1 /*
2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "utilities/macros.hpp"
27 #include "gc_implementation/shared/allocationStats.hpp"
28 #include "memory/binaryTreeDictionary.hpp"
29 #include "memory/freeList.hpp"
30 #include "memory/freeBlockDictionary.hpp"
31 #include "memory/metachunk.hpp"
32 #include "runtime/globals.hpp"
33 #include "utilities/ostream.hpp"
34 #include "utilities/macros.hpp"
35 #include "gc_implementation/shared/spaceDecorator.hpp"
36 #if INCLUDE_ALL_GCS
37 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
40 #endif // INCLUDE_ALL_GCS
41 
42 ////////////////////////////////////////////////////////////////////////////////
43 // A binary tree based search structure for free blocks.
44 // This is currently used in the Concurrent Mark&Sweep implementation.
45 ////////////////////////////////////////////////////////////////////////////////
46 
47 template <class Chunk_t, class FreeList_t>
as_TreeChunk(Chunk_t * fc)48 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
49   // Do some assertion checking here.
50   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
51 }
52 
53 template <class Chunk_t, class FreeList_t>
verify_tree_chunk_list() const54 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
55   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
56   if (prev() != NULL) { // interior list node shouldn'r have tree fields
57     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
58               embedded_list()->right()  == NULL, "should be clear");
59   }
60   if (nextTC != NULL) {
61     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
62     guarantee(nextTC->size() == size(), "wrong size");
63     nextTC->verify_tree_chunk_list();
64   }
65 }
66 
67 template <class Chunk_t, class FreeList_t>
TreeList()68 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
69   _left(NULL), _right(NULL) {}
70 
71 template <class Chunk_t, class FreeList_t>
72 TreeList<Chunk_t, FreeList_t>*
as_TreeList(TreeChunk<Chunk_t,FreeList_t> * tc)73 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
74   // This first free chunk in the list will be the tree list.
75   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
76     "Chunk is too small for a TreeChunk");
77   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
78   tl->initialize();
79   tc->set_list(tl);
80   tl->set_size(tc->size());
81   tl->link_head(tc);
82   tl->link_tail(tc);
83   tl->set_count(1);
84   assert(tl->parent() == NULL, "Should be clear");
85   return tl;
86 }
87 
88 template <class Chunk_t, class FreeList_t>
89 TreeList<Chunk_t, FreeList_t>*
as_TreeList(HeapWord * addr,size_t size)90 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
91   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
92   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
93     "Chunk is too small for a TreeChunk");
94   // The space will have been mangled initially but
95   // is not remangled when a Chunk_t is returned to the free list
96   // (since it is used to maintain the chunk on the free list).
97   tc->assert_is_mangled();
98   tc->set_size(size);
99   tc->link_prev(NULL);
100   tc->link_next(NULL);
101   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
102   return tl;
103 }
104 
105 
106 #if INCLUDE_ALL_GCS
107 // Specialize for AdaptiveFreeList which tries to avoid
108 // splitting a chunk of a size that is under populated in favor of
109 // an over populated size.  The general get_better_list() just returns
110 // the current list.
111 template <>
112 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
get_better_list(BinaryTreeDictionary<FreeChunk,::AdaptiveFreeList<FreeChunk>> * dictionary)113 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
114   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
115   // A candidate chunk has been found.  If it is already under
116   // populated, get a chunk associated with the hint for this
117   // chunk.
118 
119   TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
120   if (surplus() <= 0) {
121     /* Use the hint to find a size with a surplus, and reset the hint. */
122     TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
123     while (hintTL->hint() != 0) {
124       assert(hintTL->hint() > hintTL->size(),
125         "hint points in the wrong direction");
126       hintTL = dictionary->find_list(hintTL->hint());
127       assert(curTL != hintTL, "Infinite loop");
128       if (hintTL == NULL ||
129           hintTL == curTL /* Should not happen but protect against it */ ) {
130         // No useful hint.  Set the hint to NULL and go on.
131         curTL->set_hint(0);
132         break;
133       }
134       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
135       if (hintTL->surplus() > 0) {
136         // The hint led to a list that has a surplus.  Use it.
137         // Set the hint for the candidate to an overpopulated
138         // size.
139         curTL->set_hint(hintTL->size());
140         // Change the candidate.
141         curTL = hintTL;
142         break;
143       }
144     }
145   }
146   return curTL;
147 }
148 #endif // INCLUDE_ALL_GCS
149 
150 template <class Chunk_t, class FreeList_t>
151 TreeList<Chunk_t, FreeList_t>*
get_better_list(BinaryTreeDictionary<Chunk_t,FreeList_t> * dictionary)152 TreeList<Chunk_t, FreeList_t>::get_better_list(
153   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
154   return this;
155 }
156 
157 template <class Chunk_t, class FreeList_t>
remove_chunk_replace_if_needed(TreeChunk<Chunk_t,FreeList_t> * tc)158 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
159 
160   TreeList<Chunk_t, FreeList_t>* retTL = this;
161   Chunk_t* list = head();
162   assert(!list || list != list->next(), "Chunk on list twice");
163   assert(tc != NULL, "Chunk being removed is NULL");
164   assert(parent() == NULL || this == parent()->left() ||
165     this == parent()->right(), "list is inconsistent");
166   assert(tc->is_free(), "Header is not marked correctly");
167   assert(head() == NULL || head()->prev() == NULL, "list invariant");
168   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
169 
170   Chunk_t* prevFC = tc->prev();
171   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
172   assert(list != NULL, "should have at least the target chunk");
173 
174   // Is this the first item on the list?
175   if (tc == list) {
176     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
177     // first chunk in the list unless it is the last chunk in the list
178     // because the first chunk is also acting as the tree node.
179     // When coalescing happens, however, the first chunk in the a tree
180     // list can be the start of a free range.  Free ranges are removed
181     // from the free lists so that they are not available to be
182     // allocated when the sweeper yields (giving up the free list lock)
183     // to allow mutator activity.  If this chunk is the first in the
184     // list and is not the last in the list, do the work to copy the
185     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
186     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
187     if (nextTC == NULL) {
188       assert(prevFC == NULL, "Not last chunk in the list");
189       set_tail(NULL);
190       set_head(NULL);
191     } else {
192       // copy embedded list.
