as_constant(Value v) const118 bool LIRGenerator::can_inline_as_constant(Value v) const {
119   // FIXME: Just a guess
120   if (v->type()->as_IntConstant() != NULL) {
121     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
122   } else if (v->type()->as_LongConstant() != NULL) {
123     return v->type()->as_LongConstant()->value() == 0L;
124   } else if (v->type()->as_ObjectConstant() != NULL) {
125     return v->type()->as_ObjectConstant()->value()->is_null_object();
126   } else {
127     return false;
128   }
129 }
130 
131 
can_inline_as_constant(LIR_Const * c) const132 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
133 
134 
safepoint_poll_register()135 LIR_Opr LIRGenerator::safepoint_poll_register() {
136   return LIR_OprFact::illegalOpr;
137 }
138 
139 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)140 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
141                                             int shift, int disp, BasicType type) {
142   assert(base->is_register(), "must be");
143 
144   // accumulate fixed displacements
145   if (index->is_constant()) {
146     disp += index->as_constant_ptr()->as_jint() << shift;
147     index = LIR_OprFact::illegalOpr;
148   }
149 
150   if (index->is_register()) {
151     // apply the shift and accumulate the displacement
152     if (shift > 0) {
153       LIR_Opr tmp = new_pointer_register();
154       __ shift_left(index, shift, tmp);
155       index = tmp;
156     }
157     if (disp != 0) {
158       LIR_Opr tmp = new_pointer_register();
159       if (Assembler::operand_valid_for_add_sub_immediate(disp)) {
160         __ add(tmp, tmp, LIR_OprFact::intptrConst(disp));
161         index = tmp;
162       } else {
163         __ move(tmp, LIR_OprFact::intptrConst(disp));
164         __ add(tmp, index, tmp);
165         index = tmp;
166       }
167       disp = 0;
168     }
169   } else if (disp != 0 && !Address::offset_ok_for_immed(disp, shift)) {
170     // index is illegal so replace it with the displacement loaded into a register
171     index = new_pointer_register();
172     __ move(LIR_OprFact::intptrConst(disp), index);
173     disp = 0;
174   }
175 
176   // at this point we either have base + index or base + displacement
177   if (disp == 0) {
178     return new LIR_Address(base, index, type);
179   } else {
180     assert(Address::offset_ok_for_immed(disp, 0), "must be");
181     return new LIR_Address(base, disp, type);
182   }
183 }
184 
185 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type,bool needs_card_mark)186 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
187                                               BasicType type, bool needs_card_mark) {
188   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
189   int elem_size = type2aelembytes(type);
190   int shift = exact_log2(elem_size);
191 
192   LIR_Address* addr;
193   if (index_opr->is_constant()) {
194     addr = new LIR_Address(array_opr,
195                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
196   } else {
197 // #ifdef _LP64
198 //     if (index_opr->type() == T_INT) {
199 //       LIR_Opr tmp = new_register(T_LONG);
200 //       __ convert(Bytecodes::_i2l, index_opr, tmp);
201 //       index_opr = tmp;
202 //     }
203 // #endif
204     if (offset_in_bytes) {
205       LIR_Opr tmp = new_pointer_register();
206       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
207       array_opr = tmp;
208       offset_in_bytes = 0;
209     }
210     addr =  new LIR_Address(array_opr,
211                             index_opr,
212                             LIR_Address::scale(type),
213                             offset_in_bytes, type);
214   }
215   if (needs_card_mark) {
216     // This store will need a precise card mark, so go ahead and
217     // compute the full adddres instead of computing once for the
218     // store and again for the card mark.
219     LIR_Opr tmp = new_pointer_register();
220     __ leal(LIR_OprFact::address(addr), tmp);
221     return new LIR_Address(tmp, type);
222   } else {
223     return addr;
224   }
225 }
226 
load_immediate(int x,BasicType type)227 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
228   LIR_Opr r;
229   if (type == T_LONG) {
230     r = LIR_OprFact::longConst(x);
231     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
232       LIR_Opr tmp = new_register(type);
233       __ move(r, tmp);
234       return tmp;
235     }
236   } else if (type == T_INT) {
237     r = LIR_OprFact::intConst(x);
238     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
239       // This is all rather nasty.  We don't know whether our constant
240       // is required for a logical or an arithmetic operation, wo we
241       // don't know what the range of valid values is!!
