1 /*
2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_Instruction.hpp"
27 #include "c1/c1_LinearScan.hpp"
28 #include "utilities/bitMap.inline.hpp"
29 
30 
31 //----------------------------------------------------------------------
32 // Allocation of FPU stack slots (Intel x86 only)
33 //----------------------------------------------------------------------
34 
allocate_fpu_stack()35 void LinearScan::allocate_fpu_stack() {
36   // First compute which FPU registers are live at the start of each basic block
37   // (To minimize the amount of work we have to do if we have to merge FPU stacks)
38   if (ComputeExactFPURegisterUsage) {
39     Interval* intervals_in_register, *intervals_in_memory;
40     create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
41 
42     // ignore memory intervals by overwriting intervals_in_memory
43     // the dummy interval is needed to enforce the walker to walk until the given id:
44     // without it, the walker stops when the unhandled-list is empty -> live information
45     // beyond this point would be incorrect.
46     Interval* dummy_interval = new Interval(any_reg);
47     dummy_interval->add_range(max_jint - 2, max_jint - 1);
48     dummy_interval->set_next(Interval::end());
49     intervals_in_memory = dummy_interval;
50 
51     IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
52 
53     const int num_blocks = block_count();
54     for (int i = 0; i < num_blocks; i++) {
55       BlockBegin* b = block_at(i);
56 
57       // register usage is only needed for merging stacks -> compute only
58       // when more than one predecessor.
59       // the block must not have any spill moves at the beginning (checked by assertions)
60       // spill moves would use intervals that are marked as handled and so the usage bit
61       // would been set incorrectly
62 
63       // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
64       //       predecessor may have spill moves at the begin of the block.
65       //       If an interval ends at the current instruction id, it is not possible
66       //       to decide if the register is live or not at the block begin -> the
67       //       register information would be incorrect.
68       if (b->number_of_preds() > 1) {
69         int id = b->first_lir_instruction_id();
70         BitMap regs(FrameMap::nof_fpu_regs);
71         regs.clear();
72 
73         iw.walk_to(id);   // walk after the first instruction (always a label) of the block
74         assert(iw.current_position() == id, "did not walk completely to id");
75 
76         // Only consider FPU values in registers
77         Interval* interval = iw.active_first(fixedKind);
78         while (interval != Interval::end()) {
79           int reg = interval->assigned_reg();
80           assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
81           assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
82           assert(interval->from() <= id && id < interval->to(), "interval out of range");
83 
84 #ifndef PRODUCT
85           if (TraceFPURegisterUsage) {
86             tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
87           }
88 #endif
89 
90           regs.set_bit(reg - pd_first_fpu_reg);
91           interval = interval->next();
92         }
93 
94         b->set_fpu_register_usage(regs);
95 
96 #ifndef PRODUCT
97         if (TraceFPURegisterUsage) {
98           tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr();
99         }
100 #endif
101       }
102     }
103   }
104 
105   FpuStackAllocator alloc(ir()->compilation(), this);
106   _fpu_stack_allocator = &alloc;
107   alloc.allocate();
108   _fpu_stack_allocator = NULL;
109 }
110 
111 
FpuStackAllocator(Compilation * compilation,LinearScan * allocator)112 FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
113   : _compilation(compilation)
114   , _lir(NULL)
115   , _pos(-1)
116   , _allocator(allocator)
117   , _sim(compilation)
118   , _temp_sim(compilation)
119 {}
120 
allocate()121 void FpuStackAllocator::allocate() {
122   int num_blocks = allocator()->block_count();
123   for (int i = 0; i < num_blocks; i++) {
124     // Set up to process block
125     BlockBegin* block = allocator()->block_at(i);
126     intArray* fpu_stack_state = block->fpu_stack_state();
127 
128 #ifndef PRODUCT
129     if (TraceFPUStack) {
130       tty->cr();
131       tty->print_cr("------- Begin of new Block %d -------", block->block_id());
132     }
133 #endif
134 
135     assert(fpu_stack_state != NULL ||
136            block->end()->as_Base() != NULL ||
137            block->is_set(BlockBegin::exception_entry_flag),
138            "FPU stack state must be present due to linear-scan order for FPU stack allocation");
139     // note: exception handler entries always start with an empty fpu stack
140     //       because stack merging would be too complicated
141 
142     if (fpu_stack_state != NULL) {
143       sim()->read_state(fpu_stack_state);
144     } else {
145       sim()->clear();
146     }
147 
148 #ifndef PRODUCT
149     if (TraceFPUStack) {
150       tty->print("Reading FPU state for block %d:", block->block_id());
