1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
27 
28 #include "asm/assembler.hpp"
29 #include "utilities/macros.hpp"
30 #include "runtime/rtmLocking.hpp"
31 
32 
33 // MacroAssembler extends Assembler by frequently used macros.
34 //
35 // Instructions for which a 'better' code sequence exists depending
36 // on arguments should also go in here.
37 
38 class MacroAssembler: public Assembler {
39   friend class LIR_Assembler;
40   friend class Runtime1;      // as_Address()
41 
42  protected:
43 
44   Address as_Address(AddressLiteral adr);
45   Address as_Address(ArrayAddress adr);
46 
47   // Support for VM calls
48   //
49   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
50   // may customize this version by overriding it for its purposes (e.g., to save/restore
51   // additional registers when doing a VM call).
52 #ifdef CC_INTERP
53   // c++ interpreter never wants to use interp_masm version of call_VM
54   #define VIRTUAL
55 #else
56   #define VIRTUAL virtual
57 #endif
58 
59   VIRTUAL void call_VM_leaf_base(
60     address entry_point,               // the entry point
61     int     number_of_arguments        // the number of arguments to pop after the call
62   );
63 
64   // This is the base routine called by the different versions of call_VM. The interpreter
65   // may customize this version by overriding it for its purposes (e.g., to save/restore
66   // additional registers when doing a VM call).
67   //
68   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
69   // returns the register which contains the thread upon return. If a thread register has been
70   // specified, the return value will correspond to that register. If no last_java_sp is specified
71   // (noreg) than rsp will be used instead.
72   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
76     address  entry_point,              // the entry point
77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
78     bool     check_exceptions          // whether to check for pending exceptions after return
79   );
80 
81   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
82   // The implementation is only non-empty for the InterpreterMacroAssembler,
83   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
84   virtual void check_and_handle_popframe(Register java_thread);
85   virtual void check_and_handle_earlyret(Register java_thread);
86 
87   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
88 
89   // helpers for FPU flag access
90   // tmp is a temporary register, if none is available use noreg
91   void save_rax   (Register tmp);
92   void restore_rax(Register tmp);
93 
94  public:
MacroAssembler(CodeBuffer * code)95   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
96 
97   // Support for NULL-checks
98   //
99   // Generates code that causes a NULL OS exception if the content of reg is NULL.
100   // If the accessed location is M[reg + offset] and the offset is known, provide the
101   // offset. No explicit code generation is needed if the offset is within a certain
102   // range (0 <= offset <= page_size).
103 
104   void null_check(Register reg, int offset = -1);
105   static bool needs_explicit_null_check(intptr_t offset);
106 
107   // Required platform-specific helpers for Label::patch_instructions.
108   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
pd_patch_instruction(address branch,address target)109   void pd_patch_instruction(address branch, address target) {
110     unsigned char op = branch[0];
111     assert(op == 0xE8 /* call */ ||
112         op == 0xE9 /* jmp */ ||
113         op == 0xEB /* short jmp */ ||
114         (op & 0xF0) == 0x70 /* short jcc */ ||
115         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
116         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
117         "Invalid opcode at patch point");
118 
119     if (op == 0xEB || (op & 0xF0) == 0x70) {
120       // short offset operators (jmp and jcc)
121       char* disp = (char*) &branch[1];
122       int imm8 = target - (address) &disp[1];
123       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
124       *disp = imm8;
125     } else {
126       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
127       int imm32 = target - (address) &disp[1];
128       *disp = imm32;
129     }
130   }
131 
132   // The following 4 methods return the offset of the appropriate move instruction
133 
134   // Support for fast byte/short loading with zero extension (depending on particular CPU)
135   int load_unsigned_byte(Register dst, Address src);
136   int load_unsigned_short(Register dst, Address src);
137 
138   // Support for fast byte/short loading with sign extension (depending on particular CPU)
139   int load_signed_byte(Register dst, Address src);
140   int load_signed_short(Register dst, Address src);
141 
142   // Support for sign-extension (hi:lo = extend_sign(lo))
143   void extend_sign(Register hi, Register lo);
144 
145   // Load and store values by size and signed-ness
146   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
147   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
148 
149   // Support for inc/dec with optimal instruction selection depending on value
150 
increment(Register reg,int value=1)151   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
decrement(Register reg,int value=1)152   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
153 
154   void decrementl(Address dst, int value = 1);
155   void decrementl(Register reg, int value = 1);
156 
157   void decrementq(Register reg, int value = 1);
158   void decrementq(Address dst, int value = 1);
159 
160   void incrementl(Address dst, int value = 1);
161   void incrementl(Register reg, int value = 1);
162 
163   void incrementq(Register reg, int value = 1);
164   void incrementq(Address dst, int value = 1);
165 
166   // Support optimal SSE move instructions.
movflt(XMMRegister dst,XMMRegister src)167   void movflt(XMMRegister dst, XMMRegister src) {
168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
169     else                       { movss (dst, src); return; }
170   }
movflt(XMMRegister dst,Address src)171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
172   void movflt(XMMRegister dst, AddressLiteral src);
movflt(Address dst,XMMRegister src)173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
174 
movdbl(XMMRegister dst,XMMRegister src)175   void movdbl(XMMRegister dst, XMMRegister src) {
176     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
177     else                       { movsd (dst, src); return; }
178   }
179 
180   void movdbl(XMMRegister dst, AddressLiteral src);
181 
movdbl(XMMRegister dst,Address src)182   void movdbl(XMMRegister dst, Address src) {
183     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
184     else                         { movlpd(dst, src); return; }
185   }
movdbl(Address dst,XMMRegister src)186   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
187 
188   void incrementl(AddressLiteral dst);
189   void incrementl(ArrayAddress dst);
190 
191   void incrementq(AddressLiteral dst);
192 
193   // Alignment
194   void align(int modulus);
195 
196   // A 5 byte nop that is safe for patching (see patch_verified_entry)
197   void fat_nop();
198 
199   // Stack frame creation/removal
200   void enter();
201   void leave();
202 
203   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
204   // The pointer will be loaded into the thread register.