242       LIR_Opr tmp = new_register(type);
243       __ move(r, tmp);
244       return tmp;
245     }
246   } else {
247     ShouldNotReachHere();
248   }
249   return r;
250 }
251 
252 
253 
increment_counter(address counter,BasicType type,int step)254 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
255   LIR_Opr pointer = new_pointer_register();
256   __ move(LIR_OprFact::intptrConst(counter), pointer);
257   LIR_Address* addr = new LIR_Address(pointer, type);
258   increment_counter(addr, step);
259 }
260 
261 
increment_counter(LIR_Address * addr,int step)262 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
263   LIR_Opr imm = NULL;
264   switch(addr->type()) {
265   case T_INT:
266     imm = LIR_OprFact::intConst(step);
267     break;
268   case T_LONG:
269     imm = LIR_OprFact::longConst(step);
270     break;
271   default:
272     ShouldNotReachHere();
273   }
274   LIR_Opr reg = new_register(addr->type());
275   __ load(addr, reg);
276   __ add(reg, imm, reg);
277   __ store(reg, addr);
278 }
279 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)280 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
281   LIR_Opr reg = new_register(T_INT);
282   __ load(generate_address(base, disp, T_INT), reg, info);
283   __ cmp(condition, reg, LIR_OprFact::intConst(c));
284 }
285 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)286 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
287   LIR_Opr reg1 = new_register(T_INT);
288   __ load(generate_address(base, disp, type), reg1, info);
289   __ cmp(condition, reg, reg1);
290 }
291 
292 
strength_reduce_multiply(LIR_Opr left,int c,LIR_Opr result,LIR_Opr tmp)293 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
294 
295   if (is_power_of_2(c - 1)) {
296     __ shift_left(left, exact_log2(c - 1), tmp);
297     __ add(tmp, left, result);
298     return true;
299   } else if (is_power_of_2(c + 1)) {
300     __ shift_left(left, exact_log2(c + 1), tmp);
301     __ sub(tmp, left, result);
302     return true;
303   } else {
304     return false;
305   }
306 }
307 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)308 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
309   BasicType type = item->type();
310   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
311 }
312 
313 //----------------------------------------------------------------------
314 //             visitor functions
315 //----------------------------------------------------------------------
316 
317 
do_StoreIndexed(StoreIndexed * x)318 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
319   assert(x->is_pinned(),"");
320   bool needs_range_check = x->compute_needs_range_check();
321   bool use_length = x->length() != NULL;
322   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
323   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
324                                          !get_jobject_constant(x->value())->is_null_object() ||
325                                          x->should_profile());
326 
327   LIRItem array(x->array(), this);
328   LIRItem index(x->index(), this);
329   LIRItem value(x->value(), this);
330   LIRItem length(this);
331 
332   array.load_item();
333   index.load_nonconstant();
334 
335   if (use_length && needs_range_check) {
336     length.set_instruction(x->length());
337     length.load_item();
338 
339   }
340   if (needs_store_check || x->check_boolean()) {
341     value.load_item();
342   } else {
343     value.load_for_store(x->elt_type());
344   }
345 
346   set_no_result(x);
347 
348   // the CodeEmitInfo must be duplicated for each different
349   // LIR-instruction because spilling can occur anywhere between two
350   // instructions and so the debug information must be different
351   CodeEmitInfo* range_check_info = state_for(x);
352   CodeEmitInfo* null_check_info = NULL;
353   if (x->needs_null_check()) {
354     null_check_info = new CodeEmitInfo(range_check_info);
355   }
356 
357   // emit array address setup early so it schedules better
358   // FIXME?  No harm in this on aarch64, and it might help
359   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
360 
361   if (GenerateRangeChecks && needs_range_check) {
362     if (use_length) {
363       __ cmp(lir_cond_belowEqual, length.result(), index.result());
364       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
365     } else {
366       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
367       // range_check also does the null check
368       null_check_info = NULL;
369     }
370   }
371 
372   if (GenerateArrayStoreCheck && needs_store_check) {
373     LIR_Opr tmp1 = new_register(objectType);
374     LIR_Opr tmp2 = new_register(objectType);
375     LIR_Opr tmp3 = new_register(objectType);
376 
377     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
378     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
379   }
380 
381   if (obj_store) {
382     // Needs GC write barriers.
383     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
384                 true /* do_load */, false /* patch */, NULL);
385     __ move(value.result(), array_addr, null_check_info);
386     // Seems to be a precise
387     post_barrier(LIR_OprFact::address(array_addr), value.result());
388   } else {
389     LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
390     __ move(result, array_addr, null_check_info);
391   }
392 }
393 
do_MonitorEnter(MonitorEnter * x)394 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
395   assert(x->is_pinned(),"");
396   LIRItem obj(x->obj(), this);
397   obj.load_item();
398 
399   set_no_result(x);
400 
401   // "lock" stores the address of the monitor stack slot, so this is not an oop
402   LIR_Opr lock = new_register(T_INT);
403   // Need a scratch register for biased locking
404   LIR_Opr scratch = LIR_OprFact::illegalOpr;
405   if (UseBiasedLocking) {
406     scratch = new_register(T_INT);
407   }
408 
409   CodeEmitInfo* info_for_exception = NULL;
410   if (x->needs_null_check()) {
411     info_for_exception = state_for(x);
412   }
413   // this CodeEmitInfo must not have the xhandlers because here the
414   // object is already locked (xhandlers expect object to be unlocked)
415   CodeEmitInfo* info = state_for(x, x->state(), true);
416   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
417                         x->monitor_no(), info_for_exception, info);
418 }
419 
420 
do_MonitorExit(MonitorExit * x)421 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
422   assert(x->is_pinned(),"");
423 
424   LIRItem obj(x->obj(), this);
425   obj.dont_load_item();
426 
427   LIR_Opr lock = new_register(T_INT);
428   LIR_Opr obj_temp = new_register(T_INT);
429   set_no_result(x);
430   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
431 }
432 
433 
do_NegateOp(NegateOp * x)434 void LIRGenerator::do_NegateOp(NegateOp* x) {
435 
436   LIRItem from(x->x(), this);
437   from.load_item();
438   LIR_Opr result = rlock_result(x);
439   __ negate (from.result(), result);
440 
441 }
442 
443 // for  _fadd, _fmul, _fsub, _fdiv, _frem
444 //      _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)445 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
446 
447   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
448     // float remainder is implemented as a direct call into the runtime
449     LIRItem right(x->x(), this);
450     LIRItem left(x->y(), this);
451 
452     BasicTypeList signature(2);
453     if (x->op() == Bytecodes::_frem) {
454       signature.append(T_FLOAT);
455       signature.append(T_FLOAT);
456     } else {
457       signature.append(T_DOUBLE);
458       signature.append(T_DOUBLE);
459     }
460     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
461 
462     const LIR_Opr result_reg = result_register_for(x->type());
463     left.load_item_force(cc->at(1));
464     right.load_item();
465 
466     __ move(right.result(), cc->at(0));
467 
468     address entry;
469     if (x->op() == Bytecodes::_frem) {
470       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
471     } else {
472       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
473     }
474 
475     LIR_Opr result = rlock_result(x);
476     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
477     __ move(result_reg, result);
478 
479     return;
480   }
481 
482   LIRItem left(x->x(),  this);
483   LIRItem right(x->y(), this);
484   LIRItem* left_arg  = &left;
485   LIRItem* right_arg = &right;
486 
487   // Always load right hand side.