193       nextTC->set_embedded_list(tc->embedded_list());
194       retTL = nextTC->embedded_list();
195       // Fix the pointer to the list in each chunk in the list.
196       // This can be slow for a long list.  Consider having
197       // an option that does not allow the first chunk on the
198       // list to be coalesced.
199       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
200           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
201         curTC->set_list(retTL);
202       }
203       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
204       if (retTL->parent() != NULL) {
205         if (this == retTL->parent()->left()) {
206           retTL->parent()->set_left(retTL);
207         } else {
208           assert(this == retTL->parent()->right(), "Parent is incorrect");
209           retTL->parent()->set_right(retTL);
210         }
211       }
212       // Fix the children's parent pointers to point to the
213       // new list.
214       assert(right() == retTL->right(), "Should have been copied");
215       if (retTL->right() != NULL) {
216         retTL->right()->set_parent(retTL);
217       }
218       assert(left() == retTL->left(), "Should have been copied");
219       if (retTL->left() != NULL) {
220         retTL->left()->set_parent(retTL);
221       }
222       retTL->link_head(nextTC);
223       assert(nextTC->is_free(), "Should be a free chunk");
224     }
225   } else {
226     if (nextTC == NULL) {
227       // Removing chunk at tail of list
228       this->link_tail(prevFC);
229     }
230     // Chunk is interior to the list
231     prevFC->link_after(nextTC);
232   }
233 
234   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
235   // tree node may have changed. Don't use "this"
236   // TreeList<Chunk_t, FreeList_t>*.
237   // chunk should still be a free chunk (bit set in _prev)
238   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
239     "Wrong sized chunk in list");
240   debug_only(
241     tc->link_prev(NULL);
242     tc->link_next(NULL);
243     tc->set_list(NULL);
244     bool prev_found = false;
245     bool next_found = false;
246     for (Chunk_t* curFC = retTL->head();
247          curFC != NULL; curFC = curFC->next()) {
248       assert(curFC != tc, "Chunk is still in list");
249       if (curFC == prevFC) {
250         prev_found = true;
251       }
252       if (curFC == nextTC) {
253         next_found = true;
254       }
255     }
256     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
257     assert(nextTC == NULL || next_found, "Chunk was lost from list");
258     assert(retTL->parent() == NULL ||
259            retTL == retTL->parent()->left() ||
260            retTL == retTL->parent()->right(),
261            "list is inconsistent");
262   )
263   retTL->decrement_count();
264 
265   assert(tc->is_free(), "Should still be a free chunk");
266   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
267     "list invariant");
268   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
269     "list invariant");
270   return retTL;
271 }
272 
273 template <class Chunk_t, class FreeList_t>
return_chunk_at_tail(TreeChunk<Chunk_t,FreeList_t> * chunk)274 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
275   assert(chunk != NULL, "returning NULL chunk");
276   assert(chunk->list() == this, "list should be set for chunk");
277   assert(tail() != NULL, "The tree list is embedded in the first chunk");
278   // which means that the list can never be empty.
279   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
280   assert(head() == NULL || head()->prev() == NULL, "list invariant");
281   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
282 
283   Chunk_t* fc = tail();
284   fc->link_after(chunk);
285   this->link_tail(chunk);
286 
287   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
288   FreeList_t::increment_count();
289   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
290   assert(head() == NULL || head()->prev() == NULL, "list invariant");
291   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
292 }
293 
294 // Add this chunk at the head of the list.  "At the head of the list"
295 // is defined to be after the chunk pointer to by head().  This is
296 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
297 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
298 template <class Chunk_t, class FreeList_t>
return_chunk_at_head(TreeChunk<Chunk_t,FreeList_t> * chunk)299 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
300   assert(chunk->list() == this, "list should be set for chunk");
301   assert(head() != NULL, "The tree list is embedded in the first chunk");
302   assert(chunk != NULL, "returning NULL chunk");
303   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
304   assert(head() == NULL || head()->prev() == NULL, "list invariant");
305   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
306 
307   Chunk_t* fc = head()->next();
308   if (fc != NULL) {
309     chunk->link_after(fc);
310   } else {
311     assert(tail() == NULL, "List is inconsistent");
312     this->link_tail(chunk);
313   }
314   head()->link_after(chunk);
315   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
316   FreeList_t::increment_count();
317   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
318   assert(head() == NULL || head()->prev() == NULL, "list invariant");
319   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
320 }
321 
322 template <class Chunk_t, class FreeList_t>
assert_is_mangled() const323 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
324   assert((ZapUnusedHeapArea &&
325           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
326           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
327           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
328           (size() == 0 && prev() == NULL && next() == NULL),
329     "Space should be clear or mangled");
330 }
331 
332 template <class Chunk_t, class FreeList_t>
head_as_TreeChunk()333 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
334   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
335     "Wrong type of chunk?");
336   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
337 }
338 
339 template <class Chunk_t, class FreeList_t>
first_available()340 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
341   assert(head() != NULL, "The head of the list cannot be NULL");
342   Chunk_t* fc = head()->next();
343   TreeChunk<Chunk_t, FreeList_t>* retTC;
344   if (fc == NULL) {
345     retTC = head_as_TreeChunk();
346   } else {
347     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
348   }
349   assert(retTC->list() == this, "Wrong type of chunk.");
350   return retTC;
351 }
352 
353 // Returns the block with the largest heap address amongst
354 // those in the list for this size; potentially slow and expensive,
355 // use with caution!
356 template <class Chunk_t, class FreeList_t>
largest_address()357 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
358   assert(head() != NULL, "The head of the list cannot be NULL");
359   Chunk_t* fc = head()->next();
360   TreeChunk<Chunk_t, FreeList_t>* retTC;
361   if (fc == NULL) {
362     retTC = head_as_TreeChunk();
363   } else {
364     // walk down the list and return the one with the highest
365     // heap address among chunks of this size.