205   void get_thread(Register thread);
206 
207 
208   // Support for VM calls
209   //
210   // It is imperative that all calls into the VM are handled via the call_VM macros.
211   // They make sure that the stack linkage is setup correctly. call_VM's correspond
212   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
213 
214 
215   void call_VM(Register oop_result,
216                address entry_point,
217                bool check_exceptions = true);
218   void call_VM(Register oop_result,
219                address entry_point,
220                Register arg_1,
221                bool check_exceptions = true);
222   void call_VM(Register oop_result,
223                address entry_point,
224                Register arg_1, Register arg_2,
225                bool check_exceptions = true);
226   void call_VM(Register oop_result,
227                address entry_point,
228                Register arg_1, Register arg_2, Register arg_3,
229                bool check_exceptions = true);
230 
231   // Overloadings with last_Java_sp
232   void call_VM(Register oop_result,
233                Register last_java_sp,
234                address entry_point,
235                int number_of_arguments = 0,
236                bool check_exceptions = true);
237   void call_VM(Register oop_result,
238                Register last_java_sp,
239                address entry_point,
240                Register arg_1, bool
241                check_exceptions = true);
242   void call_VM(Register oop_result,
243                Register last_java_sp,
244                address entry_point,
245                Register arg_1, Register arg_2,
246                bool check_exceptions = true);
247   void call_VM(Register oop_result,
248                Register last_java_sp,
249                address entry_point,
250                Register arg_1, Register arg_2, Register arg_3,
251                bool check_exceptions = true);
252 
253   void get_vm_result  (Register oop_result, Register thread);
254   void get_vm_result_2(Register metadata_result, Register thread);
255 
256   // These always tightly bind to MacroAssembler::call_VM_base
257   // bypassing the virtual implementation
258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
263 
264   void call_VM_leaf(address entry_point,
265                     int number_of_arguments = 0);
266   void call_VM_leaf(address entry_point,
267                     Register arg_1);
268   void call_VM_leaf(address entry_point,
269                     Register arg_1, Register arg_2);
270   void call_VM_leaf(address entry_point,
271                     Register arg_1, Register arg_2, Register arg_3);
272 
273   // These always tightly bind to MacroAssembler::call_VM_leaf_base
274   // bypassing the virtual implementation
275   void super_call_VM_leaf(address entry_point);
276   void super_call_VM_leaf(address entry_point, Register arg_1);
277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
280 
281   // last Java Frame (fills frame anchor)
282   void set_last_Java_frame(Register thread,
283                            Register last_java_sp,
284                            Register last_java_fp,
285                            address last_java_pc);
286 
287   // thread in the default location (r15_thread on 64bit)
288   void set_last_Java_frame(Register last_java_sp,
289                            Register last_java_fp,
290                            address last_java_pc);
291 
292   void reset_last_Java_frame(Register thread, bool clear_fp);
293 
294   // thread in the default location (r15_thread on 64bit)
295   void reset_last_Java_frame(bool clear_fp);
296 
297   // Stores
298   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
299   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
300 
301   void resolve_jobject(Register value, Register thread, Register tmp);
302   void clear_jweak_tag(Register possibly_jweak);
303 
304 #if INCLUDE_ALL_GCS
305 
306   void g1_write_barrier_pre(Register obj,
307                             Register pre_val,
308                             Register thread,
309                             Register tmp,
310                             bool tosca_live,
311                             bool expand_call);
312 
313   void g1_write_barrier_post(Register store_addr,
314                              Register new_val,
315                              Register thread,
316                              Register tmp,
317                              Register tmp2);
318 
319 #endif // INCLUDE_ALL_GCS
320 
321   // split store_check(Register obj) to enhance instruction interleaving
322   void store_check_part_1(Register obj);
323   void store_check_part_2(Register obj);
324 
325   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
326   void c2bool(Register x);
327 
328   // C++ bool manipulation
329 
330   void movbool(Register dst, Address src);
331   void movbool(Address dst, bool boolconst);
332   void movbool(Address dst, Register src);
333   void testbool(Register dst);
334 
335   // oop manipulations
336   void load_klass(Register dst, Register src);
337   void store_klass(Register dst, Register src);
338 
339   void load_heap_oop(Register dst, Address src);
340   void load_heap_oop_not_null(Register dst, Address src);
341   void store_heap_oop(Address dst, Register src);
342   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
343 
344   // Used for storing NULL. All other oop constants should be
345   // stored using routines that take a jobject.
346   void store_heap_oop_null(Address dst);
347 
348   void load_prototype_header(Register dst, Register src);
349 
350 #ifdef _LP64
351   void store_klass_gap(Register dst, Register src);
352 
353   // This dummy is to prevent a call to store_heap_oop from
354   // converting a zero (like NULL) into a Register by giving
355   // the compiler two choices it can't resolve
356 
357   void store_heap_oop(Address dst, void* dummy);
358 
359   void encode_heap_oop(Register r);
360   void decode_heap_oop(Register r);
361   void encode_heap_oop_not_null(Register r);
362   void decode_heap_oop_not_null(Register r);
363   void encode_heap_oop_not_null(Register dst, Register src);
364   void decode_heap_oop_not_null(Register dst, Register src);
365 
366   void set_narrow_oop(Register dst, jobject obj);
367   void set_narrow_oop(Address dst, jobject obj);
368   void cmp_narrow_oop(Register dst, jobject obj);
369   void cmp_narrow_oop(Address dst, jobject obj);
370 
371   void encode_klass_not_null(Register r);
372   void decode_klass_not_null(Register r);
373   void encode_klass_not_null(Register dst, Register src);
374   void decode_klass_not_null(Register dst, Register src);
375   void set_narrow_klass(Register dst, Klass* k);
376   void set_narrow_klass(Address dst, Klass* k);
377   void cmp_narrow_klass(Register dst, Klass* k);
378   void cmp_narrow_klass(Address dst, Klass* k);
379 
380   // Returns the byte size of the instructions generated by decode_klass_not_null()
381   // when compressed klass pointers are being used.