151       sim()->print();
152       tty->cr();
153     }
154 #endif
155 
156     allocate_block(block);
157     CHECK_BAILOUT();
158   }
159 }
160 
allocate_block(BlockBegin * block)161 void FpuStackAllocator::allocate_block(BlockBegin* block) {
162   bool processed_merge = false;
163   LIR_OpList* insts = block->lir()->instructions_list();
164   set_lir(block->lir());
165   set_pos(0);
166 
167 
168   // Note: insts->length() may change during loop
169   while (pos() < insts->length()) {
170     LIR_Op* op = insts->at(pos());
171     _debug_information_computed = false;
172 
173 #ifndef PRODUCT
174     if (TraceFPUStack) {
175       op->print();
176     }
177     check_invalid_lir_op(op);
178 #endif
179 
180     LIR_OpBranch* branch = op->as_OpBranch();
181     LIR_Op1* op1 = op->as_Op1();
182     LIR_Op2* op2 = op->as_Op2();
183     LIR_OpCall* opCall = op->as_OpCall();
184 
185     if (branch != NULL && branch->block() != NULL) {
186       if (!processed_merge) {
187         // propagate stack at first branch to a successor
188         processed_merge = true;
189         bool required_merge = merge_fpu_stack_with_successors(block);
190 
191         assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
192       }
193 
194     } else if (op1 != NULL) {
195       handle_op1(op1);
196     } else if (op2 != NULL) {
197       handle_op2(op2);
198     } else if (opCall != NULL) {
199       handle_opCall(opCall);
200     }
201 
202     compute_debug_information(op);
203 
204     set_pos(1 + pos());
205   }
206 
207   // Propagate stack when block does not end with branch
208   if (!processed_merge) {
209     merge_fpu_stack_with_successors(block);
210   }
211 }
212 
213 
compute_debug_information(LIR_Op * op)214 void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
215   if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
216     visitor.visit(op);
217 
218     // exception handling
219     if (allocator()->compilation()->has_exception_handlers()) {
220       XHandlers* xhandlers = visitor.all_xhandler();
221       int n = xhandlers->length();
222       for (int k = 0; k < n; k++) {
223         allocate_exception_handler(xhandlers->handler_at(k));
224       }
225     } else {
226       assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
227     }
228 
229     // compute debug information
230     int n = visitor.info_count();
231     assert(n > 0, "should not visit operation otherwise");
232 
233     for (int j = 0; j < n; j++) {
234       CodeEmitInfo* info = visitor.info_at(j);
235       // Compute debug information
236       allocator()->compute_debug_info(info, op->id());
237     }
238   }
239   _debug_information_computed = true;
240 }
241 
allocate_exception_handler(XHandler * xhandler)242 void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
243   if (!sim()->is_empty()) {
244     LIR_List* old_lir = lir();
245     int old_pos = pos();
246     intArray* old_state = sim()->write_state();
247 
248 #ifndef PRODUCT
249     if (TraceFPUStack) {
250       tty->cr();
251       tty->print_cr("------- begin of exception handler -------");
252     }
253 #endif
254 
255     if (xhandler->entry_code() == NULL) {
256       // need entry code to clear FPU stack
257       LIR_List* entry_code = new LIR_List(_compilation);
258       entry_code->jump(xhandler->entry_block());
259       xhandler->set_entry_code(entry_code);
260     }
261 
262     LIR_OpList* insts = xhandler->entry_code()->instructions_list();
263     set_lir(xhandler->entry_code());
264     set_pos(0);
265 
266     // Note: insts->length() may change during loop
267     while (pos() < insts->length()) {
268       LIR_Op* op = insts->at(pos());
269 
270 #ifndef PRODUCT
271       if (TraceFPUStack) {
272         op->print();
273       }
274       check_invalid_lir_op(op);
275 #endif
276 
277       switch (op->code()) {
278         case lir_move:
279           assert(op->as_Op1() != NULL, "must be LIR_Op1");
280           assert(pos() != insts->length() - 1, "must not be last operation");
281 
282           handle_op1((LIR_Op1*)op);
283           break;
284 
285         case lir_branch:
286           assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
287           assert(pos() == insts->length() - 1, "must be last operation");
288 
289           // remove all remaining dead registers from FPU stack
290           clear_fpu_stack(LIR_OprFact::illegalOpr);
291           break;
292 
293         default:
294           // other operations not allowed in exception entry code
295           ShouldNotReachHere();
296       }
297 
298       set_pos(pos() + 1);
299     }
300 
301 #ifndef PRODUCT
302     if (TraceFPUStack) {
303       tty->cr();
304       tty->print_cr("------- end of exception handler -------");
305     }
306 #endif
307 
308     set_lir(old_lir);
309     set_pos(old_pos);
310     sim()->read_state(old_state);
311   }
312 }
313 
314 
fpu_num(LIR_Opr opr)315 int FpuStackAllocator::fpu_num(LIR_Opr opr) {
316   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
317   return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