488   right.load_item();
489 
490   if (!left.is_register())
491     left.load_item();
492 
493   LIR_Opr reg = rlock(x);
494   LIR_Opr tmp = LIR_OprFact::illegalOpr;
495   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
496     tmp = new_register(T_DOUBLE);
497   }
498 
499   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp());
500 
501   set_result(x, round_item(reg));
502 }
503 
504 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)505 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
506 
507   // missing test if instr is commutative and if we should swap
508   LIRItem left(x->x(), this);
509   LIRItem right(x->y(), this);
510 
511   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
512 
513     // the check for division by zero destroys the right operand
514     right.set_destroys_register();
515 
516     // check for division by zero (destroys registers of right operand!)
517     CodeEmitInfo* info = state_for(x);
518 
519     left.load_item();
520     right.load_item();
521 
522     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
523     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
524 
525     rlock_result(x);
526     switch (x->op()) {
527     case Bytecodes::_lrem:
528       __ rem (left.result(), right.result(), x->operand());
529       break;
530     case Bytecodes::_ldiv:
531       __ div (left.result(), right.result(), x->operand());
532       break;
533     default:
534       ShouldNotReachHere();
535       break;
536     }
537 
538 
539   } else {
540     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
541             "expect lmul, ladd or lsub");
542     // add, sub, mul
543     left.load_item();
544     if (! right.is_register()) {
545       if (x->op() == Bytecodes::_lmul
546           || ! right.is_constant()
547           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
548         right.load_item();
549       } else { // add, sub
550         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
551         // don't load constants to save register
552         right.load_nonconstant();
553       }
554     }
555     rlock_result(x);
556     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
557   }
558 }
559 
560 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)561 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
562 
563   // Test if instr is commutative and if we should swap
564   LIRItem left(x->x(),  this);
565   LIRItem right(x->y(), this);
566   LIRItem* left_arg = &left;
567   LIRItem* right_arg = &right;
568   if (x->is_commutative() && left.is_stack() && right.is_register()) {
569     // swap them if left is real stack (or cached) and right is real register(not cached)
570     left_arg = &right;
571     right_arg = &left;
572   }
573 
574   left_arg->load_item();
575 
576   // do not need to load right, as we can handle stack and constants
577   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
578 
579     right_arg->load_item();
580     rlock_result(x);
581 
582     CodeEmitInfo* info = state_for(x);
583     LIR_Opr tmp = new_register(T_INT);
584     __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
585     __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
586     info = state_for(x);
587 
588     if (x->op() == Bytecodes::_irem) {
589       __ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
590     } else if (x->op() == Bytecodes::_idiv) {
591       __ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
592     }
593 
594   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
595     if (right.is_constant()
596         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
597       right.load_nonconstant();
598     } else {
599       right.load_item();
600     }
601     rlock_result(x);
602     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
603   } else {
604     assert (x->op() == Bytecodes::_imul, "expect imul");
605     if (right.is_constant()) {
606       jint c = right.get_jint_constant();
607       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
608         right_arg->dont_load_item();
609       } else {
610         // Cannot use constant op.