366     Chunk_t* last = fc;
367     while (fc->next() != NULL) {
368       if ((HeapWord*)last < (HeapWord*)fc) {
369         last = fc;
370       }
371       fc = fc->next();
372     }
373     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
374   }
375   assert(retTC->list() == this, "Wrong type of chunk.");
376   return retTC;
377 }
378 
379 template <class Chunk_t, class FreeList_t>
BinaryTreeDictionary(MemRegion mr)380 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
381   assert((mr.byte_size() > min_size()), "minimum chunk size");
382 
383   reset(mr);
384   assert(root()->left() == NULL, "reset check failed");
385   assert(root()->right() == NULL, "reset check failed");
386   assert(root()->head()->next() == NULL, "reset check failed");
387   assert(root()->head()->prev() == NULL, "reset check failed");
388   assert(total_size() == root()->size(), "reset check failed");
389   assert(total_free_blocks() == 1, "reset check failed");
390 }
391 
392 template <class Chunk_t, class FreeList_t>
inc_total_size(size_t inc)393 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
394   _total_size = _total_size + inc;
395 }
396 
397 template <class Chunk_t, class FreeList_t>
dec_total_size(size_t dec)398 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
399   _total_size = _total_size - dec;
400 }
401 
402 template <class Chunk_t, class FreeList_t>
reset(MemRegion mr)403 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
404   assert((mr.byte_size() > min_size()), "minimum chunk size");
405   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
406   set_total_size(mr.word_size());
407   set_total_free_blocks(1);
408 }
409 
410 template <class Chunk_t, class FreeList_t>
reset(HeapWord * addr,size_t byte_size)411 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
412   MemRegion mr(addr, heap_word_size(byte_size));
413   reset(mr);
414 }
415 
416 template <class Chunk_t, class FreeList_t>
reset()417 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
418   set_root(NULL);
419   set_total_size(0);
420   set_total_free_blocks(0);
421 }
422 
423 // Get a free block of size at least size from tree, or NULL.
424 template <class Chunk_t, class FreeList_t>
425 TreeChunk<Chunk_t, FreeList_t>*
get_chunk_from_tree(size_t size,enum FreeBlockDictionary<Chunk_t>::Dither dither)426 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
427                               size_t size,
428                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
429 {
430   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
431   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
432 
433   assert((size >= min_size()), "minimum chunk size");
434   if (FLSVerifyDictionary) {
435     verify_tree();
436   }
437   // starting at the root, work downwards trying to find match.
438   // Remember the last node of size too great or too small.
439   for (prevTL = curTL = root(); curTL != NULL;) {
440     if (curTL->size() == size) {        // exact match
441       break;
442     }
443     prevTL = curTL;
444     if (curTL->size() < size) {        // proceed to right sub-tree
445       curTL = curTL->right();
446     } else {                           // proceed to left sub-tree
447       assert(curTL->size() > size, "size inconsistency");
448       curTL = curTL->left();
449     }
450   }
451   if (curTL == NULL) { // couldn't find exact match
452 
453     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
454 
455     // try and find the next larger size by walking back up the search path
456     for (curTL = prevTL; curTL != NULL;) {
457       if (curTL->size() >= size) break;
458       else curTL = curTL->parent();
459     }
460     assert(curTL == NULL || curTL->count() > 0,
461       "An empty list should not be in the tree");
462   }
463   if (curTL != NULL) {
464     assert(curTL->size() >= size, "size inconsistency");
465 
466     curTL = curTL->get_better_list(this);
467 
468     retTC = curTL->first_available();
469     assert((retTC != NULL) && (curTL->count() > 0),
470       "A list in the binary tree should not be NULL");
471     assert(retTC->size() >= size,
472       "A chunk of the wrong size was found");
473     remove_chunk_from_tree(retTC);
474     assert(retTC->is_free(), "Header is not marked correctly");
475   }
476 
477   if (FLSVerifyDictionary) {
478     verify();
479   }
480   return retTC;
481 }
482 
483 template <class Chunk_t, class FreeList_t>
find_list(size_t size) const484 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
485   TreeList<Chunk_t, FreeList_t>* curTL;
486   for (curTL = root(); curTL != NULL;) {
487     if (curTL->size() == size) {        // exact match
488       break;
489     }
490 
491     if (curTL->size() < size) {        // proceed to right sub-tree
492       curTL = curTL->right();
493     } else {                           // proceed to left sub-tree
494       assert(curTL->size() > size, "size inconsistency");
495       curTL = curTL->left();
496     }
497   }
498   return curTL;
499 }
500 
501 
502 template <class Chunk_t, class FreeList_t>
verify_chunk_in_free_list(Chunk_t * tc) const503 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
504   size_t size = tc->size();
505   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
506   if (tl == NULL) {
507     return false;
508   } else {
509     return tl->verify_chunk_in_free_list(tc);
510   }
511 }
512 
513 template <class Chunk_t, class FreeList_t>
514 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
515   TreeList<Chunk_t, FreeList_t> *curTL = root();
516   if (curTL != NULL) {
517     while(curTL->right() != NULL) curTL = curTL->right();
518     return curTL->largest_address();
519   } else {
520     return NULL;
521   }
522 }
523 
524 // Remove the current chunk from the tree.  If it is not the last
525 // chunk in a list on a tree node, just unlink it.
526 // If it is the last chunk in the list (the next link is NULL),
527 // remove the node and repair the tree.