318 }
319 
tos_offset(LIR_Opr opr)320 int FpuStackAllocator::tos_offset(LIR_Opr opr) {
321   return sim()->offset_from_tos(fpu_num(opr));
322 }
323 
324 
to_fpu_stack(LIR_Opr opr)325 LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
326   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
327 
328   int stack_offset = tos_offset(opr);
329   if (opr->is_single_fpu()) {
330     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
331   } else {
332     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
333     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
334   }
335 }
336 
to_fpu_stack_top(LIR_Opr opr,bool dont_check_offset)337 LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
338   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
339   assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
340 
341   int stack_offset = 0;
342   if (opr->is_single_fpu()) {
343     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
344   } else {
345     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
346     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
347   }
348 }
349 
350 
351 
insert_op(LIR_Op * op)352 void FpuStackAllocator::insert_op(LIR_Op* op) {
353   lir()->insert_before(pos(), op);
354   set_pos(1 + pos());
355 }
356 
357 
insert_exchange(int offset)358 void FpuStackAllocator::insert_exchange(int offset) {
359   if (offset > 0) {
360     LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
361     insert_op(fxch_op);
362     sim()->swap(offset);
363 
364 #ifndef PRODUCT
365     if (TraceFPUStack) {
366       tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
367     }
368 #endif
369 
370   }
371 }
372 
insert_exchange(LIR_Opr opr)373 void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
374   insert_exchange(tos_offset(opr));
375 }
376 
377 
insert_free(int offset)378 void FpuStackAllocator::insert_free(int offset) {
379   // move stack slot to the top of stack and then pop it
380   insert_exchange(offset);
381 
382   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
383   insert_op(fpop);
384   sim()->pop();
385 
386 #ifndef PRODUCT
387     if (TraceFPUStack) {
388       tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
389     }
390 #endif
391 }
392 
393 
insert_free_if_dead(LIR_Opr opr)394 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
395   if (sim()->contains(fpu_num(opr))) {
396     int res_slot = tos_offset(opr);
397     insert_free(res_slot);
398   }
399 }
400 
insert_free_if_dead(LIR_Opr opr,LIR_Opr ignore)401 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
402   if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
403     int res_slot = tos_offset(opr);
404     insert_free(res_slot);
405   }
406 }
407 
insert_copy(LIR_Opr from,LIR_Opr to)408 void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
409   int offset = tos_offset(from);
410   LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
411   insert_op(fld);
412 
413   sim()->push(fpu_num(to));
414 
415 #ifndef PRODUCT
416   if (TraceFPUStack) {
417     tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
418   }
419 #endif
420 }
421 
do_rename(LIR_Opr from,LIR_Opr to)422 void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
423   sim()->rename(fpu_num(from), fpu_num(to));
424 }
425 
do_push(LIR_Opr opr)426 void FpuStackAllocator::do_push(LIR_Opr opr) {
427   sim()->push(fpu_num(opr));
428 }
429 
pop_if_last_use(LIR_Op * op,LIR_Opr opr)430 void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
431   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
432   assert(tos_offset(opr) == 0, "can only pop stack top");
433 
434   if (opr->is_last_use()) {
435     op->set_fpu_pop_count(1);
436     sim()->pop();
437   }
438 }
439 
pop_always(LIR_Op * op,LIR_Opr opr)440 void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
441   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
442   assert(tos_offset(opr) == 0, "can only pop stack top");
443 
444   op->set_fpu_pop_count(1);
445   sim()->pop();
446 }
447 
clear_fpu_stack(LIR_Opr preserve)448 void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
449   int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
450   while (sim()->stack_size() > result_stack_size) {
451     assert(!sim()->slot_is_empty(0), "not allowed");
452 
453     if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
454       insert_free(0);
455     } else {
456       // move "preserve" to bottom of stack so that all other stack slots can be popped
457       insert_exchange(sim()->stack_size() - 1);
458     }
459   }
460 }
461 
462 
handle_op1(LIR_Op1 * op1)463 void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
464   LIR_Opr in  = op1->in_opr();
465   LIR_Opr res = op1->result_opr();
466 
467   LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
468   LIR_Opr new_res = res;
469 
470   // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
471   //       so checks for is_float_kind() are necessary inside the cases
472   switch (op1->code()) {
473 
474     case lir_return: {
475       // FPU-Stack must only contain the (optional) fpu return value.