611         right_arg->load_item();
612       }
613     } else {
614       right.load_item();
615     }
616     rlock_result(x);
617     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
618   }
619 }
620 
do_ArithmeticOp(ArithmeticOp * x)621 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
622   // when an operand with use count 1 is the left operand, then it is
623   // likely that no move for 2-operand-LIR-form is necessary
624   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
625     x->swap_operands();
626   }
627 
628   ValueTag tag = x->type()->tag();
629   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
630   switch (tag) {
631     case floatTag:
632     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
633     case longTag:    do_ArithmeticOp_Long(x); return;
634     case intTag:     do_ArithmeticOp_Int(x);  return;
635   }
636   ShouldNotReachHere();
637 }
638 
639 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)640 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
641 
642   LIRItem left(x->x(),  this);
643   LIRItem right(x->y(), this);
644 
645   left.load_item();
646 
647   rlock_result(x);
648   if (right.is_constant()) {
649     right.dont_load_item();
650 
651     switch (x->op()) {
652     case Bytecodes::_ishl: {
653       int c = right.get_jint_constant() & 0x1f;
654       __ shift_left(left.result(), c, x->operand());
655       break;
656     }
657     case Bytecodes::_ishr: {
658       int c = right.get_jint_constant() & 0x1f;
659       __ shift_right(left.result(), c, x->operand());
660       break;
661     }
662     case Bytecodes::_iushr: {
663       int c = right.get_jint_constant() & 0x1f;
664       __ unsigned_shift_right(left.result(), c, x->operand());
665       break;
666     }
667     case Bytecodes::_lshl: {
668       int c = right.get_jint_constant() & 0x3f;
669       __ shift_left(left.result(), c, x->operand());
670       break;
671     }
672     case Bytecodes::_lshr: {
673       int c = right.get_jint_constant() & 0x3f;
674       __ shift_right(left.result(), c, x->operand());
675       break;
676     }
677     case Bytecodes::_lushr: {
678       int c = right.get_jint_constant() & 0x3f;
679       __ unsigned_shift_right(left.result(), c, x->operand());
680       break;
681     }
682     default:
683       ShouldNotReachHere();
684     }
685   } else {
686     right.load_item();
687     LIR_Opr tmp = new_register(T_INT);
688     switch (x->op()) {
689     case Bytecodes::_ishl: {
690       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
691       __ shift_left(left.result(), tmp, x->operand(), tmp);
692       break;
693     }
694     case Bytecodes::_ishr: {
695       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
696       __ shift_right(left.result(), tmp, x->operand(), tmp);
697       break;
698     }
699     case Bytecodes::_iushr: {
700       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
701       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
702       break;
703     }
704     case Bytecodes::_lshl: {
705       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
706       __ shift_left(left.result(), tmp, x->operand(), tmp);
707       break;
708     }
709     case Bytecodes::_lshr: {
710       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
711       __ shift_right(left.result(), tmp, x->operand(), tmp);
712       break;
713     }
714     case Bytecodes::_lushr: {
715       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
716       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
717       break;
718     }
719     default:
720       ShouldNotReachHere();
721     }
722   }
723 }
724 
725 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)726 void LIRGenerator::do_LogicOp(LogicOp* x) {
727 
728   LIRItem left(x->x(),  this);
729   LIRItem right(x->y(), this);
730 
731   left.load_item();
732 
733   rlock_result(x);
734   if (right.is_constant()
735       && ((right.type()->tag() == intTag
736            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
737           || (right.type()->tag() == longTag
738               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
739     right.dont_load_item();
740   } else {
741     right.load_item();
742   }
743   switch (x->op()) {
744   case Bytecodes::_iand:
745   case Bytecodes::_land:
746     __ logical_and(left.result(), right.result(), x->operand()); break;
747   case Bytecodes::_ior:
748   case Bytecodes::_lor:
749     __ logical_or (left.result(), right.result(), x->operand()); break;
750   case Bytecodes::_ixor:
751   case Bytecodes::_lxor:
752     __ logical_xor(left.result(), right.result(), x->operand()); break;
753   default: Unimplemented();
754   }
755 }
756 
757 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)758 void LIRGenerator::do_CompareOp(CompareOp* x) {
759   LIRItem left(x->x(), this);
760   LIRItem right(x->y(), this);
761   ValueTag tag = x->x()->type()->tag();
762   if (tag == longTag) {
763     left.set_destroys_register();
764   }
765   left.load_item();
766   right.load_item();
767   LIR_Opr reg = rlock_result(x);
768 
769   if (x->x()->type()->is_float_kind()) {
770     Bytecodes::Code code = x->op();
771     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
772   } else if (x->x()->type()->tag() == longTag) {
773     __ lcmp2int(left.result(), right.result(), reg);
774   } else {
775     Unimplemented();
776   }
777 }
778 
do_CompareAndSwap(Intrinsic * x,ValueType * type)779 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
780   assert(x->number_of_arguments() == 4, "wrong type");
781   LIRItem obj   (x->argument_at(0), this);  // object
782   LIRItem offset(x->argument_at(1), this);  // offset of field
783   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
784   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
785 
786   assert(obj.type()->tag() == objectTag, "invalid type");
787 
788   // In 64bit the type can be long, sparc doesn't have this assert
789   // assert(offset.type()->tag() == intTag, "invalid type");
790 
791   assert(cmp.type()->tag() == type->tag(), "invalid type");
792   assert(val.type()->tag() == type->tag(), "invalid type");
793 
794   // get address of field
795   obj.load_item();
796   offset.load_nonconstant();
797   val.load_item();
798   cmp.load_item();
799 
800   LIR_Address* a;
801   if(offset.result()->is_constant()) {
802     jlong c = offset.result()->as_jlong();
803     if ((jlong)((jint)c) == c) {
804       a = new LIR_Address(obj.result(),
805                           (jint)c,
806                           as_BasicType(type));
807     } else {
808       LIR_Opr tmp = new_register(T_LONG);
809       __ move(offset.result(), tmp);
810       a = new LIR_Address(obj.result(),
811                           tmp,
812                           as_BasicType(type));
813     }
814   } else {
815     a = new LIR_Address(obj.result(),
816                         offset.result(),
817                         LIR_Address::times_1,
818                         0,
819                         as_BasicType(type));
820   }
821   LIR_Opr addr = new_pointer_register();
822   __ leal(LIR_OprFact::address(a), addr);
823 
824   if (type == objectType) {  // Write-barrier needed for Object fields.