382   static int instr_size_for_decode_klass_not_null();
383 
384   // if heap base register is used - reinit it with the correct value
385   void reinit_heapbase();
386 
387   DEBUG_ONLY(void verify_heapbase(const char* msg);)
388 
389 #endif // _LP64
390 
391   // Int division/remainder for Java
392   // (as idivl, but checks for special case as described in JVM spec.)
393   // returns idivl instruction offset for implicit exception handling
394   int corrected_idivl(Register reg);
395 
396   // Long division/remainder for Java
397   // (as idivq, but checks for special case as described in JVM spec.)
398   // returns idivq instruction offset for implicit exception handling
399   int corrected_idivq(Register reg);
400 
401   void int3();
402 
403   // Long operation macros for a 32bit cpu
404   // Long negation for Java
405   void lneg(Register hi, Register lo);
406 
407   // Long multiplication for Java
408   // (destroys contents of eax, ebx, ecx and edx)
409   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
410 
411   // Long shifts for Java
412   // (semantics as described in JVM spec.)
413   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
414   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
415 
416   // Long compare for Java
417   // (semantics as described in JVM spec.)
418   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
419 
420 
421   // misc
422 
423   // Sign extension
424   void sign_extend_short(Register reg);
425   void sign_extend_byte(Register reg);
426 
427   // Division by power of 2, rounding towards 0
428   void division_with_shift(Register reg, int shift_value);
429 
430   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
431   //
432   // CF (corresponds to C0) if x < y
433   // PF (corresponds to C2) if unordered
434   // ZF (corresponds to C3) if x = y
435   //
436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
437   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
438   void fcmp(Register tmp);
439   // Variant of the above which allows y to be further down the stack
440   // and which only pops x and y if specified. If pop_right is
441   // specified then pop_left must also be specified.
442   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
443 
444   // Floating-point comparison for Java
445   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
446   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
447   // (semantics as described in JVM spec.)
448   void fcmp2int(Register dst, bool unordered_is_less);
449   // Variant of the above which allows y to be further down the stack
450   // and which only pops x and y if specified. If pop_right is
451   // specified then pop_left must also be specified.
452   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
453 
454   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
455   // tmp is a temporary register, if none is available use noreg
456   void fremr(Register tmp);
457 
458 
459   // same as fcmp2int, but using SSE2
460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
462 
463   // Inlined sin/cos generator for Java; must not use CPU instruction
464   // directly on Intel as it does not have high enough precision
465   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
466   // number of FPU stack slots in use; all but the topmost will
467   // require saving if a slow case is necessary. Assumes argument is
468   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
469   // this code.
470   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
471 
472   // branch to L if FPU flag C2 is set/not set
473   // tmp is a temporary register, if none is available use noreg
474   void jC2 (Register tmp, Label& L);
475   void jnC2(Register tmp, Label& L);
476 
477   // Pop ST (ffree & fincstp combined)
478   void fpop();
479 
480   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
481   void push_fTOS();
482 
483   // pops double TOS element from CPU stack and pushes on FPU stack
484   void pop_fTOS();
485 
486   void empty_FPU_stack();
487 
488   void push_IU_state();
489   void pop_IU_state();
490 
491   void push_FPU_state();
492   void pop_FPU_state();
493 
494   void push_CPU_state();
495   void pop_CPU_state();
496 
497   // Round up to a power of two
498   void round_to(Register reg, int modulus);
499 
500   // Callee saved registers handling
501   void push_callee_saved_registers();
502   void pop_callee_saved_registers();
503 
504   // allocation
505   void eden_allocate(
506     Register obj,                      // result: pointer to object after successful allocation
507     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
508     int      con_size_in_bytes,        // object size in bytes if   known at compile time
509     Register t1,                       // temp register
510     Label&   slow_case                 // continuation point if fast allocation fails
511   );
512   void tlab_allocate(
513     Register obj,                      // result: pointer to object after successful allocation
514     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
515     int      con_size_in_bytes,        // object size in bytes if   known at compile time
516     Register t1,                       // temp register
517     Register t2,                       // temp register
518     Label&   slow_case                 // continuation point if fast allocation fails
519   );
520   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
521   void incr_allocated_bytes(Register thread,
522                             Register var_size_in_bytes, int con_size_in_bytes,
523                             Register t1 = noreg);
524 
525   // interface method calling
526   void lookup_interface_method(Register recv_klass,
527                                Register intf_klass,
528                                RegisterOrConstant itable_index,
529                                Register method_result,
530                                Register scan_temp,
531                                Label& no_such_interface,
532                                bool return_method = true);
533 
534   // virtual method calling
535   void lookup_virtual_method(Register recv_klass,
536                              RegisterOrConstant vtable_index,
537                              Register method_result);
538 
539   // Test sub_klass against super_klass, with fast and slow paths.
540 
541   // The fast path produces a tri-state answer: yes / no / maybe-slow.
542   // One of the three labels can be NULL, meaning take the fall-through.
543   // If super_check_offset is -1, the value is loaded up from super_klass.
544   // No registers are killed, except temp_reg.