476       // All remaining dead values are popped from the stack
477       // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
478 
479       clear_fpu_stack(in);
480       if (in->is_fpu_register() && !in->is_xmm_register()) {
481         new_in = to_fpu_stack_top(in);
482       }
483 
484       break;
485     }
486 
487     case lir_move: {
488       if (in->is_fpu_register() && !in->is_xmm_register()) {
489         if (res->is_xmm_register()) {
490           // move from fpu register to xmm register (necessary for operations that
491           // are not available in the SSE instruction set)
492           insert_exchange(in);
493           new_in = to_fpu_stack_top(in);
494           pop_always(op1, in);
495 
496         } else if (res->is_fpu_register() && !res->is_xmm_register()) {
497           // move from fpu-register to fpu-register:
498           // * input and result register equal:
499           //   nothing to do
500           // * input register is last use:
501           //   rename the input register to result register -> input register
502           //   not present on fpu-stack afterwards
503           // * input register not last use:
504           //   duplicate input register to result register to preserve input
505           //
506           // Note: The LIR-Assembler does not produce any code for fpu register moves,
507           //       so input and result stack index must be equal
508 
509           if (fpu_num(in) == fpu_num(res)) {
510             // nothing to do
511           } else if (in->is_last_use()) {
512             insert_free_if_dead(res);//, in);
513             do_rename(in, res);
514           } else {
515             insert_free_if_dead(res);
516             insert_copy(in, res);
517           }
518           new_in = to_fpu_stack(res);
519           new_res = new_in;
520 
521         } else {
522           // move from fpu-register to memory
523           // input operand must be on top of stack
524 
525           insert_exchange(in);
526 
527           // create debug information here because afterwards the register may have been popped
528           compute_debug_information(op1);
529 
530           new_in = to_fpu_stack_top(in);
531           pop_if_last_use(op1, in);
532         }
533 
534       } else if (res->is_fpu_register() && !res->is_xmm_register()) {
535         // move from memory/constant to fpu register
536         // result is pushed on the stack
537 
538         insert_free_if_dead(res);
539 
540         // create debug information before register is pushed
541         compute_debug_information(op1);
542 
543         do_push(res);
544         new_res = to_fpu_stack_top(res);
545       }
546       break;
547     }
548 
549     case lir_neg: {
550       if (in->is_fpu_register() && !in->is_xmm_register()) {
551         assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
552         assert(in->is_last_use(), "old value gets destroyed");
553 
554         insert_free_if_dead(res, in);
555         insert_exchange(in);
556         new_in = to_fpu_stack_top(in);
557 
558         do_rename(in, res);
559         new_res = to_fpu_stack_top(res);
560       }
561       break;
562     }
563 
564     case lir_convert: {
565       Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
566       switch (bc) {
567         case Bytecodes::_d2f:
568         case Bytecodes::_f2d:
569           assert(res->is_fpu_register(), "must be");
570           assert(in->is_fpu_register(), "must be");
571 
572           if (!in->is_xmm_register() && !res->is_xmm_register()) {
573             // this is quite the same as a move from fpu-register to fpu-register
574             // Note: input and result operands must have different types
575             if (fpu_num(in) == fpu_num(res)) {
576               // nothing to do
577               new_in = to_fpu_stack(in);
578             } else if (in->is_last_use()) {
579               insert_free_if_dead(res);//, in);
580               new_in = to_fpu_stack(in);
581               do_rename(in, res);
582             } else {
583               insert_free_if_dead(res);
584               insert_copy(in, res);
585               new_in = to_fpu_stack_top(in, true);
586             }
587             new_res = to_fpu_stack(res);
588           }
589 
590           break;
591 
592         case Bytecodes::_i2f:
593         case Bytecodes::_l2f:
594         case Bytecodes::_i2d:
595         case Bytecodes::_l2d:
596           assert(res->is_fpu_register(), "must be");
597           if (!res->is_xmm_register()) {
598             insert_free_if_dead(res);
599             do_push(res);
600             new_res = to_fpu_stack_top(res);
601           }
602           break;
603 
604         case Bytecodes::_f2i:
605         case Bytecodes::_d2i:
606           assert(in->is_fpu_register(), "must be");
607           if (!in->is_xmm_register()) {
608             insert_exchange(in);
609             new_in = to_fpu_stack_top(in);
610 
611             // TODO: update registes of stub
612           }
613           break;
614 
615         case Bytecodes::_f2l:
616         case Bytecodes::_d2l:
617           assert(in->is_fpu_register(), "must be");
618           if (!in->is_xmm_register()) {
619             insert_exchange(in);
620             new_in = to_fpu_stack_top(in);
621             pop_always(op1, in);
622           }
623           break;
624 
625         case Bytecodes::_i2l:
626         case Bytecodes::_l2i:
627         case Bytecodes::_i2b:
628         case Bytecodes::_i2c:
629         case Bytecodes::_i2s:
630           // no fpu operands
631           break;
632 
633         default:
634           ShouldNotReachHere();
635       }
636       break;
637     }
638 
639     case lir_roundfp: {
640       assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
641       assert(res->is_stack(), "result must be on stack");
642 
643       insert_exchange(in);
644       new_in = to_fpu_stack_top(in);
645       pop_if_last_use(op1, in);
646       break;
647     }
648 
649     default: {
650       assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
651     }
652   }
653 
654   op1->set_in_opr(new_in);
655   op1->set_result_opr(new_res);
656 }
657 
handle_op2(LIR_Op2 * op2)658 void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
659   LIR_Opr left  = op2->in_opr1();
660   if (!left->is_float_kind()) {
661     return;
662   }
663   if (left->is_xmm_register()) {
664     return;
665   }
666 
667   LIR_Opr right = op2->in_opr2();
668   LIR_Opr res   = op2->result_opr();
669   LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
670   LIR_Opr new_right = right;
671   LIR_Opr new_res   = res;
672 
673   assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
674 
675   switch (op2->code()) {
676     case lir_cmp:
677     case lir_cmp_fd2i:
678     case lir_ucmp_fd2i:
679     case lir_assert: {
680       assert(left->is_fpu_register(), "invalid LIR");
681       assert(right->is_fpu_register(), "invalid LIR");
682 
683       // the left-hand side must be on top of stack.