825     // Do the pre-write barrier, if any.
826     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
827                 true /* do_load */, false /* patch */, NULL);
828   }
829 
830   LIR_Opr result = rlock_result(x);
831 
832   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
833   if (type == objectType)
834     __ cas_obj(addr, cmp.result(), val.result(), new_register(T_INT), new_register(T_INT),
835                result);
836   else if (type == intType)
837     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
838   else if (type == longType)
839     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
840   else {
841     ShouldNotReachHere();
842   }
843 
844   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
845 
846   if (type == objectType) {   // Write-barrier needed for Object fields.
847     // Seems to be precise
848     post_barrier(addr, val.result());
849   }
850 }
851 
do_MathIntrinsic(Intrinsic * x)852 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
853   switch (x->id()) {
854     case vmIntrinsics::_dabs:
855     case vmIntrinsics::_dsqrt: {
856       assert(x->number_of_arguments() == 1, "wrong type");
857       LIRItem value(x->argument_at(0), this);
858       value.load_item();
859       LIR_Opr dst = rlock_result(x);
860 
861       switch (x->id()) {
862       case vmIntrinsics::_dsqrt: {
863         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
864         break;
865       }
866       case vmIntrinsics::_dabs: {
867         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
868         break;
869       }
870       }
871       break;
872     }
873     case vmIntrinsics::_dlog10: // fall through
874     case vmIntrinsics::_dlog: // fall through
875     case vmIntrinsics::_dsin: // fall through
876     case vmIntrinsics::_dtan: // fall through
877     case vmIntrinsics::_dcos: // fall through
878     case vmIntrinsics::_dexp: {
879       assert(x->number_of_arguments() == 1, "wrong type");
880 
881       address runtime_entry = NULL;
882       switch (x->id()) {
883       case vmIntrinsics::_dsin:
884         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
885         break;
886       case vmIntrinsics::_dcos:
887         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
888         break;
889       case vmIntrinsics::_dtan:
890         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
891         break;
892       case vmIntrinsics::_dlog:
893         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
894         break;
895       case vmIntrinsics::_dlog10:
896         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
897         break;
898       case vmIntrinsics::_dexp:
899         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
900         break;
901       default:
902         ShouldNotReachHere();
903       }
904 
905       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
906       set_result(x, result);
907       break;
908     }
909     case vmIntrinsics::_dpow: {
910       assert(x->number_of_arguments() == 2, "wrong type");
911       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
912       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
913       set_result(x, result);
914       break;
915     }
916   }
917 }
918 
919 
do_ArrayCopy(Intrinsic * x)920 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
921   assert(x->number_of_arguments() == 5, "wrong type");
922 
923   // Make all state_for calls early since they can emit code
924   CodeEmitInfo* info = state_for(x, x->state());
925 
926   LIRItem src(x->argument_at(0), this);
927   LIRItem src_pos(x->argument_at(1), this);
928   LIRItem dst(x->argument_at(2), this);
929   LIRItem dst_pos(x->argument_at(3), this);
930   LIRItem length(x->argument_at(4), this);
931 
932   // operands for arraycopy must use fixed registers, otherwise
933   // LinearScan will fail allocation (because arraycopy always needs a
934   // call)
935 
936   // The java calling convention will give us enough registers
937   // so that on the stub side the args will be perfect already.
938   // On the other slow/special case side we call C and the arg
939   // positions are not similar enough to pick one as the best.