545   void check_klass_subtype_fast_path(Register sub_klass,
546                                      Register super_klass,
547                                      Register temp_reg,
548                                      Label* L_success,
549                                      Label* L_failure,
550                                      Label* L_slow_path,
551                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
552 
553   // The rest of the type check; must be wired to a corresponding fast path.
554   // It does not repeat the fast path logic, so don't use it standalone.
555   // The temp_reg and temp2_reg can be noreg, if no temps are available.
556   // Updates the sub's secondary super cache as necessary.
557   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
558   void check_klass_subtype_slow_path(Register sub_klass,
559                                      Register super_klass,
560                                      Register temp_reg,
561                                      Register temp2_reg,
562                                      Label* L_success,
563                                      Label* L_failure,
564                                      bool set_cond_codes = false);
565 
566   // Simplified, combined version, good for typical uses.
567   // Falls through on failure.
568   void check_klass_subtype(Register sub_klass,
569                            Register super_klass,
570                            Register temp_reg,
571                            Label& L_success);
572 
573   // method handles (JSR 292)
574   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
575 
576   //----
577   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
578 
579   // Debugging
580 
581   // only if +VerifyOops
582   // TODO: Make these macros with file and line like sparc version!
583   void verify_oop(Register reg, const char* s = "broken oop");
584   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
585 
586   // TODO: verify method and klass metadata (compare against vptr?)
_verify_method_ptr(Register reg,const char * msg,const char * file,int line)587   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
_verify_klass_ptr(Register reg,const char * msg,const char * file,int line)588   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
589 
590 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
591 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
592 
593   // only if +VerifyFPU
594   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
595 
596   // Verify or restore cpu control state after JNI call
597   void restore_cpu_control_state_after_jni();
598 
599   // prints msg, dumps registers and stops execution
600   void stop(const char* msg);
601 
602   // prints msg and continues
603   void warn(const char* msg);
604 
605   // dumps registers and other state
606   void print_state();
607 
608   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
609   static void debug64(char* msg, int64_t pc, int64_t regs[]);
610   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
611   static void print_state64(int64_t pc, int64_t regs[]);
612 
613   void os_breakpoint();
614 
untested()615   void untested()                                { stop("untested"); }
616 
unimplemented(const char * what="")617   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
618 
should_not_reach_here()619   void should_not_reach_here()                   { stop("should not reach here"); }
620 
621   void print_CPU_state();
622 
623   // Stack overflow checking
bang_stack_with_offset(int offset)624   void bang_stack_with_offset(int offset) {
625     // stack grows down, caller passes positive offset
626     assert(offset > 0, "must bang with negative offset");
627     movl(Address(rsp, (-offset)), rax);
628   }
629 
630   // Writes to stack successive pages until offset reached to check for
631   // stack overflow + shadow pages.  Also, clobbers tmp
632   void bang_stack_size(Register size, Register tmp);
633 
634   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
635                                                 Register tmp,
636                                                 int offset);
637 
638   // Support for serializing memory accesses between threads
639   void serialize_memory(Register thread, Register tmp);
640 
641   void verify_tlab();
642 
643   // Biased locking support
644   // lock_reg and obj_reg must be loaded up with the appropriate values.
645   // swap_reg must be rax, and is killed.
646   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
647   // be killed; if not supplied, push/pop will be used internally to
648   // allocate a temporary (inefficient, avoid if possible).
649   // Optional slow case is for implementations (interpreter and C1) which branch to
650   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
651   // Returns offset of first potentially-faulting instruction for null
652   // check info (currently consumed only by C1). If
653   // swap_reg_contains_mark is true then returns -1 as it is assumed
654   // the calling code has already passed any potential faults.
655   int biased_locking_enter(Register lock_reg, Register obj_reg,
656                            Register swap_reg, Register tmp_reg,
657                            bool swap_reg_contains_mark,
658                            Label& done, Label* slow_case = NULL,
659                            BiasedLockingCounters* counters = NULL);
660   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
661 #ifdef COMPILER2
662   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
663   // See full desription in macroAssembler_x86.cpp.
664   void fast_lock(Register obj, Register box, Register tmp,
665                  Register scr, Register cx1, Register cx2,
666                  BiasedLockingCounters* counters,
667                  RTMLockingCounters* rtm_counters,
668                  RTMLockingCounters* stack_rtm_counters,
669                  Metadata* method_data,
670                  bool use_rtm, bool profile_rtm);
671   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
672 #if INCLUDE_RTM_OPT
673   void rtm_counters_update(Register abort_status, Register rtm_counters);
674   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
675   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
676                                    RTMLockingCounters* rtm_counters,
677                                    Metadata* method_data);
678   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
679                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
680   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
681   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
682   void rtm_stack_locking(Register obj, Register tmp, Register scr,
683                          Register retry_on_abort_count,
684                          RTMLockingCounters* stack_rtm_counters,
685                          Metadata* method_data, bool profile_rtm,
686                          Label& DONE_LABEL, Label& IsInflated);
687   void rtm_inflated_locking(Register obj, Register box, Register tmp,
688                             Register scr, Register retry_on_busy_count,
689                             Register retry_on_abort_count,