684       // the right-hand side is never popped, even if is_last_use is set
685       insert_exchange(left);
686       new_left = to_fpu_stack_top(left);
687       new_right = to_fpu_stack(right);
688       pop_if_last_use(op2, left);
689       break;
690     }
691 
692     case lir_mul_strictfp:
693     case lir_div_strictfp: {
694       assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
695       insert_free_if_dead(op2->tmp1_opr());
696       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
697       // fall-through: continue with the normal handling of lir_mul and lir_div
698     }
699     case lir_add:
700     case lir_sub:
701     case lir_mul:
702     case lir_div: {
703       assert(left->is_fpu_register(), "must be");
704       assert(res->is_fpu_register(), "must be");
705       assert(left->is_equal(res), "must be");
706 
707       // either the left-hand or the right-hand side must be on top of stack
708       // (if right is not a register, left must be on top)
709       if (!right->is_fpu_register()) {
710         insert_exchange(left);
711         new_left = to_fpu_stack_top(left);
712       } else {
713         // no exchange necessary if right is alredy on top of stack
714         if (tos_offset(right) == 0) {
715           new_left = to_fpu_stack(left);
716           new_right = to_fpu_stack_top(right);
717         } else {
718           insert_exchange(left);
719           new_left = to_fpu_stack_top(left);
720           new_right = to_fpu_stack(right);
721         }
722 
723         if (right->is_last_use()) {
724           op2->set_fpu_pop_count(1);
725 
726           if (tos_offset(right) == 0) {
727             sim()->pop();
728           } else {
729             // if left is on top of stack, the result is placed in the stack
730             // slot of right, so a renaming from right to res is necessary
731             assert(tos_offset(left) == 0, "must be");
732             sim()->pop();
733             do_rename(right, res);
734           }
735         }
736       }
737       new_res = to_fpu_stack(res);
738 
739       break;
740     }
741 
742     case lir_rem: {
743       assert(left->is_fpu_register(), "must be");
744       assert(right->is_fpu_register(), "must be");
745       assert(res->is_fpu_register(), "must be");
746       assert(left->is_equal(res), "must be");
747 
748       // Must bring both operands to top of stack with following operand ordering:
749       // * fpu stack before rem: ... right left
750       // * fpu stack after rem:  ... left
751       if (tos_offset(right) != 1) {
752         insert_exchange(right);
753         insert_exchange(1);
754       }
755       insert_exchange(left);
756       assert(tos_offset(right) == 1, "check");
757       assert(tos_offset(left) == 0, "check");
758 
759       new_left = to_fpu_stack_top(left);
760       new_right = to_fpu_stack(right);
761 
762       op2->set_fpu_pop_count(1);
763       sim()->pop();
764       do_rename(right, res);
765 
766       new_res = to_fpu_stack_top(res);
767       break;
768     }
769 
770     case lir_abs:
771     case lir_sqrt: {
772       // Right argument appears to be unused
773       assert(right->is_illegal(), "must be");
774       assert(left->is_fpu_register(), "must be");
775       assert(res->is_fpu_register(), "must be");
776       assert(left->is_last_use(), "old value gets destroyed");
777 
778       insert_free_if_dead(res, left);
779       insert_exchange(left);
780       do_rename(left, res);
781 
782       new_left = to_fpu_stack_top(res);
783       new_res = new_left;
784 
785       op2->set_fpu_stack_size(sim()->stack_size());
786       break;
787     }
788 
789     case lir_log:
790     case lir_log10: {
791       // log and log10 need one temporary fpu stack slot, so
792       // there is one temporary registers stored in temp of the
793       // operation. the stack allocator must guarantee that the stack
794       // slots are really free, otherwise there might be a stack
795       // overflow.
796       assert(right->is_illegal(), "must be");
797       assert(left->is_fpu_register(), "must be");
798       assert(res->is_fpu_register(), "must be");
799       assert(op2->tmp1_opr()->is_fpu_register(), "must be");
800 
801       insert_free_if_dead(op2->tmp1_opr());
802       insert_free_if_dead(res, left);
803       insert_exchange(left);
804       do_rename(left, res);
805 
806       new_left = to_fpu_stack_top(res);
807       new_res = new_left;
808 
809       op2->set_fpu_stack_size(sim()->stack_size());
810       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
811       break;
812     }
813 
814 
815     case lir_tan:
816     case lir_sin:
817     case lir_cos:
818     case lir_exp: {
819       // sin, cos and exp need two temporary fpu stack slots, so there are two temporary
820       // registers (stored in right and temp of the operation).