528 template <class Chunk_t, class FreeList_t>
529 TreeChunk<Chunk_t, FreeList_t>*
remove_chunk_from_tree(TreeChunk<Chunk_t,FreeList_t> * tc)530 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
531   assert(tc != NULL, "Should not call with a NULL chunk");
532   assert(tc->is_free(), "Header is not marked correctly");
533 
534   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
535   TreeChunk<Chunk_t, FreeList_t>* retTC;
536   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
537   debug_only(
538     bool removing_only_chunk = false;
539     if (tl == _root) {
540       if ((_root->left() == NULL) && (_root->right() == NULL)) {
541         if (_root->count() == 1) {
542           assert(_root->head() == tc, "Should only be this one chunk");
543           removing_only_chunk = true;
544         }
545       }
546     }
547   )
548   assert(tl != NULL, "List should be set");
549   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
550          tl == tl->parent()->right(), "list is inconsistent");
551 
552   bool complicated_splice = false;
553 
554   retTC = tc;
555   // Removing this chunk can have the side effect of changing the node
556   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
557   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
558   assert(tc->is_free(), "Chunk should still be free");
559   assert(replacementTL->parent() == NULL ||
560          replacementTL == replacementTL->parent()->left() ||
561          replacementTL == replacementTL->parent()->right(),
562          "list is inconsistent");
563   if (tl == root()) {
564     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
565     set_root(replacementTL);
566   }
567 #ifdef ASSERT
568     if (tl != replacementTL) {
569       assert(replacementTL->head() != NULL,
570         "If the tree list was replaced, it should not be a NULL list");
571       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
572       TreeList<Chunk_t, FreeList_t>* rtl =
573         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
574       assert(rhl == replacementTL, "Broken head");
575       assert(rtl == replacementTL, "Broken tail");
576       assert(replacementTL->size() == tc->size(),  "Broken size");
577     }
578 #endif
579 
580   // Does the tree need to be repaired?
581   if (replacementTL->count() == 0) {
582     assert(replacementTL->head() == NULL &&
583            replacementTL->tail() == NULL, "list count is incorrect");
584     // Find the replacement node for the (soon to be empty) node being removed.
585     // if we have a single (or no) child, splice child in our stead
586     if (replacementTL->left() == NULL) {
587       // left is NULL so pick right.  right may also be NULL.
588       newTL = replacementTL->right();
589       debug_only(replacementTL->clear_right();)
590     } else if (replacementTL->right() == NULL) {
591       // right is NULL
592       newTL = replacementTL->left();
593       debug_only(replacementTL->clear_left();)
594     } else {  // we have both children, so, by patriarchal convention,
595               // my replacement is least node in right sub-tree
596       complicated_splice = true;
597       newTL = remove_tree_minimum(replacementTL->right());
598       assert(newTL != NULL && newTL->left() == NULL &&
599              newTL->right() == NULL, "sub-tree minimum exists");
600     }
601     // newTL is the replacement for the (soon to be empty) node.
602     // newTL may be NULL.
603     // should verify; we just cleanly excised our replacement
604     if (FLSVerifyDictionary) {
605       verify_tree();
606     }
607     // first make newTL my parent's child
608     if ((parentTL = replacementTL->parent()) == NULL) {
609       // newTL should be root
610       assert(tl == root(), "Incorrectly replacing root");
611       set_root(newTL);
612       if (newTL != NULL) {
613         newTL->clear_parent();
614       }
615     } else if (parentTL->right() == replacementTL) {
616       // replacementTL is a right child
617       parentTL->set_right(newTL);
618     } else {                                // replacementTL is a left child
619       assert(parentTL->left() == replacementTL, "should be left child");
620       parentTL->set_left(newTL);
621     }
622     debug_only(replacementTL->clear_parent();)
623     if (complicated_splice) {  // we need newTL to get replacementTL's
624                               // two children
625       assert(newTL != NULL &&
626              newTL->left() == NULL && newTL->right() == NULL,
627             "newTL should not have encumbrances from the past");
628       // we'd like to assert as below:
629       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
630       //       "else !complicated_splice");
631       // ... however, the above assertion is too strong because we aren't
632       // guaranteed that replacementTL->right() is still NULL.
633       // Recall that we removed
634       // the right sub-tree minimum from replacementTL.
635       // That may well have been its right
636       // child! So we'll just assert half of the above:
637       assert(replacementTL->left() != NULL, "else !complicated_splice");
638       newTL->set_left(replacementTL->left());
639       newTL->set_right(replacementTL->right());
640       debug_only(
641         replacementTL->clear_right();
642         replacementTL->clear_left();
643       )
644     }
645     assert(replacementTL->right() == NULL &&
646            replacementTL->left() == NULL &&
647            replacementTL->parent() == NULL,
648         "delete without encumbrances");
649   }
650 
651   assert(total_size() >= retTC->size(), "Incorrect total size");
652   dec_total_size(retTC->size());     // size book-keeping
653   assert(total_free_blocks() > 0, "Incorrect total count");
654   set_total_free_blocks(total_free_blocks() - 1);
655 
656   assert(retTC != NULL, "null chunk?");
657   assert(retTC->prev() == NULL && retTC->next() == NULL,
658          "should return without encumbrances");
659   if (FLSVerifyDictionary) {
660     verify_tree();
661   }
662   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
663   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
664 }
665 
666 // Remove the leftmost node (lm) in the tree and return it.
667 // If lm has a right child, link it to the left node of
668 // the parent of lm.
669 template <class Chunk_t, class FreeList_t>
remove_tree_minimum(TreeList<Chunk_t,FreeList_t> * tl)670 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
671   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
672   // locate the subtree minimum by walking down left branches
673   TreeList<Chunk_t, FreeList_t>* curTL = tl;
674   for (; curTL->left() != NULL; curTL = curTL->left());
675   // obviously curTL now has at most one child, a right child
676   if (curTL != root()) {  // Should this test just be removed?
677     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
678     if (parentTL->left() == curTL) { // curTL is a left child
679       parentTL->set_left(curTL->right());
680     } else {
681       // If the list tl has no left child, then curTL may be
682       // the right child of parentTL.
683       assert(parentTL->right() == curTL, "should be a right child");
684       parentTL->set_right(curTL->right());
685     }
686   } else {
687     // The only use of this method would not pass the root of the
688     // tree (as indicated by the assertion above that the tree list
689     // has a parent) but the specification does not explicitly exclude the
690     // passing of the root so accomodate it.