690                             RTMLockingCounters* rtm_counters,
691                             Metadata* method_data, bool profile_rtm,
692                             Label& DONE_LABEL);
693 #endif
694 #endif
695 
696   Condition negate_condition(Condition cond);
697 
698   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
699   // operands. In general the names are modified to avoid hiding the instruction in Assembler
700   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
701   // here in MacroAssembler. The major exception to this rule is call
702 
703   // Arithmetics
704 
705 
addptr(Address dst,int32_t src)706   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
707   void addptr(Address dst, Register src);
708 
addptr(Register dst,Address src)709   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
710   void addptr(Register dst, int32_t src);
711   void addptr(Register dst, Register src);
addptr(Register dst,RegisterOrConstant src)712   void addptr(Register dst, RegisterOrConstant src) {
713     if (src.is_constant()) addptr(dst, (int) src.as_constant());
714     else                   addptr(dst,       src.as_register());
715   }
716 
717   void andptr(Register dst, int32_t src);
andptr(Register src1,Register src2)718   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
719 
720   void cmp8(AddressLiteral src1, int imm);
721 
722   // renamed to drag out the casting of address to int32_t/intptr_t
723   void cmp32(Register src1, int32_t imm);
724 
725   void cmp32(AddressLiteral src1, int32_t imm);
726   // compare reg - mem, or reg - &mem
727   void cmp32(Register src1, AddressLiteral src2);
728 
729   void cmp32(Register src1, Address src2);
730 
731 #ifndef _LP64
732   void cmpklass(Address dst, Metadata* obj);
733   void cmpklass(Register dst, Metadata* obj);
734   void cmpoop(Address dst, jobject obj);
735   void cmpoop(Register dst, jobject obj);
736 #endif // _LP64
737 
738   // NOTE src2 must be the lval. This is NOT an mem-mem compare
739   void cmpptr(Address src1, AddressLiteral src2);
740 
741   void cmpptr(Register src1, AddressLiteral src2);
742 
cmpptr(Register src1,Register src2)743   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
cmpptr(Register src1,Address src2)744   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
745   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
746 
cmpptr(Register src1,int32_t src2)747   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
cmpptr(Address src1,int32_t src2)748   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
749 
750   // cmp64 to avoild hiding cmpq
751   void cmp64(Register src1, AddressLiteral src);
752 
753   void cmpxchgptr(Register reg, Address adr);
754 
755   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
756 
757 
imulptr(Register dst,Register src)758   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
imulptr(Register dst,Register src,int imm32)759   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
760 
761 
negptr(Register dst)762   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
763 
notptr(Register dst)764   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
765 
766   void shlptr(Register dst, int32_t shift);
shlptr(Register dst)767   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
768 
769   void shrptr(Register dst, int32_t shift);
shrptr(Register dst)770   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
771 
sarptr(Register dst)772   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
sarptr(Register dst,int32_t src)773   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
774 
subptr(Address dst,int32_t src)775   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
776 
subptr(Register dst,Address src)777   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
778   void subptr(Register dst, int32_t src);
779   // Force generation of a 4 byte immediate value even if it fits into 8bit
780   void subptr_imm32(Register dst, int32_t src);
781   void subptr(Register dst, Register src);
subptr(Register dst,RegisterOrConstant src)782   void subptr(Register dst, RegisterOrConstant src) {
783     if (src.is_constant()) subptr(dst, (int) src.as_constant());
784     else                   subptr(dst,       src.as_register());
785   }
786 
sbbptr(Address dst,int32_t src)787   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
sbbptr(Register dst,int32_t src)788   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
789 
xchgptr(Register src1,Register src2)790   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
xchgptr(Register src1,Address src2)791   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
792 
xaddptr(Address src1,Register src2)793   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
794 
795 
796 
797   // Helper functions for statistics gathering.
798   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
799   void cond_inc32(Condition cond, AddressLiteral counter_addr);
800   // Unconditional atomic increment.
801   void atomic_incl(Address counter_addr);
802   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
803 #ifdef _LP64
804   void atomic_incq(Address counter_addr);
805   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
806 #endif
atomic_incptr(AddressLiteral counter_addr,Register scr=rscratch1)807   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
atomic_incptr(Address counter_addr)808   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
809 
810   void lea(Register dst, AddressLiteral adr);
811   void lea(Address dst, AddressLiteral adr);
lea(Register dst,Address adr)812   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
813 
leal32(Register dst,Address src)814   void leal32(Register dst, Address src) { leal(dst, src); }
815 
816   // Import other testl() methods from the parent class or else
817   // they will be hidden by the following overriding declaration.
818   using Assembler::testl;
819   void testl(Register dst, AddressLiteral src);
820 
orptr(Register dst,Address src)821   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
orptr(Register dst,Register src)822   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
orptr(Register dst,int32_t src)823   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
orptr(Address dst,int32_t imm32)824   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
825 
testptr(Register src,int32_t imm32)826   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
827   void testptr(Register src1, Register src2);
828 
xorptr(Register dst,Register src)829   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
xorptr(Register dst,Address src)830   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
831 
832   // Calls
833 
834   void call(Label& L, relocInfo::relocType rtype);
835   void call(Register entry);
836 
837   // NOTE: this call tranfers to the effective address of entry NOT
838   // the address contained by entry. This is because this is more natural
839   // for jumps/calls.
840   void call(AddressLiteral entry);
841 
842   // Emit the CompiledIC call idiom
843   void ic_call(address entry);
844 
845   // Jumps
846 
847   // NOTE: these jumps tranfer to the effective address of dst NOT
848   // the address contained by dst. This is because this is more natural
849   // for jumps/calls.