821       // the stack allocator must guarantee that the stack slots are really free,
822       // otherwise there might be a stack overflow.
823       assert(left->is_fpu_register(), "must be");
824       assert(res->is_fpu_register(), "must be");
825       // assert(left->is_last_use(), "old value gets destroyed");
826       assert(right->is_fpu_register(), "right is used as the first temporary register");
827       assert(op2->tmp1_opr()->is_fpu_register(), "temp is used as the second temporary register");
828       assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
829 
830       insert_free_if_dead(right);
831       insert_free_if_dead(op2->tmp1_opr());
832 
833       insert_free_if_dead(res, left);
834       insert_exchange(left);
835       do_rename(left, res);
836 
837       new_left = to_fpu_stack_top(res);
838       new_res = new_left;
839 
840       op2->set_fpu_stack_size(sim()->stack_size());
841       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
842       break;
843     }
844 
845     case lir_pow: {
846       // pow needs two temporary fpu stack slots, so there are two temporary
847       // registers (stored in tmp1 and tmp2 of the operation).
848       // the stack allocator must guarantee that the stack slots are really free,
849       // otherwise there might be a stack overflow.
850       assert(left->is_fpu_register(), "must be");
851       assert(right->is_fpu_register(), "must be");
852       assert(res->is_fpu_register(), "must be");
853 
854       assert(op2->tmp1_opr()->is_fpu_register(), "tmp1 is the first temporary register");
855       assert(op2->tmp2_opr()->is_fpu_register(), "tmp2 is the second temporary register");
856       assert(fpu_num(left) != fpu_num(right) && fpu_num(left) != fpu_num(op2->tmp1_opr()) && fpu_num(left) != fpu_num(op2->tmp2_opr()) && fpu_num(left) != fpu_num(res), "need distinct temp registers");
857       assert(fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(right) != fpu_num(op2->tmp2_opr()) && fpu_num(right) != fpu_num(res), "need distinct temp registers");
858       assert(fpu_num(op2->tmp1_opr()) != fpu_num(op2->tmp2_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
859       assert(fpu_num(op2->tmp2_opr()) != fpu_num(res), "need distinct temp registers");
860 
861       insert_free_if_dead(op2->tmp1_opr());
862       insert_free_if_dead(op2->tmp2_opr());
863 
864       // Must bring both operands to top of stack with following operand ordering:
865       // * fpu stack before pow: ... right left
866       // * fpu stack after pow:  ... left
867 
868       insert_free_if_dead(res, right);
869 
870       if (tos_offset(right) != 1) {
871         insert_exchange(right);
872         insert_exchange(1);
873       }
874       insert_exchange(left);
875       assert(tos_offset(right) == 1, "check");
876       assert(tos_offset(left) == 0, "check");
877 
878       new_left = to_fpu_stack_top(left);
879       new_right = to_fpu_stack(right);
880 
881       op2->set_fpu_stack_size(sim()->stack_size());
882       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
883 
884       sim()->pop();
885 
886       do_rename(right, res);
887 
888       new_res = to_fpu_stack_top(res);
889       break;
890     }
891 
892     default: {
893       assert(false, "missed a fpu-operation");
894     }
895   }
896 
897   op2->set_in_opr1(new_left);
898   op2->set_in_opr2(new_right);
899   op2->set_result_opr(new_res);
900 }
901 
handle_opCall(LIR_OpCall * opCall)902 void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
903   LIR_Opr res = opCall->result_opr();
904 
905   // clear fpu-stack before call
906   // it may contain dead values that could not have been remved by previous operations
907   clear_fpu_stack(LIR_OprFact::illegalOpr);
908   assert(sim()->is_empty(), "fpu stack must be empty now");
909 
910   // compute debug information before (possible) fpu result is pushed
911   compute_debug_information(opCall);
912 
913   if (res->is_fpu_register() && !res->is_xmm_register()) {
914     do_push(res);
915     opCall->set_result_opr(to_fpu_stack_top(res));
916   }
917 }
918 
919 #ifndef PRODUCT
check_invalid_lir_op(LIR_Op * op)920 void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
921   switch (op->code()) {
922     case lir_24bit_FPU:
923     case lir_reset_FPU:
924     case lir_ffree:
925       assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
926       break;
927 
928     case lir_fpop_raw:
929     case lir_fxch:
930     case lir_fld:
931       assert(false, "operations only inserted by FpuStackAllocator");
932       break;
933   }
934 }
935 #endif
936 
937 
merge_insert_add(LIR_List * instrs,FpuStackSim * cur_sim,int reg)938 void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
939   LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
940 
941   instrs->instructions_list()->push(move);
942 
943   cur_sim->push(reg);
944   move->set_result_opr(to_fpu_stack(move->result_opr()));
945 
946   #ifndef PRODUCT
947     if (TraceFPUStack) {
948       tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
949     }
950   #endif
951 }
952 
merge_insert_xchg(LIR_List * instrs,FpuStackSim * cur_sim,int slot)953 void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
954   assert(slot > 0, "no exchange necessary");