940   // Also because the java calling convention is a "shifted" version
941   // of the C convention we can process the java args trivially into C
942   // args without worry of overwriting during the xfer
943 
944   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
945   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
946   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
947   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
948   length.load_item_force  (FrameMap::as_opr(j_rarg4));
949 
950   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
951 
952   set_no_result(x);
953 
954   int flags;
955   ciArrayKlass* expected_type;
956   arraycopy_helper(x, &flags, &expected_type);
957 
958   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
959 }
960 
do_update_CRC32(Intrinsic * x)961 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
962   assert(UseCRC32Intrinsics, "why are we here?");
963   // Make all state_for calls early since they can emit code
964   LIR_Opr result = rlock_result(x);
965   int flags = 0;
966   switch (x->id()) {
967     case vmIntrinsics::_updateCRC32: {
968       LIRItem crc(x->argument_at(0), this);
969       LIRItem val(x->argument_at(1), this);
970       // val is destroyed by update_crc32
971       val.set_destroys_register();
972       crc.load_item();
973       val.load_item();
974       __ update_crc32(crc.result(), val.result(), result);
975       break;
976     }
977     case vmIntrinsics::_updateBytesCRC32:
978     case vmIntrinsics::_updateByteBufferCRC32: {
979       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
980 
981       LIRItem crc(x->argument_at(0), this);
982       LIRItem buf(x->argument_at(1), this);
983       LIRItem off(x->argument_at(2), this);
984       LIRItem len(x->argument_at(3), this);
985       buf.load_item();
986       off.load_nonconstant();
987 
988       LIR_Opr index = off.result();
989       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
990       if(off.result()->is_constant()) {
991         index = LIR_OprFact::illegalOpr;
992        offset += off.result()->as_jint();
993       }
994       LIR_Opr base_op = buf.result();
995 
996       if (index->is_valid()) {
997         LIR_Opr tmp = new_register(T_LONG);
998         __ convert(Bytecodes::_i2l, index, tmp);
999         index = tmp;
1000       }
1001 
1002       if (offset) {
1003         LIR_Opr tmp = new_pointer_register();
1004         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1005         base_op = tmp;
1006         offset = 0;
1007       }
1008 
1009       LIR_Address* a = new LIR_Address(base_op,
1010                                        index,
1011                                        LIR_Address::times_1,
1012                                        offset,
1013                                        T_BYTE);
1014       BasicTypeList signature(3);
1015       signature.append(T_INT);
1016       signature.append(T_ADDRESS);
1017       signature.append(T_INT);
1018       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1019       const LIR_Opr result_reg = result_register_for(x->type());
1020 
1021       LIR_Opr addr = new_pointer_register();
1022       __ leal(LIR_OprFact::address(a), addr);
1023 
1024       crc.load_item_force(cc->at(0));
1025       __ move(addr, cc->at(1));
1026       len.load_item_force(cc->at(2));
1027 
1028       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1029       __ move(result_reg, result);
1030 
1031       break;
1032     }
1033     default: {
1034       ShouldNotReachHere();
1035     }
1036   }
1037 }
1038 
1039 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1040 // _i2b, _i2c, _i2s
do_Convert(Convert * x)1041 void LIRGenerator::do_Convert(Convert* x) {
1042   bool needs_stub;
1043 
1044   switch (x->op()) {
1045     case Bytecodes::_i2l:
1046     case Bytecodes::_l2i:
1047     case Bytecodes::_i2b:
1048     case Bytecodes::_i2c:
1049     case Bytecodes::_i2s:
1050     case Bytecodes::_f2d:
1051     case Bytecodes::_d2f:
1052     case Bytecodes::_i2f:
1053     case Bytecodes::_i2d:
1054     case Bytecodes::_l2f:
1055     case Bytecodes::_l2d: needs_stub = false;
1056       break;
1057     case Bytecodes::_f2l:
1058     case Bytecodes::_d2l:
1059     case Bytecodes::_f2i:
1060     case Bytecodes::_d2i: needs_stub = true;
1061       break;
1062     default: ShouldNotReachHere();
1063   }
1064 
1065   LIRItem value(x->value(), this);
1066   value.load_item();
1067   LIR_Opr input = value.result();
1068   LIR_Opr result = rlock(x);
1069 
1070   // arguments of lir_convert
1071   LIR_Opr conv_input = input;
1072   LIR_Opr conv_result = result;
1073   ConversionStub* stub = NULL;
1074 
1075   if (needs_stub) {
1076     stub = new ConversionStub(x->op(), conv_input, conv_result);
1077   }
1078 
1079   __ convert(x->op(), conv_input, conv_result, stub, new_register(T_INT));
1080 
1081   assert(result->is_virtual(), "result must be virtual register");
1082   set_result(x, result);
1083 }
1084 
do_NewInstance(NewInstance * x)1085 void LIRGenerator::do_NewInstance(NewInstance* x) {
1086 #ifndef PRODUCT
1087   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1088     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1089   }
1090 #endif
1091   CodeEmitInfo* info = state_for(x, x->state());
1092   LIR_Opr reg = result_register_for(x->type());
1093   new_instance(reg, x->klass(), x->is_unresolved(),
1094                        FrameMap::r2_oop_opr,
1095                        FrameMap::r5_oop_opr,
1096                        FrameMap::r4_oop_opr,
1097                        LIR_OprFact::illegalOpr,
1098                        FrameMap::r3_metadata_opr, info);
1099   LIR_Opr result = rlock_result(x);
1100   __ move(reg, result);
1101 }
1102 
do_NewTypeArray(NewTypeArray * x)1103 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1104   CodeEmitInfo* info = state_for(x, x->state());
1105 
1106   LIRItem length(x->length(), this);
1107   length.load_item_force(FrameMap::r19_opr);
1108 
1109   LIR_Opr reg = result_register_for(x->type());
1110   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1111   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1112   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1113   LIR_Opr tmp4 = reg;
1114   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1115   LIR_Opr len = length.result();
1116   BasicType elem_type = x->elt_type();
1117 
1118   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1119 
1120   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1121   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1122 
1123   LIR_Opr result = rlock_result(x);
1124   __ move(reg, result);
1125 }
1126 
do_NewObjectArray(NewObjectArray * x)1127 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1128   LIRItem length(x->length(), this);
1129   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1130   // and therefore provide the state before the parameters have been consumed
1131   CodeEmitInfo* patching_info = NULL;
1132   if (!x->klass()->is_loaded() || PatchALot) {
1133     patching_info =  state_for(x, x->state_before());
1134   }
1135 
1136   CodeEmitInfo* info = state_for(x, x->state());
1137 
1138   LIR_Opr reg = result_register_for(x->type());
1139   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1140   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1141   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1142   LIR_Opr tmp4 = reg;
1143   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1144 
1145   length.load_item_force(FrameMap::r19_opr);
1146   LIR_Opr len = length.result();
1147 
1148   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1149   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1150   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1151     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1152   }
1153   klass2reg_with_patching(klass_reg, obj, patching_info);
1154   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1155 
1156   LIR_Opr result = rlock_result(x);
1157   __ move(reg, result);
1158 }
1159 
1160 
do_NewMultiArray(NewMultiArray * x)1161 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1162   Values* dims = x->dims();
1163   int i = dims->length();
1164   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1165   while (i-- > 0) {
1166     LIRItem* size = new LIRItem(dims->at(i), this);
1167     items->at_put(i, size);
1168   }
1169 
1170   // Evaluate state_for early since it may emit code.