850   void jump(AddressLiteral dst);
851   void jump_cc(Condition cc, AddressLiteral dst);
852 
853   // 32bit can do a case table jump in one instruction but we no longer allow the base
854   // to be installed in the Address class. This jump will tranfers to the address
855   // contained in the location described by entry (not the address of entry)
856   void jump(ArrayAddress entry);
857 
858   // Floating
859 
andpd(XMMRegister dst,Address src)860   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
861   void andpd(XMMRegister dst, AddressLiteral src);
862 
andps(XMMRegister dst,XMMRegister src)863   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
andps(XMMRegister dst,Address src)864   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
865   void andps(XMMRegister dst, AddressLiteral src);
866 
comiss(XMMRegister dst,XMMRegister src)867   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
comiss(XMMRegister dst,Address src)868   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
869   void comiss(XMMRegister dst, AddressLiteral src);
870 
comisd(XMMRegister dst,XMMRegister src)871   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
comisd(XMMRegister dst,Address src)872   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
873   void comisd(XMMRegister dst, AddressLiteral src);
874 
fadd_s(Address src)875   void fadd_s(Address src)        { Assembler::fadd_s(src); }
fadd_s(AddressLiteral src)876   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
877 
fldcw(Address src)878   void fldcw(Address src) { Assembler::fldcw(src); }
879   void fldcw(AddressLiteral src);
880 
fld_s(int index)881   void fld_s(int index)   { Assembler::fld_s(index); }
fld_s(Address src)882   void fld_s(Address src) { Assembler::fld_s(src); }
883   void fld_s(AddressLiteral src);
884 
fld_d(Address src)885   void fld_d(Address src) { Assembler::fld_d(src); }
886   void fld_d(AddressLiteral src);
887 
fld_x(Address src)888   void fld_x(Address src) { Assembler::fld_x(src); }
889   void fld_x(AddressLiteral src);
890 
fmul_s(Address src)891   void fmul_s(Address src)        { Assembler::fmul_s(src); }
fmul_s(AddressLiteral src)892   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
893 
ldmxcsr(Address src)894   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
895   void ldmxcsr(AddressLiteral src);
896 
897   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
898   // all corner cases and may result in NaN and require fallback to a
899   // runtime call.
900   void fast_pow();
901   void fast_exp();
902   void increase_precision();
903   void restore_precision();
904 
905   // computes exp(x). Fallback to runtime call included.
exp_with_fallback(int num_fpu_regs_in_use)906   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
907   // computes pow(x,y). Fallback to runtime call included.
pow_with_fallback(int num_fpu_regs_in_use)908   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
909 
910 private:
911 
912   // call runtime as a fallback for trig functions and pow/exp.
913   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
914 
915   // computes 2^(Ylog2X); Ylog2X in ST(0)
916   void pow_exp_core_encoding();
917 
918   // computes pow(x,y) or exp(x). Fallback to runtime call included.
919   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
920 
921   // these are private because users should be doing movflt/movdbl
922 
movss(Address dst,XMMRegister src)923   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
movss(XMMRegister dst,XMMRegister src)924   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
movss(XMMRegister dst,Address src)925   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
926   void movss(XMMRegister dst, AddressLiteral src);
927 
movlpd(XMMRegister dst,Address src)928   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
929   void movlpd(XMMRegister dst, AddressLiteral src);
930 
931 public:
932 
addsd(XMMRegister dst,XMMRegister src)933   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
addsd(XMMRegister dst,Address src)934   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
935   void addsd(XMMRegister dst, AddressLiteral src);
936 
addss(XMMRegister dst,XMMRegister src)937   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
addss(XMMRegister dst,Address src)938   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
939   void addss(XMMRegister dst, AddressLiteral src);
940 
divsd(XMMRegister dst,XMMRegister src)941   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
divsd(XMMRegister dst,Address src)942   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
943   void divsd(XMMRegister dst, AddressLiteral src);
944 
divss(XMMRegister dst,XMMRegister src)945   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
divss(XMMRegister dst,Address src)946   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
947   void divss(XMMRegister dst, AddressLiteral src);
948 
949   // Move Unaligned Double Quadword
movdqu(Address dst,XMMRegister src)950   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
movdqu(XMMRegister dst,Address src)951   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
movdqu(XMMRegister dst,XMMRegister src)952   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
953   void movdqu(XMMRegister dst, AddressLiteral src);
954 
955   // Move Aligned Double Quadword
movdqa(XMMRegister dst,Address src)956   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
movdqa(XMMRegister dst,XMMRegister src)957   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
958   void movdqa(XMMRegister dst, AddressLiteral src);
959 
movsd(XMMRegister dst,XMMRegister src)960   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
movsd(Address dst,XMMRegister src)961   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
movsd(XMMRegister dst,Address src)962   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
963   void movsd(XMMRegister dst, AddressLiteral src);
964 
mulsd(XMMRegister dst,XMMRegister src)965   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
mulsd(XMMRegister dst,Address src)966   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
967   void mulsd(XMMRegister dst, AddressLiteral src);
968 
mulss(XMMRegister dst,XMMRegister src)969   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
mulss(XMMRegister dst,Address src)970   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
971   void mulss(XMMRegister dst, AddressLiteral src);
972 
973   // Carry-Less Multiplication Quadword
pclmulldq(XMMRegister dst,XMMRegister src)974   void pclmulldq(XMMRegister dst, XMMRegister src) {
975     // 0x00 - multiply lower 64 bits [0:63]
976     Assembler::pclmulqdq(dst, src, 0x00);
977   }
pclmulhdq(XMMRegister dst,XMMRegister src)978   void pclmulhdq(XMMRegister dst, XMMRegister src) {
979     // 0x11 - multiply upper 64 bits [64:127]
980     Assembler::pclmulqdq(dst, src, 0x11);
981   }
982 
sqrtsd(XMMRegister dst,XMMRegister src)983   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
sqrtsd(XMMRegister dst,Address src)984   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
985   void sqrtsd(XMMRegister dst, AddressLiteral src);
986 
sqrtss(XMMRegister dst,XMMRegister src)987   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
sqrtss(XMMRegister dst,Address src)988   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
989   void sqrtss(XMMRegister dst, AddressLiteral src);
990 
subsd(XMMRegister dst,XMMRegister src)991   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
subsd(XMMRegister dst,Address src)992   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
993   void subsd(XMMRegister dst, AddressLiteral src);
994 
subss(XMMRegister dst,XMMRegister src)995   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
subss(XMMRegister dst,Address src)996   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