955 
956   LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
957   instrs->instructions_list()->push(fxch);
958   cur_sim->swap(slot);
959 
960   #ifndef PRODUCT
961     if (TraceFPUStack) {
962       tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
963     }
964   #endif
965 }
966 
merge_insert_pop(LIR_List * instrs,FpuStackSim * cur_sim)967 void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
968   int reg = cur_sim->get_slot(0);
969 
970   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
971   instrs->instructions_list()->push(fpop);
972   cur_sim->pop(reg);
973 
974   #ifndef PRODUCT
975     if (TraceFPUStack) {
976       tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
977     }
978   #endif
979 }
980 
merge_rename(FpuStackSim * cur_sim,FpuStackSim * sux_sim,int start_slot,int change_slot)981 bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
982   int reg = cur_sim->get_slot(change_slot);
983 
984   for (int slot = start_slot; slot >= 0; slot--) {
985     int new_reg = sux_sim->get_slot(slot);
986 
987     if (!cur_sim->contains(new_reg)) {
988       cur_sim->set_slot(change_slot, new_reg);
989 
990       #ifndef PRODUCT
991         if (TraceFPUStack) {
992           tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
993         }
994       #endif
995 
996       return true;
997     }
998   }
999   return false;
1000 }
1001 
1002 
merge_fpu_stack(LIR_List * instrs,FpuStackSim * cur_sim,FpuStackSim * sux_sim)1003 void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
1004 #ifndef PRODUCT
1005   if (TraceFPUStack) {
1006     tty->cr();
1007     tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
1008     tty->print("                 sux: "); sux_sim->print(); tty->cr();
1009   }
1010 
1011   int slot;
1012   for (slot = 0; slot < cur_sim->stack_size(); slot++) {
1013     assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
1014   }
1015   for (slot = 0; slot < sux_sim->stack_size(); slot++) {
1016     assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
1017   }
1018 #endif
1019 
1020   // size difference between cur and sux that must be resolved by adding or removing values form the stack
1021   int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
1022 
1023   if (!ComputeExactFPURegisterUsage) {
1024     // add slots that are currently free, but used in successor
1025     // When the exact FPU register usage is computed, the stack does
1026     // not contain dead values at merging -> no values must be added
1027 
1028     int sux_slot = sux_sim->stack_size() - 1;
1029     while (size_diff < 0) {
1030       assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
1031 
1032       int reg = sux_sim->get_slot(sux_slot);
1033       if (!cur_sim->contains(reg)) {
1034         merge_insert_add(instrs, cur_sim, reg);
1035         size_diff++;
1036 
1037         if (sux_slot + size_diff != 0) {
1038           merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1039         }
1040       }
1041      sux_slot--;
1042     }
1043   }
1044 
1045   assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
1046   assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
1047 
1048   // stack merge algorithm:
1049   // 1) as long as the current stack top is not in the right location (that meens
1050   //    it should not be on the stack top), exchange it into the right location
1051   // 2) if the stack top is right, but the remaining stack is not ordered correctly,
1052   //    the stack top is exchanged away to get another value on top ->
1053   //    now step 1) can be continued
1054   // the stack can also contain unused items -> these items are removed from stack
1055 
1056   int finished_slot = sux_sim->stack_size() - 1;
1057   while (finished_slot >= 0 || size_diff > 0) {
1058     while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
1059       int reg = cur_sim->get_slot(0);
1060       if (sux_sim->contains(reg)) {
1061         int sux_slot = sux_sim->offset_from_tos(reg);
1062         merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1063 
1064       } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
1065         assert(size_diff > 0, "must be");
1066 
1067         merge_insert_pop(instrs, cur_sim);
1068         size_diff--;
1069       }
1070       assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
1071     }
1072 
1073     while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
1074       finished_slot--;
1075     }
1076 
1077     if (finished_slot >= 0) {
1078       int reg = cur_sim->get_slot(finished_slot);
1079 
1080       if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
1081         assert(sux_sim->contains(reg) || size_diff > 0, "must be");
1082         merge_insert_xchg(instrs, cur_sim, finished_slot);
1083       }
1084       assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
1085     }
1086   }
1087 
1088 #ifndef PRODUCT
1089   if (TraceFPUStack) {
1090     tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
1091     tty->print("                 sux: "); sux_sim->print(); tty->cr();
1092     tty->cr();
1093   }
1094 #endif
1095   assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
1096 }
1097 
1098 