1171   CodeEmitInfo* patching_info = NULL;
1172   if (!x->klass()->is_loaded() || PatchALot) {
1173     patching_info = state_for(x, x->state_before());
1174 
1175     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1176     // clone all handlers (NOTE: Usually this is handled transparently
1177     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1178     // is done explicitly here because a stub isn't being used).
1179     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1180   }
1181   CodeEmitInfo* info = state_for(x, x->state());
1182 
1183   i = dims->length();
1184   while (i-- > 0) {
1185     LIRItem* size = items->at(i);
1186     size->load_item();
1187 
1188     store_stack_parameter(size->result(), in_ByteSize(i*4));
1189   }
1190 
1191   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1192   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1193 
1194   LIR_Opr rank = FrameMap::r19_opr;
1195   __ move(LIR_OprFact::intConst(x->rank()), rank);
1196   LIR_Opr varargs = FrameMap::r2_opr;
1197   __ move(FrameMap::sp_opr, varargs);
1198   LIR_OprList* args = new LIR_OprList(3);
1199   args->append(klass_reg);
1200   args->append(rank);
1201   args->append(varargs);
1202   LIR_Opr reg = result_register_for(x->type());
1203   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1204                   LIR_OprFact::illegalOpr,
1205                   reg, args, info);
1206 
1207   LIR_Opr result = rlock_result(x);
1208   __ move(reg, result);
1209 }
1210 
do_BlockBegin(BlockBegin * x)1211 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1212   // nothing to do for now
1213 }
1214 
do_CheckCast(CheckCast * x)1215 void LIRGenerator::do_CheckCast(CheckCast* x) {
1216   LIRItem obj(x->obj(), this);
1217 
1218   CodeEmitInfo* patching_info = NULL;
1219   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1220     // must do this before locking the destination register as an oop register,
1221     // and before the obj is loaded (the latter is for deoptimization)
1222     patching_info = state_for(x, x->state_before());
1223   }
1224   obj.load_item();
1225 
1226   // info for exceptions
1227   CodeEmitInfo* info_for_exception =
1228     (x->needs_exception_state() ? state_for(x) :
1229      state_for(x, x->state_before(), true /*ignore_xhandler*/));
1230 
1231   CodeStub* stub;
1232   if (x->is_incompatible_class_change_check()) {
1233     assert(patching_info == NULL, "can't patch this");
1234     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1235   } else if (x->is_invokespecial_receiver_check()) {
1236     assert(patching_info == NULL, "can't patch this");
1237     stub = new DeoptimizeStub(info_for_exception);
1238   } else {
1239     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1240   }
1241   LIR_Opr reg = rlock_result(x);
1242   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1243   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1244     tmp3 = new_register(objectType);
1245   }
1246   __ checkcast(reg, obj.result(), x->klass(),
1247                new_register(objectType), new_register(objectType), tmp3,
1248                x->direct_compare(), info_for_exception, patching_info, stub,
1249                x->profiled_method(), x->profiled_bci());
1250 }
1251 
do_InstanceOf(InstanceOf * x)1252 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1253   LIRItem obj(x->obj(), this);
1254 
1255   // result and test object may not be in same register
1256   LIR_Opr reg = rlock_result(x);
1257   CodeEmitInfo* patching_info = NULL;
1258   if ((!x->klass()->is_loaded() || PatchALot)) {
1259     // must do this before locking the destination register as an oop register
1260     patching_info = state_for(x, x->state_before());
1261   }
1262   obj.load_item();
1263   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1264   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1265     tmp3 = new_register(objectType);
1266   }
1267   __ instanceof(reg, obj.result(), x->klass(),
1268                 new_register(objectType), new_register(objectType), tmp3,
1269                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1270 }
1271 
do_If(If * x)1272 void LIRGenerator::do_If(If* x) {
1273   assert(x->number_of_sux() == 2, "inconsistency");
1274   ValueTag tag = x->x()->type()->tag();
1275   bool is_safepoint = x->is_safepoint();
1276 
1277   If::Condition cond = x->cond();
1278 
1279   LIRItem xitem(x->x(), this);
1280   LIRItem yitem(x->y(), this);
1281   LIRItem* xin = &xitem;
1282   LIRItem* yin = &yitem;
1283 
1284   if (tag == longTag) {
1285     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1286     // mirror for other conditions
1287     if (cond == If::gtr || cond == If::leq) {
1288       cond = Instruction::mirror(cond);
1289       xin = &yitem;
1290       yin = &xitem;
1291     }
1292     xin->set_destroys_register();
1293   }
1294   xin->load_item();
1295 
1296   if (tag == longTag) {
1297     if (yin->is_constant()
1298         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1299       yin->dont_load_item();
1300     } else {
1301       yin->load_item();
1302     }
1303   } else if (tag == intTag) {
1304     if (yin->is_constant()
1305         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1306       yin->dont_load_item();
1307     } else {
1308       yin->load_item();
1309     }
1310   } else {
1311     yin->load_item();
1312   }
1313 
1314   // add safepoint before generating condition code so it can be recomputed
1315   if (x->is_safepoint()) {
1316     // increment backedge counter if needed
1317     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1318     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1319   }
1320   set_no_result(x);
1321 
1322   LIR_Opr left = xin->result();
1323   LIR_Opr right = yin->result();
1324 
1325   __ cmp(lir_cond(cond), left, right);
1326   // Generate branch profiling. Profiling code doesn't kill flags.