997   void subss(XMMRegister dst, AddressLiteral src);
998 
ucomiss(XMMRegister dst,XMMRegister src)999   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
ucomiss(XMMRegister dst,Address src)1000   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1001   void ucomiss(XMMRegister dst, AddressLiteral src);
1002 
ucomisd(XMMRegister dst,XMMRegister src)1003   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
ucomisd(XMMRegister dst,Address src)1004   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1005   void ucomisd(XMMRegister dst, AddressLiteral src);
1006 
1007   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
xorpd(XMMRegister dst,XMMRegister src)1008   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
xorpd(XMMRegister dst,Address src)1009   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1010   void xorpd(XMMRegister dst, AddressLiteral src);
1011 
1012   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
xorps(XMMRegister dst,XMMRegister src)1013   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
xorps(XMMRegister dst,Address src)1014   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1015   void xorps(XMMRegister dst, AddressLiteral src);
1016 
1017   // Shuffle Bytes
pshufb(XMMRegister dst,XMMRegister src)1018   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
pshufb(XMMRegister dst,Address src)1019   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1020   void pshufb(XMMRegister dst, AddressLiteral src);
1021   // AVX 3-operands instructions
1022 
vaddsd(XMMRegister dst,XMMRegister nds,XMMRegister src)1023   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
vaddsd(XMMRegister dst,XMMRegister nds,Address src)1024   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1025   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1026 
vaddss(XMMRegister dst,XMMRegister nds,XMMRegister src)1027   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
vaddss(XMMRegister dst,XMMRegister nds,Address src)1028   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1029   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1030 
vandpd(XMMRegister dst,XMMRegister nds,XMMRegister src,bool vector256)1031   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
vandpd(XMMRegister dst,XMMRegister nds,Address src,bool vector256)1032   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
1033   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1034 
vandps(XMMRegister dst,XMMRegister nds,XMMRegister src,bool vector256)1035   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
vandps(XMMRegister dst,XMMRegister nds,Address src,bool vector256)1036   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
1037   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1038 
vdivsd(XMMRegister dst,XMMRegister nds,XMMRegister src)1039   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
vdivsd(XMMRegister dst,XMMRegister nds,Address src)1040   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1041   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1042 
vdivss(XMMRegister dst,XMMRegister nds,XMMRegister src)1043   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
vdivss(XMMRegister dst,XMMRegister nds,Address src)1044   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1045   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1046 
vmulsd(XMMRegister dst,XMMRegister nds,XMMRegister src)1047   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
vmulsd(XMMRegister dst,XMMRegister nds,Address src)1048   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1049   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1050 
vmulss(XMMRegister dst,XMMRegister nds,XMMRegister src)1051   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
vmulss(XMMRegister dst,XMMRegister nds,Address src)1052   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1053   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1054 
vsubsd(XMMRegister dst,XMMRegister nds,XMMRegister src)1055   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
vsubsd(XMMRegister dst,XMMRegister nds,Address src)1056   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1057   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1058 
vsubss(XMMRegister dst,XMMRegister nds,XMMRegister src)1059   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
vsubss(XMMRegister dst,XMMRegister nds,Address src)1060   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1061   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1062 
1063   // AVX Vector instructions
1064 
vxorpd(XMMRegister dst,XMMRegister nds,XMMRegister src,bool vector256)1065   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
vxorpd(XMMRegister dst,XMMRegister nds,Address src,bool vector256)1066   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1067   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1068 
vxorps(XMMRegister dst,XMMRegister nds,XMMRegister src,bool vector256)1069   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
vxorps(XMMRegister dst,XMMRegister nds,Address src,bool vector256)1070   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1071   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1072 
vpxor(XMMRegister dst,XMMRegister nds,XMMRegister src,bool vector256)1073   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
1074     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1075       Assembler::vpxor(dst, nds, src, vector256);
1076     else
1077       Assembler::vxorpd(dst, nds, src, vector256);
1078   }
vpxor(XMMRegister dst,XMMRegister nds,Address src,bool vector256)1079   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
1080     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1081       Assembler::vpxor(dst, nds, src, vector256);
1082     else
1083       Assembler::vxorpd(dst, nds, src, vector256);
1084   }
1085 
1086   // Simple version for AVX2 256bit vectors
vpxor(XMMRegister dst,XMMRegister src)1087   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
vpxor(XMMRegister dst,Address src)1088   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1089 
1090   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
vinserti128h(XMMRegister dst,XMMRegister nds,XMMRegister src)1091   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1092     if (UseAVX > 1) // vinserti128h is available only in AVX2
1093       Assembler::vinserti128h(dst, nds, src);
1094     else
1095       Assembler::vinsertf128h(dst, nds, src);
1096   }
1097 
1098   // Carry-Less Multiplication Quadword
vpclmulldq(XMMRegister dst,XMMRegister nds,XMMRegister src)1099   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1100     // 0x00 - multiply lower 64 bits [0:63]
1101     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1102   }
vpclmulhdq(XMMRegister dst,XMMRegister nds,XMMRegister src)1103   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1104     // 0x11 - multiply upper 64 bits [64:127]
1105     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1106   }
1107 
1108   // Data
1109 
1110   void cmov32( Condition cc, Register dst, Address  src);
1111   void cmov32( Condition cc, Register dst, Register src);
1112 
cmov(Condition cc,Register dst,Register src)1113   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1114 
cmovptr(Condition cc,Register dst,Address src)1115   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
cmovptr(Condition cc,Register dst,Register src)1116   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1117 
1118   void movoop(Register dst, jobject obj);
1119   void movoop(Address dst, jobject obj);
1120 
1121   void mov_metadata(Register dst, Metadata* obj);
1122   void mov_metadata(Address dst, Metadata* obj);
1123 
1124   void movptr(ArrayAddress dst, Register src);
1125   // can this do an lea?