merge_cleanup_fpu_stack(LIR_List * instrs,FpuStackSim * cur_sim,BitMap & live_fpu_regs)1099 void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
1100 #ifndef PRODUCT
1101   if (TraceFPUStack) {
1102     tty->cr();
1103     tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
1104     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1105   }
1106 #endif
1107 
1108   int slot = 0;
1109   while (slot < cur_sim->stack_size()) {
1110     int reg = cur_sim->get_slot(slot);
1111     if (!live_fpu_regs.at(reg)) {
1112       if (slot != 0) {
1113         merge_insert_xchg(instrs, cur_sim, slot);
1114       }
1115       merge_insert_pop(instrs, cur_sim);
1116     } else {
1117       slot++;
1118     }
1119   }
1120 
1121 #ifndef PRODUCT
1122   if (TraceFPUStack) {
1123     tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
1124     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
1125     tty->cr();
1126   }
1127 
1128   // check if fpu stack only contains live registers
1129   for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
1130     if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
1131       tty->print_cr("mismatch between required and actual stack content");
1132       break;
1133     }
1134   }
1135 #endif
1136 }
1137 
1138 
merge_fpu_stack_with_successors(BlockBegin * block)1139 bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
1140 #ifndef PRODUCT
1141   if (TraceFPUStack) {
1142     tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
1143                   block->block_id(), pos());
1144     sim()->print();
1145     tty->cr();
1146   }
1147 #endif
1148 
1149   bool changed = false;
1150   int number_of_sux = block->number_of_sux();
1151 
1152   if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
1153     // The successor has at least two incoming edges, so a stack merge will be necessary
1154     // If this block is the first predecessor, cleanup the current stack and propagate it
1155     // If this block is not the first predecessor, a stack merge will be necessary
1156 
1157     BlockBegin* sux = block->sux_at(0);
1158     intArray* state = sux->fpu_stack_state();
1159     LIR_List* instrs = new LIR_List(_compilation);
1160 
1161     if (state != NULL) {
1162       // Merge with a successors that already has a FPU stack state
1163       // the block must only have one successor because critical edges must been split
1164       FpuStackSim* cur_sim = sim();
1165       FpuStackSim* sux_sim = temp_sim();
1166       sux_sim->read_state(state);
1167 
1168       merge_fpu_stack(instrs, cur_sim, sux_sim);
1169 
1170     } else {
1171       // propagate current FPU stack state to successor without state
1172       // clean up stack first so that there are no dead values on the stack
1173       if (ComputeExactFPURegisterUsage) {
1174         FpuStackSim* cur_sim = sim();
1175         BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
1176         assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
1177 
1178         merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
1179       }
1180 
1181       intArray* state = sim()->write_state();
1182       if (TraceFPUStack) {
1183         tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
1184         sim()->print(); tty->cr();
1185       }
1186       sux->set_fpu_stack_state(state);
1187     }
1188 
1189     if (instrs->instructions_list()->length() > 0) {
1190       lir()->insert_before(pos(), instrs);
1191       set_pos(instrs->instructions_list()->length() + pos());
1192       changed = true;
1193     }
1194 
1195   } else {
1196     // Propagate unmodified Stack to successors where a stack merge is not necessary
1197     intArray* state = sim()->write_state();
1198     for (int i = 0; i < number_of_sux; i++) {
1199       BlockBegin* sux = block->sux_at(i);
1200 
1201 #ifdef ASSERT
1202       for (int j = 0; j < sux->number_of_preds(); j++) {
1203         assert(block == sux->pred_at(j), "all critical edges must be broken");
1204       }
1205 
1206       // check if new state is same
1207       if (sux->fpu_stack_state() != NULL) {
1208         intArray* sux_state = sux->fpu_stack_state();
1209         assert(state->length() == sux_state->length(), "overwriting existing stack state");
1210         for (int j = 0; j < state->length(); j++) {
1211           assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
1212         }
1213       }
1214 #endif
1215 #ifndef PRODUCT
1216       if (TraceFPUStack) {
1217         tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
1218         sim()->print(); tty->cr();
1219       }
1220 #endif
1221 
1222       sux->set_fpu_stack_state(state);
1223     }
1224   }
1225 
1226 #ifndef PRODUCT
1227   // assertions that FPU stack state conforms to all successors' states
1228   intArray* cur_state = sim()->write_state();
1229   for (int i = 0; i < number_of_sux; i++) {
1230     BlockBegin* sux = block->sux_at(i);
1231     intArray* sux_state = sux->fpu_stack_state();
1232 
1233     assert(sux_state != NULL, "no fpu state");
1234     assert(cur_state->length() == sux_state->length(), "incorrect length");
1235     for (int i = 0; i < cur_state->length(); i++) {
1236       assert(cur_state->at(i) == sux_state->at(i), "element not equal");
1237     }
1238   }
1239 #endif
1240 
1241   return changed;
1242 }
1243