691     set_root(NULL);
692   }
693   debug_only(
694     curTL->clear_parent();  // Test if this needs to be cleared
695     curTL->clear_right();    // recall, above, left child is already null
696   )
697   // we just excised a (non-root) node, we should still verify all tree invariants
698   if (FLSVerifyDictionary) {
699     verify_tree();
700   }
701   return curTL;
702 }
703 
704 template <class Chunk_t, class FreeList_t>
insert_chunk_in_tree(Chunk_t * fc)705 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
706   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
707   size_t size = fc->size();
708 
709   assert((size >= min_size()),
710     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
711       size, min_size()));
712   if (FLSVerifyDictionary) {
713     verify_tree();
714   }
715 
716   fc->clear_next();
717   fc->link_prev(NULL);
718 
719   // work down from the _root, looking for insertion point
720   for (prevTL = curTL = root(); curTL != NULL;) {
721     if (curTL->size() == size)  // exact match
722       break;
723     prevTL = curTL;
724     if (curTL->size() > size) { // follow left branch
725       curTL = curTL->left();
726     } else {                    // follow right branch
727       assert(curTL->size() < size, "size inconsistency");
728       curTL = curTL->right();
729     }
730   }
731   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
732   // This chunk is being returned to the binary tree.  Its embedded
733   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
734   tc->initialize();
735   if (curTL != NULL) {          // exact match
736     tc->set_list(curTL);
737     curTL->return_chunk_at_tail(tc);
738   } else {                     // need a new node in tree
739     tc->clear_next();
740     tc->link_prev(NULL);
741     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
742     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
743       "List was not initialized correctly");
744     if (prevTL == NULL) {      // we are the only tree node
745       assert(root() == NULL, "control point invariant");
746       set_root(newTL);
747     } else {                   // insert under prevTL ...
748       if (prevTL->size() < size) {   // am right child
749         assert(prevTL->right() == NULL, "control point invariant");
750         prevTL->set_right(newTL);
751       } else {                       // am left child
752         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
753         prevTL->set_left(newTL);
754       }
755     }
756   }
757   assert(tc->list() != NULL, "Tree list should be set");
758 
759   inc_total_size(size);
760   // Method 'total_size_in_tree' walks through the every block in the
761   // tree, so it can cause significant performance loss if there are
762   // many blocks in the tree
763   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
764   set_total_free_blocks(total_free_blocks() + 1);
765   if (FLSVerifyDictionary) {
766     verify_tree();
767   }
768 }
769 
770 template <class Chunk_t, class FreeList_t>
max_chunk_size() const771 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
772   FreeBlockDictionary<Chunk_t>::verify_par_locked();
773   TreeList<Chunk_t, FreeList_t>* tc = root();
774   if (tc == NULL) return 0;
775   for (; tc->right() != NULL; tc = tc->right());
776   return tc->size();
777 }
778 
779 template <class Chunk_t, class FreeList_t>
total_list_length(TreeList<Chunk_t,FreeList_t> * tl) const780 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
781   size_t res;
782   res = tl->count();
783 #ifdef ASSERT
784   size_t cnt;
785   Chunk_t* tc = tl->head();
786   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
787   assert(res == cnt, "The count is not being maintained correctly");
788 #endif
789   return res;
790 }
791 
792 template <class Chunk_t, class FreeList_t>
total_size_in_tree(TreeList<Chunk_t,FreeList_t> * tl) const793 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
794   if (tl == NULL)
795     return 0;
796   return (tl->size() * total_list_length(tl)) +
797          total_size_in_tree(tl->left())    +
798          total_size_in_tree(tl->right());
799 }
800 
801 template <class Chunk_t, class FreeList_t>
sum_of_squared_block_sizes(TreeList<Chunk_t,FreeList_t> * const tl) const802 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
803   if (tl == NULL) {
804     return 0.0;
805   }
806   double size = (double)(tl->size());
807   double curr = size * size * total_list_length(tl);
808   curr += sum_of_squared_block_sizes(tl->left());
809   curr += sum_of_squared_block_sizes(tl->right());
810   return curr;
811 }
812 
813 template <class Chunk_t, class FreeList_t>
total_free_blocks_in_tree(TreeList<Chunk_t,FreeList_t> * tl) const814 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
815   if (tl == NULL)
816     return 0;
817   return total_list_length(tl) +
818          total_free_blocks_in_tree(tl->left()) +
819          total_free_blocks_in_tree(tl->right());
820 }
821 
822 template <class Chunk_t, class FreeList_t>
num_free_blocks() const823 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
824   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
825          "_total_free_blocks inconsistency");
826   return total_free_blocks();
827 }
828 
829 template <class Chunk_t, class FreeList_t>
tree_height_helper(TreeList<Chunk_t,FreeList_t> * tl) const830 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
831   if (tl == NULL)
832     return 0;
833   return 1 + MAX2(tree_height_helper(tl->left()),
834                   tree_height_helper(tl->right()));
835 }
836 
837 template <class Chunk_t, class FreeList_t>
tree_height() const838 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
839   return tree_height_helper(root());
840 }
841 
842 template <class Chunk_t, class FreeList_t>
total_nodes_helper(TreeList<Chunk_t,FreeList_t> * tl) const843 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
844   if (tl == NULL) {
845     return 0;
846   }
847   return 1 + total_nodes_helper(tl->left()) +
848     total_nodes_helper(tl->right());
849 }
850 
851 template <class Chunk_t, class FreeList_t>
total_nodes_in_tree(TreeList<Chunk_t,FreeList_t> * tl) const852 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
853   return total_nodes_helper(root());
854 }
855 
856 template <class Chunk_t, class FreeList_t>
dict_census_update(size_t size,bool split,bool birth)857 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
858 
859 #if INCLUDE_ALL_GCS
860 template <>
dict_census_update(size_t size,bool split,bool birth)861 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
862   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
863   if (nd) {
864     if (split) {
865       if (birth) {
866         nd->increment_split_births();
867         nd->increment_surplus();
868       }  else {
869         nd->increment_split_deaths();
870         nd->decrement_surplus();
871       }
872     } else {
873       if (birth) {
874         nd->increment_coal_births();
875         nd->increment_surplus();
876       } else {
877         nd->increment_coal_deaths();
878         nd->decrement_surplus();
879       }
880     }
881   }
882   // A list for this size may not be found (nd == 0) if
883   //   This is a death where the appropriate list is now
884   //     empty and has been removed from the list.
885   //   This is a birth associated with a LinAB.  The chunk
886   //     for the LinAB is not in the dictionary.