1327   profile_branch(x, cond);
1328   move_to_phi(x->state());
1329   if (x->x()->type()->is_float_kind()) {
1330     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1331   } else {
1332     __ branch(lir_cond(cond), right->type(), x->tsux());
1333   }
1334   assert(x->default_sux() == x->fsux(), "wrong destination above");
1335   __ jump(x->default_sux());
1336 }
1337 
getThreadPointer()1338 LIR_Opr LIRGenerator::getThreadPointer() {
1339    return FrameMap::as_pointer_opr(rthread);
1340 }
1341 
trace_block_entry(BlockBegin * block)1342 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1343 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1344 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1345                                         CodeEmitInfo* info) {
1346   __ volatile_store_mem_reg(value, address, info);
1347 }
1348 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1349 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1350                                        CodeEmitInfo* info) {
1351 
1352   // 8179954: We need to make sure that the code generated for
1353   // volatile accesses forms a sequentially-consistent set of
1354   // operations when combined with STLR and LDAR.  Without a leading
1355   // membar it's possible for a simple Dekker test to fail if loads
1356   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1357   // the stores in one method and C1 compiles the loads in another.
1358   if (! UseBarriersForVolatile) {
1359     __ membar();
1360   }
1361 
1362   __ volatile_load_mem_reg(address, result, info);
1363 }
1364 
get_Object_unsafe(LIR_Opr dst,LIR_Opr src,LIR_Opr offset,BasicType type,bool is_volatile)1365 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1366                                      BasicType type, bool is_volatile) {
1367   LIR_Address* addr = new LIR_Address(src, offset, type);
1368   __ load(addr, dst);
1369 }
1370 
1371 
put_Object_unsafe(LIR_Opr src,LIR_Opr offset,LIR_Opr data,BasicType type,bool is_volatile)1372 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1373                                      BasicType type, bool is_volatile) {
1374   LIR_Address* addr = new LIR_Address(src, offset, type);
1375   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1376   if (is_obj) {
1377     // Do the pre-write barrier, if any.
1378     pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1379                 true /* do_load */, false /* patch */, NULL);
1380     __ move(data, addr);
1381     assert(src->is_register(), "must be register");
1382     // Seems to be a precise address
1383     post_barrier(LIR_OprFact::address(addr), data);
1384   } else {
1385     __ move(data, addr);
1386   }
1387 }
1388 
do_UnsafeGetAndSetObject(UnsafeGetAndSetObject * x)1389 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1390   BasicType type = x->basic_type();
1391   LIRItem src(x->object(), this);
1392   LIRItem off(x->offset(), this);
1393   LIRItem value(x->value(), this);
1394 
1395   src.load_item();
1396   off.load_nonconstant();
1397 
1398   // We can cope with a constant increment in an xadd
1399   if (! (x->is_add()
1400          && value.is_constant()
1401          && can_inline_as_constant(x->value()))) {
1402     value.load_item();
1403   }
1404 
1405   LIR_Opr dst = rlock_result(x, type);
1406   LIR_Opr data = value.result();
1407   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1408   LIR_Opr offset = off.result();
1409 
1410   if (data == dst) {
1411     LIR_Opr tmp = new_register(data->type());
1412     __ move(data, tmp);
1413     data = tmp;
1414   }
1415 
1416   LIR_Address* addr;
1417   if (offset->is_constant()) {
1418     jlong l = offset->as_jlong();
1419     assert((jlong)((jint)l) == l, "offset too large for constant");
1420     jint c = (jint)l;
1421     addr = new LIR_Address(src.result(), c, type);
1422   } else {
1423     addr = new LIR_Address(src.result(), offset, type);
1424   }
1425 
1426   LIR_Opr tmp = new_register(T_INT);
1427   LIR_Opr ptr = LIR_OprFact::illegalOpr;
1428 
1429   if (x->is_add()) {
1430     __ xadd(LIR_OprFact::address(addr), data, dst, tmp);
1431   } else {
1432     if (is_obj) {
1433       // Do the pre-write barrier, if any.
1434       ptr = new_pointer_register();
1435       __ add(src.result(), off.result(), ptr);
1436       pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1437                   true /* do_load */, false /* patch */, NULL);
1438     }
1439     __ xchg(LIR_OprFact::address(addr), data, dst, tmp);
1440     if (is_obj) {
1441       post_barrier(ptr, data);
1442     }
1443   }
1444 }
1445