1126   void movptr(Register dst, ArrayAddress src);
1127 
1128   void movptr(Register dst, Address src);
1129 
1130 #ifdef _LP64
1131   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1132 #else
1133   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1134 #endif
1135 
1136   void movptr(Register dst, intptr_t src);
1137   void movptr(Register dst, Register src);
1138   void movptr(Address dst, intptr_t src);
1139 
1140   void movptr(Address dst, Register src);
1141 
movptr(Register dst,RegisterOrConstant src)1142   void movptr(Register dst, RegisterOrConstant src) {
1143     if (src.is_constant()) movptr(dst, src.as_constant());
1144     else                   movptr(dst, src.as_register());
1145   }
1146 
1147 #ifdef _LP64
1148   // Generally the next two are only used for moving NULL
1149   // Although there are situations in initializing the mark word where
1150   // they could be used. They are dangerous.
1151 
1152   // They only exist on LP64 so that int32_t and intptr_t are not the same
1153   // and we have ambiguous declarations.
1154 
1155   void movptr(Address dst, int32_t imm32);
1156   void movptr(Register dst, int32_t imm32);
1157 #endif // _LP64
1158 
1159   // to avoid hiding movl
1160   void mov32(AddressLiteral dst, Register src);
1161   void mov32(Register dst, AddressLiteral src);
1162 
1163   // to avoid hiding movb
1164   void movbyte(ArrayAddress dst, int src);
1165 
1166   // Import other mov() methods from the parent class or else
1167   // they will be hidden by the following overriding declaration.
1168   using Assembler::movdl;
1169   using Assembler::movq;
1170   void movdl(XMMRegister dst, AddressLiteral src);
1171   void movq(XMMRegister dst, AddressLiteral src);
1172 
1173   // Can push value or effective address
1174   void pushptr(AddressLiteral src);
1175 
pushptr(Address src)1176   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
popptr(Address src)1177   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1178 
1179   void pushoop(jobject obj);
1180   void pushklass(Metadata* obj);
1181 
1182   // sign extend as need a l to ptr sized element
movl2ptr(Register dst,Address src)1183   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
movl2ptr(Register dst,Register src)1184   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1185 
1186   // C2 compiled method's prolog code.
1187   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1188 
1189   // clear memory of size 'cnt' qwords, starting at 'base'.
1190   void clear_mem(Register base, Register cnt, Register rtmp);
1191 
1192   // IndexOf strings.
1193   // Small strings are loaded through stack if they cross page boundary.
1194   void string_indexof(Register str1, Register str2,
1195                       Register cnt1, Register cnt2,
1196                       int int_cnt2,  Register result,
1197                       XMMRegister vec, Register tmp);
1198 
1199   // IndexOf for constant substrings with size >= 8 elements
1200   // which don't need to be loaded through stack.
1201   void string_indexofC8(Register str1, Register str2,
1202                       Register cnt1, Register cnt2,
1203                       int int_cnt2,  Register result,
1204                       XMMRegister vec, Register tmp);
1205 
1206     // Smallest code: we don't need to load through stack,
1207     // check string tail.
1208 
1209   // Compare strings.
1210   void string_compare(Register str1, Register str2,
1211                       Register cnt1, Register cnt2, Register result,
1212                       XMMRegister vec1);
1213 
1214   // Compare char[] arrays.
1215   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1216                           Register limit, Register result, Register chr,
1217                           XMMRegister vec1, XMMRegister vec2);
1218 
1219   // Fill primitive arrays
1220   void generate_fill(BasicType t, bool aligned,
1221                      Register to, Register value, Register count,
1222                      Register rtmp, XMMRegister xtmp);
1223 
1224   void encode_iso_array(Register src, Register dst, Register len,
1225                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1226                         XMMRegister tmp4, Register tmp5, Register result);
1227 
1228 #ifdef _LP64
1229   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1230   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1231                              Register y, Register y_idx, Register z,
1232                              Register carry, Register product,
1233                              Register idx, Register kdx);
1234   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1235                               Register yz_idx, Register idx,
1236                               Register carry, Register product, int offset);
1237   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1238                                     Register carry, Register carry2,
1239                                     Register idx, Register jdx,
1240                                     Register yz_idx1, Register yz_idx2,
1241                                     Register tmp, Register tmp3, Register tmp4);
1242   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1243                                Register yz_idx, Register idx, Register jdx,
1244                                Register carry, Register product,
1245                                Register carry2);
1246   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1247                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1248 
1249   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1250                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1251   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1252                             Register tmp2);
1253   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1254                        Register rdxReg, Register raxReg);
1255   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1256   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1257                        Register tmp3, Register tmp4);
1258   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1259                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1260 
1261   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1262                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1263                Register raxReg);
1264   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1265                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1266                Register raxReg);
1267 #endif
1268 
1269   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1270   void update_byte_crc32(Register crc, Register val, Register table);
1271   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1272   // Fold 128-bit data chunk
1273   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1274   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1275   // Fold 8-bit data
1276   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1277   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1278 
1279 #undef VIRTUAL
1280 
1281 };
1282 
1283 /**
1284  * class SkipIfEqual:
1285  *
1286  * Instantiating this class will result in assembly code being output that will
1287  * jump around any code emitted between the creation of the instance and it's
1288  * automatic destruction at the end of a scope block, depending on the value of
1289  * the flag passed to the constructor, which will be checked at run-time.
1290  */
1291 class SkipIfEqual {
1292  private:
1293   MacroAssembler* _masm;
1294   Label _label;
1295 
1296  public:
1297    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1298    ~SkipIfEqual();
1299 };
1300 
1301 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP
1302