887 }
888 #endif // INCLUDE_ALL_GCS
889 
890 template <class Chunk_t, class FreeList_t>
coal_dict_over_populated(size_t size)891 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
892   // For the general type of freelists, encourage coalescing by
893   // returning true.
894   return true;
895 }
896 
897 #if INCLUDE_ALL_GCS
898 template <>
coal_dict_over_populated(size_t size)899 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
900   if (FLSAlwaysCoalesceLarge) return true;
901 
902   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
903   // None of requested size implies overpopulated.
904   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
905          list_of_size->count() > list_of_size->coal_desired();
906 }
907 #endif // INCLUDE_ALL_GCS
908 
909 // Closures for walking the binary tree.
910 //   do_list() walks the free list in a node applying the closure
911 //     to each free chunk in the list
912 //   do_tree() walks the nodes in the binary tree applying do_list()
913 //     to each list at each node.
914 
915 template <class Chunk_t, class FreeList_t>
916 class TreeCensusClosure : public StackObj {
917  protected:
918   virtual void do_list(FreeList_t* fl) = 0;
919  public:
920   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
921 };
922 
923 template <class Chunk_t, class FreeList_t>
924 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
925  public:
do_tree(TreeList<Chunk_t,FreeList_t> * tl)926   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
927     if (tl != NULL) {
928       do_tree(tl->left());
929       this->do_list(tl);
930       do_tree(tl->right());
931     }
932   }
933 };
934 
935 template <class Chunk_t, class FreeList_t>
936 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
937  public:
do_tree(TreeList<Chunk_t,FreeList_t> * tl)938   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
939     if (tl != NULL) {
940       do_tree(tl->right());
941       this->do_list(tl);
942       do_tree(tl->left());
943     }
944   }
945 };
946 
947 // For each list in the tree, calculate the desired, desired
948 // coalesce, count before sweep, and surplus before sweep.
949 template <class Chunk_t, class FreeList_t>
950 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
951   double _percentage;
952   float _inter_sweep_current;
953   float _inter_sweep_estimate;
954   float _intra_sweep_estimate;
955 
956  public:
BeginSweepClosure(double p,float inter_sweep_current,float inter_sweep_estimate,float intra_sweep_estimate)957   BeginSweepClosure(double p, float inter_sweep_current,
958                               float inter_sweep_estimate,
959                               float intra_sweep_estimate) :
960    _percentage(p),
961    _inter_sweep_current(inter_sweep_current),
962    _inter_sweep_estimate(inter_sweep_estimate),
963    _intra_sweep_estimate(intra_sweep_estimate) { }
964 
do_list(FreeList<Chunk_t> * fl)965   void do_list(FreeList<Chunk_t>* fl) {}
966 
967 #if INCLUDE_ALL_GCS
do_list(AdaptiveFreeList<Chunk_t> * fl)968   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
969     double coalSurplusPercent = _percentage;
970     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
971     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
972     fl->set_before_sweep(fl->count());
973     fl->set_bfr_surp(fl->surplus());
974   }
975 #endif // INCLUDE_ALL_GCS
976 };
977 
978 // Used to search the tree until a condition is met.
979 // Similar to TreeCensusClosure but searches the
980 // tree and returns promptly when found.
981 
982 template <class Chunk_t, class FreeList_t>
983 class TreeSearchClosure : public StackObj {
984  protected:
985   virtual bool do_list(FreeList_t* fl) = 0;
986  public:
987   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
988 };
989 
990 #if 0 //  Don't need this yet but here for symmetry.
991 template <class Chunk_t, class FreeList_t>
992 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
993  public:
994   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
995     if (tl != NULL) {
996       if (do_tree(tl->left())) return true;
997       if (do_list(tl)) return true;
998       if (do_tree(tl->right())) return true;
999     }
1000     return false;
1001   }
1002 };
1003 #endif
1004 
1005 template <class Chunk_t, class FreeList_t>
1006 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1007  public:
do_tree(TreeList<Chunk_t,FreeList_t> * tl)1008   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1009     if (tl != NULL) {
1010       if (do_tree(tl->right())) return true;
1011       if (this->do_list(tl)) return true;
1012       if (do_tree(tl->left())) return true;
1013     }
1014     return false;
1015   }
1016 };
1017 
1018 // Searches the tree for a chunk that ends at the
1019 // specified address.
1020 template <class Chunk_t, class FreeList_t>
1021 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1022   HeapWord* _target;
1023   Chunk_t* _found;
1024 
1025  public:
EndTreeSearchClosure(HeapWord * target)1026   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
do_list(FreeList_t * fl)1027   bool do_list(FreeList_t* fl) {
1028     Chunk_t* item = fl->head();
1029     while (item != NULL) {
1030       if (item->end() == (uintptr_t*) _target) {
1031         _found = item;
1032         return true;
1033       }
1034       item = item->next();
1035     }
1036     return false;
1037   }
found()1038   Chunk_t* found() { return _found; }
1039 };
1040 
1041 template <class Chunk_t, class FreeList_t>
1042 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1043   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1044   bool found_target = etsc.do_tree(root());
1045   assert(found_target || etsc.found() == NULL, "Consistency check");
1046   assert(!found_target || etsc.found() != NULL, "Consistency check");
1047   return etsc.found();
1048 }
1049 
1050 template <class Chunk_t, class FreeList_t>
begin_sweep_dict_census(double coalSurplusPercent,float inter_sweep_current,float inter_sweep_estimate,float intra_sweep_estimate)1051 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1052   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1053   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1054                                             inter_sweep_estimate,
1055                                             intra_sweep_estimate);
1056   bsc.do_tree(root());
1057 }
1058 
1059 // Closures and methods for calculating total bytes returned to the
1060 // free lists in the tree.
1061 #ifndef PRODUCT
1062 template <class Chunk_t, class FreeList_t>
1063 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1064    public:
do_list(FreeList_t * fl)1065   void do_list(FreeList_t* fl) {
1066     fl->set_returned_bytes(0);
1067   }
1068 };
1069 
1070 template <class Chunk_t, class FreeList_t>
initialize_dict_returned_bytes()1071 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1072   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1073   idrb.do_tree(root());
1074 }
1075 
1076 template <class Chunk_t, class FreeList_t>
1077 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1078   size_t _dict_returned_bytes;
1079  public:
ReturnedBytesClosure()1080   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
do_list(FreeList_t * fl)1081   void do_list(FreeList_t* fl) {
1082     _dict_returned_bytes += fl->returned_bytes();
1083   }
dict_returned_bytes()1084   size_t dict_returned_bytes() { return _dict_returned_bytes; }
1085 };
1086 
1087 template <class Chunk_t, class FreeList_t>
sum_dict_returned_bytes()1088 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1089   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1090   rbc.do_tree(root());
1091 
1092   return rbc.dict_returned_bytes();
1093 }
1094 
1095 // Count the number of entries in the tree.
1096 template <class Chunk_t, class FreeList_t>
1097 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1098  public:
1099   uint count;
treeCountClosure(uint c)1100   treeCountClosure(uint c) { count = c; }
do_list(FreeList_t * fl)1101   void do_list(FreeList_t* fl) {
1102     count++;
1103   }
1104 };
1105 
1106 template <class Chunk_t, class FreeList_t>
total_count()1107 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1108   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1109   ctc.do_tree(root());
1110   return ctc.count;
1111 }
1112 #endif // PRODUCT
1113 
1114 // Calculate surpluses for the lists in the tree.
1115 template <class Chunk_t, class FreeList_t>
1116 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1117   double percentage;
1118  public:
setTreeSurplusClosure(double v)1119   setTreeSurplusClosure(double v) { percentage = v; }
do_list(FreeList<Chunk_t> * fl)1120   void do_list(FreeList<Chunk_t>* fl) {}
1121 
1122 #if INCLUDE_ALL_GCS
do_list(AdaptiveFreeList<Chunk_t> * fl)1123   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1124     double splitSurplusPercent = percentage;
1125     fl->set_surplus(fl->count() -
1126                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1127   }
1128 #endif // INCLUDE_ALL_GCS
1129 };
1130 
1131 template <class Chunk_t, class FreeList_t>
set_tree_surplus(double splitSurplusPercent)1132 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1133   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1134   sts.do_tree(root());
1135 }
1136 
1137 // Set hints for the lists in the tree.
1138 template <class Chunk_t, class FreeList_t>
1139 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1140   size_t hint;
1141  public:
setTreeHintsClosure(size_t v)1142   setTreeHintsClosure(size_t v) { hint = v; }
do_list(FreeList<Chunk_t> * fl)1143   void do_list(FreeList<Chunk_t>* fl) {}
1144 
1145 #if INCLUDE_ALL_GCS
do_list(AdaptiveFreeList<Chunk_t> * fl)1146   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1147     fl->set_hint(hint);
1148     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1149       "Current hint is inconsistent");
1150     if (fl->surplus() > 0) {
1151       hint = fl->size();
1152     }
1153   }
1154 #endif // INCLUDE_ALL_GCS
1155 };
1156 
1157 template <class Chunk_t, class FreeList_t>
set_tree_hints(void)1158 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1159   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1160   sth.do_tree(root());
1161 }
1162 
1163 // Save count before previous sweep and splits and coalesces.
1164 template <class Chunk_t, class FreeList_t>
1165 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
do_list(FreeList<Chunk_t> * fl)1166   void do_list(FreeList<Chunk_t>* fl) {}
1167 
1168 #if INCLUDE_ALL_GCS
do_list(AdaptiveFreeList<Chunk_t> * fl)1169   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1170     fl->set_prev_sweep(fl->count());
1171     fl->set_coal_births(0);
1172     fl->set_coal_deaths(0);
1173     fl->set_split_births(0);
1174     fl->set_split_deaths(0);
1175   }
1176 #endif // INCLUDE_ALL_GCS
1177 };
1178 
1179 template <class Chunk_t, class FreeList_t>
clear_tree_census(void)1180 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1181   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1182   ctc.do_tree(root());
1183 }
1184 
1185 // Do reporting and post sweep clean up.
1186 template <class Chunk_t, class FreeList_t>
end_sweep_dict_census(double splitSurplusPercent)1187 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1188   // Does walking the tree 3 times hurt?
1189   set_tree_surplus(splitSurplusPercent);
1190   set_tree_hints();
1191   if (PrintGC && Verbose) {
1192     report_statistics();
1193   }
1194   clear_tree_census();
1195 }
1196 
1197 // Print summary statistics
1198 template <class Chunk_t, class FreeList_t>
report_statistics() const1199 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1200   FreeBlockDictionary<Chunk_t>::verify_par_locked();
1201   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1202          "------------------------------------\n");
1203   size_t total_size = total_chunk_size(debug_only(NULL));
1204   size_t    free_blocks = num_free_blocks();
1205   gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
1206   gclog_or_tty->print("Max   Chunk Size: " SIZE_FORMAT "\n", max_chunk_size());
1207   gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
1208   if (free_blocks > 0) {
1209     gclog_or_tty->print("Av.  Block  Size: " SIZE_FORMAT "\n", total_size/free_blocks);
1210   }
1211   gclog_or_tty->print("Tree      Height: " SIZE_FORMAT "\n", tree_height());
1212 }
1213 
1214 // Print census information - counts, births, deaths, etc.
1215 // for each list in the tree.  Also print some summary
1216 // information.
1217 template <class Chunk_t, class FreeList_t>
1218 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1219   int _print_line;
1220   size_t _total_free;
1221   FreeList_t _total;
1222 
1223  public:
PrintTreeCensusClosure()1224   PrintTreeCensusClosure() {
1225     _print_line = 0;
1226     _total_free = 0;
1227   }
total()1228   FreeList_t* total() { return &_total; }
total_free()1229   size_t total_free() { return _total_free; }
do_list(FreeList<Chunk_t> * fl)1230   void do_list(FreeList<Chunk_t>* fl) {
1231     if (++_print_line >= 40) {
1232       FreeList_t::print_labels_on(gclog_or_tty, "size");
1233       _print_line = 0;
1234     }
1235     fl->print_on(gclog_or_tty);
1236     _total_free +=            fl->count()            * fl->size()        ;
1237     total()->set_count(      total()->count()       + fl->count()      );
1238   }
1239 
1240 #if INCLUDE_ALL_GCS
do_list(AdaptiveFreeList<Chunk_t> * fl)1241   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1242     if (++_print_line >= 40) {
1243       FreeList_t::print_labels_on(gclog_or_tty, "size");
1244       _print_line = 0;
1245     }
1246     fl->print_on(gclog_or_tty);
1247     _total_free +=           fl->count()             * fl->size()        ;
1248     total()->set_count(      total()->count()        + fl->count()      );
1249     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
1250     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
1251     total()->set_desired(    total()->desired()      + fl->desired()    );
1252     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
1253     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1254     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
1255     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
1256     total()->set_split_births(total()->split_births() + fl->split_births());
1257     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1258   }
1259 #endif // INCLUDE_ALL_GCS
1260 };
1261 
1262 template <class Chunk_t, class FreeList_t>
print_dict_census(void) const1263 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1264 
1265   gclog_or_tty->print("\nBinaryTree\n");
1266   FreeList_t::print_labels_on(gclog_or_tty, "size");
1267   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1268   ptc.do_tree(root());
1269 
1270   FreeList_t* total = ptc.total();
1271   FreeList_t::print_labels_on(gclog_or_tty, " ");
1272 }
1273 
1274 #if INCLUDE_ALL_GCS
1275 template <>
print_dict_census(void) const1276 void AFLBinaryTreeDictionary::print_dict_census(void) const {
1277 
1278   gclog_or_tty->print("\nBinaryTree\n");
1279   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1280   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
1281   ptc.do_tree(root());
1282 
1283   AdaptiveFreeList<FreeChunk>* total = ptc.total();
1284   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1285   total->print_on(gclog_or_tty, "TOTAL\t");
1286   gclog_or_tty->print(
1287               "total_free(words): " SIZE_FORMAT_W(16)
1288               " growth: %8.5f  deficit: %8.5f\n",
1289               ptc.total_free(),
1290               (double)(total->split_births() + total->coal_births()
1291                      - total->split_deaths() - total->coal_deaths())
1292               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1293              (double)(total->desired() - total->count())
1294              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1295 }
1296 #endif // INCLUDE_ALL_GCS
1297 
1298 template <class Chunk_t, class FreeList_t>
1299 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1300   outputStream* _st;
1301   int _print_line;
1302 
1303  public:
PrintFreeListsClosure(outputStream * st)1304   PrintFreeListsClosure(outputStream* st) {
1305     _st = st;
1306     _print_line = 0;
1307   }
do_list(FreeList_t * fl)1308   void do_list(FreeList_t* fl) {
1309     if (++_print_line >= 40) {
1310       FreeList_t::print_labels_on(_st, "size");
1311       _print_line = 0;
1312     }
1313     fl->print_on(gclog_or_tty);
1314     size_t sz = fl->size();
1315     for (Chunk_t* fc = fl->head(); fc != NULL;
1316          fc = fc->next()) {
1317       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1318                     p2i(fc), p2i((HeapWord*)fc + sz),
1319                     fc->cantCoalesce() ? "\t CC" : "");
1320     }
1321   }
1322 };
1323 
1324 template <class Chunk_t, class FreeList_t>
print_free_lists(outputStream * st) const1325 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1326 
1327   FreeList_t::print_labels_on(st, "size");
1328   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1329   pflc.do_tree(root());
1330 }
1331 
1332 // Verify the following tree invariants:
1333 // . _root has no parent
1334 // . parent and child point to each other
1335 // . each node's key correctly related to that of its child(ren)
1336 template <class Chunk_t, class FreeList_t>
verify_tree() const1337 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1338   guarantee(root() == NULL || total_free_blocks() == 0 ||
1339     total_size() != 0, "_total_size should't be 0?");
1340   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1341   verify_tree_helper(root());
1342 }
1343 
1344 template <class Chunk_t, class FreeList_t>
verify_prev_free_ptrs(TreeList<Chunk_t,FreeList_t> * tl)1345 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1346   size_t ct = 0;
1347   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1348     ct++;
1349     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1350       "Chunk should be free");
1351   }
1352   return ct;
1353 }
1354 
1355 // Note: this helper is recursive rather than iterative, so use with
1356 // caution on very deep trees; and watch out for stack overflow errors;
1357 // In general, to be used only for debugging.
1358 template <class Chunk_t, class FreeList_t>
verify_tree_helper(TreeList<Chunk_t,FreeList_t> * tl) const1359 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1360   if (tl == NULL)
1361     return;
1362   guarantee(tl->size() != 0, "A list must has a size");
1363   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1364          "parent<-/->left");
1365   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1366          "parent<-/->right");;
1367   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1368          "parent !> left");
1369   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1370          "parent !< left");
1371   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1372   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1373     "list inconsistency");
1374   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1375     "list count is inconsistent");
1376   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1377     "list is incorrectly constructed");
1378   size_t count = verify_prev_free_ptrs(tl);
1379   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1380   if (tl->head() != NULL) {
1381     tl->head_as_TreeChunk()->verify_tree_chunk_list();
1382   }
1383   verify_tree_helper(tl->left());
1384   verify_tree_helper(tl->right());
1385 }
1386 
1387 template <class Chunk_t, class FreeList_t>
verify() const1388 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1389   verify_tree();
1390   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1391 }
1392 
1393 template class TreeList<Metablock, FreeList<Metablock> >;
1394 template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
1395 template class TreeChunk<Metablock, FreeList<Metablock> >;
1396 
1397 template class TreeList<Metachunk, FreeList<Metachunk> >;
1398 template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
1399 template class TreeChunk<Metachunk, FreeList<Metachunk> >;
1400 
1401 
1402 #if INCLUDE_ALL_GCS
1403 // Explicitly instantiate these types for FreeChunk.
1404 template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1405 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1406 template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1407 
1408 #endif // INCLUDE_ALL_GCS
1409